A Component-based Middleware Architecture for Sentient

Computing

Aline Senart, Mélanie Bouroche, Gregory Biegel and Vinny Cabhill
Distributed Systems Group,
Department of Computer Science,
Trinity College, Dublin

{Aline.Senart, Melanie.Bouroche, Greg.Biegel, Vinny.Cahill}@cs.tcd.ie

Abstract

The Aithne project is developing a component-
based middleware architecture for sentient com-
puting that provides developers with the pos-
sibility of constructing customised middleware
to support different combinations of non-
functional requirements. The architecture that
we are designing is based on the concept of sen-
tient objects - mobile intelligent software agents
capable of sensing their environment and react-
ing based on their perceived context. In this
paper, we identify the software components re-
quired to support sentient objects in ad hoc en-
vironments and discuss an instantiation of the
architecture for a sentient sofa, capable of re-
cognising who is sitting on it.

1 Introduction

This last decade has witnessed explosive growth
in the number and diversity of mobile, commu-
nicating devices, thanks to recent technological
developments in wireless data communications
and device miniaturisation. Based on these de-
velopments as well as new sensor technologies, a
new class of applications, distributed over large
geographical areas, and composed of a large
population of fined-grained, context-aware and
highly mobile entities, is emerging.

A typical example of such sentient comput-
ing application is traffic management. In such
a scenario, entities may represent traffic lights,
cars, ambulances or signposts, disseminating in-
formation on their context (e.g., location and
state) and reacting to information provided by
other entities in order to obtain safer driving. In
the Aithne project, we model those intelligent

entities as sentient objects [4], able to sense and
to discover their context, to act autonomously
(without direct human control) and to cooper-
ate with each other.

The development and deployment of sen-
tient computing applications requires middle-
ware that supports a suitable interaction model
with appropriate runtime services for sentient
objects. However, existing middleware for
context-aware computing does not meet the re-
quirements of sentient objects, as it lacks sup-
port for large scale systems, time constraints,
and mobility. Furthermore, customising mid-
dleware to fit application requirements is often
not possible.

Given the diversity of potential applications
constructed from large collections of sensor
devices and the mix of requirements, we plan
to provide a middleware architecture that de-
scribes a family of possible middleware plat-
forms, addressing different combinations of non-
functional requirements, like mobility and real-
time behaviour. The architecture we are work-
ing on is based on a common programming
model for sentient objects and can be custom-
ised by choosing from a library of reusable com-
ponents.

As preliminary work, we have instantiated our
middleware architecture for a sensor-augmented
sofa, that identifies the person sitting on it by
their weight and determines their approximate
position. One possible application of the sen-
tient sofa could be, for example, to set permis-
sions on TV programs according to the person
using the sofa. To develop the middleware for
the sofa, we have selected the components re-
quired from our library and assembled them ac-
cording to their well-defined interfaces.

In this paper, we identify the set of compon-

ents required by middleware for context-aware
computing in ad hoc environments and present
the application of those components to a sen-
tient computing scenario. The structure of the
paper is as follows. In the next section, we dis-
cuss related work. Section 3 and 4 present the
design principles and components we have iden-
tified for our middleware architecture. Follow-
ing this, the customisation of our architecture
for the sentient sofa is presented in Section 5.
Finally, concluding remarks and future work are
outlined in Section 6.

2 Related work

Mobile nodes equiped with wireless interfaces
and using ad hoc protocols are able to form a
temporary network without the need for any es-
tablished infrastructure or centralised adminis-
tration. With the considerable research atten-
tion given to those ad hoc networks in recent
years, new challenges for sentient computing
arise: scarce resources, mobility, and time crit-
icality are the most significant issues to be ad-
dressed. While there have been numerous efforts
at developing context-aware applications [5,13],
relatively little work has been done to define ap-
propriate middleware to support sensor techno-
logies and to provide run-time services on top of
ad hoc networks.

Traditional distributed middleware systems
(like CORBA! or RMI?) are inadequate for
the development of sentient systems: their syn-
chronous communication model does not ac-
commodate wireless applications. Moreover,
those architectures are heavyweight in terms of
memory and computation requirements and are
therefore not suitable for sentient objects that
can be characterised by scarce resources.

