

Event-Based Middleware
for Collaborative Ad Hoc Applications

A thesis submitted to the

University of Dublin, Trinity College,

in fulfilment of the requirements for the degree of

Doctor of Philosophy (Computer Science).

René Meier

Distributed Systems Group,

Department of Computer Science,

Trinity College, University of Dublin.

September 2003.

- i -

DECLARATION

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this or any other University, and that, unless otherwise stated, it is entirely my

own work.

 René Meier,

 30th September 2003.

- ii -

PERMISSION TO LEND AND/OR COPY

I, the undersigned, agree that the Trinity College Library may lend and/or copy this thesis

upon request.

 René Meier,

 30th September 2003.

- iii -

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Prof. Vinny Cahill,

for supporting me throughout my PhD studies. His support, both in terms of encouragement

as well as technical have provided the best possible foundation for this thesis and are very

much appreciated. Many thanks also to Prof. Paddy Nixon for advising me during the early

stage of my studies and for helping to initially formulate the basis for this research.

I am also thankful to all the other academics in the Distributed Systems Group, Dr. Siobhán

Clarke, Dr. Christian Jensen, and Dr. Simon Dobson. Their technical expertise has been

invaluable.

Further thanks go to Brendan O’Brien and Dublin City Council for providing the traffic data

that made the evaluation of this research possible.

I would like to specially thank all former and current members of the Anois and the CORTEX

project teams, especially Raymond Cunningham for always willingly lending a hand, as well

as Dr. Stefan Weber, Dr. Marco Killijian, Dr. Tilman Schaefer, Mads Haahr, Jim Dowling,

Peter Barron, Tim Walsh, and Sotirios Terzis, for fruitful collaboration and good spirit.

Finally, I would like to thank my whole family and Louise for their love and constant support

and of course, all my friends, especially those in Ireland and in Switzerland.

- iv -

“Now gentlemen, let us do something which the world may talk of hereafter.”

- Cuthbert Collingwood, 21st October 1805.

- v -

ABSTRACT

Middleware supporting event-based communication is widely recognised as being well suited

to interconnecting the components of mobile applications since it naturally accommodates a

dynamically changing population of components and the dynamic reconfiguration of the

connections between them. Existing research on event-based middleware for wireless

networks has mainly focussed on accommodating nomadic applications using infrastructure

networks while relatively little work has been done to address the distinct requirements

associated with supporting collaborative applications, especially those that use ad hoc

networks.

Traditionally, event-based middleware employs logically centralised or intermediate

components to implement key properties of the middleware. Application components may

utilise centralised lookup and naming services to discover peers in order to communicate with

them. Intermediate components may be used to route event notifications from producers to

consumers and to apply event notification filters. Moreover, they may be used to enforce non-

functional attributes, such as event notification delivery order and priority. The central

problem with this approach arises with increasing system scale as such middleware

components may become a liability due to availability and bandwidth limitations.

Centralised or intermediate middleware components are typically hosted by physical

machines that are part of a designated service infrastructure in order to ensure that they are

always accessible to application components. The disadvantage of exploiting such an

infrastructure is that its installation and maintenance requires substantial resources while

limiting communication between components to the geographical areas in which the

infrastructure has previously been made available.

A similar approach is generally used when designing event-based middleware for wireless

communication using infrastructure networks. Designated middleware components can be

hosted naturally by parts of the network infrastructure, such as access points. However,

alternative approaches have to be adopted by event-based middleware for ad hoc networks

since ad hoc networks allow application components to communicate and collaborate in a

spontaneous manner without the aid of a separate service infrastructure.

The main contribution of the work described in this thesis is the design of an event-based

middleware for wireless, ad-hoc environments addressing these problems. We have

designed an inherently distributed event-based middleware architecture that does not rely on

- vi -

the presence of any infrastructure or on centralised or intermediate components. Our

approach allows the components comprising collaborative applications to come together

anywhere and at any time in order to interact through wireless communication using ad hoc

networks without depending on a previously installed service infrastructure.

This design supports distributed approaches to discovering peers and to filtering event

notifications. Filters may be applied to a range of functional and non-function attributes

associated with event notifications including subject, content, and context. Combining event

notification filters increases the filtering precision allowing a component to subscribe to the

subset of event notifications in which it is interested using multiple criteria, such as meaning,

time, location, and quality of service. In particular, event notification filters may be used to

define geographical areas within which certain event notifications are valid; hence delivering

event notifications at the specific location where they are relevant. Such geographical scopes

represent a natural way to identify event notifications of interest for mobile components.

In addition, we have discovered decentralised techniques that improve system scalability for

mobile computing applications comprising of large numbers of interconnected components

distributed over large geographical areas as well as the predictability of the event service.

Event notification filtering in general and our approach of combining filters in particular

improves system scalability by limiting the forwarding of event notifications. Moreover, limiting

event notification forwarding and bounding the event notification dissemination scope

improves the predictable behaviour of the middleware.

A further contribution of this thesis is a taxonomy of distributed event-based programming

systems. The taxonomy is structured as a hierarchy of the fundamental properties of a

distributed event-based programming system and may be used as a framework to describe

an event system according to a variety of criteria including its event, organisation, and

interaction models.

In order to validate our contributions, we present an evaluation of a number of mobile

application scenarios implemented using middleware that employs our inherently distributed

event architecture and our decentralised techniques for improving system scalability and

service predictability. The evaluation demonstrates how components of mobile applications

can be interconnected through wireless communication and ad hoc networks as well as how

our approach to event notification filtering increases filtering precision, improves system

scalability, and enhances the predictability of the middleware. In addition, we apply our

taxonomy of distributed event-based programming systems to our middleware as well as a

selection of other event systems comparing their approaches to providing middleware

properties.

- vii -

RELATED PUBLICATIONS

Journal Papers:

• R. Meier, "Communication Paradigms for Mobile Computing," ACM SIGMOBILE

Mobile Computing and Communications Review (MC2R), vol. 6, pp. 56-58, 2002.

Refereed Conference and Workshop Papers:

• R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for

Collaborative Mobile Applications," in Proceedings of the 4th IFIP International

Conference on Distributed Applications and Interoperable Systems (DAIS'03), LNCS

2893. Paris, France: Springer-Verlag Heidelberg, Germany, 2003, pp. 285-296.

• R. Meier and V. Cahill, "Location-Aware Event-Based Middleware: A paradigm for

Collaborative Mobile Applications?," presented at the 8th CaberNet Radicals

Workshop, Ajaccio, Corsica, France, 2003.

• R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless Ad Hoc

Networks," in Proceedings of the International Workshop on Distributed Event-Based

Systems (ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 639-644.

• R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems,"

in Proceedings of the International Workshop on Distributed Event-Based Systems

(ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 585-588.

• M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill, "Towards Group

Communication for Mobile Participants," in Proceedings of Principles of Mobile

Computing (POMC'2001). Newport, Rhode Island, USA, 2001, pp. 75-82.

• R. Meier, M. O. Killijian, R. Cunningham, and V. Cahill, "Towards Proximity Group

Communication," presented at Advanced Topic Workshop on Middleware for Mobile

Computing (IFIP/ACM Middleware 2001), Heidelberg, Germany, 2001.

• M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, "Filtering and Scalability in the ECO

Distributed Event Model," in Proceedings of the 5th International Symposium on

Software Engineering for Parallel and Distributed Systems (ICSE/PDSE2000).

Limerick, Ireland: IEEE Computer Society, 2000, pp. 83-95.

- viii -

CONTENTS

CHAPTER 1: INTRODUCTION .. 1
1.1 Mobile Computing Environments.. 2
1.2 Nomadic and Collaborative Applications .. 2
1.3 Event-Based Middleware and Mobile Computing... 4
1.4 Aims and Objectives ... 4
1.5 STEAM.. 5
1.6 Contribution of this Thesis .. 6
1.7 Organisation of this Thesis ... 8

CHAPTER 2: DISTRIBUTED EVENT MODELS.. 10
2.1 The Event-Based Communication Model ... 11

2.1.1 The Participants .. 11
2.1.2 Characteristics of Event-Based Communication... 12

2.2 Functional Design Issues.. 14
2.2.1 Typed Events .. 15
2.2.2 Event Filtering ... 15
2.2.3 Announcing Events ... 16
2.2.4 Subscribing to Events.. 16
2.2.5 Delivery Semantics.. 17
2.2.6 Subject-Based Event Models .. 17
2.2.7 Content-Based Event Models ... 18

2.3 Non-Functional Design Issues.. 18
2.3.1 Quality of Service .. 19
2.3.2 Real-Time.. 20
2.3.3 Scalability .. 21

2.4 OMG CORBA Event Models... 22
2.4.1 CORBA Event Service .. 23
2.4.2 CORBA Notification Service.. 26
2.4.3 Summary ... 31

2.5 OMG CORBA Event Model Extensions.. 32
2.5.1 TAO Real-Time Event Service .. 32
2.5.2 CONCHA... 35

- ix -

2.5.3 Summary ... 35
2.6 JAVA Event Models .. 36

2.6.1 Java AWT Delegation Event Model .. 36
2.6.2 Java Distributed Event Model ... 39
2.6.3 Summary ... 41

2.7 CEA... 42
2.7.1 Cambridge Event Architecture .. 42
2.7.2 Summary ... 45

2.8 ECO .. 46
2.8.1 ECO Architecture .. 46
2.8.2 Summary ... 49

2.9 JEDI .. 49
2.9.1 JEDI Architecture .. 50
2.9.2 Summary ... 52

2.10 SIENA ... 53
2.10.1 SIENA Architecture ... 53
2.10.2 Summary ... 58

2.11 Elvin .. 59
2.11.1 Elvin4 Architecture .. 59
2.11.2 Summary ... 61

2.12 Perspectives ... 62

CHAPTER 3: TAXONOMY OF DISTRIBUTED EVENT-BASED PROGRAMMING
SYSTEMS .. 65

3.1 Introduction ... 65
3.1.1 Exploiting the Taxonomy... 66
3.1.2 Related Work... 66
3.1.3 Interpreting the Taxonomy .. 67

3.2 The Taxonomy .. 68
3.2.1 Event Model .. 69
3.2.2 Event Service .. 74

3.3 Classification of Event Systems.. 100
3.4 Summary... 101

CHAPTER 4: THE STEAM EVENT-BASED MIDDLEWARE FOR COLLABORATIVE
APPLICATIONS... 103

4.1 Proximity-Based Event Notifications... 103
4.1.1 Event-Based Middleware for Collaborative Applications 103

- x -

4.1.2 Programming Model .. 106
4.1.3 Architecture ... 107
4.1.4 Summary ... 108

4.2 The STEAM Event Model ... 109
4.2.1 Supporting Mobility.. 110
4.2.2 Proximities... 112
4.2.3 Event Types .. 114

4.3 Event Notification Filtering in STEAM... 122
4.3.1 Exploiting Distributed Event Notification Filters .. 122
4.3.2 Applying Distributed Event Notification Filters .. 124
4.3.3 Defining Distributed Event Notification Filters... 126

4.4 Communications Architecture... 128
4.4.1 Exploiting Proximity Groups .. 128
4.4.2 Locating Proximity Groups .. 130
4.4.3 Mapping to Proximity Groups.. 131
4.4.4 Mapping to Ad Hoc Networks.. 133
4.4.5 Routing Event Notifications ... 135

4.5 Interface Functions ... 136
4.5.1 Delivering Event Notifications ... 136
4.5.2 STEAM Application Programming Interface ... 137

4.6 Discussion... 137
4.6.1 Mobility .. 138
4.6.2 Scalability .. 138

CHAPTER 5: STEAM ARCHITECTURE AND ALGORITHMS 140
5.1 STEAM Architecture ... 140

5.1.1 Overview ... 140
5.1.2 Distribution .. 142
5.1.3 Proximity-Based Event Notification Management... 143

5.2 The STEAM Event Service ... 146
5.2.1 Event Notifications and Event Types .. 146
5.2.2 Event Notification Filters ... 149
5.2.3 Repositories .. 151
5.2.4 Addressing Scheme .. 151

5.3 Discovering Proximities... 155
5.3.1 Announcing Event Types and Proximity Filters .. 155
5.3.2 Discovering Event Types and Proximity Filters... 157

- xi -

5.3.3 Maintaining Event Types and Proximity Filters ... 158
5.3.4 Discovery Range... 158

5.4 Disseminating Event Notifications and Announcements 159
5.4.1 Proximity-Based Multicast Groups.. 159
5.4.2 Routing Messages... 160

5.5 Exploiting Geographical Location Information .. 163
5.6 Summary... 164

CHAPTER 6: EVALUATION .. 166
6.1 Disseminating Event Notifications .. 167

6.1.1 The Application Scenarios .. 167
6.1.2 The Experiment ... 169
6.1.3 Results and Analysis... 172

6.2 Discovering Proximities... 176
6.2.1 The Application Scenarios .. 177
6.2.2 The Experiment ... 177
6.2.3 Results and Analysis... 178

6.3 Event Notification Filtering Precision .. 180
6.3.1 The Intersection Scenario ... 180
6.3.2 The Experiment ... 182
6.3.3 Results and Analysis... 184

6.4 Raising and Delivering Event Notifications ... 186
6.4.1 The Experiment ... 187
6.4.2 Results and Analysis... 188

6.5 Summary... 190

CHAPTER 7: CONCLUSIONS AND FUTURE WORK .. 193
7.1 Achievements ... 193
7.2 Open Research Issues ... 197
7.3 Conclusion .. 198

APPENDIX: SUMMARY OF TAXONOMY PROPERTIES.. 199

BIBLIOGRAPHY.. 205

- xii -

LIST OF FIGURES

Figure 1.1. Accident warning application scenario.. 3
Figure 2.1. Client/server and event-based communication model.. 12
Figure 2.2. Announcing and subscribing to events. .. 16
Figure 2.3. The CORBA event channel... 24
Figure 2.4. Communication styles... 24
Figure 2.5. CORBA event channel interfaces. .. 25
Figure 2.6. The CORBA notification channel. ... 27
Figure 2.7. The general structure of structured event data... 30
Figure 2.8. Notification Service event data filter object. .. 31
Figure 2.9. The TAO RT event channel. ... 33
Figure 2.10. The CONCHA event channel.. 35
Figure 2.11. EventListener interface and EventObject class. ... 37
Figure 2.12. The Java Delegation Event Model. ... 38
Figure 2.13. Using event adapters in the Delegation Event Model... 39
Figure 2.14. RemoteEventListener interface and RemoteEvent class. 40
Figure 2.15. Using distributed event adapters in the Distributed Event Model. 41
Figure 2.16. An event source object of an active badge system. ... 42
Figure 2.17. An event client object of an active badge system... 43
Figure 2.18. Overview of the Cambridge Event Architecture.. 43
Figure 2.19. Defining event filters using parameter templates.. 44
Figure 2.20. Defining composite event filters using multiple parameter templates................. 45
Figure 2.21. The application programming interface defined by ECO.................................... 47
Figure 2.22. Overlapping zones. ... 48
Figure 2.23. Nested zones. ... 48
Figure 2.24. Targeting zones. ... 49
Figure 2.25. Overview of the JEDI architecture. ... 50
Figure 2.26. JEDI dispatching server topology. .. 51
Figure 2.27. JEDI events... 51
Figure 2.28. Overview of the SIENA architecture. .. 54
Figure 2.29. SIENA application programming interface.. 54
Figure 2.30. SIENA event server topologies. .. 56

- xiii -

Figure 2.31. SIENA event.. 57
Figure 2.32. SIENA event filter.. 57
Figure 2.33. SIENA event pattern. .. 57
Figure 2.34. Overview of the Elvin4 architecture. ... 59
Figure 2.35. The Elvin4 security framework.. 61
Figure 3.1. Taxonomy legend.. 67
Figure 3.2. The root of the taxonomy. ... 69
Figure 3.3. Event system overview. .. 69
Figure 3.4. Event model categories. ... 70
Figure 3.5. A producer and a consumer application using the peer to peer-based Java
distributed event model. .. 71
Figure 3.6. A producer and a consumer application using the mediator-based CORBA event
model... 72
Figure 3.7. A producer and a consumer application using the implicit Direct CEA................. 73
Figure 3.8. The event service.. 75
Figure 3.9. Event service organisation.. 76
Figure 3.10. Centralised event service with collocated middleware. 77
Figure 3.11. Distributed event service with collocated middleware. 77
Figure 3.12. Centralised event service with separated single middleware. 78
Figure 3.13. Distributed event service with separated single middleware. 78
Figure 3.14. Centralised event service with separated multiple middleware. 78
Figure 3.15. Distributed event service with separated multiple middleware. 78
Figure 3.16. Event service interaction model. ... 80
Figure 3.17. No intermediate... 81
Figure 3.18. Distributed intermediate. ... 81
Figure 3.19. Single centralised intermediate... 82
Figure 3.20. Multiple centralised intermediate. ... 82
Figure 3.21. Event service features. ... 85
Figure 3.22. Event propagation model. ... 86
Figure 3.23. Event type. .. 87
Figure 3.24. Event filter. .. 88
Figure 3.25. Event filter location.. 89
Figure 3.26. Event filter definition.. 90
Figure 3.27. Event filter implementation.. 90
Figure 3.28. Event filter evaluation.. 91
Figure 3.29. Event filter expressive power. ... 92

- xiv -

Figure 3.30. Mobility support. .. 93
Figure 3.31. Composite events. .. 94
Figure 3.32. Quality of service. ... 96
Figure 3.33. Ordering. ... 97
Figure 3.34. Security. .. 98
Figure 3.35. Failure mode. .. 99
Figure 4.1. STEAM event model. .. 109
Figure 4.2. Proximity definition. ... 110
Figure 4.3. Stationary proximity... 111
Figure 4.4. Mobile proximity. ... 111
Figure 4.5. Disseminating event notifications using overlapping proximities........................ 114
Figure 4.6. Moving between proximities.. 115
Figure 4.7. STEAM event type and instance definition. .. 116
Figure 4.8. Dependencies between non-functional attributes... 119
Figure 4.9. Traffic light event type and event instance example... 122
Figure 4.10. Matching distributed event notification filters. ... 125
Figure 4.11. Example of the subject and content of an event notification. 126
Figure 4.12. Defining a subject filter.. 127
Figure 4.13. Filter term definition. ... 127
Figure 4.14. Defining a conjunctive content filter. ... 127
Figure 4.15. Defining a stationary proximity filter. ... 128
Figure 4.16. Single-hop event dissemination. ... 133
Figure 4.17. Multi-hop event dissemination. ... 134
Figure 4.18. Network partitions in multi-hop event dissemination... 135
Figure 4.19. Delivering event notifications in STEAM... 136
Figure 4.20. The application programming interface of STEAM. .. 137
Figure 5.1. The architecture of the STEAM middleware. .. 141
Figure 5.2. Mobile devices hosting STEAM middleware... 142
Figure 5.3. Announcing and discovering proximity-based event notifications. 143
Figure 5.4. Subscribing to proximity-based event notifications... 144
Figure 5.5. Raising proximity-based event notifications.. 145
Figure 5.6. Delivering proximity-based event notifications.. 146
Figure 5.7. Defining the structure of an event type. .. 147
Figure 5.8. Instantiating an event notification.. 148
Figure 5.9. Content filter term operators. .. 149
Figure 5.10. Instantiating stationary and mobile proximity filters. ... 150

- xv -

Figure 5.11. Maintaining announcement and subscription information. 151
Figure 5.12. Computing group identifiers from event type and proximity pairs..................... 153
Figure 5.13. A producer generating event notifications. ... 154
Figure 5.14. A consumer receiving event notifications. .. 154
Figure 5.15. Announcing event type and proximity filter pairs. ... 156
Figure 5.16. Discovering event type and proximity filter pairs. ... 157
Figure 5.17. The programming interface of the proximity-based group communication service.
... 160
Figure 5.18. Receiving single-hop and multi-hop messages. ... 162
Figure 6.1. Application scenario overview... 169
Figure 6.2. Cost of event notification dissemination in scenario (A1) as a function of proximity
range. .. 172
Figure 6.3. Cost of event notification dissemination in scenarios (B1) and (C) as a function of
proximity range.. 173
Figure 6.4. Cost of event notification dissemination in scenarios (D) and (E) as a function of
proximity range.. 174
Figure 6.5. Cost of event notification dissemination in scenario (A2) for a saturation of 120 as
a function of subscriber speed. ... 174
Figure 6.6. Cost of event notification dissemination in scenario (B2) for a saturation of 120 as
a function of producer speed... 175
Figure 6.7. Event notification dissemination cost reduction due to gossiping....................... 175
Figure 6.8. Fraction of gossiping consumers losing event notifications in scenarios with a
saturation of 60.. 176
Figure 6.9. Cost of proximity discovery in scenarios (C) and (D) as a function of the discovery
range. .. 178
Figure 6.10. Discovery coverage ratio in scenarios (C) and (D) as a function of the discovery
range. .. 179
Figure 6.11. The North Circular Road and Prussia Street intersection................................. 181
Figure 6.12. Example phase scheme for a two-approach intersection................................. 182
Figure 6.13. Modelling the intersection. .. 182
Figure 6.14. The number of event notifications delivered on each of the lanes. 185
Figure 6.15. The average number of events delivered by individual vehicles on each lane. 185
Figure 6.16. Precision of event notification filtering for various filter combinations. 186
Figure 6.17. Definition of the “Performance” event type. .. 187
Figure 6.18. Definition of the conjunctive content filter applied to the disseminated event
notifications.. 188
Figure 6.19. Latency of a producer raising an event notification as a function of the number of
announced event notification types and the number of subscribers..................................... 189
Figure 6.20. Latency of a consumer delivering an event notification as a function of the
number of subscriptions to other event notification types. .. 190

- xvi -

LIST OF TABLES

Table 2.1. Event model terminology.. 12
Table 2.2. The administrative properties of notification channels. .. 28
Table 2.3. Notification Service QoS properties. .. 29
Table 3.1. Categorisation of event systems. ... 101
Table 4.1. Defining functional attributes.. 116
Table 4.2. Defining non-functional attributes... 117
Table 4.3. Classification of attributes. ... 121
Table 5.1. Maintaining proximity filters.. 158
Table 6.1. Description of the application scenarios. ... 168
Table 6.2. The first three records of the intersection data. ... 181
Table 6.3. The configuration of the experiment... 183
Table 6.4. The configuration of the runs. .. 184

- 1 -

CHAPTER 1: INTRODUCTION

The term middleware applies to a layer of software whose purpose is to mask the

heterogeneity of the underlying distributed system and to provide a convenient programming

model to application programmers [1]. Modern middleware platforms, such as CORBA [2]

and Java Remote Method Invocation (RMI) [3], have mainly focussed on supporting a

programming model based on the traditional client/server communication model, which

typically provides synchronous, point-to-point communication between client and server. This

communication model requires clients and servers to have some knowledge of each other,

i.e., they must be aware of each other’s addresses, in order for a client to be able to send a

service request and for a server to send the corresponding response.

