
Behind the Rules: XP Experiences
Andrew Jackson, Shiu Lun Tsang, Alan Gray, Cormac Driver, Siobhán Clarke

Distributed Systems Group,
Computer Science Department,

Trinity College Dublin,
Dublin 2, Ireland.

{firstname.lastname}@cs.tcd.ie

Abstract

Agile processes such as XP (eXtreme Programming)
have been recognised for their potential benefits of
improving software. During adoption of the XP process,
teams can misapply the XP principles by following them
verbatim, ignoring the context in which they are applied.
In this paper we document our experiences where naive
applications of XP principles were altered in recognition
of context. We detail our observations of how teams
“looked behind” the rules and began fitting XP to the
problem rather than attempting to fit the problem to XP.
We conclude by reflectively focusing on how this
transformation occurred and suggest that it is buying into
the XP ethos that drives this change of perspective on the
XP process and principles.

1. Introduction

Agile processes such as XP (eXtreme Programming)
have been recognised for their potential benefits of
greatly improving software in terms of fewer bugs, early
delivery of valuable functionality, closer
client/programmer interaction and a lower cost/change
curve [1, 2]. As with any process, factors such as
experience, time pressures and project scale influence its
success or failure. This paper focuses on how developer
buy-in to the process can be a major determinant of the
success of a project.

XP prescribes a series of principles which, when
collectively followed, are the basis for an ethos of good
programming practice. Although nothing fundamentally
new, XP “takes a set of common sense principles and
practices to extreme levels” [3]. There are twelve
principles in all: Whole Team Involvement; Planning
Game; Customer Tests; Simple Design; Pair
Programming; Test Driven Development; Design
Improvement; Continuous Integration; Collective Code
Ownership; Coding Standard; Metaphor; and Sustainable
Pace.

In this paper, we share experiences derived from using
XP as the development process for seven different
projects over the course of three years. Upon reflection,
we have identified that a naive understanding and

application of the XP principles can often bring problems
to a project. We explain how we feel these situations
arose, and give our experience and advice on how to
address them. Our strongest piece of advice is to get
everyone involved in the project to fully participate in the
process and buy into the underlying reasoning behind it.

Section 2 describes the projects undertaken and the
environment in which they were executed. Section 3
discusses factors that affect XP in universities and how
we attempted to mitigate their effect. Section 4 presents
our experiences of naive applications of the XP
principles, how these were addressed and the results of
the changes. In Section 5 we summarise and reflect on
our experiences. Section 6 describes an interesting avenue
for future work.

2. Background

This section describes the environmental setup for the
projects and the projects themselves.

2.1. Environmental setup

Our experiences are drawn from projects that have

been carried out at Trinity College Dublin using the XP
process. The projects were part of a one year Masters
Degree program course in Software Engineering for
Distributed Systems. We include seven projects that took
place during three years of the course. Project teams were
made of four to six students, all of whom were from
various backgrounds, different disciplines, and varying
levels of experiences. The projects spanned 12 weeks and
ran in parallel with a number of other projects on the
Masters program.

2.2. Projects

It has been documented [4] that most projects that are

undertaken in universities are trivial and lack industry-
standard requirements. As [5] notes: “XP is for
professionals, not students”.

However, these conclusions are based on
undergraduate-level projects and teaching. It is an aim of
the Masters course that the students get as real an

exposure to industry-related projects as possible.
Therefore, the projects assigned were non-trivial and
client/end-user focused. The academic environment still
imposed some restrictions (as discussed in Section 3), but
the project goals aimed to provide high-quality, useful
software to the end-user. Brief descriptions of the seven
projects follow:

Journey time estimation system for Dublin Bus
(BUS). This project was to provide an SMS based
interface to a system which would plan a route for a user
from an origin to a destination based on estimated journey
times for Dublin Bus. It is interesting to note that in the
recent past (almost nine months after this project
completed), a similar system has been deployed to the
public by Dublin Bus and Irish Rail that serves static
timetable information via an SMS gateway.