To provide lightweight middleware, several
projects have attempted to adapt and scale their
platforms to target applications [7], but they
lack support for sensing and discovering their
environment and have no ability to respond to
the resulting contextual information. Further-
more, they do not provide support for different
non-functional requirements, such as mobility or
time constraints.

Current real-time middleware implementa-
tions [2] are appropriate for real-time applica-
tions, but can not be used in ad hoc networks.

Lhttp://www.omg.org
2http://www.java.sun.com

On the other hand, some middleware solutions
provide system services to allow device mobil-
ity [9,14] and context-awareness [12], but do not
address real-time issues. Other interesting sys-
tems have been developed to address real-time
issues in wireless environments supporting ad
hoc communication [15], but they fail to offer
customable middleware where real-time aspects
are optional.

To summarise, existing middleware described
in the literature provides fixed and limited sup-
port for sentient computing. Existing solutions
either provide a heavyweight environment or fo-
cus on specific issues, like user mobility or real-
time guarantees. None of them provides a suit-
able framework that meets all sentient comput-
ing requirements. Moreover, the basic compon-
ents we have identified to support sentient ob-
jects are not provided by related work: few sys-
tems offer this large set of components, ranging
from a partition anticipator to an inference en-
gine.

3 Design principles

The architecture that we aim to provide should
enable the construction of customised middle-
ware supporting different non-functional prop-
erties and target platforms.

Instantiation of customised
middleware

3.1

Since resources available to sentient objects may
be limited, the architecture should allow the
construction of lightweight middleware. System
services required by the applications for which
middleware is targeted should be the only ones
embedded within the middleware. For that pur-
pose, we have identified the components that
may be required to support sentient objects
in ad hoc networks and the set of their inter-
faces (i.e., the services that these components
make available to other components). Com-
ponents are placed at the disposal of middle-
ware designers in a library. This approach al-
lows components to be assembled by developers
to form customised middleware that fit applic-
ation requirements exactly. All components of-
fering the same service provide interfaces that
conform a common specification, so their clients
can use the service easily and can change the ac-
tual component that provides it. By using such

off the shelf components and well-defined inter-
faces, reusability and interoperability is greatly
improved.

3.2 Support for non-functional
guarantees
The middleware architecture we propose

provides the necessary support for running
sentient computing applications with non-
functional guarantees. The support addressing
non-functional requirements is formed by op-
tional components available in the library. For
example, the middleware architecture includes
components to monitor timing constraints for
safety critical systems. Likewise, runtime ser-
vices for mobility are provided in the library for
middleware dedicated to mobile applications.

3.3 Support for different plat-
forms

Middleware for sentient computing needs to
provide a uniform way to express context-
awareness without restricting the application
software developers to use a specific operating
or communication system. Consequently, we
provide a middleware architecture which can
be easily adapted to different hardware envir-
onments, like embedded platforms, WinCE or
linux. Moreover, simulations of large-scale sen-
tient computing applications and deployment
of context-aware applications in the real world
are both possible. To achieve this, a simulator
and different versions of components for differ-
ent platforms are provided in the library.

4 Overview of the middle-
ware architecture

We have identified the components that are ne-
cessary for the construction of middleware for
sentient computing. In this section, we describe
each of these components and their current im-
plementations®. Figure 1 shows their organisa-
tion in different layers: a programming model,
a communication layer, routing and resource re-
servation mechanisms and a network layer. We
will now describe each of these layers.

3Due to space limitations, their interfaces are not
presented here.

4.1 Programming model

First, we propose a programming model, based
on the sentient object model [1], which provides
components for the development of context-
aware applications. The programming model
allows data capture and fusion from disparate
sensors, representation of application context,
and efficient reasoning about context. A graph-
ical development tool is also provided, allowing
developers to specify relevant components to use
in a sentient object, without the need to write
complex code. The components of this program-
ming model are:

Sensor capture and fusion. A sentient ob-
ject may receive input from diverse sensors;
thus, sensor fusion needs to be performed in
order to manage uncertainty of the data com-
ing from individual sensors and to determine
higher-level context. For sensor fusion, a prob-
abilistic scheme is provided in the library, based
on Bayesian networks, as well as components
performing a simple data sum and average.