Emerging mobile and ubiquitous computing applications typically comprise large numbers of

interconnected components distributed over large geographical areas. Middleware supporting

such applications must deal with the increased complexity that comes with such scale and

the geographical dispersion of components as well as the spontaneously changing

connections between components that may be either static or mobile.

The synchronous nature of middleware based on the client/server paradigm results in stable,

relatively long lasting connections between communicating participants in which the server

blocks an interaction while computing its response. However, mobile and ubiquitous

applications that involve unanticipated interactions between loosely coupled components

require a different approach to application component integration, due to the dynamic

character of such interactions.

The event-based communication model, a paradigm for middleware that asynchronously [4]

interconnects the components that comprise an application, is widely recognised as being

well suited to addressing the requirements of mobile applications [5-8]. It avoids centralised

control and requires a less tightly coupled communication relationship between components

compared to the client/server communication model.

Event-based middleware allows one component to react to a change occurring in another

component. A source propagates an event notification while a potential receiver determines

its interest. Event-based middleware naturally accommodates a dynamically changing

Chapter 1: Introduction

- 2 -

population of components and is particularly useful in wireless networks, where

communication relationships amongst heterogeneous application components are

dynamically reconfigured.

1.1 Mobile Computing Environments

Mobile computing environments can use either the infrastructure or the ad hoc network model

for wireless communication [9]. The infrastructure model exploits access points to enable

communication among the mobile application components under its direct control and to

coordinate their transmissions analogous to the base station in a cellular communications

network. Access points may be connected to a fixed network, such as a company intranet or

the Internet, and act as portals allowing the components under their control to connect to the

fixed network.

In contrast, the ad hoc network model allows application components to communicate with

each other without the aid of access points or a fixed network. Any application component

can establish a direct (single-hop) communication relationship with any other application

component within its transmission reach without having to channel the transmission through

an access point. An application component may communicate with components potentially

located beyond its transmission reach through multi-hop communication where intermediate

application components forward a transmission towards its destination. Hence, the ad hoc

network model allows application components to communicate and collaborate in a

spontaneous manner at any time and without restrictions, except for connectivity limitations,

in the absence of a conventional fixed network.

The term mobile device is used to refer to portable computing devices, such as notebook

computers and handheld devices. A mobile device may be capable of wireless networking,

thus allowing its application components to interact with components hosted by other mobile

devices through wireless communication while moving in a mobile computing environment.

1.2 Nomadic and Collaborative Applications

We characterise applications in the space of mobile computing as either nomadic or

collaborative. Nomadic applications are characterized by the fact that mobile nodes make use

of the wireless network primarily to connect to a fixed network infrastructure, such as the

Internet, but may suffer periods of disconnection while moving between points of connectivity.

Consequently, the main goal of middleware accommodating nomadic applications has been

Chapter 1: Introduction

- 3 -

to handle disconnection while nodes migrate from one designated access gateway to

another. This implies that such middleware has focused on providing a means to cache and

synchronise relevant information on behalf of a disconnected node and to forward it via the

new access gateway upon reconnection. Nomadic applications typically employ infrastructure

networks when connecting to the fixed backbone network. An example of a nomadic

application might include a news ticker hosted by a handheld device accessing an Internet-

based breaking news service through a wireless connection. Such a ticker application might

be disconnected from the news server while the user travels from her home to her office.

In contrast, collaborative applications can be characterized by the fact that mobile nodes use

the wireless network to interact with other mobile nodes that have come together at some

common location. Collaborative nodes migrate within some area, establish associations with

other nodes dynamically, and typically group into formations of nodes that have a common

goal. The members of such a group may migrate together, similar to a fleet of vehicles or the

participants of a guided tour on an excursion. Although these applications may use

infrastructure networks, they will often use ad hoc networks since they are immediately

deployable in arbitrary environments and support communication without the need for a

separate infrastructure. This collaborative style of application may be useful in the ubiquitous

[10] and sentient computing [11] domain allowing loosely coupled, highly mobile components

to communicate and collaborate in a spontaneous manner. Such applications might include

scenarios in which a crashed car disseminates an accident warning to approaching vehicles

and players in augmented reality games being interested in the status of game objects or

indeed other players residing at their current location. Figure 1.1 further illustrates the

accident warning application scenario. The car shown in the centre of Figure 1.1 has crashed

and as a result establishes associations with vehicles that are currently near the location of

the accident. The crashed car may subsequently establish associations with other vehicles

that approach the accident site as well as cancel associations with vehicles that have passed

the site.

 Accident site

Dynamically established association

Movement of vehicle

Figure 1.1. Accident warning application scenario.

Chapter 1: Introduction

- 4 -

1.3 Event-Based Middleware and Mobile Computing

Middleware services supporting event-based communication have been developed by both

industry [12, 13] and academia [4, 5, 14, 15]. Most of these assume that the components

comprising an application are stationary and that a fixed network infrastructure is available.

Existing research on event-based middleware for mobile applications has mainly

concentrated on supporting nomadic applications and wireless data communication based on

infrastructure networks [4-6, 16, 17], assuming the availability of a fixed service infrastructure.

Intermediate middleware components, which typically implement the mechanisms for

handling disconnection as well as for enforcing many middleware properties, are naturally

hosted by parts of the designated service infrastructure.

Relatively little work has been done to address the distinct requirements associated with

event-based middleware accommodating collaborative applications, especially those that use

ad hoc networks. Such applications may lack any service infrastructure and therefore can not

rely on the aid of access points when routing event notifications or when discovering peers.

Moreover, event notifications can not depend on intermediate components applying event

notification filters or enforcing non-functional policies, such as event notification delivery order

and priority. Consequently, alternative approaches have to be adopted by event-based

middleware for collaborative applications in order to provide the desired middleware

properties in the absence of a designated service infrastructure as well as centralised or

intermediate components typically hosted by such an infrastructure.

1.4 Aims and Objectives

The general objective of this thesis is to design an event-based middleware architecture for

collaborative applications, especially for those that use ad hoc networks. The middleware

should allow collaborative application components to interact through wireless data

communication while featuring a number of desirable functional and non-functional

properties. From the application programmer’s point of view, the design of such middleware

should provide for:

• Ad hoc networks. The middleware should support an event-based programming model

allowing collaborative application components, with significant variations in speed from

stationary to highly mobile, to come together at a certain location and then to

communicate and collaborate through wireless connections using ad hoc networks.

Chapter 1: Introduction

- 5 -

• Inherently distributed architecture. The middleware should exclusively use the same

physical machine as the components that comprise the collaborative application and

not rely on the presence of a designated service infrastructure.

• Event notification filtering precision. The middleware should support a range of event

notification filters that may be applied to various attributes of event notifications

including subject, content, and context, such as geographical location. Moreover, it

should allow a subscriber to combine event notification filters in order to describe the

exact subset of event notifications in which it is interested exploiting multiple criteria,

such as meaning, time, location, and quality of service.

• System scalability. A system exploiting event-based middleware for collaborative

applications should be able to easily cope with a large, dynamically changing

population of mobile components distributed over a large geographical area and the

resulting dynamic reconfiguration of the connections between the components.

These middleware properties are not orthogonal and hence can not be addressed

independently. We therefore have to find a good compromise when designing the middleware

supporting the properties described above. For example, an inherently distributed

architecture implies absence of components that have global knowledge. Such components

are traditionally exploited when applying event notification filters. Consequently, a new

technique for applying event notification filters in a distributed manner is needed.

1.5 STEAM

We envisage event-based middleware for collaborative applications being used in various

areas including indoor and outdoor smart environments, augmented reality, and traffic

management. In these application scenarios, components may represent mobile objects

ranging from robots and cars to buses and fire engines, as well as objects with a fixed

location, such as office appliances, information points, traffic signals, and traffic lights.

This thesis argues that there are applications in which collaborative components are more

likely to interact once they are in close proximity. Components within close vicinity may

communicate using the middleware in order to exchange information on the status of a door,

the theme of a museum, or the current traffic situation. In a traffic management application

scenario, a traffic signal may propagate an alteration to the speed limit due to changing road

conditions to approaching vehicles. Another example scenario may involve an ambulance

disseminating its location to nearby vehicles in order for them to yield the right of way.

Chapter 1: Introduction

- 6 -

We present an implementation of our middleware architecture for collaborative applications,

called STEAM (Scalable Timed Events And Mobility) [18, 19]. STEAM is intended for

applications that include a large number of highly mobile, collaborative application

components typically distributed over a large geographical area. Unanticipated interaction

between nearby components is supported enabling a component to dynamically establish

connections to other components within its current vicinity. This allows components

representing real world objects currently residing within the same geographical area to deliver

events at the location where they are relevant.

1.6 Contribution of this Thesis

Within the context of this thesis we have designed and implemented an event-based

middleware for collaborative applications. Our work has focused on designing an event-

based middleware that is especially suited for those collaborative applications that use ad

hoc networks while supporting a number of middleware features typically desired by

application programmers in this domain.

Traditionally, event-based middleware employs logically centralised or intermediate

components to implement key properties of the middleware. Application components may

utilise centralised lookup and naming services to discover peers in order to communicate with

them. Intermediate components may be used to route event notifications from producers to

consumers and to apply event notification filters. Moreover, they may enforce non-functional

attributes, such as event notification delivery order and priority. However, the central problem

with this approach arises with increasing system scale as such middleware components may

become a liability due to availability and bandwidth limitations.

Centralised or intermediate middleware components are typically hosted by physical

machines that are part of a designated service infrastructure in order to ensure that they are

always accessible to application components. The disadvantage of exploiting such an

infrastructure is that its installation and maintenance requires substantial resources while

limiting communication between components to the geographical areas in which the

infrastructure has previously been made available.

A similar approach is generally used when designing event-based middleware supporting

nomadic applications. Designated middleware components can be hosted naturally by parts

of the network infrastructure, such as access gateways. However, such an approach is

inadequate for event-based middleware for collaborative applications, especially for those

using ad hoc networks, due to the lack of any infrastructure.

Chapter 1: Introduction

- 7 -

The main challenge of our work has been to design event-based middleware supporting

collaborative applications that adopts alternative approaches addressing these problems

without the aid of a separate service infrastructure while avoiding centralised and

intermediate components. A further challenge has been to provide event notification filtering

with high precision allowing a component to use multiple functional and non-function criteria

when identifying event notifications of interest. The final challenge of this thesis has been to

develop decentralised techniques that improve system scalability for applications composed

of large numbers of interconnected mobile (and static) components distributed over large

geographical areas.

The main contribution of the work described in this thesis is the design of an event-based

middleware for collaborative applications addressing these challenges. Consequently, our

middleware has a number of important differences from other event services:

• Mobility support. Collaborative application components interact through wireless

communication utilising the ad hoc network model without the aid of access points or

connections to a conventional fixed network. Our design accommodates a changing

pool of collaborative application components coming together at a location and

supports spontaneous communication between these components without preceding

infrastructure deployment.

• Inherently distributed architecture. The middleware is exclusively collocated with the

collaborative application components and does not depend on centralised or

intermediate components. Decentralised techniques for discovering peers and for

filtering of event notifications are supported. This is beneficial as it avoids components

typically hosted by a designated service infrastructure that may become

communication bottlenecks with increasing system scale.

• Location-aware application components. Geographical location information is provided

by a location service, which is essential for geographical scoping of event notifications

used to deliver event notifications at the specific location where they are relevant.

Chapter 1: Introduction

- 8 -

• Distributed event notification filtering. Event notifications may be filtered at both the

producer and the consumer side or may be filtered implicitly. Filters may be applied to

a range of functional and non-function attributes associated with an event notification

including subject, content, and context, such as geographical location. Combining

distributed event notification filters is beneficial to the precision of filtering allowing a

component to define the subset of event notifications in which it is interested using

multiple criteria, such as meaning, time, location, and quality of service. Event

notification filtering in general and our approach of combining filters in particular

improves system scalability by limiting forwarding of event notifications.

• Geographical scoping of event propagation. To support ad hoc networks, event

notification filters may be used to define geographical areas within which certain event

notifications are valid, hence bounding the geographical scope within which these

event notifications are propagated. Such geographical scopes represent a natural way

to identify event notifications of interest for mobile components. Geographical scoping

is essentially filtering of event notifications using the space criteria and consequently

increases system scalability further. Bounding the dissemination range of event

notifications improves the predictable behaviour of the middleware.

• Non-functional application requirements. The middleware architecture and the

decentralised techniques for peer discovery and event notification filtering have been

designed to improve system scalability and the predictability of the filter engine for

event notifications. Other non-functional application requirements, such as event

notification delivery order and priority, may be associated with either a specific event

notification or a group of event notifications using attributes.

A further contribution of this thesis is a taxonomy of distributed event-based programming

systems. The taxonomy is structured as a hierarchy of the fundamental properties of a

distributed event-based programming system and may be used as a framework to describe

an event system according to a variety of criteria including its event, organisation, and

interaction models. The taxonomy has been applied to our middleware as well as a selection

of other event systems to compare their middleware properties.

1.7 Organisation of this Thesis

After this introduction to event-based middleware, mobile computing environments, and

mobile application styles, we structure the remainder of this thesis as follows: Chapter 2

introduces the terminology and the characteristics of the event-based communication model

Chapter 1: Introduction

- 9 -

and subsequently reviews and examines work related to this thesis. In chapter 3, we present

our taxonomy of distributed event-based programming systems and classify a selection of

event models comparing their properties. Chapter 4 describes the STEAM event model and

the rationale for its design. Chapter 5 presents a prototypical implementation of the STEAM

event model. In chapter 6, we validate our work by presenting an evaluation of a number of

collaborative application scenarios using the STEAM middleware. This chapter demonstrates

how components of collaborative applications can be interconnected through wireless

communication and ad hoc networks as well as how our approach to event notification

filtering increases filtering precision, improves system scalability, and enhances the

predictability of the filter engine. Finally, chapter 7 concludes this thesis by summarising the

presented work and outlining issues that remain open for future work.

- 10 -

CHAPTER 2: DISTRIBUTED EVENT MODELS

The first part of this chapter introduces the characteristics, related terminology, and main

concepts of distributed event-based programming models as well as the issues that arise

when designing distributed event models. The subsequent sections then review a number of

event-based communication models related to the work described in this thesis, which have

been selected based on their popularity and according to the features they support. We

conclude this chapter by discussing the mobility support provided by the event-based

communication models surveyed.

The review is concerned with middleware that provides a communication model based on the

event paradigm. An event-based middleware, which is also known as an event service, is

characterised by its architecture and the features that it supports. The architecture specifies

the overall structure of the service as well as the components involved and their inter-

relationships. The set of features supported by a specific event service reflects the

requirements of the application domain for which it has been designed and hence may vary

considerably. We review a number of event-based communication models developed by both

industry and academia that have been designed for a range of application areas including

large-scale Internet services [20] and mobile computing [21, 22]. As a result, the

requirements of these applications cover different scalability and timeliness constraints as

well as a range of computing environments including fixed and mobile networks. These event

models have been selected firstly according to their relevance to the work presented in this

thesis and secondly, to illustrate a wide range of architecture styles, features, and issues that

serve as the basis for identifying the properties of the taxonomy of distributed event-based

programming systems presented in chapter 3. Hence, this selection of influential event

models are reviewed according to their system architecture, the supported programming

model, and their functional and non-functional features, especially those related to event

filtering, mobility support, and quality of service.

Chapter 2: Distributed Event Models

- 11 -

2.1 The Event-Based Communication Model

The general idea behind the use of an event-based communication model is to enable one

application component to react to a change in the state of another component. Event-based

communication models, or simply event models, are omnipresent in applications ranging from

small-scale, centralised to large-scale, highly distributed systems [23]. On one hand, they are

exploited to interconnect individual components of applications, for example the components

comprising graphical user interfaces [24, 25]. Such graphical components may disseminate

user driven and hence sporadic changes to their state to other components of the application

that are required to react to these changes. At the other extreme, publishers of stock trading

information may utilise a system with an event service to post the latest trading rates to a

group of brokers, potentially located in different cities or even countries [26, 27]. Smart

environments often employ event-based communication models to interconnect a large

number of application components [28] ranging from light and door actuators and sensors to

robotic vehicles moving within and between buildings.

2.1.1 The Participants

An event system is an application that uses event-based communication to allow the

components that comprise the application to interact using event notifications. Event

notifications, or simply events, contain data that represent a change to the state of the

sending application component. They are propagated from the generating application

components, called the producers, to the receiving application components, called the

consumers, which process the events delivered.

In conventional distributed event systems, application components, called entities, are

located on a number of physical machines that are interconnected by means of a fixed

network infrastructure through which communication takes place. Middleware using event-

based communication may support intermediate components. Intermediate components

typically route events from producing to consuming entities and are potentially hosted by

separate machines that are part of the infrastructure.

Event Model Source Sink Intermediate

STEAM [18, 19, 29] Producer Consumer N/A

CORBA [12, 30] Supplier Consumer Channel

TAO RT CORBA [31] Supplier Consumer Real-time channel

CONCHA [32] Multicast supplier Multicast consumer Channel

Chapter 2: Distributed Event Models

- 12 -

Event Model Source Sink Intermediate

Java AWT [24] Source Listener Event adapter

Java Distributed [13] Generator Listener Event adapter

CEA [4, 33] Source object Client object Mediator

ECO [14, 34] Object Object N/A

JEDI [5] Active object Active object Dispatching server

SIENA [15] Object of interest Interested party Event server

Elvin [17, 35]. Producer Consumer Server

Table 2.1. Event model terminology.

There is no generally accepted standard for the terminology used for event-based

communication. As a result, the event models reviewed in this thesis use a variety of

alternative terminology, which is summarised in Table 2.1, when referring to event producer

(source), consumer (sink), and intermediate. Although some event models use alternative

terminology for event notification, such as event object, event message, and event data,

Table 2.1 omits these as the term “event” is widely accepted.

2.1.2 Characteristics of Event-Based Communication

The traditional client/server computing [36] model allows application components to behave

as service consumers, called clients, and service providers, called servers. A client/server

relationship is established between two application components when one component acting

as a client initiates a service request to another component acting as a server that is capable

of responding to the service request.