Route planning system for Dublin Taxis (TAXI).
This project was to provide a system whereby a taxi could
find the most efficient route(s) to get from an origin to a
destination. This included using real-time traffic
information to estimate trip times.

Location aware game (LAG). This project was to
provide a peer-to-peer, augmented reality game played
out by users with wearable computers over the Trinity
College campus, leveraging real-time GPS information.
As can be seen from the Nokia N-Gage [6] and other
mobile devices, location aware augmented reality games
are the next generation of mobile gaming.

Mobile voice and SMS over a peer-to-peer network
(TTALK). This project was to provide a completely
decentralised architecture through which users could call
or SMS one another over existing LAN infrastructure.
TrinyTalk has evolved into a sourceforge project [7],
demonstrating its applicability in the real world.

Distributed conference management tool (FL-
CMT). This project implemented a conference
management tool which provided a diverse set of
functionality to fully organise and manage an
international human rights conference, including event,
attendee and accommodation management. This system is
currently being used by an international human rights
agency called Front Line Defenders [8].

Conference contact and publicity management tool
(FL-CPL). This project ported a legacy contact
management system to a new environment and extended
this with an integrated publicity management subsystem
and a new logging facility. The system constructed was
built on the Lotus Notes/Domino Server platform which
is recognised as an enterprise industrial platform. This
system is also being used by Front Line Defenders.

Web enabled postgraduate application
management system (AppTrack). This project was to
produce a sophisticated collaborative document workflow
management system, built on J2EE and the Jakarta struts
framework.

3 Factors affecting university XP

Factors such as experience, time pressures and project
scale can affect a project in different ways. From the
outset, we identified a number of aspects that would have
an effect on how the XP process would be used in our
environmental setting. These factors affect most XP
projects in universities, and our findings support those
discussed in detail in [4, 5, 9, 10].

3.1. Factors affecting the customer

Customer is a professor/lecturer. University XP

projects are proposed by members of staff. However, in
many courses, the dichotomy between the roles of teacher
and customer is not addressed. This disparity was avoided
by our set up, where each customer was a member of staff
who was not involved in the teaching of the Software
Engineering course. As such, the course lecturers were
not involved as customers, but were available as “agile
consultants”, who were called upon from time to time to
help guide the process.

Limited access to the customer. XP encourages
continuous customer interaction and testing. However,
customers were members of academic staff with busy
schedules, thus limiting their availability for dealing with
XP teams. They were thus unable to sit in on every XP
session. Different teams handled this in different ways.
The three prevalent ways were:

• Weekly meetings with the customer to report on
the project and to get customer decisions on
important stories and functionality, etc.

• One team member was elected to act as a proxy
that represented the customer's interest and liaised
with the customer at a mutually convenient time.
Some teams rotated this responsibility and others
did not.

• Teams as a whole acted as a proxy and all
customer decisions were made by consensus.

3.2. Factors affecting project timescale

Projects had a shorter time scale. In industry,

projects have a lifecycle that is typically in the order of
months. In academia, projects have a much shorter
lifecycle. This means that there are no stage releases. This
was offset by making each iteration into a release in itself.
Iteration length varied from group to group, from one
iteration per week to one iteration every three weeks.

No set working hours. Students did not have set
hours such as there would be in an office environment
and instead were given the freedom to assign their own
working hours.

Projects done in conjunction with other work.
Students did not work solely on the XP project and
constantly had to juggle the work of a number of projects
simultaneously. This meant that teams had to agree the
number of hours per week to devote to the project. Most
teams opted for three four-hour sessions per week, for a
total of twelve working hours per week.

3.3. Factors affecting project teams

No XP manager/champion/coach. Typically in

industry when a team switches to XP as their software
development process, it is done as part of an integrated
company policy. Usually, an XP “champion” or “coach”
(one who has been part of an XP team previously) is
brought into the team to drive the process and to ensure
adherence to the guidelines. This is not true for academic
projects, where team members are responsible for driving
the process within their own team. The project teams
handled this in one of two manners:

• One team member was appointed the XP
champion, whereby all decisions pertaining to the
process were made by this person.