Context representation. The set of higher-
level contexts in which a sentient object may ex-
ist can be represented as a hierarchy. We place
at the disposal of middleware developers a com-
ponent for context representation that follows
the Context-Based Reasoning paradigm [6], de-
fining a set of possible actions and identifying
future contexts according to the current context.

Inference engine. Sentient objects are ex-
pected to act upon their environment by using
reasoning mechanisms that specify their beha-
viour in regard to the set of facts generated in
their current context. An inference engine com-
ponent that offers the conditional rule mechan-
isms of CLIPS* is available in the library.

4.2 Communication layer

Middleware supporting event-based communic-
ation and membership management are widely
recognised as being appropriate to ad hoc net-
works since they naturally accommodate a dy-
namically changing population of sentient ob-
jects [10].

4http://www.ghg.net/clips/ CLIPS.html

Programmi ng Model I

Sensor Sensor Context Inference
Capture Fusion Representation Engine
T
1
1 Sensors
———— - = = == ——y = = = — '
i i Repository
Conmuni cati on Layer I

Actuators
Repository

Event-based
Communication
Manager

1
Y U U O
1
1
1

Proximity
Group
Communication

1
1
1
—_————— ===
L}

1 r—-—4
1 1 I
Group ! ! :
Communication ! !]
! ! | Location
! ! Service
T 1 1 1
1 1 |
! ' 1 1
I |Routi ng and Resource Reservation I 1 1
1 | 1
! 1
! Coverage Mobility 1
! Estimation < - Prediction 1 Admission
: 1 ; > Control
1
. A A ! .
: | | 1 : 1
! 1 1 y
1 1 | \ v 1
! Slot
! » Manager
1 Partition .
| Anticipation Predictive Proactive
1 Routing Resource
| T Reservation 1
1
! 1
1
] t
I F----------------I
-=-= .
Net wor k Layer I 1 L
Y y
tegend _
802.11 P Simulator TBMAC AODV :

Dependency

v

Figure 1: Components for sentient computing

Event-based communication. An event-
based communication manager that does not de-
pend on any fixed communication infrastructure
is required for mobile applications in ad hoc net-
works. STEAM [11] is an implementation of a
distributed event-based service that allows un-
predictable and dynamic interactions between
sentient objects. It provides filters that can be
applied to the subject and content of event no-
tifications, or to the geographical area within
which event notifications are valid.

Membership management. As sentient ob-
jects share consistent information amongst each
other (i.e., their context), a consistent view of
objects involved in the communication is re-
quired. Classical group communication provides
reliable multicast protocols that allow a pro-
ducer to propagate events to a group of sub-
scribed consumers. We have augmented group
communication systems with the notion of prox-
imity to capture the geographic location of mo-
bile sentient objects. Only the objects present
within the defined proximity can participate in
the group communication. At the moment, we
have a very simple toolkit for proximity-based
group communication and classical group com-
munication.

The sentient objects that form a group would
cover a certain geographical area, that may be
determined by a coverage estimation compon-
ent. Information about the coverage area and
mobility patterns may been employed to build
a component which anticipates partitions and
provides such information to applications. At
this point, only partition anticipation is suppor-
ted.

4.3 Routing and resource reserva-
tion mechanisms

To achieve real-time event-based communica-
tion in a mobile and ad hoc network, the un-
predictability of the environment must be re-
duced [8]. Location-awareness is a key to pre-
dicting the future location of mobile sentient
objects, easing proactive routing and resource
reservation and then reducing the uncertainty
inherent in such a dynamic environment,.

In order to offer real-time guarantees, our ar-
chitecture proposes a set of components realising
proactive routing and resource reservation above
the network layer. A slot manager component

can allocate slots of the medium access in ad-
vance. A mobility prediction component, based
on the location service and on the coverage es-
timation components may improve the routing
process by attempting to find new paths prior
to the failure of existing ones. Finally, an ad-
mission control component is needed in order
to define policies that can be applied explicitly
within a proximity to further reduce the num-
ber of participating sentient objects. We are
currently developing those components.