Request B

(A) Client/server communication model (B) Event-based communication model

Event
Notification A

Request A

Response A

Response B

Event
Producer A

Event
Producer B

Event
Consumer

Event
Consumer

Event
Consumer

Client B Client A

Server

Event
Notification B

Figure 2.1. Client/server and event-based communication model.

Chapter 2: Distributed Event Models

- 13 -

Figure 2.1(A) illustrates request/response interactions between clients and a server, which

often reside on separate physical machines and communicate through a network connection.

This computing model essentially provides synchronous, one-to-one communication between

client and server and requires clients and servers to have some knowledge of each other. In

order to be able to send a request, a client needs to know the name and the location of the

server and the server needs to know the name and the location of the client when

responding. In contrast, computing models based on the event paradigm, as shown in Figure

2.1(B), require a less tightly coupled communication relationship between application

components acting as either event producer or consumer, allowing them to interact in an

asynchronous, anonymous, one-to-many (many-to-many) manner.

Asynchronous Communication

Coulouris et al. [1] have identified asynchronous interaction as a main characteristics of

event-based communication. Event producers disseminate event notifications

asynchronously to event consumers without having to synchronise. Asynchronous

communication prevents slow, temporarily unavailable, or indeed blocked application

components from delaying interactions between components. Producers are not required to

wait for responses from consumers before proceeding to propagate subsequent event

notifications. An event notification destined for a temporary unavailable consumer may be

buffered in order to be delivered once the consumer has recovered.

Anonymity

The event-based communication model allows application components to interact

anonymously without concern for either the number or the location of the components

involved. Event-based middleware typically manages the connections between producers

and consumers transparently on behalf of an application. Such middleware implements a

level of decoupling that enables producers to disseminate event notifications to consumers

without targeting specific destinations and consumers to deliver events without having directly

communicated with producers. However, consumers may derive a certain awareness of their

producers from the content of the events they receive. For example, a producer may raise

events on behalf of a door disseminating the door’s status without targeting specific

consumers. A consumer receiving these events will be able to determine whether the door is

open or closed and in addition, might discover the location of the door.

Anonymous interaction allows producers and consumers to establish communication

relationships relatively easily, involving modest initialisation effort compared to the

Chapter 2: Distributed Event Models

- 14 -

client/server communication model. Producers and consumers connect to a middleware and

may subsequently publish and receive event notifications whereas clients are required to

explicitly establish a two-way connection to each specific server with which they intend to

interact.

One-to-Many and Many-to-Many Communication

Figure 2.1(B) illustrates how a producer initiates event-based communication by propagating

an event notification to a group of consumers. A single producer disseminates specific event

notifications to a group of consumers in a one-to-many fashion. Many-to-many

communication may be established by a set of collaborating producers disseminating related

event notifications to a group of consumers. One-to-many and many-to-many communication

may be implemented as a set of unicast interactions [14] sequentially delivering a particular

event notification to a group of consumers but are frequently based on multicast protocols

[14, 32, 37, 38].

Heterogeneity

Utilising event-based middleware to integrate distributed application components results in

loose coupling between these components. Essentially, all that is required for components to

interact is for producers to disseminate event notifications and for consumers to recognise

event notifications of interest and to provide an interface for receiving them. Hence, event

notifications may be used as a means of communication between distributed application

components in a heterogeneous system that were not inherently designed to interoperate [1].

2.2 Functional Design Issues

An event service is a middleware component that implements an event model, thereby

providing event-based communication to an event system. The functional requirements (a

definition can be found below) of such a system are addressed when designing the

architecture and the features of its event model.

Chapter 2: Distributed Event Models

- 15 -

Functional requirements are statements of services the system should

provide, how the system should react to particular inputs and how the system

should behave in particular situations. In some cases, the functional

requirements may also explicitly state what the system should not do [39,

p.118].

2.2.1 Typed Events

In general, events generated by a producer are said to be either generic or typed. The

information that describes a generic event is a data blob without an explicit structure. Typed

events on the other hand, provide a well-defined, explicit, and expressive data structure into

which a wide variety of event data can be mapped. The structure of typed events ranges from

simple to complex; from a single string to a programming language specific object with an

associated set of attributes and methods. However, many event models support typed events

that typically have a name and may have an associated set of typed parameters whose

specific values describe the specific change to the producer's state.

It may be argued that simple forms of typed events are merely generic and not typed.

However, we consider events that have some structure which may be recognised or

interpreted by the event model as typed. Significantly, the structure associated with typed

events is essential for applying event filters. For example, events that are based on a single

string have an explicit data structure to which filters may be applied whereas events

enclosing a binary file do not define a recognisable data structure.

2.2.2 Event Filtering

An event system may consist of a potentially large number of producers, all of which can

generate events that contain different, application-specific information. As a result, the

number of events to be disseminated in an event-based system may be very large.

A particular consumer may only be interested in a subset of the events produced in the

system. Event filters provide a means to control the propagation of events. Ideally, filters

enable a particular consumer to specify the exact set of events in which it is interested [7].

Supporting a means of event filtering with a high precision minimises (ideally prevents) the

delivery of unwanted events to consumers and consequently reduces the utilisation of

Chapter 2: Distributed Event Models

- 16 -

communication and computation resources. Essentially, a consumer’s event filters are

matched against events and only events for which the matching produces a positive result

are subsequently delivered to the consumer.

2.2.3 Announcing Events

Producers may indicate their intention to generate events using advertisements. A specific

producer may announce the instances of events it intends to raise. Once certain events have

been announced, a producer may publish such events until it indicates that it no longer

wishes to produce them by cancelling the corresponding advertisement. A producer

unannounces the events it ceases to raise. The announcement mechanism is an optional

event model feature and thus may not be explicitly supported. However, an event service

may exploit the additional information provided by announcements when routing events from

producers to consumers [15].

2.2.4 Subscribing to Events

In order to receive events, event consumers have to subscribe to the instances of events in

which they are interested. When doing so, consumers are said to register interest in events.

Once consumers have subscribed to events, they receive all subsequently disseminated

events until they unsubscribe (de-register). Consumers may pass event filters to the event

service when subscribing thereby specifying the events of interest. In essence,

announcements describe the events generated by producers whereas subscriptions (and the

associated event filters) specify the subsets that specific consumers wish to receive.

Announced Producer

t0

Subscribed Consumer

t2t1 t4 t5t3 t6

e0 e1 e2 e3 e4 e6e5

time

a: announce
ua: unannounce
s: subscribe
us: unsubscribe
tx: time x
ex: event x

a ua

s us

Figure 2.2. Announcing and subscribing to events.

Chapter 2: Distributed Event Models

- 17 -

Figure 2.2 summarises the concept of producers announcing and consumers subscribing to

events. It depicts an event producer announcing (a) the events it intends to generate,

subsequently raising events (e0 to e6), and eventually unannouncing (ua) them. Note that no

events are published either prior to the announcement or after the unannouncment. A

consumer registers interest in these events for a period of time (from s to us) and as a result

receives the events disseminated while it has been subscribed. This subscription causes the

consumer to deliver events e2, e3, and e4 while prior and subsequent events are disregarded.

2.2.5 Delivery Semantics

Event models support a variety of different delivery guarantees for event notifications. A

particular event model may provide several delivery semantics allowing an application to

select the semantics that appropriately addresses its requirements. These guarantees

naturally relate to the semantics described by the underlying mechanism for sending events

to a group of subscribers. For example, exploiting IP multicast for disseminating events will

provide a best-effort delivery semantics, which does not guarantee that any subscriber will

necessarily receive a specific event. Some applications may have stronger reliability

requirements. In order to address these requirements, event models may employ event

dissemination protocols that provide at-least-once, at-most-once, or exactly-once delivery

semantics.

In addition to providing a certain delivery reliability, event models may enforce delivery

semantics disseminating events in a specific order or with some timeliness constraints. A

weak delivery order disseminates event in any order whereas a stronger ordering semantics

causes events to be delivered in FIFO, causal, or total order. Timeliness constraint are

important when delivering events on behalf of real-time applications, such as vehicle control

and hospital patient monitoring.

2.2.6 Subject-Based Event Models

Traditionally, event-based communication models support subscription mechanisms based

on the subject of an event. In such an approach, each event is classified as belonging to one

of a set of subjects, which are also known as topics or channels. Producers label their events

with a subject when propagating them and consumers subscribe to a specific subject. A

subscriber subsequently receives all events labelled with that subject.

Chapter 2: Distributed Event Models

- 18 -

A subject-based event model may support event types that have a name and an associated

set of typed parameters. The name of such an event naturally represents its subject and

events of the same subject have an identical structure. Hence, the subject of an event allows

consumers to subscribe to a specific group of events and identifies their type.

Significantly, subject-based event models allow for an efficient approach to matching events

against a large number of subscriptions. For example, a CORBA event channel [30] can be

set up as a component handling all events of a particular subject and as a result matches

events implicitly. Consumers subscribe to a specific subject by connecting to the

corresponding channel. Producers disseminate events by forwarding them to the channel

associated with the subject, which then delivers them to its subscribers sequentially.

2.2.7 Content-Based Event Models

As an alternative to subject-based event subscription, event-based communication models

may support subscription mechanisms based on the content of an event. The content-based

approach allows producers to disseminate events that essentially consist of a set of

parameters defining the event information. Consumers subscribe to events by defining a

predicate that may test arbitrary parameters of an event. A subscriber subsequently receives

all events whose parameters match the subscriber’s predicate.

Compared to subject-based approaches, content-based subscription mechanisms provide a

more powerful paradigm, allowing consumers to chose filtering criteria along multiple,

orthogonal dimensions of the content of events without defining subjects. However, while

content-based approaches provide a more expressive subscription mechanism they are

difficult to implement [40]. The problem of efficiently matching events against a large number

of subscribers has been addressed by the work of Banavar et al. [37] and Opyrchal et al. [38].

2.3 Non-Functional Design Issues

An application using event-based middleware to interconnect its components may have

requirements regarding the non-functional behaviour of the system. Similar to functional

requirements, non-functional requirements (a definition can be found below) influence the

design of the event model implemented by the middleware.

Chapter 2: Distributed Event Models

- 19 -

Non-functional requirements are constraints on the services or functions

offered by the system. They include timing constraints, constraints in the

development process, standards and so on. .. Examples are reliability,

response time and store occupancy [39, p.119].

2.3.1 Quality of Service

The non-functional behaviour of an event system may be influenced by a variety of Quality of

Service (QoS) constraints. Event-based middleware may support QoS properties that are an

integral part of the system and consequently cannot be customised by an application.

However, QoS properties may be configurable allowing an application to chose the non-

functional behaviour that appropriately addresses its requirements.

Sommerville [39, p.119] identifies reliability, response time and memory management as QoS

constraints. Reliability may refer to a number of aspects of an event system including event

delivery semantics and connection preservation. Specific event notifications may be

guaranteed to be delivered to all subscribers. Information on communication connections

between entities and infrastructure may be maintained in order to allow for transparently re-

establishing lost connections upon recovery. Event notifications may be stored on behalf of a

temporarily unavailable subscriber until they can be delivered when the subscriber recovers.

For example, the CORBA Notification Service [12] can be configured to prevent event

notification losses. Its event channel may persistently buffer event notifications on behalf of a

temporarily unavailable subscriber and subsequently forward these event notifications once

the subscriber re-connects. Response time constraints refer to the real-time behaviour of an

event system which we discuss separately below. Memory may be managed by allowing an

application to impose an upper bound on the sizes of queues as well as on the maximum

number of interconnected producing and consuming entities. Various discard policies may be

applied to purge expired connection information and stored events. Limiting the use of the

available memory is important in any event system, but is essential in those that comprise

host machines with strictly limited resources.

Chapter 2: Distributed Event Models

- 20 -

2.3.2 Real-Time

Krishna and Shin [41] state that there is no precise, cogent definition of what a real-time

system is. They admit that their definition (stated below) raises as many questions as it

answers. Notably, it provokes the question as to what “timely” means. However, based on the

definitions of real-time systems stated below, we can define the term “timely” as a real-time

system hosting tasks that have associated deadlines for their completion.

Any system where a timely response by the computer to external stimuli is

vital is a real-time system [41, p.1].

A real-time system is any information processing activity which has to respond

to externally generated input stimuli within a finite and specified time [42, p.2].

A system in which the time at which the output is produced is significant. This

is usually because the input corresponds to some movement in the physical

world, and the output has to relate to that same movement. The lag from input

time to output time must be sufficiently small for acceptable timeliness [43].

Real-time systems can be divided into two categories: hard real-time systems and soft real-

time systems. Hard real-time (or critical) systems are systems where something “bad” will

happen if the output is not delivered in time. Soft real-time (or non-critical) systems are

systems where nothing catastrophic happens if some deadlines are missed. Missed

deadlines in a soft real-time system will merely result in degradation of performance below

what is generally considered acceptable. A deadline can be called hard or soft deadline

depending on whether it has been given for a hard or a soft real-time system.

An event system may support real-time guarantees in order to provide deterministic end-to-

end behaviour when disseminating events. Although event-based middleware might not be

able to guarantee low latency, it may support properties enabling predictions on the

behaviour of event propagation. Latency in distributed communication depends on the

topology and quality of the underlying network as well as the available bandwidth. This

results in “low” latency being relative. Event-based middleware featuring timely event delivery

may allow applications to assign priorities to events. As demonstrated by Harrison et al. [31],

this allows a dispatcher to pre-empt the delivery of some event in order to deliver an event

that has a higher priority. Other real-time event service may support event delivery deadlines,

Chapter 2: Distributed Event Models

- 21 -

such as earliest and latest delivery time, and event delivery timeouts. Delivery deadlines

describe a time window within which an event is to be delivered and are characteristically

expressed using absolute time. Hence, the nodes that comprise an event system exploiting

such deadlines require a notion of global time. In contrast, delivery timeouts define a relative

duration during which an event is meant to be delivered and thus, do not require

synchronised participants.

2.3.3 Scalability

The term scalability (some definitions can be found below) is used to describe the behaviour

of a distributed system when changing the number of interconnected participants that form

the network. Coulouris et al. [1] state that controlling performance loss and the cost of

physical resources as well as preventing software resources from running out and avoiding

performance bottlenecks as the challenges presented to the design of a scalable distributed

system. A telephone system using up all the available numbers and the Internet (using the 32

bit protocol version 4) running out of computer addresses are examples of systems that show

lack of scalability as they run out of software resources. An example of a system in which

certain components may become performance bottlenecks is a file server unable to cope with

an increasing number of access requests.

A scalable distributed system is one that can easily cope with the addition of

users and sites, and whose growth involves minimal expense, performance

degradation, and administrative complexity [44, p.363].

The system and application software should not need to change when the

scale of the system increases. .. Rather, as the demand for a resource grows,

it should be possible to extend the system to meet it [1, p.20-21].

Considering these definitions and examples, it can be observed that the scale of an event

system depends on several factors. The parameters that influence the scale of a distributed

event system include:

• The number of event producing and consuming entities, intermediates, and physical

machines.

Chapter 2: Distributed Event Models

- 22 -

• The number of activities such as announcements, subscriptions, and event

communication.

In principle, these parameters are independent, but in practice they are likely to increase

simultaneously. For example, an increase in the number of entities is likely to cause the

number of activities to rise. In order for an event system to scale well changing one

parameter should not cause another factor to become a performance bottleneck. For

example, increasing the number of entities should not result in an intermediate becoming

overloaded with event messages. In general, it can be observed that the importance of

scalability increases with the complexity of a distributed system and indeed a distributed

event system.

2.4 OMG CORBA Event Models

The Common Object Request Broker Architecture (CORBA) is an open standard for object

management specified by the Object Management Group (OMG). The architecture uses

Object Request Brokers (ORBs) as the middleware for application component integration

across boundaries such as networks, operating systems, and programming languages. In

order to extend the ORB core capabilities, the CORBA 2 specification [2] defines a wide

range of general-purpose services including the CORBA Event Service [30]. This service

allows the components that comprise an application to interact using event-based

communication in addition to the request/response communication model provided by the

bare ORB. The main limitation of the CORBA Event Service is its lack of event filtering and

QoS capabilities required by applications such as large-scale and real-time services. The

OMG addressed these shortcomings in 1996 by issuing a Request For Proposal [45] for

defining an extension to its Event Service. A consortium including Borland International,

IONA Technologies, IBM Corporation, and Oracle Corporation submitted a revised proposal

[46] that was accepted by the OMG at the end of 1998 and resulted in the specification of an

extended version of the Event Service called CORBA Notification Service [12].

The event model of the Event Service and the Notification Service are similar in that both

exploit mediator components through which event data is disseminated. Both event models

can be characterised as extremely general addressing the needs of different business

domains and consequently complex due to the large number of interfaces. However, they are

not identical since the Notification Service facilitates additional functionality.

Chapter 2: Distributed Event Models

- 23 -

2.4.1 CORBA Event Service

The CORBA Event Service supports an event model that defines two roles for application

components. The role of a supplier object producing event data and the role of a consumer

object processing event data. Suppliers and consumers are collectively termed clients.

There are two approaches to initiating event communication between suppliers and

consumers referred to as the push model and the pull model. The push-model, which is

considered the typical event communication model, allows the supplier to initiate the transfer

of event data to consumers whereas the pull-model allows a consumer to request event data

from a supplier. A consumer may use either a blocking (pull) or a non-blocking (try_pull)

mechanism when polling for event data.

The CORBA Event Service allows suppliers and consumers to invoke each other’s interface

methods directly when exchanging event data. This approach requires clients to be aware of

the object references of their peers and hence prevents anonymous event communication.

Alternatively, clients may interact through an event channel acting as intermediate between

suppliers and consumers. In order to connect to an event channel, clients need to obtain a

reference to the channel.

The Event Channel Architecture

A CORBA event channel is an intermediate object that decouples communication between

suppliers and consumers allowing them to interact anonymously. Figure 2.3 shows how

consumers and suppliers connect to an event channel rather than directly to each other. An

event channel acts as both a supplier and consumer of event data; it acts as a single

consumer from a supplier’s perspective and as a single supplier from a consumer’s

perspective. Any number of suppliers may issue event data to any number of consumers

using a single event channel. There is no correlation between the number of suppliers and

consumers connected to a channel and clients can be easily added to a channel.

Chapter 2: Distributed Event Models

- 24 -

Event
Consumers

CORBA Event Channel

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Event
Suppliers

Consumer Side Supplier Side

Proxy
Supplier

Proxy
Consumer

Figure 2.3. The CORBA event channel.

Consumers and suppliers may use the same or different communication models when

interacting with an event channel. Figure 2.4 (A) and (B) show push-style and pull-style

communication between supplier and channel and consumer and channel respectively.

Figure 2.4 (C) illustrates an example of mixed style communication where a consumer uses

the pull model to obtain event data from the channel while a supplier uses the push model to

pass event data to the channel.

Consumer

CORBA
Event

Channel
Supplier

Push Push

(A) Push style communication

Consumer
CORBA
Event

Channel
Supplier

Pull Pull

(B) Pull style communication

Consumer
CORBA
Event

Channel
Supplier

Push Pull

(C) Mixed style communication

Figure 2.4. Communication styles.

Figure 2.3 also outlines the two sides of an event channel. The supplier side includes all

interfaces used by suppliers and the consumer side includes all interfaces used by

consumers. Clients connect to an event channel by obtaining an interface to a proxy object.

Suppliers obtain proxy consumers each acting as single consumer and consumers obtain

proxy suppliers each acting as single supplier. Clients obtain their proxies from the channel’s

Chapter 2: Distributed Event Models

- 25 -

administration interfaces, called SupplierAdmin and ConsumerAdmin. These administration

objects act as factory objects - objects that instantiate other objects. Essentially, clients

register with a channel by obtaining proxy objects. Each client requires a separate proxy

through which it exchanges event data with the channel. Event channels use administration

objects for establishing and maintaining the connections to their clients and use those

connections when propagating event data.

Figure 2.5 depicts a simplified version of some of the interfaces of an event channel which

are described using the CORBA Interface Definition Language (IDL) [47]. The event channel

interface defines two operations for clients to obtain the consumer and supplier administration

interface. The ConsumerAdmin and the SupplierAdmin interface are similar. Both serve as

object factories and each defines two operations for obtaining proxies. They define the

operations for obtaining push and pull proxies for suppliers and consumers respectively.

Interface EventChannel{
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
}

Interface ConsumerAdmin{
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
}

Interface SupplierAdmin{
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
}

Figure 2.5. CORBA event channel interfaces.