• All team members took equal responsibility for
the process with process decisions made by
consensus.

Team members of varying skills and backgrounds.
Ideally, teams are comprised of members that have
practical experience in the technologies used on the
project. The team members in our study had widely
differing backgrounds and experiences, ranging from
fresh graduates to team leaders from industry. Therefore,
team members would not have applicable prior
experience in the technology they were working with in
the project, except by happy coincidence.

3.4. Factors affecting process goals

Focus on process rather than product. The success

of a team using XP in industry lies in the success or
failure of the end product. The same is not necessarily
true in academia where students are graded. In the
projects presented here, students were given a single
pass/fail grade based on their use of the process in
delivering a product to their customer. This helped to
simulate the success/failure of a product in an industry
environment.

Shrink-wrapped products. Because of the lack of
availability of the customer to the XP teams and the
triviality of the projects themselves, it is often the case in
academia where “shrink-wrapped” products are delivered
at the end of the project, with no customer interaction
during development. This was not the case for the
projects discussed in this paper, as teams communicated
regularly with their clients.

4. Our experiences

Here we present examples from our experience of how
naive application and understanding of the XP principles
can slow down overall project velocity. In each case, we
discuss how we feel problems arose, how each was
addressed by the teams and how it affected the project.
We complete each section with a short reflection on how
to potentially avoid the problems.

4.1. Non-functional requirements are
requirements too

XP tells us that only code that adds value to the project

should be included, and that anything that does not add
value should be stripped away.

The TAXI team applied the simple design and
planning game principles too rigidly and naively in the
initial phase of their project. For each iteration, user
stories were completed and functionality added to the
code-base, without looking to later iterations. However,
the “functioning skeleton” [3] written to fulfil these
stories was very basic and addressed the simplest
interpretation of the functional requirements. The team
took this approach because they believed that by
following the XP principle of simplicity, their code would
not be embellished and have extraneous content. This
approach produced well modularised, maintainable and
easily comprehendible code. About half-way through
project life-cycle, it became apparent that the emerging
architecture, could not meet the non-functional
requirements of the project; which included fault-
tolerance and scalability. The model that the TAXI team
built was a standalone application, the architecture of
which would be very difficult to alter.

At this stage, the team reassessed the project, and
realised that the scalability and fault-tolerance that they
were missing could be provided by exploiting facilities of
provided by a J2EE platform. The team had been
developing on the standard Java platform and thought
they could easily port much of their functional code into a
new architecture. This meant a complete re-design of the
existing system to fit the new platform and exploit the
relevant J2EE services. More resources (in the form of
overtime) had to be devoted to the project in order to
finish on time.

The TTALK team began their project by
experimenting with the different technologies and
architectures, finally settling on a peer-to-peer
architecture using JXTA. Although the team chose JXTA
because there is a ready architecture there (following the
XP principles of simplicity), they found that the
development platform provided a basis to fulfil their
functional as well as non-functional requirements. These
non-functional requirements included security issues, the

need for scalability and fault tolerance. The code
produced used the services provided by the underlying
platform to implement their non-functional requirements.
In this way, the code produced met all the projects
requirements, both functional and non-functional, while
remaining maintainable, comprehendible and
unembellished.

In our opinion, the problems encountered by the TAXI
team were due to the fact that the team members valued
functional requirements much more highly than non-
functional ones, coupled with the naivety of their
planning game. They perceived that value was only added
to the project when functionality was, and simplified the
design to this end. Ultimately, they (the team and the
customer between them) realised that the non-functional
requirements were not met and could not easily be
worked into their current design. The TTALK team
showed that you can avoid major re-design if your initial
“functioning skeleton” supports the short and longer term
product requirements.

Non-functional requirements are requirements too.
Every requirement is important. Long-term non-
functional requirements should not be ignored during
early iterations and an architecture that can accommodate
these requirements should be used.