4.4 Network layer

A number of network infrastructures available
in the library can be used to support commu-
nication among sentient objects, like the WiFi
protocol for wireless environments. We propose
also TBMAC [3], anew MAC layer protocol that
reduces the probability of collisions by providing
each wireless node with time-bounded access to
the medium with a high probability. We plan
to use TBMAC to provide predictable medium
access latency for real-time communication.

4.5 Additional components

Sensors and actuators. Several sensors have
been developed as software components that
produce software events, while actuators have
been developed as software components that
consume software events. These library com-
ponents act as wrappers for hardware and
software components as they provide map-
pings between specific data formats and generic
events.

Location service. Location information is
useful for computing devices in ad hoc networks.
With the location service, we allow data from
a variety of sources to be combined to gener-
ate information on location. Convertors are also
available to modify location data formats.

5 Customised middleware
for a sentient sofa

The sentient sofa® is a psychiatric sofa that iden-
tifies the person sitting on it by their weight.
The sofa announces via a voice generator in
which quarter of the sofa this person is located,

Shttp://www.dsg.cs.tcd.ie/?category _id=350

and the name of the person if it has been re-
gistered, and otherwise asks the person for their
name. To evaluate the applicability of our mid-
dleware architecture to a context-aware scen-
ario, we have instantiated it for the sentient sofa,
using a subset of the components provided in
our library. The sentient sofa is a simple ap-
plication that encompasses some key character-
istics of sentient computing, including the abil-
ity to perceive the state of the environment via
sensors. The middleware dedicated to this ap-
plication is composed of the following compon-
ents:

Sensors and actuators. The sofa is aug-
mented with load sensors placed underneath
each of its legs and connected to a CPU by a
serial connection. A load cell is a software sensor
component defined in the library, able to con-
tinuously read information from the serial port
and to generate events according to the stability
of the readings. By tracking the readings vari-
ations and averaging several readings, the load
cell can remove some errors. A voice generator is
also used as an actuator that announces events
happening on the sofa (e.g., a registration re-
quest or a movement on the couch).

Programming model. Sensor fusion con-
sists of summing the four load sensors readings
in order to determine the total weight of the per-
son (each reading corresponding to the weight
applied on one of the legs of the sofa). For this
simple task, we have used the data sum com-
ponent. The location is then determined by
comparing each sensor reading with the aver-
age of the four readings: a person is said to
be in one quarter if the load measured by the
corresponding sensor is greater or equal to the
average of the loads read on all sensors. A con-
text hierarchy for the location of the person is
defined according to the quarters of the sofa,
with the possibility that the person can be in
several quarters (e.g., when lying on the sofa).
Finally, the inference engine contains rules to
trigger events according to the current context.
We use the CLIPS inference engine component
to specify the facts and the rules of the sentient
sofa.

Communication layer. To support the pro-
gramming model, we use the STEAM compon-
ent that allows an event-based communication

between sensors, the sentient sofa and the voice
generator. The different sensors in the applic-
ation do not interact, so membership manage-
ment components are not included in the mid-
dleware. Furthermore, routing and resource re-
servation mechanisms are omitted since timeli-
ness of communication is not critical in this
scenario.

Network layer. As the set of components
is fixed in this application without mobility
requirements, none of the components provided
for ad hoc networks is used.

The construction of this middleware dedic-
ated to the sentient sofa was easy thanks to off
the shelf components of our middleware archi-
tecture. More specifically, using our architec-
ture allowed a reduced development time.

6 Conclusion and future

work

In this paper, we have described our preliminary
work in defining component-based middleware
for sentient computing. Instead of one single
middleware, we propose a complete architecture
that can be customised to various requirements.
An initial list of components required by sen-
tient objects has been presented. Some of those
components have been assembled to form mid-
dleware for a sentient sofa. This experiment
shows the feasibility of our proposal and the
improvement in development time to build mid-
dleware for sentient computing. Future work
includes the development of a formalism for a
global description of middleware. The formal-
ism could be associated with different tools, e.g.
tools for graphical visualisation and composi-
tion, simulation, code generation, deployment or
reconfiguration. We plan also to develop the lib-
rary and in particular to integrate legacy com-
munication models. Finally, we are interested
in defining composite components for a better
reusability at a coarse-grained level.