Although the CORBA Event Service specification does not define additional event channel

capabilities, a particular vendor may provide an event channel implementation supporting

features such as event filtering and delivery semantics. An application may combine the

features of different event channels by composing them. Event channel composition allows

one channel to consume the event data supplied by another channel. However, tunnelling

event data through multiple channels requires additional computational resources and

increases event delivery latency.

In theory, any number of suppliers and consumers may connect to a specific event channel.

As an event channel propagates all event data generated by its suppliers to all connected

consumers (assuming event data is not filtered), the computational load of a specific channel

increases with the number of its clients. The architecture of the CORBA Event Service

Chapter 2: Distributed Event Models

- 26 -

addresses this by implicitly supporting the use of multiple event channels within a system. In

this approach, a client may connect to one or more channels, each propagating a subset of

the event data in the system. This implies that a client needs to connect to the particular

channel handling the event data in which the client is interested and as a result provides a

means for implicit, subject-based filtering.

The CORBA Event Service specification does not define the means by which clients obtain

references to event channels. It is therefore left to the application programmer to provide a

mechanism such as a naming service for obtaining these references.

Generic and Typed Event Channels

An event channel may be implemented as either generic or typed. A generic event channel

supports generic event data only whereas a typed event channel supports both typed and

generic event data. Suppliers and consumers interacting through a generic event channel

must agree on the content of their event data since generic event data are data blobs without

an explicit structure. Typed event data is described using CORBA IDL. A typed event channel

can handle event data supplied and consumed in any combination of the forms push/pull and

generic/typed. Event data supplied in a typed form can be consumed in a generic form and

vice versa.

The CORBA Event Service specification explicitly states that typed event channels support

the conversion of typed into generic and generic into typed event data. However, it admits

that this requires a profound understanding of the interfaces of an event channel and

depends on the particular event channel implementation. Mapping typed into generic event

data is relatively simple. However, converting a generic data blob into typed event data is

challenging. [46] notes that many users have found typed event communication (described in

IDL) difficult to understand and implementers have found it particularly difficult to deal with.

2.4.2 CORBA Notification Service

The CORBA Notification Service extends the CORBA Event Service by supporting typed

events with a predefined structure, called structured events, filtering, and quality of service

constraints.

The Notification Channel Architecture

The main design goal of the CORBA Notification Service was to directly extend the CORBA

Event Service with the additional features listed above. This is achieved by deriving the

Chapter 2: Distributed Event Models

- 27 -

interfaces of the notification channel directly from those defined by the event channel allowing

for interoperability between Event Service and Notification Service clients. As a result, the

notification channel encapsulates all interfaces and functionality supported by the event

channel.

Figure 2.6 outlines how the notification channel extends the event channel architecture by

supporting multiple instances of both ConsumerAdmin and SupplierAdmin objects. Both the

supplier and the consumer side of the notification channel allow clients to obtain proxy

objects from any one of these administration objects. The symmetric nature of the notification

channel and the administration objects are essential for the Notification Service capabilities

described below.

Event
Consumers

CORBA Notification Channel

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Event
Suppliers

Proxy
Consumer

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Proxy
Consumer

Figure 2.6. The CORBA notification channel.

The Notification Service specification defines an event type repository that may be used for

discovering the structure of typed event data and for performing run-time type checking.

However, using an event type repository is not essential for the Notification Service to

operate correctly and consequently, using such a repository is optional.

Administrative Capabilities

Applications can configure various administrative properties when creating a notification

channel in order to limit the use of memory space. As shown in Table 2.2, these properties

include upper bounds on the number of suppliers and consumers that may be connected to

the channel at any given time as well as on the number of events that may be stored.

Notification channels may queue events if more events are supplied than can be

Chapter 2: Distributed Event Models

- 28 -

disseminated to consumers. Such a queue acts as buffer to prevent events from being

discarded in case of a temporary surplus of supplied events.

Administrative Property Possible Values

MaxSuppliers 0..max(long)

MaxConsumers 0..max(long)

MaxQueueLength 0..max(long)

Table 2.2. The administrative properties of notification channels.

As illustrated in Figure 2.6, a notification channel comprises a hierarchy of administration and

proxy objects for maintaining client connections. Starting from one of these objects or indeed

the channel object, clients may trace through the hierarchy discovering other objects. Factory

objects assign a unique numeric identifier to every proxy or administration object they create

and provide an operation for retrieving a list containing these identifiers. Notification channel

objects support an operation returning the identifier of their parent object. These identifiers

are unique among the objects created by a particular notification channel, but unlike object

references [48], they are not globally unique.

The objects that comprise a notification channel provide operations for clients to specify the

type of the event data they handle. Suppliers use the offer_change operation to indicate

changes to the type of events generated and consumers invoke the

subscription_change operation to inform suppliers of the event data type they require.

Consequently, suppliers can know what event data is being consumed allowing them to

suspend the generation of unwanted events in order to optimise network traffic.

Quality of Service

The Notification Service supports a variety of properties defining the QoS characteristics of

the service that may be set to control the propagation of event data. Operations for setting

these properties are specified on various objects throughout the Notification Service

architecture including:

• The notification channel (per-channel)

• Supplier and consumer administration (per-admin)

• Proxy suppliers and consumers (per-proxy)

• Individual event messages (per-event)

Chapter 2: Distributed Event Models

- 29 -

The object on which a specific property is configured defines the scope to which the setting is

relevant. The QoS configuration of a specific object applies to the object and to all its

descendants. Table 2.3 summarises the QoS properties supported by the Notification Service

and outlines the scopes to which they apply. Note that setting the MaxEventPerConsumer

and DiscardPolicy properties on a per-SupplierAdmin or per-ProxyConsumer basis had no

meaning. [12] discusses these QoS properties in detail.

QoS Property Per-
Event

Per-
Proxy

Per-
Admin

Per-
Channel Possible Values

EventReliability BestEffort, Persistent

ConnectionReliability BestEffort, Persistent

Priority -32767..32767

StartTime TimeBase::UtcT (absolute)

StopTime TimeBase::UtcT (absolute)

Timeout TimeBase::TimeT (relative)

StartTimeSupported False, True

StopTimeSupported False, True

MaxEventPerConsumer 0..max(long)

OrderPolicy AnyOrder, FifoOrder,
PriorityOrder, DeadlineOrder

DiscardPolicy
AnyOrder, FifoOrder, LifoOrder,
PriorityOrder, DeadlineOrder,

RejectNewEvents

MaximumBatchSize 0..max(long)

PacingInterval TimeBase::UtcT

Table 2.3. Notification Service QoS properties.

The set of supported QoS properties combined with their scopes provide a flexible means for

configuring the QoS characteristics of a notification channel. However, this approach requires

the application programmer to prevent meaningless QoS settings. Event data passes through

three conceptual points, namely supplier side, consumer side, and notification channel when

being propagated from suppliers to consumers. All three of these parties have to cooperate in

order to provide end-to-end QoS. For example, a Notification Service may be configured for

assured event data delivery by setting persistent reliability (event and connection) and by

assigning high priority and long lifetime to the event data. Such a configuration would enforce

guaranteed event data delivery, but does not ensure predictable delivery latency.

Chapter 2: Distributed Event Models

- 30 -

Structured Event Data

The Notification Service introduces a kind of typed events called structured event data in

order to provide an easy-to-use (compared to the Event Service’s IDL-based approach) and

strongly typed event communication mechanism. Structured event data provides a well-

defined, expressive data structure into which a variety of event types may be mapped. As

depicted in Figure 2.7, structured events consist of a header and a body.

ohf_value 1ohf_name 1

domain_type

remainder_of_body

type_name

event_name

ohf_value 2

ohf_value n

ohf_name 2

ohf_name n

fd_name 1 fd_value 1

...

...

fd_name 2

fd_name n

fd_value 2

fd_value n

Event Data Header

Event Data Body

Fixed Header

Variable Header

Filterable Body Fields

Remaining Body

Figure 2.7. The general structure of structured event data.

The fixed part of the event header describes the type and instance identifier of the event

data. The variable part may contain a number of attributes consisting of name-value pairs

describing the QoS properties of the event data. The body of the event data comprises a

variable number of attributes describing a specific event and a part that may be used for

propagating large data blobs, such as files.

Filtering

The notification channel supports a hierarchical approach to filtering through the use of filters

called filter objects. Filter objects may be assigned to individual proxy objects (proxy supplier

and consumer), to admin objects (supplier and consumer admin), and to the notification

channel. Filter objects that have been assigned to a channel apply to all admin and proxy

objects as well as to all clients connected to these proxies. Similarly, filter objects associated

with an admin object apply to all proxy objects and their clients, whereas filter objects

assigned to a specific proxy object apply exclusively to the client. This approach allows filter

objects to be applied symmetrically on both the supplier and the consumer side of the

Chapter 2: Distributed Event Models

- 31 -

notification channel. Hence, filtering may occur on the event data generated by a group of

suppliers as well as on the event data propagated to a group of consumers. Applying filter

objects close to the event data source generally reduces utilisation of system resources.

All filter objects relevant to a specific proxy are evaluated at the proxy regardless of the level

in hierarchy to which they have been assigned. These filter objects are matched against the

event data received by the proxy and events are forwarded if the matching produced a

positive result. Filter objects encapsulate a set of filter constraints each consisting of a text

string containing a boolean filter expression. The example of Figure 2.8 shows a filter object

and how it refers to specific attributes of the fixed header and the body of structured event

data. This filter matches events with certain domain type and type name combinations in

conjunction with a body attribute with a particular name and value. Events matching these

constraints will pass through the proxy, other events will be discarded.

(($domain_type == “Finance” and $type_name == “ExchangeRateUpdate”)
or
($domain_type == “Health” and $type_name == “PulseLow”))
and
(office == 7)

Figure 2.8. Notification Service event data filter object.

The syntax of the constraint expressions outlined in Figure 2.8 conforms to the constraint

grammar defined by the Notification Service’s default filter constraint language, which is an

extension of the CORBA Trader Constraint Language [49]. However, other, proprietary

constraint languages may be used instead of this default language.

The Notification Service defines two types of filter objects. Forwarding event data filters, an

example of which has been shown in Figure 2.8, affect the decision on whether to forward or

to discard specific event data. Mapping event data filters influence the delivery policy applied

to event data, they may change the characteristics of the event data delivery semantics

defined in the variable part of the event data header. For example, a mapping event data filter

might assign a different priority or set a new expiration time to an event.

2.4.3 Summary

Both the CORBA Event Service and the CORBA Notification Service specify an event model

that defines the roles of event data supplier, event data consumer, and event or notification

channel respectively. Events may either be propagated directly from suppliers to consumers

Chapter 2: Distributed Event Models

- 32 -

or may be tunnelled through a channel. Channels act as mediator between event suppliers

and consumers allowing anonymous communication. Both services support a push-based

and a pull-based model for event delivery. Events can be propagated in generic, typed, or

structured form; structured events being supported by the Notification Service only. The

Notification Service directly extends its predecessor the Event Service by providing advanced

capabilities including filtering on structured events, QoS properties, and administrative

features.

Both event models can be characterised as extremely general addressing the requirements

of a variety of business domains including telecommunications, finance, and medicine and

complex due to the large number of interfaces and properties. They allow consumers to

implicitly subscribe and suppliers to implicitly announce their event data by obtaining the

interface to a proxy object through which they connect to a channel.

Neither of the CORBA event models supports federated event channels. Federation enables

a group of channels to connect together in a topology of arbitrary complexity and to

cooperate when disseminating events among their clients in order to improve system

scalability. The OMG has addressed this by issuing a Request For Proposal [50] for a

management service providing the ability to configure, manage, and control a group of

channels connected together in a topology of arbitrary complexity. A consortium submitted a

proposed specification for such a service in December 1999, which subsequently resulted in

the formal publication of the CORBA Management of Event Domains Specification [51].

2.5 OMG CORBA Event Model Extensions

This section presents two event services that extend the OMG CORBA Event Service by

providing capabilities omitted by both the CORBA Event and Notification Service. The TAO

Real-Time Event Service [31] supports QoS properties addressing the requirements of real-

time applications. CONCHA [32] is based on a reliable multicast protocol and provides

reliable and totally ordered event delivery semantics.

2.5.1 TAO Real-Time Event Service

The ACE ORB (TAO) [52] is an ORB-based real-time middleware developed at Washington

University. TAO includes an extension to the CORBA Event Service called the Real-Time

Event Service (RT Event Service) that addresses the requirements of distributed real-time

applications. The RT Event Service has been designed for an avionics mission control

Chapter 2: Distributed Event Models

- 33 -

application and features real-time event dispatching, event filtering, and periodic event

processing.

The RT Event Channel Architecture

The RT Event Service defines the roles of event supplier, event consumer, and event

channel as in the standard CORBA Event Service. However, the event channel of the RT

Event Service has been adapted to support additional features including real-time event

dispatching and scheduling, source-based and type-based filtering, event correlation, and

periodic event processing.

As depicted in Figure 2.9, the RT event channel consists of a set of main modules

implementing these features. Each module may contain multiple “pluggable” strategies

optimised for different requirements, allowing an application to select the one that

appropriately addresses its needs. For example, the dispatching module may provide a range

of pre-emption strategies from which an application may choose a suitable one. Moreover,

some of these modules may be removed to optimise the RT event channel for certain

configurations. For example, an application that has no complex inter-event data correlation

dependencies may omit the correlation module.

Consumer Proxy

RT Event Channel

Consumer

Event Correlation

Dispatching Module

Subscription & Filtering

Supplier
Proxy

Proxy
Timers

Supplier

Consumer Consumer

Supplier Supplier

Figure 2.9. The TAO RT event channel.

Chapter 2: Distributed Event Models

- 34 -

Real-Time Event Dispatching

The RT event channel’s standard proxy interfaces have been extended allowing suppliers

and consumers to register their execution requirements with the event channel using QoS

attributes. These attributes configure the dispatching mechanism determining event

dispatching order and pre-emption strategy. The dispatching module implements priority-

based event dispatching and pre-emption using priority queues. Harrison et al. [31] describe

the pre-emption strategies supported including real-time upcall (RTU) dispatching, real-time

pre-emptive thread dispatching, and single-threaded priority-based dispatching.

Filtering

The RT Event Service extends the event channel with a filtering mechanism that requires a

well-defined type system for event data. The filtering module defines such a type system by

including source identifier, type, and timestamp fields in event messages, thus allowing

suppliers to describe the type of event data that they generate. Using these fields, an event

channel provides supplier-based and type-based filtering. Supplier-based event data filtering

allows consumers to register interest in events generated by certain suppliers whereas typed-

based filtering lets consumers subscribe to event data of a particular type. Consumers may

employ combinations of supplier-based and type-based filtering.

A further means to reduce the value of events propagated to consumers is provided by the

event correlation module. The event correlation mechanism allows consumers to define

dependencies between occurrences of certain events. Consumers may define conjunctive or

disjunctive semantics when registering their event filtering requirements. Conjunctive

semantics instructs a channel to notify consumers when all of the specified event

dependencies are satisfied and disjunctive semantics compels a channel to notify consumers

when any specified event dependencies are satisfied.

Periodic Data Event Processing

The supplier proxy module allows consumers to specify event data dependency timeouts that

define time periods within which consumers expect to receive at least one event. Priority

timers manage these timeouts and notify consumers by dispatching timeout events if their

dependencies are not satisfied within this time period. This mechanism is well suited for

periodic event data processing and for implementing real-time “watchdog” timers.

Chapter 2: Distributed Event Models

- 35 -

2.5.2 CONCHA

CONCHA (CONference system based on java and CORBA Event Service CHAnnels)

provides extensions to the CORBA Event Service based on using the Light-weight Reliable

Multicast Protocol (LRMP) [32] as the underlying transport mechanism. These extensions

include reliable, multicast-based communication and totally ordered event delivery. LRMP is

a reliable, general-purpose transport protocol based on unreliable underlying network

transport protocols, such as UDP/IP. LRMP uses a sliding window buffer to support loss

repair, ordered message delivery, flow control, and congestion control.

 CONCHA Event Channel

Consumer
Admin

Supplier
Admin

Proxy
Push

Consumer

Proxy
Multicast

Push
Consumer

Proxy
Push

Supplier

Proxy
Multicast

Push
Supplier

Multicast
Push

Supplier

Push
Supplier

Multicast
Push

Consumer

Push
Consumer

Figure 2.10. The CONCHA event channel.

Figure 2.10 outlines CONCHA’s event channel architecture including the integrated multicast

support. The CONCHA channel provides a single multicast proxy for each side of the

channel. The proxy multicast push consumer handles all multicast suppliers and the proxy

multicast push supplier deals with all multicast consumers. These proxies support the push-

based communication model only and thus all multicast clients must be push based.

The CONCHA event channel allows clients to interact using either the standard event data

propagation mechanism based on the Internet Inter-ORB Protocol (IIOP) [53] or the multicast

extension providing reliable and ordered event data delivery. Event dissemination from

suppliers to consumers is not limited to either the standard or the multicast mechanism. The

two approaches may be combined allowing multicast suppliers to push event data to both

multicast and standard consumers.

2.5.3 Summary

The TAO RT Event Service addresses the requirements of distributed real-time applications

by extending the CORBA Event Service with efficient source and type-based filtering, event

correlation, and, most importantly, with end-to-end real-time event dispatching. The

Chapter 2: Distributed Event Models

- 36 -

dispatching module uses priority queues to implement a variety of priority-based dispatching

and pre-emption strategies. The RT Event Service uses a centralised event channel to

implement these features and global application knowledge to statically configure a system

based on a previously known number of clients. This approach does not scale well as such

an event channel may become a communication bottleneck. However, it suffices in small-

scale applications such as avionics mission control for which the RT Event Service has been

designed.

CONCHA provides extensions to the CORBA Event Service based on using the LRMP as the

underlying transport mechanism. Consequently, CONCHA supports reliable, multicast-based

communication and totally ordered event data delivery. The CONCHA event channel

implements a simple approach to multicast group management based on exploiting a single

group through which all multicast event data is disseminated.

2.6 JAVA Event Models

Java is a general-purpose, concurrent object-oriented programming language developed by

Sun Microsystems. The Java programming language is machine independent and supports

strong typing as well as automatic storage management. Java has become increasingly

popular because of Internet-related developments, such as the World Wide Web. In general,

Java is valuable for building distributed, platform-independent applications.

Java source code is compiled into Java bytecode, which has been designed to run on a Java

Virtual Machine (JVM). Bytecode is a language for an abstract machine and may execute on

a virtual machine on any system that supports Java. Java supports two event models, known

as the Delegation Event Model [24, 54] and the Distributed Event Model [13]. The Delegation

Event Model is used for event communication within a single JVM and has been designed for

small-scale, centralised applications, such as Graphical User Interfaces (GUIs). The

Distributed Event Model enables event-based communication between objects in JVMs

located in separate address spaces, possibly distributed across different physical machines.

2.6.1 Java AWT Delegation Event Model

The Abstract Window Toolkit (AWT) and its successor Swing, which are both part of the Java

Foundation Classes library, are the standard application programming interfaces for providing

graphical user interfaces for Java applications. The Java Foundation Classes initially

supported an event processing model based on inheritance. However, this event model was

Chapter 2: Distributed Event Models

- 37 -

replaced by the Delegation Event Model with the introduction of version 1.1 of the Java

Development Kit. Compared to the inheritance-based event model, the Delegation Event

Model supports event filtering and a more robust framework for sustaining more complex

Java applications.

The Delegation Event Model has been used by a number of other Java components. It has

been adopted for general event processing by the JavaBeans [55] component architecture

and for processing events on behalf of a new GUI toolkit, called the Swing Component Set

[56]. Furthermore, both the EmbeddedJava [57] and the PersonalJava [58] application

environment support event processing based on the Delegation Event Model.

EmbeddedJava has been designed for building small-footprint applications that can be

embedded in devices with dedicated functionality and strictly limited memory. PersonalJava

is intended for building network-connected applications for consumer devices requiring near-

desktop graphics capabilities for home, office, and mobile use, such as web phones, digital

set-top boxes, personal digital assistants, and car navigation systems.

Architecture

Although this review focuses on distributed event models, we introduce the centralised

Delegation Event Model since it is widely used as a result of its association with the Java

programming language. The Delegation Event Model has been designed for small-scale GUI

applications and is typically used for interconnecting GUI components residing in a single

address space. GUI components acting as event sources propagate, or fire, events of a

specific type to event listeners.

java.util.EventListener
 java.awt.event.ActionListener
 java.awt.event.TextListener

java.util.EventObject
 java.awt.event.ActionEvent
 java.awt.event.TextEvent

Figure 2.11. EventListener interface and EventObject class.