4.2. Testing can be trying, but do try to test

In test driven development, we write a test that will

fail and then make the simplest addition/alteration to the
code that will make the test pass.

The members of all of the teams were new to test
driven development and, as a result, some teams
inadvertently applied the principle naively. The LAG
team in particular decided to follow the test-driven ethos
to the letter, and so wrote every conceivable test as code
was added to the project. These included trivial tests to
make sure simple object assignment was working. They
started by writing exhaustive tests for simple functionality
such as “setters” and “getters” that had a low risk rating.
This level of testing was reproduced for all behaviour
from high-risk complex functionality, to low-risk one line
methods.

At the end of the second two-week iteration, it was
clear that the project velocity was very slow. The LAG
team were losing time, and the stories they had set them
selves were not being completed. The team had been
over-testing miniscule things and relaxed the testing
regime. Project velocity picked up for two iterations and
then dropped again. We observed that the LAG team had
overcorrected and by stopping much of their testing to
catch up with their schedule. However, as time went on
we found that were losing time trying to locate and isolate
bugs. Once this was realised the team then focused the
testing effort on key behaviour and high-risk

functionality. Consequently, a good velocity was
maintained for the remainder of the project.

The TAXI team did not have such problems with
finding a balance in testing. The team was lead by an
experienced programmer, who introduced his team to test
driven development through JUnit and HTTPUnit, using
a lot of practice tests. The team identified what they were
going to test and at what level at the beginning of the
project. The team did not suffer from teething testing
related problems as a result of this experience and
foresight.

The FL-CMT and FL-CPL teams were developing for
Lotus Notes/Domino Server platform and developed
through writing scripts in a proprietary language that ran
in the environment. There were no unit testing tools
available to support test driven development on this
platform. These teams found it difficult to test but adapted
and wrote scripts that tested their development. We
observed that a lack of support for testing forced these
teams to spend a lot of time trying to write tests. In order
to regain lost velocity, they reduced testing across the
board, as did the LAG team. However, the FL-CMT and
FL-CPL teams did not learn to focus their testing efforts,
perhaps due to the inflexibility of their development
environment, and were less successful as a result.

We found that teams new to XP tended to over-test
during the early iterations, which led to an initial
reduction in velocity. When teams realised this, they
reduced the testing effort. Successful teams learned to
focus their testing effort on key behaviour early in the
development, whereas unsuccessful teams reduced testing
effort across the board.

Testing can be trying, but do try to test.
Inexperienced teams often over-test in early iterations,
and in response, reduce testing effort. Although writing
tests takes time, it is time well spent when it is focused on
testing important behaviour.

4.3. Fail to plan and you plan to fail

Every two weeks, planning for the next two-week

iteration means that plans can be rapidly adapted without
wasting effort on eventualities that might never arise.

The features of the BUS project are very similar to
those of the TAXI project in that they are both route
planning systems that are open to public use. As such,
they also shared many non-functional requirements. As
discussed in Section 4.1, the TAXI team did not plan for
the long term, ignoring the non-functional requirements
of the project. The BUS team planned to address the non-
functional requirements from the outset by developing an
architecture that would provide support for fault-tolerance
and scalability.

The TTALK team also suffered from focusing on the
short-term and ignoring the long-term. The team began

their project by spiking to investigate the technologies
that would be involved in their system. They ran into
problems while spiking because of the myriad of
technologies they would have to use. Without a clear and
consistent view of the overall deliverable and route to
take to produce that deliverable, they found it difficult to
leave the spiking stage. They continually invested in the
problems at hand without planning for the future. The
team were in the doldrums for half of the project’s life-
time, until they finally realised now much time they had
lost. At this point they had to work overtime and drop
some of the system features that they were required to
implement.

By naively following the planning game principle
verbatim, teams can neglect long-term aspects of their
project. This is analogous to driving a car, but only
paying attention to the ten yards of road immediately in
front of you and ignoring what lies on the horizon.