Acknowledgments
The work described in this paper has been real-

ised as a part of Aithne project, which is foun-
ded by the Science Foundation Ireland (SFT).

References

[1]

[2

—_—

[3]

[4]

[5]

[6]

7]

[8]

G. Biegel and V. Cahill. A framework for
developing mobile, context-aware applica-
tions. In 2nd IEEE Conference on Pervas-
ive Computing and Communications, Per-
com 2004, pages 361-365, Orlando, Flor-
ida, March 2004.

U. Brinkschulte, C. Krakowski, J. Riem-
schneider, J. Kreuzinger, M. Pfeffer, and
T. Ungerer. A microkernel architecture
for a highly scaleable real-time middleware.
In Real-Time Technology and Applications
Symposium (RTAS 2000) - Work in Pro-
gress Session, Washington, DC, May/June
2000.

R. Cunningham and V. Cahill. Time
bounded medium access control for ad
hoc networks. In Workshop on Prin-
ciples of Mobile Computing (POMC’2002),
Toulouse, France, October 2002.

A. Fitzpatrick, G. Biegel,
and V. Cahill. Towards a sentient ob-
ject model. In Workshop on Engineer-
ing Context-Aware Object Oriented Sys-
tems and Environments (ECOOSE’2002),
Seattle, Washington, November 2002.

S. Clarke,

H. W. Gellersen, A. Schmidt, and M. Beigl.
Multi-sensor context-awareness in mobile
devices and smart artifacts. Mobile Net-
works and Applications, 7(6):341-351, Oc-
tober 2002.

A. J. Gonzalez and R. Ahlers. Context-
based representation of intelligent behavior
in training simulations. Transactions of the
Society for Computer Simulation Interna-
tional, 15(4):153-166, March 1999.

J. Helander and A. Forin. MMLite: a
highly componentized system architecture.
In Proceedings of the 8th ACM SIGOPS
European workshop on Support for compos-
ing distributed applications, pages 96—103,
Sintra, Portugal, September 1998.

B. Hughes and V. Cahill. Achieving real-
time guarantees in mobile wireless ad hoc
networks. In Real-Time Systems Sym-
posium (RTSS’03) - Work In Progress
Session, pages 37-40, Cancun, Mexico,
December 2003.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. Kang, C. Borcea, G. Xu, A. Saxena,
U. Kremer, and L. Iftode. Smart messages:
A distributed computing platform for net-
works of embedded systems. Special Issue
on Mobile and Pervasive Computing, the
Computer Journal, to appear.

R. Meier. Communication paradigms for
mobile computing. ACM SIGMOBILE Mo-
bile Computing and Communications Re-
view (MC2R), 6(4):56-58, October 2002.

R. Meier and V. Cahill. Exploiting prox-
imity in event-based middleware for col-
laborative mobile applications. In /jth
IFIP International Conference on Distrib-
uted Applications and Interoperable Sys-
tems (DAIS’03), pages 285-296, Paris,
France, November 2003.

M. Roman and R. H. Campbell. A
middleware-based application frame-
work for active space applications. In

ACM/IFIP/USENIX International Mid-
dleware Conference, pages 433-454, Rio de
Janeiro, Brazil, June 2003.

C. Shen, K. Everitt, and K. Ryall. Ubit-
able: Impromptu face-to-face collabora-
tion on horizontal interactive surfaces. In
Fifth International Conference on Ubiquit-
ous Computing (UbiComp 2003), pages

281288, Seattle, Washington, October
2003.
J. P. Sousa and D. Garlan. Aura: An ar-

chitectural framework for user mobility in
ubiquitous computing environments. In 3rd
Working IEEE/IFIP Conference on Soft-
ware Architecture, pages 25-31, Montreal,
Canada, August 2002.

S. S. Yau and F. Karim. Context-
sensitive middleware for real-time soft-
ware in ubiquitous computing environ-
ments. In Fourth International Symposium
on Object-Oriented Real-Time Distributed
Computing, pages 163-170, Magdeburg,
Germany, May 2001.