Figure 2.11 outlines parts of the EventListener interface and the EventObject class used by

Java applications to implementing event-based communication. Event listeners must be

derived from the EventListener interface and implement the event handler associated with the

specific type of event in which they are interested. For example, in order to receive

ActionEvents fired by buttons, event listeners implement the actionPerformed method of

Chapter 2: Distributed Event Models

- 38 -

the ActionListener class. The EventObject class defines various event types, including

ActionEvent and TextEvent, encapsulating the semantics of user interface components.

ActionEvents indicate that commands associated with objects, such as buttons and menu

items, be executed whereas TextEvents describe a change to the value of a text object.

Source.addEventTypeListener(Listener)

Event Source

Register Event Listener

Deliver Event Object

Event Listener

Listener.actionPerformed(EventObject)

Figure 2.12. The Java Delegation Event Model.

Figure 2.12 illustrates that listeners subscribe directly at a particular source by invoking either

the set<EventType>Listener or the add<EventType>Listener registration method

passing a reference to their event handler. For example, a listener may subscribe to the

ActionEvents fired by a specific button by invoking the button’s addActionListener method.

Every source provides both registration methods for each supported event type. The

set<EventType>Listener method registers a single listener whereas the

add<EventType>Listener method allows multiple listeners to subscribe to the same

event type. This approach delivers events synchronously as the listener’s handler is actually

executed by the source thread and even multicast sources deliver specific events to their

listeners sequentially. However, the Delegation Event Model provides no guarantees

regarding the order in which a particular event will be delivered to a group of listeners.

Significantly, direct registration results in a tight and explicit coupling between an event

source and its listeners that does not support anonymous communication.

Event Adapter

As shown in Figure 2.13, a Java application may employ a component, called an event

adapter, between event source and event listener to partially decouple their communication.

Event adapters allow applications to introduce additional behaviour on event delivery, such

as event queuing and filtering. They register with a source on behalf of one or more listeners

and subsequently forward events to these listeners.

Chapter 2: Distributed Event Models

- 39 -

addEventTypeListener(Adapter)

Event Source

Register Event Adapter

Event Listener

doIt(EventObject)

actionPerformed(EventObject)
destination doIt(EventObject)

Event Adapter

Deliver
Event Object

Forward
Event Object

Figure 2.13. Using event adapters in the Delegation Event Model.

In contrast to other event models supporting intermediate components, such as CORBA

Event and Notification Services, event adapters are asymmetric in that they hide event

listeners from sources, but not vice versa. They introduce a notion of anonymity where

listeners are anonymous although sources and adapters are not.

2.6.2 Java Distributed Event Model

The Java Distributed Event Model allows an object located in one JVM to receive events from

objects in another JVM and relies therefore on Remote Method Invocation (RMI). The

Distributed Event Model has been adopted by Jini [59], a Java technology that provides a

simple mechanism for enabling the spontaneous assembly and interaction of services and

devices on a network. Jini is typically used for plugging together network devices forming a

communication community without any planning or installation.

Architecture

The Distributed Event Model is similar to the Java AWT Delegation Event Model in that it

specifies the interface used to deliver events, defines the information that an event must

contain, and explicitly supports interposing objects. However, it omits specifying a registration

interface in order to allow a wide variety of kinds of events. The kind of an event is defined by

the specific object in which the event occurs. Consequently, the way in which interest in such

events is registered depends on the particular application and may vary from object to object.

Chapter 2: Distributed Event Models

- 40 -

public interface RemoteEventListener extends Remote,
java.util.EventListener {
 void notify(RemoteEvent theEvent)
 throws UnknownEventException, RemoteException;
}

public class RemoteEvent extends java.util.EventObject {
 public RemoteEvent(Object source,
 long eventID,
 long seqNum,
 MarshalledObject handback)
}

Figure 2.14. RemoteEventListener interface and RemoteEvent class.

The Distributed Event Model defines the role of event generators supplying remote event

objects and passing them to registered remote event listeners. Figure 2.14 outlines the

notify operation for synchronously delivering events to remote event listeners and shows

that remote events contain information describing the event that occurred, including a

reference to the generator, a sequence number, and a handback supplied by the listener.

This sequence number identifies a specific event instance and is guaranteed to be strictly

increasing. The Jini specification [59] states that the sequence number is relative to a

previous sequence number and that the sequence number of two event objects differs if and

only if the event objects are a response to different event occurrences. However, it is not

clear whether a sequence number is relative to an event generator or to each registered

event listener and as a result, what initialises a sequence.

The Distributed Event Model allows remote event listeners to limit the duration of their

subscriptions using the concept of leasing, which has been defined by the Java Distributed

Leasing Specification [60]. Such subscriptions expire after a certain leasing period and

subsequently deregister listeners automatically.

Distributed Event Adapter

As shown in Figure 2.15, the Distributed Event Model supports interposing third party objects,

called distributed event adapters, similar to event adapters in the Delegation Event Model.

Distributed event adapters allow applications to specify additional functional and non-

functional properties without changing the basic interfaces of the event model as long as

such adapters support the notify method. They may provide various degrees of delivery

guarantees, different event delivery policies, and may act as event filter or mailbox collecting,

storing, filtering, and forwarding event objects on behalf of a single or a group of listeners.

Chapter 2: Distributed Event Models

- 41 -

Notify

Event Generator

Register Event Adapter by any means

Remote
Event Listener

Event Adapter

Deliver Remote
Event Object

Forward Remote
Event Object N

o
t
i
f
y

Figure 2.15. Using distributed event adapters in the Distributed Event Model.

The physical location of event adapters is of no importance from a conceptual perspective.

They may be collocated with either event generators or listeners sharing the same address

space, or they may reside in a separate address space possibly on a designated physical

machine. Numerous event adapters can co-exist in a system and may co-operate in order to

combine their properties.

As described above, using event adapters introduces a notion of anonymity in which listeners

are anonymous whereas sources and adapters are not. However, using adapters increases

the complexity of a system due to additional communication and computational overhead and

consequently increases event delivery latency.

2.6.3 Summary

The Java programming architecture supports a Delegation Event Model for processing

events in small-scale, centralised applications and a Distributed Event Model for event-based

communication between objects residing in different JVM’s. The Distributed Event Model

uses Java RMI as the underlying mechanism for inter-process communication. Both the

Delegation and the Distributed Event Model have been adopted by a number of Java

components and environments, including AWT and Jini respectively.

Both event models have a similar architecture in which generators propagate event objects to

listeners while supporting interposing event adapters. Adapters allow applications to enhance

a system with specific functional and non-functional properties without changing the basic

interfaces. These adapters may be used to provide an application specific means for filtering

events thereby supporting a feature lacked by both event model’s.

Chapter 2: Distributed Event Models

- 42 -

Both event models require event listeners to register directly at the objects generating events

of interest. However, the Distributed Event Model does not specify a specific method for

doing so. It has been designed for a wide variety of applications using different kinds of

events and as a result, the means by which interest in such events is registered may vary

from application to application. The Distributed Event Model supports the concept of leasing

for automatically deregistering event listeners after a certain leasing period has elapsed.

2.7 CEA

The Cambridge Event Architecture (CEA) [4, 33], which has been developed by the Opera

Research Group of the Computer Laboratory at the University of Cambridge, is based on an

event model that supports composite events and producer-side filters, called parameter

templates.

2.7.1 Cambridge Event Architecture

CEA has been designed to extend widely used middleware platforms, such as CORBA, Java

RMI, and DCOM [61], allowing producers and consumers, called source objects and client

objects, to interact using event-based operations. Event source objects specify the type of

their events as well as their registration interface in IDL and then publish these interfaces

using a means provided by the underlying middleware platform. Client objects use these

registration interfaces to subscribe to events. Ma and Bacon [62] describe how CEA has

been added to a CORBA implementation.

Badge : INTERFACE = Seen : EVENTCLASS [badge : BadgeId;
 sensor : SensorId];
END.

e = Badge_Seen(17, 29);
EventSource.Signal(e);

Figure 2.16. An event source object of an active badge system.

Bacon et al. [33] describe an example of an active badge system in which source objects use

CEA to signal sightings of badges by certain sensors to client objects. Figure 2.16 and Figure

2.17 show a simplified version of this example. Figure 2.16 outlines a source object

specifying an event type, called “Badge_Seen”, comprising two numerical values describing

the person and location of a specific sighting and subsequently raising an event of this type.

Chapter 2: Distributed Event Models

- 43 -

Figure 2.17 illustrates a client object specifying and then registering an event parameter

template that matches a specific badge seen by a certain sensor.

Template = Badge_Seen(17, 29);

EventClient.Register(EventHandler, template);

Figure 2.17. An event client object of an active badge system.

Figure 2.18 shows a high level overview of CEA, illustrating the two approaches for source

objects to asynchronously disseminate events to client objects. As shown in Figure 2.18 (A),

source objects may notify client objects directly of events. In this scenario, source objects

match their events against registered templates prior to publication. Generally, source-side

filtering minimises the use of communication resources as only wanted events are

transmitted while distributing the computational load for template evaluation. Figure 2.18 (B)

depicts a mediated CEA, in which the filtering function is removed from potentially primitive

source objects. Instead, events are disseminated through a mediator, which may be used to

match templates as well as more complex filter expressions, such as event composition

operators. Moreover, mediators may support mobile applications, buffering and forwarding of

events for temporarily disconnected nomadic client objects.

CEA Composite Event Mediator

Event
Source Object

Event
Client Object

Event
Source Object

Event
Source Object

Event
Source Object

(B) Mediated CEA

Composite engine

Event
Source Object

Event
Source Object

Event
Source Object

Event
Source Object (A) Direct CEA

Notify

Notify

Notify

Event
Client Object

Figure 2.18. Overview of the Cambridge Event Architecture.

Chapter 2: Distributed Event Models

- 44 -

Filtering

CEA allows client objects to specify event filters known as parameter templates. As shown in

Figure 2.19, such a template consists of the name of an event type and a set of ordered

arguments, each specifying either a specific event parameter value or a wild card variable

matching any event parameter value. A template matches if its name and its arguments

match. These arguments are matched one-by-one against the parameters of a specific event

instance, i.e., the first template argument will be matched against the first parameter of an

event, the second template argument will be matched against the second event parameter,

and so on. In general, the approach of using templates for defining event filters can be

characterised as simple but of limited expressiveness since all operators are implicitly

predefined. Template expressions imply an equality operator when comparing arguments

with event parameters and assume a conjunctive relationship between argument-parameter

pairs.

Template = EventTypeName(arg1, arg2, .., argn);

templateWhere = Badge_Seen(17, Room);
templateWho = Badge_Seen(Person, 29);
templateGod = Badge_Seen(Person, Room);

Figure 2.19. Defining event filters using parameter templates.

Figure 2.19 also outlines a number of template examples that may be applied to the event

type defined in Figure 2.16. The “where” template includes a wild card variable that allows a

client object to track a person wearing a certain badge in any room, thus providing

information on the whereabouts of this person. The “who” template matches all sighting

events raised at a certain location. The “God” template may be used by a surveillance system

recording the movements of all people anywhere in the building.

Composite Events

Some applications may require their client objects to subscribe to events disseminated by

multiple source objects and to detect a specific pattern of occurrences of these events.

Moreover, such client objects may only be interested in the combination of event occurrences

but not in any individual event alone. CEA addresses this requirement by allowing client

objects to specify composite event filters and, as depicted in Figure 2.18(B), to use a

mediator acting as composite event server to perform filtering across events of different types

from various sources.

Chapter 2: Distributed Event Models

- 45 -

EventTypeNameA(arg1, .., argn); EventTypeNameB(arg1, .., argn); ..

FireAlarm(7); Badge_Seen(7, Person, Room);

Figure 2.20. Defining composite event filters using multiple parameter templates.

Bacon et al. [33] present a technique for easily specifying composite event filters and discuss

how to register such templates with a composite event server that runs a monitor checking for

sequences of events matching composite filters. Essentially, composite event filters are

defined by combining multiple event parameter templates. Figure 2.20 shows the generic

form for defining composite event filters as well as an example extending the previously

discussed surveillance scenario based on an active batch system. This example monitors a

specific building for the location of any person residing in the building after the filter alarm has

been triggered.

2.7.2 Summary

CEA supports a composite event model and source-side event filtering based on parameter

templates. It has been designed to extend commercially available middleware platforms, such

as CORBA and DCOM, allowing source and client objects to specify their interfaces using an

IDL. A pre-processor is subsequently used to translate the IDL code into source and client

stubs for marshalling and un-marshalling of method invocations. Event source objects may

disseminate events either directly to subscribed client objects or through an intermediate

component. Such a mediator may match filter templates on behalf of its source objects and

can act as a monitor to detect composite event occurrences.

CEA’s approach of using parameter templates for event filtering is limited in its

expressiveness since the operators for comparing event parameter values and template

arguments as well as for combining parameter-argument pairs are predefined. However, this

may be compensated by exploiting composite event filters, which allow client objects to

subscribe to complex sequences of event occurrences. Significantly, CEA omits defining a

framework for QoS enforcement and consequently it is left to a particular implementation to

address the quality requirements of their application area by exploiting the capabilities

provided by the underlying middleware.

Recent work that has been inspired by CEA includes Hermes [63], a distributed event-based

middleware that proposes a scalable routing algorithm, and a general composite event

Chapter 2: Distributed Event Models

- 46 -

detection framework for distributed applications [64]. The latter formalises both time and

event models of the proposed composite event detector.

2.8 ECO

The ECO event model was initially designed to interconnect components in the VOID shell

[65]. The VOID shell is a system for distributed virtual world support, which was developed at

Trinity College Dublin as a part of the Moonlight [65] project. A version of the ECO event

model, called ECOlib [66], was implemented as a central part of VOID. ECOlib supports

event filters, called notify constraints, pre-constraints, and post-constraints.

Other extensions to the ECO model were implemented by O'Connell et al. [34], called DECO

(Distributed ECO), and by Haahr [67], named SECO (Scalable ECO). DECO supports

precompiled, statically linked notify constraints and provides a scoping mechanism based on

the notion of zones. DECO relies on an underlying group communication mechanism as the

means for components to interact. SECO features dynamically linkable notify constraints and

uses synchronous inter-component communication. Haahr et al. [14] describe the uSECO

version of SECO, which is based on unicast communication, and the mSECO version which

uses a multicast communication pattern.

2.8.1 ECO Architecture

Starovic et al. [68] describe Events, Constraints, and Objects (ECO), which represent the

three principal concepts used in the ECO event model. Objects are instances of classes that

have attributes and methods. These objects represent encapsulated application components

that cannot directly access each other’s attributes or invoke each other’s methods, but may

interact by disseminating and processing events of certain types. ECO supports various types

of constraint in order to allow applications to specify their event propagation and

synchronisation requirements. These constraints include notify constraints acting as

producer-side event filters as well as pre-constraints and post-constraints, which may be

used for implementing synchronisation and concurrency requirements. The ECO event model

does not specify how constraints be defined or implemented and consequently, it is left to a

particular implementation to support constrains that adequately address the requirements of

the envisaged application domain.

Chapter 2: Distributed Event Models

- 47 -

Subscribe(eventType, eventHandler, notifyConstraint,
 preConstraint, postConstraint)

Unsubscribe(eventType, eventHandler)

Announce(eventType, eventParameters)

Figure 2.21. The application programming interface defined by ECO.

Figure 2.21 outlines the generic Application Programming Interfaces (APIs) defined by the

ECO event model for subscribing, unsubscribing, and announcing events. The announce

method is invoked by producers in order to disseminate events and should not be confused

with the concept of announcing event types, which has been introduced in section 2.2.3.

Filtering using Pre-Constraints and Post-Constraints

Pre-constraints and post-constraints act as method wrappers for event delivery handlers and

represent a powerful means for applications to control event delivery. An object processing

events evaluates its pre-constraints prior to invoking a handler and applies post-constraints

after delivering an event. Hence, pre-constraints and post-constraints may be used to enforce

a wide range of event delivery properties. For example, they may be used to synchronise the

delivery of multiple events and may control the concurrency level within a delivery handler or

an event processor. Furthermore, they may implement timing controls, such as start time for

earliest delivery and end time for latest delivery. In addition, pre-constraints may implement

policies for queuing, discarding, or processing of events prior to their delivery.

Zones

The ECO event model allows applications to bound the scope within which events are

disseminated by supporting the concept of zones. Objects associated with a particular zone

are said to be members of this zone. Events may be propagated to members of a particular

zone and will be delivered subject to matching constraints. Zone membership is determined

according to functional or geographical aspects and the number of member objects may

change dynamically. Moreover, a particular object may simultaneously become a member of

one or more zones.

Chapter 2: Distributed Event Models

- 48 -

Zone 1 Zone 2

Object

Zone 3 Zone 4

Event

Figure 2.22. Overlapping zones.

An example scenario using zones might include a robot in a smart building subscribing to

events describing the status of doors and to alarm events. Such a robot might join a

geographical zone comprising the doors on the floor where it resides and a functional zone

disseminating alarm events generated by sensors anywhere in the building. This scenario

also demonstrates the dynamic membership [69] aspect of zones as the robot has to change

its membership when moving from one floor to another. Moreover, a robot changing its

membership might have to create a new zone before joining and might have to delete the old

zone after leaving.

Zone 1

Zone 2

Zone 3

Zone 4

Figure 2.23. Nested zones.

O'Connell [70] describes the variety of zones defined by ECO. Figure 2.22 illustrates the

concept of overlapping zones in which an object may become a member of several zones

simultaneously. Figure 2.23 shows nested zones allowing zones comprising many objects to

be subdivided. Figure 2.24 depicts a scenario in which an object that is not a member of a

certain zone disseminates events in that zone; such an object is said to target a zone.

Generally, these notions of zones may be combined to from other concept of zones. For

example, overlapping and nested zones may be integrated to form a group of zones in which

overlapping zones contain nested zones.

Chapter 2: Distributed Event Models

- 49 -

Zone 1 Zone 2

Figure 2.24. Targeting zones.

2.8.2 Summary

The ECO event model specifies the three basic operations required when providing event-

based communication, namely subscribe, unsubscribe, and announce. In addition to

supporting notify constraints, ECO introduces the concept of pre-constraints and post-

constraints, which act as wrappers for an event delivery handler, and the notion of zones

bounding the scope of event propagation. ECO implies a group-based approach for inter-

object communication and consequently, does not rely on designated mediator components

for event dissemination.

Instead of using a mediator component for enforcing delivery semantics, ECO allows

applications to use pre-constraints and post-constraints to implement subscription specific

policies for synchronisation, concurrency, timing control, queuing, and discarding. This

approach provides a very flexible means for controlling event delivery. However, depending

on the application domain, such a degree of flexibility may be inefficient as every object

processing events might define similar pre-constraints and post-constraints. Moreover,

choosing a delivery strategy based on object-local requirements may interfere with other

system properties, such as event ordering and delivery guarantees.

ECO proposes several different concepts of potentially overlapping functional and

geographical zones. Significantly, zones bound the scope of event dissemination and as a

result limit the use of communication and computational resources. In addition, the concept of

subdividing a system into bounded scopes may be particularly useful for managing large-

scale systems.

2.9 JEDI

The Java Event-based Distributed Infrastructure (JEDI) [5] is an object-oriented infrastructure

for the development of event-based applications that has been implemented in the Java

Chapter 2: Distributed Event Models

- 50 -

programming language. JEDI has been developed at Politecnico di Milano and has been

used to implement a workflow management system, called the ORCHESTRA Process

Support System (OPSS) [5], as well as the PROSYT process support system [71]. PROSYT

supports applications comprising mobile agents migrating from host to host in local or wide

area networks.

2.9.1 JEDI Architecture

JEDI introduces the notion of Active Object (AO) and Event Dispatcher (ED). Active objects

are autonomous entities acting as either producers or consumers of events. They interact by

disseminating events through an intermediate event dispatcher. Event dispatchers support

subscribe and unsubscribe operations allowing active objects to register (or cancel) their

interest in events and are also responsible for delivering events.

Event Dispatcher

AO AO

AO AO

AO

event

Figure 2.25. Overview of the JEDI architecture.