In comparison, teams that developed their projects
whilst keeping one eye on long term goals tended to be
more successful, because there was less time spent doing
rework in later iterations to add new functionality to the
code. In our experience, teams that planned without any
view to future project milestones were less successful,
because they tended to ignore long term problems.

Fail to plan and you plan to fail. Plan for the next
iteration at the beginning of every iteration. However,
keep an eye on long-term aims of the project so that they
can be worked into the solution at a later stage

4.4. Watch this pace

Sticking to a set working week keeps your team

members fresh, enthusiastic and productive. We observed
three cases of how the sustainable pace principle was
applied by project teams, each with varying degrees of
success.

The FL-CPL team stuck stringently to their set
working hours. Team members promptly stopped once
their allotted XP hours were over, often leaving source
code and integrations incomplete. There were two main
consequences of this. Firstly, it meant that incomplete
iterations had to be finished in subsequent ones, leading
to a backlog of tasks that at the end of the iteration were
either scrapped or remained undone. Secondly, having a
degree of incompleteness in projects negatively affected
the morale and enthusiasm of some team members
(completely opposite to the aim of the principle), leading
to decreased productivity and quality of the work being
done.

Members of the AppTrack team were a lot more
flexible in their approach to their working hours. The
team accepted that sometimes it is necessary to do
overtime in order to complete tasks and ensure that the
nightly integration succeeds. If the team had to do no

more than thirty minutes of overtime in order to make
sure the integration tests passed, then they were prepared
to do so without any fuss. We observed that the team
enjoyed a more relaxed development environment, as
each day the pairs could look forward to new challenges,
without having to worry about having to face incomplete
code hanging over them.

As mentioned above in Section 4.3, the TTALK team
lost a lot of development time in early iterations. Despite
having removed all nonessential stories from later
iterations, they still had a great deal of work to do to meet
the requirements for minimal functionality of their
system. They addressed this by deciding to increase their
working time by an extra three hours a week (an extra
25% on their original plan). Initially, the team had a good
velocity, but the extra workload meant unhappier team
members and after a while the quality of work degraded
as has been observed in many workplaces.

Rigidly adhered to, the sustainable pace principle can
adversely affect the overall development of some projects
and we observed that teams that refused to put in extra
effort from time to time did not enjoy the same success as
those that did. We do agree that doing long hours of
overtime does not help, but we saw that teams who did
the overtime necessary in order to complete iterations and
integration builds were more successful in terms of
enthusiasm, code and deliverable quality, and enjoyment.

Watch this pace. It is important to stick roughly to
your working week, but having the flexibility to do small
amounts of overtime to complete nightly builds yields
happier teams and better code.

4.5. Buy in and butt in

Pair programming enables team members to share

ideas and experience, maintaining good project velocity
and producing good quality code.

In the LAG team, there were two very experienced
programmers and one particularly novice programmer.
Whenever the weaker member was paired with one of the
stronger ones, they refused to take the keyboard, claiming
inexperience. The member didn’t interrupt the other
person to add their views, and thus was not contributing
to the development effort.

Another reduction in project velocity was apparent in
the FL-CMT team. Team members viewed pair
programming as an opportunity to take a break when they
were not at the keyboard. Obviously, this goes against the
XP ethos and we believe this attitude was borne out of a
lack of buy-into the XP way and lack of understanding of
the reasoning behind the principle.

The TTALK team, as discussed in Section 4.3, lost a
lot of development time because they devoted too much
time to spiking. Even though they resolved to do a lot of
overtime, they decided to abandon pair-programming to

try to gain as much development time as possible. As
mentioned in Section 4.4, their initial velocity rapidly
decreased.

Naively applied, pair programming can lead to a large
reduction in project velocity. This is borne out of a lack
of understanding of its purpose. In our experience,
members new to the concept sometimes lost focus when
not actively programming. Additionally, we observed that
in a pairing of an inexperienced and an expert
programmer, the potentially valuable opinions of the
“weaker” person were often disregarded without
consideration.

Buy in and butt in. When not at the keyboard,
developers are not on a break and should actively
contribute. They should “buy in” to the XP ethos and
“butt in” to actively engage in the development process
with the team member who is typing.