Figure 2.25 shows an overview of the JEDI architecture and outlines the logically centralised

nature of the event dispatcher. An event dispatcher maintains global knowledge of all events

and subscriptions issued in a system and consequently might become a performance

bottleneck with increasing system scale. JEDI addresses this by providing a centralised and a

distributed version of the event dispatcher. The centralised version comprises a single event

dispatching component that has been designed to address the requirements of simple, small-

scale applications disseminating a limited number of events. In contrast, the distributed

version consists of a set of interconnected Dispatching Servers (DS) designed for large-scale

applications comprising numerous active objects distributed over an Internet-scale network.

Chapter 2: Distributed Event Models

- 51 -

DS

AO AO AO

event

DSDS

DSDS DS

subscription

AO

Figure 2.26. JEDI dispatching server topology.

Figure 2.26 outlines the topology of JEDI dispatching servers interconnected in a tree

structure. Each dispatching server resides on a different physical node and connects to a

parent server (unless it is the root server) and to zero or more child servers. Active objects

may connect to a distributed event dispatcher through any dispatching server.

Events and subscriptions are distributed among dispatching servers according to a

hierarchical routing strategy, thereby ensuring that all nodes receive relevant events and

subscriptions. Starting from the issuing active object, subscriptions are passed upwards until

they reach the root server causing the servers along the path to update their routing tables.

Events are passed up the tree until they reach the root, while each server along the path

passes them to any descendant with a subscription in its routing table.

Events

JEDI defines events as a set of ordered strings. The first string represents the name of an

event and the remaining strings represent event parameters. Hence, events can be defined

using a notation similar to function calls in traditional programming. Figure 2.27 shows

examples of JEDI events that might be used to send a print job to a certain printer and to

deliver meeting minutes to the members of a research team. Print and memo are the names

of the respective events, both of which contain a number of parameters.

print(MyDocument, OurLaserPrinter)

memo(MeetingMinutes, John, Mary, Peter, Paul, Susan)

Figure 2.27. JEDI events.

Chapter 2: Distributed Event Models

- 52 -

Filtering

JEDI supports a simple form of event filters known as event patterns. Active objects may

register interest in either a specific event or an event pattern. Event patterns are defined

similarly to events as a set of ordered strings. However, each string of the pattern may end

with an asterisk. In essence, an event matches a pattern if they have the same number of

parameters and their name and parameters match, with asterisks representing any character

sequence.

Reactive Objects and Mobility

JEDI supports mobility through the use of mobile agents called reactive objects. Reactive

objects are a particular type of active object; they can be serialised using standard Java

facilities and have the ability to autonomously migrate across the nodes of a network. JEDI

provides the moveOut and moveIn operations allowing a reactive object to temporarily

disconnect from the event dispatcher. The moveOut operation disconnects a reactive object

from its current dispatching server, allowing it move to another location and then to use the

moveIn operation to reconnect to another dispatching server at a later time. The event

dispatcher stores subscription information on behalf of a moving reactive object preventing it

from having to re-subscribe when reconnecting. Furthermore, the event dispatcher buffers

relevant events while a reactive object is disconnected and delivers them upon reconnection.

2.9.2 Summary

JEDI provides a simple, easy to understand architecture for event-based communication. Its

architecture is based on two components, namely active objects and event dispatchers. JEDI

supplies both a centralised and a distributed version of the event dispatcher. The distributed

version, which has been designed for Internet-scale applications, comprises a set of

dispatching servers interconnected in a hierarchical structure. The hierarchical topology of

the distributed dispatcher improves overall robustness and scalability of a system. However,

disseminating subscriptions and events through multiple dispatching servers and the

consequential inter-server cooperation activities require additional communication and

computational resources. The resulting overhead might be significant for servers located

close to the root of the hierarchy as they handle the most network traffic. Moreover, every

server represents a critical point of failure for the whole network, since a failed server results

in network segmentation.

Chapter 2: Distributed Event Models

- 53 -

JEDI allows applications to define events that comprise a set of ordered strings representing

event name and parameters. Active objects may register interest in either a specific event or

an event pattern. Event pattern provide a simple means for event filtering in which pattern

strings that may contain asterisks are matched to event strings.

JEDI supports nomadic applications through a particular type of active object, called a

reactive object. Reactive objects may temporarily disconnect from an event dispatcher while

moving to their destination where they re-connect. The event dispatcher handles

disconnection by buffering subscription and event information on behalf of a moving object

and by forwarding relevant events when a reactive object reconnects.

2.10 SIENA

The Scalable Internet Event Notification Architecture (SIENA) [15] was also developed at

Politecnico di Milano and is based on an architecture similar to JEDI. SIENA has been

designed to support event based communication in wide-area networks, such as the Internet,

and extends the JEDI architecture with a number of additional features. SIENA supports

events that can have a more expressive structure than JEDI events, event filters that can be

applied to such structures, and a range of event server topologies.

2.10.1 SIENA Architecture

SIENA has been designed to provide a scalable, general-purpose event model. As shown in

Figure 2.28, SIENA supports event producing Objects of Interest (OIs) and event consuming

Interested Parties (IPs). Event clients interact through a distributed set of interconnected

event servers, which act as access points for clients and as store-and-forward network

routers. These event servers cooperate with each other in order to provide a network-wide

event service.

Chapter 2: Distributed Event Models

- 54 -

Advertise

Publish

Subscribe

Notify

OI IP

OI

OI

OI IP

IP

IP
Event

Service

Figure 2.28. Overview of the SIENA architecture.

SIENA supports an advertisement and a subscription mechanism to regulate the propagation

of events. These mechanisms provide a means for applications to describe the relationship

between individual objects of interest and interested parties. This information can then be

used to identify the best routes for disseminating events from objects of interest to interested

parties thereby optimising the network traffic between event servers.

Advertise(objectOfInterest, filter)
Unadvertise(objectOfInterest, filter)

Subscribe(interestedParty, pattern)
Unsubscribe(interestedParty, pattern)

Publish(event)

Figure 2.29. SIENA application programming interface.

Figure 2.29 outlines the application programming interface supported by event servers,

including the operations for advertising and subscribing. SIENA uses a string-based naming

scheme that requires event client identifiers used for subscribing and advertising be unique

throughout a system. This enables the service to maintain a mapping between the identities

of interested parties and their event delivery handlers. Notably, both subscribers and

advertisers may define filters passing them to the service during registration. Objects of

interest advertise their intention to publish events that match their filters while interested

parties define filters, called patterns, that describe their events of interest.

Operational Semantics

SIENA supports two alternative semantics for event delivery, namely subscription-based and

advertisement-based. In the subscription-based version, event delivery is solely determined

by subscriptions and matching patterns as advertised filters are ignored. The advertisement-

based version enforces both advertisements and subscriptions in order to determine event

Chapter 2: Distributed Event Models

- 55 -

delivery. A particular event is delivered if the event service has received an advertisement

and a subscription with a matching filter and pattern respectively.

Server Topologies

As summarised in Figure 2.30, SIENA supports four different topologies for interconnecting

its event servers. Both the centralised client/server topology and the hierarchical client/server

topology are similar to the architectures supported by JEDI. They use a client/server protocol

for event clients to interact with an event server. The hierarchical client/server topology uses

the same protocol for server to server communication. Consequently, an event server does

not distinguish between descending servers and clients. The acyclic peer-to-peer topology

and the general peer-to-peer topology have been introduced to address the shortcomings of

centralised and hierarchical architectures discussed in section 2.9. Acyclic topologies

comprise exactly one route between any two event servers whereas general topologies

characteristically contain multiple routes between servers. Event servers in these

architectures communicate with each other as peers using a server/server protocol, thus

allowing bi-directional information flow. As SIENA has been designed for the Internet, such

server/server interaction is typically based on a standard network protocol, such as the

HyperText Transfer Protocol (HTTP) or the Simple Mail Transfer Protocol (SMTP).

In practice, these topologies may be combined to form hybrid server architectures. For

example, the root servers of a group of hierarchical subnetworks might be interconnected

through a general peer-to-peer topology forming a wide-area server architecture.

Chapter 2: Distributed Event Models

- 56 -

EC EC ECEC EC EC

EC

ES

ES ES

ES

ES ES ES

ES ES

ES

ES

ES ES

ES

(A) Centralised client/server

Server/server protocol

EC
EC

EC EC

ES ES

EC EC

EC

EC

EC

(B) Hierarchical client/server

EC EC EC EC

(D) General peer-to-peer

EC EC EC EC

(C) Acyclic peer-to-peer

Client/server
protocol

Client/server
protocol

Figure 2.30. SIENA event server topologies.

Carzaniga et al. [15] formulate two generic principles that have been employed for optimising

SIENA’s routing strategies. The principle of downstream replication causes events destined

for multiple interested parties to be replicated as close as possible to these parties whereas

the principle of upstream evaluation states that event filters should be applied as close as

possible to objects of interest.

Events

SIENA supports events in the form of a set of attributes in which each attribute is a triple of

type, name, and value. Filter and pattern expressions may be matched against one or more

of these attributes. The attribute types belong to a predefined set of primitive types commonly

supported by programming languages. The example of Figure 2.31 shows an event indicating

the time and location at which a door has been opened.

Chapter 2: Distributed Event Models

- 57 -

String event = door/open
time time = 10:37:15
float floor = 2
float building = 15

Figure 2.31. SIENA event.

Filtering

An event filter is defined by a set of attribute names and types combined with some

constraints on the values of these attributes. Each constraint consists of a value and an

operator. A fixed set of operators is available to define event filters of the form shown in

Figure 2.32. The example filter might be used by a security system for monitoring door

activities in a certain building prior to business hours.

String event == door/*
time time <= 08:30:00
float building == 15

Figure 2.32. SIENA event filter.

Event patterns define a combination of multiple event filters allowing applications to subscribe

to correlated event occurrences. SIENA supports event patterns that combine filters

according to an “A followed by B” semantics. Such patterns match if an event matching filter

A precedes an event matching filter B. For example, Figure 2.33 shows a pattern that

monitors a building for door activities at night combined with sightings of a person wearing a

certain identification card.

String event == door/open
time time >= 20:30:00
float building == 15

followed by

float card_id == 1234
float building == 15

Figure 2.33. SIENA event pattern.

Chapter 2: Distributed Event Models

- 58 -

Mobility

The version of SIENA described by Carzaniga et al. [15] does not support mobility. However,

they state that they plan to enhance the SIENA architecture to support mobile event clients.

Caporuscio et al. [72] propose to support nomadic clients by implementing a mobility support

service for transparently managing subscriptions and events on behalf of moving clients. This

mobility support service provides client proxy components that run on event servers acting as

access points for clients and buffer events while disconnected clients move from one access

point to another. Mobile clients connect to and disconnect from client proxies using an

interface supporting moveIn and moveOut operations similar to the operations defined by

JEDI. Caporuscio et al. [73] evaluate the performance of SIENA in a wireless network based

on GPRS technology where event clients hosted by nomadic devices interact with event

servers through wireless connections. These servers are interconnected through a backbone

of a fixed wide-area network, such as the Internet.

2.10.2 Summary

The SIENA infrastructure implements a general-purpose event service that is based on an

architecture of distributed event servers through which clients interact. SIENA has been

designed to scale well in wide-area networks, such as the Internet, and supports an

operational semantics based on the concepts of advertisements and subscriptions.

Events are defined as a set of typed attributes to which event filters and event patterns may

be applied. Events are routed through a topology of interconnected servers, which may be

organised according to either a client/server or a peer-to-peer architecture. The latter

supports bi-directional information flow between servers based on standard network

protocols, such as HTTP and SMTP. Advertisement and subscription information is used to

optimise the network traffic between event servers according to the principles of downstream

replication and upstream evaluation. As a result, event filters and patterns may be applied on

any one of the event servers in a network. The location of the evaluation of a specific filter or

pattern depends on the application.

SIENA has been enhanced to support nomadic event clients that use GPRS-based wireless

networks to interact with event servers that are interconnected through a backbone of a fixed

wide-area network. This mobility support is based on exploiting client proxies for maintaining

event and subscription information on behalf of moving clients. Mobile clients use moveIn

and moveOut operations, similar to the operations defined by JEDI, to disconnect and

eventually re-connect to the proxies of an event service.

Chapter 2: Distributed Event Models

- 59 -

2.11 Elvin

The Elvin notification service has originally been developed to support a visualisation service

for distributed systems [74]. This work, which has been undertaken at the University of

Queensland in Australia, resulted in several versions of Elvin. The initial version, which was

based on a simple, centralised architecture delivering all events to all consumers, has since

evolved into Elvin3 [74] and Elvin4 [17, 35]. Elvin3, although still based on a single server

architecture, provides a content-based subscription scheme and a mechanism for optimising

event propagation, termed quenching. Elvin4 enhances its predecessor with a security

framework, an architecture that scales beyond a single server, and support for mobile

computing.

2.11.1 Elvin4 Architecture

Like its predecessors, Elvin4 supports a best-effort semantics and provides bindings for

various programming languages. Currently available client libraries include support for Java,

C/C++, Python, Smalltalk, Emacs LISP, and TCL. Producers and consumers connect to an

Elvin4 server, which acts as router for disseminating events between its clients. Clients may

either explicitly connect to a specific server or may exploit Elvin4’s automatic server discovery

mechanism, which is based on multicast queries, to locate servers. Segall et al. [35] state

that Elvin4 supports multiple servers in a local area environment and that these servers

contain a mechanism for handing over client connections in order to facilitate load balancing.

However, they do not explain how such servers cooperate to support interaction between

clients connected to different servers.

 Elvin4 Server

Operating System

Producer

Consumer

Quench

Notify
Security (SSL, Krb5)

Marshalling (XDR, XML)

Transport (TCP, HTTP) Deliver

Subscribe

Figure 2.34. Overview of the Elvin4 architecture.

As illustrated in Figure 2.34, Elvin4 servers are based on a modular protocol stack comprising

three layers, each supporting multiple protocols addressing different application

requirements. Elvin4 events consist of sets of named values and a number of data types for

Chapter 2: Distributed Event Models

- 60 -

these values have been made available. Clients may use a set of simple arithmetic operators

when defining subscriptions matching the values of the events in which they are interested.

Filtering

Elvin supports a filtering mechanism, known as quenching, that allows producers to

determine whether any consumers have subscribed to their events. This may reduce the

network traffic caused by events as producers can filter events for which they do not have a

subscription. Essentially, quenching is a technique for discovering the recipients of specific

events similar to approaches used in event services based on group communication as the

underlying means for entities to interact. Such event services may exploit the membership

management service typically provided by group communication to determine the set of

subscribers.

Elvin servers maintain their subscriptions in a specific subscription database. Quenching

requires servers to sent updates on this database to all quenching-enabled clients (Elvin4

allows lightweight clients to disable quenching) thereby causing additional overhead.

However, it has not been outlined under with circumstances quenching is desirable, i.e., the

reduction in event dissemination load exceeds the (potentially considerable) communication

and computational overhead introduced by the quenching mechanism.

Security

Elvin4 supports a security framework for authorising event delivery. Producers supply a set of

keys, which are distributed to consumers using mechanisms, such as shared file systems or

directory services, provided by the application. Clients then use Elvin4’s security layer to

encrypt keys when transmitting them to a server.

Figure 2.35 summarises this security framework and outlines how clients supply their keys to

a server. Producers send their keys to a server before disseminating secure events.

Subscribers apply a one-way hash function to their keys and send these transformed keys to

the server. The sever authorises access to events by applying the same hashing algorithm to

producer keys prior to matching them to the transformed subscriber keys. This approach

allows keys being associated with either a connection to a specific client or an individual

event. Moreover, a particular key may be used by a set of subscribers and producers

ensuring authorised event dissemination within a group of clients.

Chapter 2: Distributed Event Models

- 61 -

Elvin4 Server

Security (SSL, Krb5)

Producer

Consumer

Key

Notify

Hash(Key)

Deliver Match (Hash(P.Key), C.Key)

Key distribution mechanism

Figure 2.35. The Elvin4 security framework.

Mobility

Elvin4 supports mobility through the use of a proxy server that maintains a permanent

connection to an event server on behalf of nomadic clients. The proxy server persistently

stores events while a client is temporarily disconnected and forwards them when the client

reconnects. Clients may specify a time to live for each subscription that can then be used by

proxy servers to discard expired subscription information. This prevents proxy servers from

buffering large numbers of events indefinitely.

One of the objectives of Elvin4 is to accommodate multiple, potentially mobile clients with

identical sets of subscriptions on behalf of a particular user. For example, a user may use a

desktop computer in conjunction with a notebook computer and a PDA. Each of these

devices may act as an Elvin4 client wishing to access the user’s subscriptions (or a subset of

them). The concept of a session has been introduced to refer to such a group of

subscriptions. Proxy servers maintain sessions storing relevant subscription information and

events for their clients, which may access their session using a password protection scheme.

This implies that clients must explicitly connect to a specific proxy server and nomadic clients

are required to reconnect to the same proxy server each time they intend to access their

events.

2.11.2 Summary

The Elvin notification service has evolved from version one to its current version, namely

Elvin4. Elvin4 is a best-effort service that supports a content-based subscription scheme and

provides client libraries for various programming languages. Event clients typically connect to

Chapter 2: Distributed Event Models

- 62 -

a specific Elvin4 server through which events consisting of set of named values are routed.

Elvin4 servers contain a quenching mechanism that allows producers to determine whether

any consumers have subscribed to their events. This mechanism enables producers to

optimise event propagation by omitting unwanted events.

Elvin4 supports a security framework for authorising event delivery based on keys. Both

consumers and producers use Elvin4’s security layer to encrypt their keys prior to

transmitting them to a server. A sever authorises access to its events by matching the keys

supplied by a producer and its subscribers. This approach allows keys being associated with

either a connection to a specific client or an individual event. Moreover, a particular key may

be used by a set of subscribers and producers ensuring authorised event dissemination

within a group of clients.

Elvin4 supports mobility through the use of a proxy server that maintains a permanent

connection to an event server on behalf of nomadic clients and stores events while clients are

temporarily disconnected. Proxy servers maintain sessions that store subscription information

and events for a group of potentially mobile clients, which may access their session using a

password protection scheme. This implies that clients must explicitly connect to a specific

proxy server and are required to reconnect to the same proxy server each time they intend to

access their events.

2.12 Perspectives

Existing research on event-based middleware for mobile computing has mainly focused on

accommodating nomadic applications. Although there are some variations in the proposed

approaches, the objective is essentially to support nomadic components that connect to an

infrastructure network through dedicated access points and disconnect from the network

while moving from one access point to another.

JEDI allows nomadic application components to connect to and disconnect from its event

dispatcher using the moveIn and moveOut operations. The moveOut operation disconnects

an entity from its current dispatching server, allowing it to move to another location and then

to use the moveIn operation to reconnect to another dispatching server at a later time. The

dispatching server buffers all relevant information while an entity is disconnected and

forwards it upon reconnection.

SIENA’s mobility support service provides comparable moveIn and moveOut operations

allowing nomadic entities to connect to per-client proxy components that run on event servers

Chapter 2: Distributed Event Models

- 63 -

acting as access points. These proxies transparently manage (and synchronise)

subscriptions and events on behalf of a moving entity. In contrast to JEDI, SIENA allows

entities hosted by nomadic devices to interact with an event server through a wireless

connection based on GPRS technology.

Mobile Push [16] proposes a similar approach to supporting nomadic application components

in which entities disconnect from the event service infrastructure while moving. Nomadic

entities may access the event service infrastructure either through fixed or wireless

connections.

Bacon et al. [4] describe how mobility can be supported by the Cambridge Event Architecture

exploiting a mediator to buffer and forward events for a temporarily disconnected mobile

entity.

Huang et al. [6] discuss some of the issues arising when adapting a publish/subscribe system

to a mobile environment and analyses the adaptation of a centralized event broker as well as

a set of cooperating distributed event brokers. They suggest hosting event brokers on

wireless access points that are interconnected through a fixed network.

Elvin4 [17] implements support for mobility through the use of a proxy server that maintains a

permanent connection to the event server on behalf of nomadic entities. The proxy server

stores events while an entity is temporarily disconnected until the client reconnects and

allows entities to specify a time to live for each subscription to prevent large numbers of

events being stored indefinitely. This approach is limited by the fact that entities must

explicitly connect to a specific proxy server and nomadic entities are required to reconnect to

the same proxy server each time they intend to access their events.

Although these middleware services support mobility, their main goal is to handle

disconnection while an entity moves from one access point to another and consequently, they

rely on the presence of a separate event service infrastructure. Significantly, none of these

approaches provides for collaborative applications comprising entities that interact at a

certain location without relying on a separate event service infrastructure.

The concept of using multiple, potentially overlapping zones to bound the scope of event

dissemination, which has been proposed in ECO, has been adopted by Fiege et al. [75].

They introduce a component framework that allows individual entities to be bundled into

units. The objective of this work is to provide an abstraction for encapsulating a collection of

entities (and their events) into a higher-level component with well-defined interfaces that can

be reused. Such components may propagate events reflecting a change to the sate of their

collection of entities as a whole and may be composed to form other components. These

Chapter 2: Distributed Event Models

- 64 -

components may then be arranged in a hierarchical topology to form an event-based system.

Furthermore, individual components may be part of a large-scale distributed system

operating in a heterogeneous environment, therefore bridging the boundaries of different

networks. In essence, this work uses scopes to provide an abstraction for encapsulation and

reusability in a heterogeneous environment, and provides a means to map events across

scope boundaries. In contrast, the work presented in this thesis exploits scopes as a natural

way to identify events of interest for mobile entities. In particular, scopes may be used to

define geographical areas within which certain events are valid; hence delivering them at the

specific location where they are relevant.

- 65 -

CHAPTER 3: TAXONOMY OF DISTRIBUTED
EVENT-BASED PROGRAMMING SYSTEMS

As event-based middleware is currently being applied for application component integration

in a range of application domains, a variety of event services have been proposed to address

different application requirements. This chapter applies the survey of existing event systems

presented in chapter 2 to a taxonomy of distributed event-based programming systems [23].

A taxonomy is a classification that allows different examples of some generic type to be

systematically arranged in groups or categorised according to established criteria [76]. The

taxonomy presented here is structured as a hierarchy of the properties of a distributed event-

based programming system and may be used as a framework to describe a distributed event-

based programming system according to its properties.

The next section introduces our taxonomy of distributed event-based programming systems

and related issues. Section 3.2 outlines the taxonomy in detail describing the identified event

system properties and their relationships using figures and text as well as providing examples

of existing event systems having these properties. Section 3.3 further illustrates specific

event system properties by classifying a number of event systems selected from chapter 2

according to the taxonomy.

3.1 Introduction

The ultimate challenge of establishing a taxonomy is to identify the criteria according to which

the area of interest is categorised and to arrange them systematically. Our taxonomy

identifies a set of fundamental properties of event-based programming systems and

categorises them according to the event model and event service criteria. The event service

is further classified according to its organisation and interaction model, as well as other

functional and non-functional features. These properties are then arranged in a hierarchical

manner starting from the root of the taxonomy, which defines the relationship between event

system, event service and event model. Each property is described providing corresponding

terminology.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 66 -

3.1.1 Exploiting the Taxonomy

In addition to providing a means of describing an event system, the taxonomy can be used to

broadly summarise event systems and the taxonomy terminology can be used in the general

discussion of event systems. Event systems can be classified according to the same

taxonomy terminology and therefore, can easily be compared with each other or can be

matched against system requirements. The taxonomy may serve as a basis for identifying the

canonical combination of the properties of an event system required by a particular

application domain, simply by applying the taxonomy to a number of existing event systems

used in that particular application domain and by extracting the common combination of

properties. This can be useful for the requirements and design engineering of a novel event

system. Moreover, the taxonomy is expected to be utilised to identify novel combinations of

the properties of event systems and consequently, may serve as a basis for discovering

potential research issues to be addressed in future work.

3.1.2 Related Work

Our taxonomy presents a set of generic event system properties and hence can be used to

classify virtually any distributed event-based programming system regardless of system scale

or application domain. The taxonomy identifies a large variety of properties, including quality

of service, mobility, and security, and describes these properties as well as their possible

options in detail.

Existing work on describing event systems has focussed on providing a high-level reference

model or on classifying event systems for a specific application area. Barrett et al. [77]

present a framework for event-based software integration that provides a high-level model for

identifying components commonly found at the heart of event-based software integration in

large scale systems. This framework identifies the main components of an event system as

informers, listeners, registrars, routers, message transformer functions, and delivery

constraints. The framework describes the relationships among these components in detail

using an object-oriented type model, but does not specify possible patterns of interaction

between informers and listeners. Moreover, it does not explicitly identify functional event

system features and omits non-functional features altogether.

The work of Rosenblum and Wolf [78] on a design framework for event observation and

notification has focussed on supporting the construction of large-scale, event-based systems

for the Internet. This framework comprises seven models, namely object model, event model,

naming model, observation model, time model, notification model, and resource model, to

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 67 -

capture many of the design dimensions relevant to Internet-scale applications. Even though

each of these models is discussed in detail, the overall number of properties according to

which an event system may be classified is substantially smaller compared to the taxonomy

presented in this thesis. This is due to the fact that this framework imposes certain

constraints in order to specifically support Internet-scale event observation and notification

and because certain issues, such as quality of service, mobility, and security, have not been

considered.

3.1.3 Interpreting the Taxonomy

This taxonomy of distributed event-based programming models is presented using both

figures and corresponding text. The figures outline the relationship among the fundamental

properties of event systems and define the terminology to identify them. The text associated

with each figure describes the corresponding properties in detail. The figures allow a

taxonomy user to easily trace paths through the hierarchy to discover relevant properties. As

summarised in Figure 3.1, the figures consist of nodes, one of which is the root node and

some of which are leaves. Nodes are connected by directed paths. The directed paths are

represented by a set of arrows describing the nature of the paths leaving a specific node. A

set of dashed arrows leaving a specific node indicates that exactly one path has to be chosen

when tracing through that node. Solid arrows indicate that at least one path has to be chosen,

whereas double lined arrows indicate that all possible paths need to be selected. In order to

apply the taxonomy to an event system, starting from the root node, a taxonomy user traces

paths through the hierarchy selecting the connections that most accurately describe the event

system until each selected path reaches a leaf. The terms associated with the nodes along a

path describe a property of the event system.

1
Select all paths

Select exactly one path

Select at least one path

Leaf

Node

Figure 3.1. Taxonomy legend.

For example, Figure 3.21 shows that the features of an event service include both functional

and non-functional features by using double lined arrows to describe the paths between the

nodes. Hence, when tracing through the features node all paths, i.e., both of them, must be

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 68 -

selected to describe the corresponding properties of the event system. The solid arrows

connecting the nodes in Figure 3.22 indicate that one kind of event propagation model can be

associated with the functional features of an event service, although some event service may

support both the sporadic and the periodic event propagation model. Therefore, either one or

both paths must be traced. Figure 3.4 depicts that an event model can be characterised as

either peer to peer, mediator or implicit. The dashed arrows connecting the nodes, which

imply that exactly one path has to be chosen, illustrate this.

3.2 The Taxonomy

The root of the taxonomy, which is depicted in Figure 3.2, defines the relationship between

event system, event service and event model. Figure 3.2 illustrates that every event system

has both an event service and an event model. We define each of these terms as follows:

• An event system is an application that uses an event service to carry out event-based

communication.

• An event service is middleware that implements an event model, hence providing

event-based communication to an event system.

• An event model consists of a set of rules describing a communication model that is

based on events.

We differentiate between event service and event model in order to capture the facts that an

event model defines an application-level view of an event service and that a range of event

services may implement a particular event model. Event models reflect the different usages

for which they are intended. For example, the objectives of the Java AWT delegation event

model differ substantially form those of the CORBA notification service, which leads to

differences in the APIs that they provide. The goal of the event model of the CORBA

notification service is to be extremely general-purpose and usable in virtually any domain.

Consequently, it supports a wide range of features including typed and untyped event

communication, as well as filtering and administrative capabilities. Moreover, a variety of

quality of service properties, such as event reliability, connection reliability, event priority, and

event delivery order, are supported to control the propagation characteristics of events. This

is reflected in a fairly large and complex API. In contrast, the Java AWT delegation event

model is intended for small-scale, centralised applications, such as graphical user interfaces,

and therefore omits many of the features of the CORBA event model. This results in the API

of the Java event model being much simpler than that of the CORBA event model.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 69 -

Event System

Event Service Event Model

Figure 3.2. The root of the taxonomy.

The CORBA event model also serves as an example of an event model that was specified

with the expectation of being implemented by a range of event services, and potentially being

exploited in different application domains. The OMG leaves open the implementation of their

model and therefore, leaves it to different vendors to provide implementations. Consequently,

the CORBA event model has been implemented and extended by a number of commercial

and academic organisations [79], [32], [31].

P

C

P/C

Producer Entity

Consumer Entity

Producer and Consumer Entity

Legend:
Event System

Event Service

Transport Mechanism

Event Model P/C
P

C

P
C

P/C

Figure 3.3. Event system overview.

The relationship between event system, event service and event model are summarised from

the event system’s perspective in Figure 3.3. Apart from depicting how an event system uses

an event service that implements a particular event model, Figure 3.3 also outlines how event

system and service map onto a transport mechanism and how applications use entities as

hooks into the event service. Entities are the components of an application that produce and

consume events, excluding components of the event service. An entity may play the role of

either a producer or a consumer of events, or may act as both a producer and a consumer of

events.

3.2.1 Event Model

The event model defines the manner in which an event service is made visible to the

application programmer. It specifies the components of an event service to which the

application programmer is explicitly exposed and which are used to subscribe to events and

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 70 -

to propagate them. In particular, the event model classifies the means by which the

consuming entities of an application subscribe to the events in which they are interested and

the means by which an application raises and delivers events, as well as the number and

location of the components involved. As shown in Figure 3.4, we have identified three distinct

categories of event model, which are peer to peer, mediator, and implicit.

Event Model

Implicit Mediator Peer to Peer

Multiple Single

Non Functionally
Equivalent

Functionally
Equivalent

Figure 3.4. Event model categories.

Peer to Peer

A peer to peer event model allows consuming entities to subscribe at specific named

producing entities directly and producing entities to deliver events to specific named

subscribed entities directly. The Java distributed event model is based on a peer to peer

event model and thus, allows a RemoteEventListener to subscribe to events by invoking a

register method on an explicitly named EventGenerator. The simplified application shown in

Figure 3.5 outlines a subscribing RemoteEventListener and an EventGenerator invoking the

notify method on a subscribed RemoteEventListener using the RemoteEventListener’s

reference to deliver a specific event instance.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 71 -

TheConsumerApplication {//the RemoteEventListener
 //subscribe to an explicit producer
 AnExplicitEventGeneratorRef = retrieveEventGeneratorRef();
 AnExplicitEventGeneratorRef.register(this);
 //delivery handler implementation
 notify(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {//the EventGenerator
 //register method implementation
 register(RemoteEventListenerRef) {
 SubscribedRemoteEventListenerRef = RemoteEventListenerRef;
 }
 //raise an event
 AnEventInstance = new Event(someParameters);
 SubscribedRemoteEventListenerRef.notify(AnEventInstance);
 }
}

Figure 3.5. A producer and a consumer application using the peer to peer-based Java

distributed event model.

Mediator

Event models utilising a mediator allow consuming entities to subscribe at a designated

mediator and producing entities to deliver events to the mediator, which then forwards them

to the subscribed entities.

The mediator sub-hierarchy explores the number and functionality of mediators in the event

model. We differentiate between models utilising a single mediator and models exploiting

multiple mediators. The CORBA event model1 may use a single mediator (event channel) for

propagating all events from suppliers to consumers. Multiple mediators are further divided

into functionally equivalent and non-functionally equivalent mediators. In the former, all

mediators are functionally equivalent. Thus, entities may subscribe or deliver events to any

one of them. Such a mediator is called an event server in the SIENA model. SIENA may

utilise a set of different event server topologies of which all but the centralised topology

exploit multiple, functionally equivalent event servers. When mediators are not functionally
equivalent, entities have to subscribe or deliver events to the correct mediator. For example,

1 The CORBA specification allows its event model to utilise a single or multiple mediators. For

the purpose of this example, we refer to a CORBA event model utilising a single mediator.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 72 -

an application exploiting the CORBA event model2 may use multiple event channels each

propagating a different type of event.

The simplified application shown in Figure 3.6 outlines how both CORBA consumers and

suppliers connect to the explicitly named event channel through which they intend to

exchange events. Connected suppliers may raise events by pushing them to the event

channel, which forwards them to all subscribed consumers by invoking their delivery handlers

in turn.

TheConsumerApplication {
 //connect to an explicit event channel
 ConsumerAdmin = TheEventChannel.forConsumers();
 ProxyPushSupplier = ConsumerAdmin.obtainPushSupplier();
 ProxyPushSupplier.connectPushConsumer(TheConsumer);
}
TheConsumer {
 //delivery handler implementation
 push(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //connect to an explicit event channel
 SupplierAdmin = TheEventChannel.forSuppliers();
 ProxyPushConsumer = SupplierAdmin.obtainPushConsumer();
 ProxyPushConsumer.connectPushSupplier(TheSupplier);
}
TheSupplier {
 //raise an event
 AnEventInstance = new Event(someParameters);
 ProxyPushConsumer.push(AnEventInstance);
}

Figure 3.6. A producer and a consumer application using the mediator-based CORBA event

model.

Implicit

An implicit event model lets consuming entities subscribe to particular event types rather

than at another entity or a mediator. Producing entities generate events of some type, which

are then delivered to the subscribed entities. The direct approach for CEA source objects to

disseminate events to client objects, described by Bacon et al. [33], is based on an implicit

2 The CORBA specification allows its event model to utilise a single or multiple mediators. For

the purpose of this example, we refer to a CORBA event model utilising multiple mediators.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 73 -

event model. Figure 3.7 shows a simplified version of an active badge application using direct

CEA. The consumer subscribes by invoking a register method provided by a local library

passing the event type of interest as well as a reference to its delivery handler. The producer

declares its event type and subsequently raises events of this type by invoking a signal

method provided by a local library. The event service delivers events to all registered

consumers by calling their delivery handlers.

TheConsumerApplication {
 //subscribe to an event type
 template = Badge_Seen(17, 29);
 EventClient.Register(EventHandler, template);
 // deliver handler implementation
 EventHandler(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //specify the event type
 Badge : INTERFACE = Seen : EVENTCLASS [badge : BadgeId;
 sensor : SensorId];
 END.
 //raise an event
 e = Badge_Seen(17, 29);
 EventSource.Signal(e);
}

Figure 3.7. A producer and a consumer application using the implicit Direct CEA.

Discussion

An event system exploiting either a peer to peer or a mediator-based event model allows its

entities to interact by invoking remote methods directly on each other or on one or more

mediators respectively whereas entities of an event system with an implicit event model

interact by subscribing and delivering events locally using event types.

Significantly, these approaches differ in the way identifiers to the components exposed to the

application programmer are obtained and maintained. Peer to peer and mediator-based

event models require the application programmer to obtain identifiers to explicitly named

producers and mediators respectively, usually by means of exploiting a lookup table or a

naming service, and to maintain them. Every consumer of an event system utilising a peer to

peer-based event model is required to obtain the identifier of each producer in which it is

interested, i.e., the application programmer must ensure a consumer subscribes to the

correct set of producers, and to maintain these identifiers during their lifetime. Similarly,

entities of an event system utilising a mediator-based event model need to acquire the

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 74 -

identifiers of the mediators involved, i.e., the application programmer must track the

identifiers to the mediators to which a specific entity needs to connect. However, mediator-

based event models are likely to obtain and maintain a smaller number of different identifiers

compared to peer to peer-based event models. There are likely to be significantly fewer

mediators in an event system than producers and their quantity is unlikely to change over

time3, certainly compared to the number of producers as they may be created frequently

providing services for a limited period of time. Therefore, the number of the components

explicitly exposed to the application programmer is expected to be significantly smaller in a

mediator-based event model compared to a peer to peer-based event model. In contrast, the

application programmer in an event system with an implicit event model is not required to

acquire any identifiers to entities or mediators at all. The application programmer does not

need to explicitly identify the producers with which a consumer needs to communicate as

consumers subscribe to producers transparently using event types. This requires a more

sophisticated event service as it is responsible for locating peers, maintaining the

corresponding identifiers, mapping event types to identifiers, and for providing a means to

define and check the type of events.

Most significantly, the event model exploited by an event system affects one of the main

concepts of event-based communications, namely the degree of anonymity among the

entities in the system. The means by which consuming entities subscribe to the events in

which they are interested and by which events are propagated and delivered influences the

degree of anonymity among them. The peer to peer approach permits specific named entities

to interact directly with each other. Consequently, entities are not anonymous to each other.

Mediator-based event models, where entities register with one or more mediators, provide a

degree of anonymity where entities are anonymous to each other but known to the

mediator(s). The implicit approach allows entities to interact anonymously. Such entities are

anonymous to each other and are only known by the event service that implements the

mapping of event types to entities.

3.2.2 Event Service

This section deals with the classification of the properties of an event service. As Figure 3.8

shows, we divide the properties of an event service into three distinct categories. The

3 An event system may exploit a single mediator whose reference characteristically remains

unchanged, assuming the absence of failure, during the lifetime of the system.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 75 -

organisation sub tree focuses on the distribution of the entities and the components of the

middleware and on the fashion in which the components that comprise an event service

cooperate. The interaction model defines the communication path over which producing and

consuming entities communicate with each other. The feature sub hierarchy addresses the

other functional and non-functional features proposed by an event service.

Event Service

Interaction ModelOrganisation Features

Figure 3.8. The event service.

Organisation

As summarised in Figure 3.9, the organisation sub tree classifies an event service as either

centralised or distributed according to the location of the event system’s entities. These two

sub categories are further divided exploring the location of the event service’s components.

The entities of an event system can be either centralised or distributed according to their

location. The entities of an event system are centralised if they only reside in the same

address space on the same physical machine. In contrast, if the entities of an event system

are distributed they may be located in different address spaces possibly on different

physical machines.

Whether the entities of an event system are centralised or distributed, the middleware can be

either collocated or separated.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 76 -

Centralised

Separated
Middleware

Collocated
Middleware

Multiple Single

Separated
Middleware

Multiple Single

Collocated
Middleware

Distributed

Organisation

Figure 3.9. Event service organisation.

Collocated Middleware. The event service is collocated with the entities, if it resides only in

the same address space(s) on the same physical machine(s). As illustrated in Figure 3.10,

the organisation of a centralised event service with collocated middleware results in both the

entities and the middleware being located exclusively in the same address space. No part of

the event system resides outside the implicit single address space. This organisation may be

used for small-scale applications consisting of a relatively small number of entities, such as

graphical user interfaces. For example, the Java AWT delegation event model is

implemented by the Java Virtual Machine (JVM) to connect the graphical components of an

application sharing their address space with the middleware. Another event service that may

be used in a similar fashion is provided by the C# programming language [25]. In contrast,

the organisation of a distributed event service with collocated middleware results in the

middleware being distributed with the entities, each entity using the part of the middleware

that is local to it. Figure 3.11 shows the organisation of a distributed event service with

collocated middleware, which may include an arbitrary number of address spaces. This

organisation has been adopted by mSECO, an event service implementing the ECO event

model. mSECO is implemented as a library that is collocated with each entity. Notably,

mSECO is exclusively located in the same address spaces as the entities. However, the

address spaces in which the entities reside may or may not be located on different physical

machines.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 77 -

Address Space

Machine

Address Space

M

Legend:

M

Producer Entity

Consumer Entity

Middleware

Communication

P

C

P

C

P

C

Figure 3.10. Centralised event service with

collocated middleware.

Machine

Addr.
Space

Machine

Addr.
Space

M M

Machine

Addr.
Space

M

Machine

Addr.
Space

M

P C

P C

Figure 3.11. Distributed event service with

collocated middleware.

Separated Middleware. In this case, the event service is at least partially located in one or

more separate address spaces possibly on different physical machines. We divide separated

middleware into two categories depending on the partitioning of the middleware. Figure 3.12

depicts an event service with separated single middleware, whose entities are centralised

and whose middleware is located in a separate address space. This organisation uses

exactly two separate address spaces, one including the entities and the other containing the

middleware. The two address spaces may reside on the same or on two different physical

machines.

Figure 3.13 illustrates a distributed event service with separated single middleware, whose

entities are distributed and whose middleware is located on a single machine. This

organisation may involve a large number of address spaces and possibly physical machines,

depending on the location of the entities and the middleware. However, all the address

spaces may reside on a single physical machine. A CORBA event service providing a single

event channel4 serves as an example of such an organisation. Its entities typically reside in

different address spaces distributed over multiple physical machines using an event channel

located on another machine. However, the address space in which the event channel resides

may be located on the same physical machine as some of the entities’ address spaces.

4 The CORBA event service may utilise one or more event channels. For the purpose of this

example, we refer to a CORBA event service utilising a single event channel.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 78 -

Address Space

Machine

Address Space
Address Space

Address Space

M
P

C

P

C

Figure 3.12. Centralised event service with

separated single middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

P

C

P

C

Figure 3.13. Distributed event service with

separated single middleware.