4.6. What is mine is yours, but arrange before
you change

In any project, there can be dependencies that can slow

velocity, where members must wait for a component to be
complete before they can progress. Collective code
ownership can circumvent some of these dependencies,
and hence unnecessary down-time, by exploiting a shared
code-base.

However, during the projects, we observed that the
application of this principle did not always lead to the
stated benefits. In each of these cases, well-meaning pairs
often modified parts of the code-base in isolation from
other members. While this may be a technically correct
adoption of the principle, this lack of team
communication had a negative impact on project
progress.

The AppTrack team ran into exactly this problem
during the last iterations of their project when they were
adding in the last stories and minor functionalities. The
shared code-base allowed pairs to do this in parallel.
Once a pair had finished the story they were currently
working on, they could move to the next one. However,
pairs sometimes ended up working on the same
component, modifying the same code in order to add new
functionality. This caused some inconsistencies that
introduced new bugs into the system.

In a similar, but subtly different case, the FL-CMT
team were bug fixing during the last iteration. Although
the CVS showed that a pair had exclusively checked out
some code, that code had previously been worked on and
the behaviour slightly modified, without conveying this
change to the rest of the team. This lead to some
confusion between team members as to the actual
working of components that had previously been thought
complete. The main consequence of naively applying
collective code ownership is confusion among team

members about the status of different parts of the system.
This in turn can lead to implementation problems where
occasionally behaviour already implemented was
duplicated or even rendered incorrect.

We agree that collective code ownership can help
reduce development time. However, it should be applied
in conjunction with good communication so that all
members have a good understanding of all parts of the
system at any time, even if they are not currently working
on it, thus eliminating the problems described above.

What is mine is yours, arrange before you change.
Collective code ownership is very useful, but you should
have strict control structures around the code so that
everyone can see who is working on what part of the
project so that there is no conflict.

4.7. Stick to standards, or things can get sticky

Conformance to coding standards ensures that the code

produced during the course of the project all uses the
same style and nomenclature. This code should appear to
have been written by a single, very competent individual.

We observed that teams defined standards which were
very rigid. Some teams, such as the BUS team, were very
rigorous in their approach to the coding standards across
the board. This naturally lead to code that was consistent,
both in terms of style and naming systems.

In the LAG group, the team inherited some code for
interfacing with the GPS receiver kits. This code did not
conform to the standard that was defined by the team for
the rest of the project. New code that was added to the
GPS modules conformed to the old standard to ensure
continuity and legibility, whereas new code for the UI
and the game logic was written within the guidelines
defined by the team. Additionally, the code that interfaced
with JXTA for peer-to-peer communication followed an
existing third style.

Contrary to what might be expected from this, the
members of the LAG team did not experience any
difficulties when switching between different sections of
the project. We believe that this was because the LAG
group frequently rotated pairs and everyone worked on all
of the parts of the project at different stages, meaning that
the whole team was conversant in all aspects of the
project.

The FL-CMT team also had to interface with legacy
architecture and technology. The developers initially
accepted the agreed standards, but soon we observed that
the standards were being ignored, because legacy code
did not fit the standard. The team was not affected by this
in the early iterations.

However, as the semi-standardised codebase for
projects expanded, so too did the cost of change. Towards
the end of the project, attempting to refactor code became
difficult, due to naming policy clashes between

developers. Measures were put in place to halt the
abandonment of the standards, including the use of code
formatters and refactoring to ensure consistent naming.

We observed that teams who had to use existing code
and architectures found it very difficult to maintain a
single code standard, because of the differing styles
between legacy code modules. Teams can address this in
one of two ways – abandoning all standards, or defining
different standards for subsections of the project.
Although the effects of abandoning coding standards are
not felt immediately, the cumulative effect hindered the
project in later phases.

Stick to standards or things can get sticky. Code
standards can be difficult for some developers to follow,
but they do yield benefits as the project grows. Agree
early on standards and enforce them.

4.8. Don’t all think the same? Who’s to blame?

The concept of a common metaphor in XP is

analogous to that of a company mission statement. It sets
out a common vision or goal that all team members (or
employees) can strive for. This can ensure that workers
are always working towards the same outcome and can
also serve as a motivating factor for people to perform
better in a bid to achieve the specified goals.

All teams started out with common metaphors. This
was either a phrase, architecture, or both that all teams
members strived to achieve. Although these teams started
off aiming for a common goal, this goal skewed or
evolved as development progressed.

In the AppTrack team, the common metaphor was
closely aligned to their architecture. Although the
metaphor skewed slightly as the project progressed, it was
communicated throughout the team and did not lead to
any misunderstandings. However, this communication
was not evident in other teams, which lead to huge
problems for one in particular.

The TTALK team began with a strong coherent idea of
the product that they were required to build. As discussed
above, the team had many problems trying to understand
the technologies that they had to deal with. During this
period there was no development and team members were
spiking individually to assess new technologies and
products. As there was no focus the team members all
began to view the project deliverables differently.

When the TTALK team began development they had
to realign their common metaphor. The main consequence
of this was confusion among members, which slowed
development and sometimes caused unrest between team
members. Pairs were often programming towards
different goals and arguments became more
commonplace. The distortion of the metaphor caused a lot
of problems for the team in terms of lost time
investigating technologies not directly related to their

requirements. The team also suffered a hit to team morale
as the process of realigning the metaphor involved much
argument and blame.

We believe that a common metaphor is useful for
teams, but members must be careful that an agreed
metaphor evolves as the team and the product evolves.

Don’t all think the same? Who’s to blame?
Members should be in constant communication to ensure
that for the duration of the project, a common metaphor
does indeed remain common.

4.9. Champion of the court

Having an XP champion (a person who has experience

using XP and drives the process from within the team) is
beneficial for teams to ensure that members are adopting
the XP process correctly.

As described in Section 3.3, our teams did not have
any XP champions and it was the responsibility of either
one member or the whole team to learn and adopt XP in a
manner that they saw fit.

In the former case, it was common for other members
to constantly question the individual responsible for
championing, creating an undue pressure on that
individual member. Doubts were always present in the
minds of members as to whether principles were adopted
correctly, thus affecting the overall project. We observed
this scenario in the LAG team, where a team member
seen as competent was elected as XP champion. In this
role the champion was responsible for running the XP
process. The LAG champion (new to XP himself) was
faced with tough decisions which had to be justified to
the team. In this situation when the champion made a bad
decision, the team saw it as a reflection on the process
rather than a human error. On the other hand when the
decision was correct team members felt that they were
excluded from the decision making process.

In contrast is the latter case where all members
actively became part of the process, and were therefore
more enthusiastic and motivated by the process of XP,
and thus leading to better results. This situation was
observed most prominently in the BUS team. The BUS
team set out by appointing two champions, but each
member of the team took a large interest in the process
and soon each team member became a champion. In this
situation decisions on testing, planning and other process
related topics were agreed democratically. This approach
worked very well as decisions were made in a more
informed way. The only drawback was that decisions
would undergo much more debate than having a single
champion, occasionally proving a sticking point.

In our experience, we observed that groups who
elected a single member to champion the process were
less successful than those where all members became
champions. Consequently, we believe that it is more

beneficial for all team members to be champions who all
fully participate in driving the XP process, rather than
assigning this responsibility to a single individual.

Champion of the court. It is always beneficial to
have an experienced XP practitioner to drive the early
stage of the XP process. However, teams will enjoy much
more success if everyone buys into the XP ethos and they
drive the process together, although a single voice with
whom the final decision lies should be elected and
listened to.

5. Reflection/Discussion

Three levels of XP maturity have been observed [11]:
1. Do everything as written.
2. After having done that, experiment with variations

in the rules.
3. Eventually, don’t care if you are doing XP or not.
Our experiences centre on projects where the teams

are new to XP. In all of the projects over the three years,
we have witnessed the transition from maturity level one
to two. We have repeatedly seen teams make the same
mistakes over and over again. This is generally because
they tend to follow the XP principles verbatim. We have
narrowed to a single factor how the teams move from XP
maturity one to two and three. This factor is buy in, that
is, how much the team understands the reasoning behind
the process and how much they want the process to work.

We observed that at some point the participants realise
that XP is an ethos and not a strict rule set. By rigidly
conforming to the rules, teams experience benefits and
drawbacks. The teams gradually begin to realise which
XP principles work for the context they are in and those
which do not. In our experience, teams who want the
process to work have bought into the process and adapt
the rules. They begin to understand the concepts behind
the rules and bend the rules to fit their circumstances, in
line with the second level on the XP maturity scale.

In Section 4 we presented many cases that illustrate
this point. Each subsection describes a situation that we
have encountered where one or more teams have naively
applied an XP principle. In each case, the teams that
overcame the problems succeeded by adapting their
approach to suit the circumstance.

The vital ingredient in a successful project with an
inexperienced team is to get the team members to buy
into the process. Once everybody is committed and wants
XP to work for them, we recommend firstly looking at the
experience of others and learning from their mistakes.
Then enter the XP process armed with your twelve
principles. However, treat these as guidelines rather than
commandments and soon the team will begin to
appreciate the ethos. In our experience, the true value of
XP is found through a solid understanding of the ethos
and bending the rules to fit your project and environment.

6. Future Work

There has been interest expressed in the psychology
behind eXtreme Programming. Current work in the area
is limited, in that the studies that have been carried out
fail to answer the question why the XP practices work or
fail [12]. We have conducted psychological profiles of the
participants in our studies, and continue to expand this
data set. With this data we hope to gain an insight into the
psychology behind XP and answer the questions of why
technically proficient XP teams succeed or fail to
leverage XP. Now that we have identified buy-in as a
core requirement for effective application of XP we wish
to understand buy in and the psychology behind it further.

7. Acknowledgements

We would like to thank the team members of all the

projects that have been included in our experience. We
would also like to acknowledge our shepherd, Peter
Brown, for his understanding and input.

8. References

[1] Lippert, M.M., Roock, S., Wolf. “eXtreme Programming in
Action: Practical Experiences from Real World Projects”,
Addison-Wesley, 2002.
[2] Jefferies R., Anderson A., Hendrickson, C. “Extreme
Programming Installed”, Addison-Wesley, 2001.
[3] Beck, K., “Extreme Programming Explained: Embrace
Change”, Addison-Wesley, 1999.
[4] Astrachan, O., Duvall, R.C., Wallingford, E., “Bringing
Extreme Programming to the Classroom” in XP Universe,
Raleigh, North Carolina, USA, 2001
[5] Schneider, J-G., Johnston, L., “eXtreme Programming at
Universities – An Educational Perspective” in International
Conference on Software Engineering, Portland, Oregon, USA,
2003, pp. 594-599.
[6] Nokia, http://www.n-gage.com/en-R1/home/home.html
[7] Olias-Sanz, A., Stamouli, I., West, D., Wu Qiu, R.,
http://trinytalk.jxta.org/servlets/ProjectHome
[8] Bassot, V., Vitaliev, D., http://www.frontlinedefenders.org/en

[9] Hedin, G., Bendix, L., Magnusson, B., “Introducing
Software Engineering by means of Extreme Programming” in
International conference on Software engineering, Portland,
Oregon, USA, 2003, pp. 586-593.
[10] Wood, W.A., Kleb, W.L., “Extreme Programming in a
Research Environment” in XP/Agile Universe, Chicago, Illinois,
USA, 2002, pp. 89-99.
[11] Cockburn, A., “Agile Software Development”, Addison-
Wesley, 2001.
[12] Bryant, S. “XP: Taking the psychology of programming to
the eXtreme”, Psychology of Programming Interest Group
Annual Workshop, Carlow, Ireland, 2004.