Figure 3.14 and Figure 3.15 show event services with separated multiple middleware, whose

middleware is distributed over a set of cooperating address spaces possibly on different

physical machines, for a centralised and a distributed organisation respectively. Figure 3.15

also illustrates that some of the middleware’s address spaces may be located on the same

machine as some of the entities. This also applies for centralised entities with separated

multiple middleware. We admit the possibility of an organisation of centralised entities with

separated multiple middleware although we cannot provide an example for such an

organisation. SIENA, which uses an organisation as shown in Figure 3.15, proposes a set of

middleware topologies, called server topologies, of which all but the centralised topology use

middleware that is distributed over a set of cooperating machines.

Address
Space

Machine

Addr. Space

Address
Space

Machine

Addr. Space

M

P C

P C

Address
Space

Machine

Addr. Space

M

Figure 3.14. Centralised event service with

separated multiple middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

P

C

P

C

Figure 3.15. Distributed event service with

separated multiple middleware.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 79 -

Discussion. The organisation adopted by an event service has a major impact on issues

related to the scalability of a system, its behaviour in the presence of failed components, and

on the mechanism for communication between entities and the middleware. Traditionally,

approaches containing centralised middleware components are more likely to experience

performance bottlenecks with increasing scale and tend to suffer more in the presence of

failures than distributed approaches. The use of middleware located in multiple address

spaces allows the distribution of the communication load reducing the risk of performance

bottlenecks. Instead of having middleware located in a single address space handling all the

communication between the entities in an event system, middleware distributed over multiple

address spaces may divide the load. Exploiting middleware distributed over multiple address

spaces also avoids potential single points of failure in the system. For example, if the

middleware in the organisations illustrated in Figure 3.10, Figure 3.12, and Figure 3.13 fails

none of the entities in the corresponding systems will be able to communicate. In contrast, a

middleware component failing in one of the organisations depicted in Figure 3.11, Figure

3.14, and Figure 3.15 has a less devastating effect on an event system allowing the entities

to communicate even in the presence of failure. Significantly, this depends on the middleware

being located in multiple address spaces and not on the distribution of the entities in a

system.

The organisation of an event service also affects the mechanism through which entities

communicate with the middleware. Approaches where entities and middleware reside in

different address spaces distributed over different physical machines require a mechanism

that supports communication across the boundaries of address spaces and network

connections. A much simpler inter-process communication mechanism may be sufficient for

organisation where entities and middleware reside in different address spaces on the same

physical machine. Entities and middleware sharing an address space may communicate

using a programming language specific mechanism, such as procedure call or method

invocation.

This taxonomy may serve as a basis for identifying the combinations of event system

properties that are well suited as well as the combinations that are less suited or even

incompatible. For instance, mediator-based event models map well onto event service

organisations with separated middleware. Separated middleware residing in an independent

address space may naturally implement a mediator to which producing and consuming

entities may subscribe. Peer to peer and implicit event models are well suited for

organisations with collocated middleware. These organisations allows entities to directly

connect to each other using interfaces specified by the collocated middleware, which

provides a means for mapping events and their types to entities. In addition, the centralised

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 80 -

organisation with collocated middleware may map onto mediator-based event models as the

collocated middleware may implement a mediator for entities to interact. In contrast,

combinations, for example based on separated middleware and peer to peer event models,

are suited to a lesser extend as peer to peer models imply that entities interact directly.

Interaction Model

The interaction sub tree classifies an event service according to the interaction model used

by the event system. Generally, the interaction model defines the communication path over

which event communication between producing and consuming entities takes place. It

defines the number of intermediate middleware components involved and the manner in

which intermediates cooperate to route events from producers to consumers. Compared to

the organisation model, which focuses on the distribution of the entities and the middleware

of an event system describing the static view of an event service, the interaction model

describes the information flow in a event system. Hence, it describes the dynamic aspect of

an event service.

As Figure 3.16 depicts, we divide the interaction model into two main categories, namely

intermediate and no intermediate, exploring whether and how many intermediate middleware

components an event passes through.

Intermediate

Distributed
Intermediate

Partitioned

Implicit Named Point to Point

No Intermediate

Interaction Model

Cooperative

Non-Hierarchical Hierarchical

Multiple Single

Centralised
Intermediate

Figure 3.16. Event service interaction model.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 81 -

No Intermediate. The communication path over which event communication between

producing and consuming entities takes place does not include separated intermediate

middleware components. Producer and consumer entities communicate with each other

through the middleware collocated with each entity. As Figure 3.17 illustrates, events that are

routed from producers to consumers pass through the respective collocated middleware, but

not through any intermediate middleware component.

Intermediate. The communication path over which event communication between producing

and consuming entities takes place includes at least one separated intermediate middleware

component. Events that are routed from producers to consumers pass through one or more

intermediate middleware components.

.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 3.17. No intermediate.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 3.18. Distributed intermediate.

The intermediate interaction model is divided into two sub categories according to the

number of intermediate middleware components in the communication path between

producing and consuming entities. In the centralised intermediate model, the

communication path includes a single intermediate middleware component. In contrast, the

distributed intermediate involves two or more intermediates through which events are

routed from producers to consumers. Figure 3.18 depicts the distributed intermediate

interaction model with a communication path that includes two distributed intermediates.

Both centralised and distributed intermediates can be divided further. We classify centralised

intermediates according to their number as an event service may exploit single or multiple

centralised intermediates.

All communication paths between producing and consuming entities may include the same

single centralised intermediate. An event system using this interaction model includes

exactly one centralised intermediate. In contrast, an event system may exploit multiple

centralised intermediates. Producers and consumers may be divided into groups and all

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 82 -

communication paths between the producing and the consuming entities of each group may

include a centralised intermediate that is exclusive to the group. This results in an event

system using several centralised intermediates, the number of which corresponds to the

number of entity groups. Multiple centralised intermediates may be used to support groups of

entities that share a common interest. The common interest of an individual group may be

expressed by a specific type of event that is exclusively handled by a particular centralised

intermediate. For example, the CORBA event service may utilise multiple centralised

intermediates implemented as event channels. Each channel may handle a specific type of

event exclusively. Producing and consuming entities intending to communicate using a

specific event type connect to the corresponding event channel, therefore defining the

communication path over which event communication takes place. Alternatively, the CORBA

event service may utilise a single centralised intermediate implemented as a single event

channel through which all events are routed. Figure 3.19 and Figure 3.20 illustrate the single

centralised intermediate and the multiple centralised intermediate interaction model

respectively. Figure 3.20 shows two groups of entities, each comprising of a producer and a

consumer exclusively using a single centralised intermediate through which events are

routed. The communication path associated with one group is outlined as solid arrows and

the communication path associated with the other is depicted as dashed arrows.

Event Service

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 3.19. Single centralised intermediate.

Application

Event Service

C

Application

Event Service

P

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 3.20. Multiple centralised

intermediate.

We classify distributed intermediates as partitioned or cooperative according to the fashion in

which intermediates cooperate to route events from producing to consuming entities.

Generally, the distributed intermediate interaction model includes two or more intermediate

middleware components in the communication path between consumers and producers. An

event service implementing the partitioned distributed intermediate interaction model

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 83 -

consists of one or more independent groups of intermediates, each group handling only a

specific type of event. Entities sharing a common interest need to connect to the group that

handles the type of event that corresponds to their common interest. The CORBA event

model specification proposes to chain different implementations of event channels, acting as

a group of partitioned distributed intermediates, in order to combine non-functional features

supported by individual event channels.

In contrast, cooperative distributed intermediates do not form independent groups, all

intermediates cooperate to route events from consumers to producers. Entities connect to the

most convenient, e.g., physically closest, intermediate. Each intermediate manages the

events of the entities physically connected to it and cooperates with other intermediates to

route them to remote entities. Cooperative distributed intermediates cooperate with each

other either in a hierarchical or in a non-hierarchical manner. JEDI proposes a hierarchical

structure of cooperative distributed intermediates, called dispatching servers. Dispatching

servers are interconnected in a tree topology through which events are routed. Entities may

connect to any dispatching server, each of which forwards the events it receives from the

producing entities connected to it to its parent and to its descendants to route them to all

interested consumers. SIENA describes four different topologies of cooperative distributed

intermediates. One of them serves as an additional example of hierarchical cooperative

distributed intermediates, another two, namely the acyclic and the general peer to peer

topologies, illustrate non-hierarchical cooperative distributed intermediates.

We sub divide the interaction model that does not include intermediate middleware

components into three categories according to the means by which entities address each

other. These interaction models are called point to point, named, and implicit.

Producer and consumer entities may communicate directly with each other in a point to
point fashion, using explicit entity addresses, which are provided by the application. The

middleware uses explicit entity addresses and a unicast communication pattern when routing

events from producing to consuming entities. The Java distributed event model allows

producers to route events to the subscribed consumers using the explicit consumer

addresses provided by the application.

Producer and consumer entities may communicate directly with each other using a name

service to map event descriptions, such as event types, to entity addresses provided by the

application. The middleware uses either a unicast or a multicast communication pattern to

route events from a producer to the interested consumers. uSECO uses an name service,

called the Application Instance Repository (AIR), to resolve the addresses of the entities that

are interested in a specific event type and a unicast communication pattern to route events.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 84 -

Producer and consumer entities may communicate directly with each other using an implicit
means to map event descriptions to entity addresses provided by the application. The

middleware uses a multicast communication pattern when routing events from producers to

consumers. mSECO, a multicast version of the uSECO event service, does not rely on an

AIR since it uses an implicit means, based on generating addresses from event descriptions,

to map events to the multicast addresses representing the interested consumers.

Discussion. Mediator-based event models map naturally onto interaction models that include

intermediate middleware components. For example, interaction models using either multiple

centralised or partitioned distributed intermediates may implement event models that include

multiple non-functionally equivalent mediators. These event models expose mediating

application components to the application, which must ensure entities subscribe to the correct

intermediate middleware component. Both hierarchical and non-hierarchical cooperative

distributed intermediates may implement multiple functionally equivalent mediators whereas a

single centralised intermediate may implement an event model based on a single mediator.

Both the named and the implicit interaction model are appropriate for implicit event models,

since neither of them relies on intermediates and because implicit event models do not

prohibit the use of middleware components providing naming services. The peer to peer

event model exposes entities explicitly to the application. It is therefore best implemented by

a point to point based interaction model using these entity addresses to route events from

producers to consumers.

There are numerous possible combinations of interaction and organisation models as many

organisations are appropriate for different interaction models. For example, both centralised

and distributed organisations with separated middleware are suitable for interaction models

whose communication paths between producers and consumers involve intermediate

middleware components. Distributed organisations with collocated middleware may be

combined with interaction models that do not rely on intermediates. Centralised organisations

with collocated middleware may possibly be combined with every identified interaction model.

Although centralised collocated organisations may be best suited for the single intermediate

interaction model as its middleware component maps naturally onto a single intermediate, it

is also appropriate for the implicit interaction model with its middleware component

implementing a means to map event types to entity addresses.

Features

The features supported by an event service can be classified as either functional or non-
functional. Both the functional and the non-functional features are sub divided into a set of

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 85 -

relevant issues, each of which will be discussed in turn in the remainder of this section. The

sets of functional and non-functional features that may be supported by an event service are

summarised in Figure 3.21.

Functional

Event
Type

Non-Functional

Features

Event Propagation
Model

Event
Filter

QoS Mobility Ordering Failure Mode Composite
Events

Security

Figure 3.21. Event service features.

Functional Features

Event Propagation Model. Events are propagated and delivered by an event service

according to an event propagation model. Figure 3.22 depicts the event propagation model

sub hierarchy and shows how the event propagation model is divided into two categories

describing sporadic and periodic event propagation. Both sporadic and periodic event

propagation can be based either on the push or the pull model. The sporadic push model is

considered the traditional event propagation model and is therefore most likely to be

supported by an event service. However, an event service may support several of the

propagation models summarised in Figure 3.22.

Sporadic event propagation models propagate events only if the relevant state of the

producer has changed. Periodic event propagation models propagate events periodically,

even if no state change has occurred since the last event.

Event propagation based on the sporadic push model is considered the typical event

propagation model. Event propagation is producer driven and producers propagate events as

they are generated. The sporadic push model is supported by many event models including

the Java AWT delegation event model and CORBA-based event models, such as CONCHA.

Event propagation based on the sporadic pull model is also known as event polling. Event

propagation is consumer driven as consumers poll producers for available events. Event

producers propagate events in response to requests from consumers. Among others, this

propagation model is supported by the CORBA notification service.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 86 -

Event propagation based on the periodic push model is well suited for “heartbeat” or

“watchdog” mechanisms as well as for disseminating events according to a predefined

schedule. Event propagation is producer driven and producers propagate events periodically.

The TAO real-time CORBA event service uses the periodic push propagation model as a

means to statically schedule event propagation and subsequently to reserve the required

resources for events that have hard real-time delivery deadlines.

Event propagation based on the periodic pull model represents traditional polling. Event

propagation is consumer driven, event consumers poll event producers periodically. Event

producers propagate events in response to requests from consumers.

Periodic event propagation models imply that events with identical content may be

propagated as the state of a producer that describes such content may have remained

unchanged since the previous event was propagated. We argue that periodic events conform

to the previously given definition of events when considering the passing of time as a change

to a producer’s state even though periodic events may not contain an explicit description of

time.

Sporadic

Push Pull

Event Propagation
Model

Periodic

Pull Push

Figure 3.22. Event propagation model.

Event Type. Events propagated by an event service can be classified according to their

structure and hence are said to be of a specific event type. As outlined in Figure 3.23, we

differentiate between generic and typed events.

The information that constitutes a generic event, which is also known as an un-typed event,

is a data blob with an implicit structure. The structure is neither recognised nor interpreted by

the event service. The CORBA event service is one of the few event services that supports

propagation of generic events.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 87 -

In contrast, the information that describes typed events includes an explicit and expressive

structure that may be recognised and interpreted by the event service. Typed events enable

the use of event filters.

Event types are represented by a structure with varying expressive power. Expressive

power of event types describes the variety of information that they can comprise. The

expressive power of the structures outlined in Figure 3.23 increases from left to right.

The structure that represents and event type is either fixed or application specific. The

former is predefined by the event service whereas the latter may be defined by the

application.

Expressive
Power

Generic

Event Type

Typed

Fixed

Name and Number
Parameters

Name and String
Parameters

Application
Specific

Object Attributes Name

Figure 3.23. Event type.

Both fixed and application specific structures can be sub divided. Fixed structures consist

either of a name, a name and number parameters, or a name and string parameters. A name

usually consists of a single string. The name and string parameters structure therefore

consists of a set of strings. The first string representing the event name and the remaining

strings representing the event parameters. JEDI uses an event structure that is similar to

function calls consisting of a name and a set of string parameters. The name and number
parameters structure consists of a single string and a set of numbers. The string

representing the event name and the numbers representing the event parameters. The

version of CEA described by Bacon et al. [33] supports typed events that consist of a

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 88 -

structure consisting of a name and a set of number parameters. Application specific

structures consist of either attributes or an object. The attributes structure consists of a set

of attributes in which each attribute is a triple of name, type and value. The CORBA

notification event service supports a general event structure consisting of attributes. The

object structure consists of a programming language specific object including a set of

attributes. One of the key properties of ECO is its support of events in the form of specific

application defined objects.

Event Filter. Event filters control the propagation of events by allowing consumers to

subscribe to the exact subset of the events in which they are interested. Events are matched

against filters and are only propagated if the match produced a positive result. Figure 3.24

shows the properties according to which we classify event filters.

Expressive Power

Event Filter

Evaluation Implementation Definition Location

Figure 3.24. Event filter.

Event filters must be evaluated at a particular location. If supported, event filters may be

evaluated at the consumer side, the producer side or at the intermediate. Furthermore, a set

of event filters may be evaluated sequentially at more than one location, thus they may be

applied at any combination of consumer, producer, and intermediate. Figure 3.25

summarises all possible combinations of event filter locations.

Nowhere. Filters are not supported. The CORBA event service is an example of an event

service that does not support event filters.

Producer. Filters are evaluated at the producer side. This minimises the use of network

bandwidth and consumer processing overhead as events are filtered as close to the producer

as possible. SECO serves as an example of an event service that supports producer side

filtering.

Consumer. Filters are evaluated at the consumer side. This allows an implementation of a

precise matching algorithm as the required set of events is typically well known at the

consumer side. The Java distributed event model allows filters to be applied at the remote

event listener.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 89 -

Intermediate. Filters are evaluated at the intermediate. This is a natural location for service

wide filters (as well as quality of service properties) since all events are propagated through

the intermediate.

Producer and Consumer. Filters are evaluated at the producer and the consumer side.

ECO supports filters in the form of pre- and post constraints, which may be applied at the

producer and the consumer side respectively.

Producer and Intermediate. Filters are evaluated at the producer side and at the

intermediate.

Consumer and Intermediate. Filters are evaluated at the consumer side and at the

intermediate. In addition to allowing filtering at the remote event listener, the Java distributed

event model supports optional event adapters at which filters may be applied as well.

Producer, Consumer and Intermediate. Filters are evaluated at the producer and the

consumer side, as well as at the intermediate. The CORBA notification service supports

filtering in a hierarchical manner that allows filters to be evaluated at the producer and the

consumer side, as well as at intermediates.

Producer,
Consumer and
Intermediate

Location

Producer and
Consumer

IntermediateProducer Nowhere Producer and
Intermediate

Consumer Consumer and
Intermediate

Figure 3.25. Event filter location.

As shown in Figure 3.26, event filters can be defined by the application by using a

constraint language that is specified as part of the event service or by using the features of

an application programming language. The CORBA notification service specifies a

constraint language that allows applications to use constraint expressions to define event

filters.

When using a programming language to define event filters, applications may use a subset
of the types, operators, and combinators supported by the programming language or may be

permitted to use all types, operators, and combinators supported by the language. SIENA

limits applications to using a specific subset of the types, operators, and combinators

available whereas SECO allows them to use all available types, operators, and combinators.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 90 -

Constraint
Language

Definition

Programming
Language

Language Subset

Figure 3.26. Event filter definition.

Figure 3.27 summarises possible implementations of event filters within the event service.

An event filter can be implemented as either a character string, a function, or an object.
Character strings can provide a textual representation of filter expressions that are typically

parsed by an event service applying them. Filters that are implemented as functions are

applied by executing these functions. Object class filters must be instantiated before they can

be applied by invoking a method of the object. Both the CORBA notification service and

SIENA implement event filters as strings that are interpreted at run time whereas SECO

filters are implemented as objects providing an evaluate() operation.

String

Implementation

Object Function

Figure 3.27. Event filter implementation.

Event filters are evaluated by the event service to determine the list of interested

subscribers. As shown in Figure 3.28, event filters are evaluated at a particular time using a

specific mechanism to match events against filters.

The evaluation mechanism is divided into two sub categories depending on whether filter

specifications are interpreted or compiled. The former are characteristically evaluated using

an event model specific interpretation mechanism while the latter can be evaluated using

operations provided by the programming language. Both interpretable and executable filters

are either generated by a pre-processor or are implicitly provided by the application. The

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 91 -

CORBA notification service specifies a constraint language that allows applications to

implicitly provide filter expressions that are interpreted by the evaluation mechanism.

Event filters are evaluated either at subscription time or at event propagation time.

Evaluating filters at subscription time may be useful when matching parameters describing

the current context of the subscriber that are only relevant at that point in time or when

matching pre-constraint filters. Such pre-constraint filters may assess the availability of

resources, authenticate a connection, or process admission control. However, event services,

including the CORBA notification service, SIENA, and Elvin, traditionally evaluate event filters

at event propagation time when the actual list of interested subscribers can be determined.

Mechanism

Compiled

Implicit Pre-processed

Interpreted

Implicit Pre-processed

Time

Propagation Subscription

Evaluation

Figure 3.28. Event filter evaluation.

Figure 3.29 summaries issues related to the expressive power of event filters. Event filters

may be defined using an expressive structure that is described using a set of types,

operators, and combinators.

The structure enclosed in an event filter may contain a set of types with varying expressive

power. These sets are either implicit or predefined by the event service and their

expressive power generally increases with the number of the types they comprise. While both

implicit and predefined sets can contain one or more types, predefined sets are typically

larger and hence more expressive than implicit sets. JEDI and CEA are examples of event

models supporting implicit types. Both of them support string types while CEA provides a

second implicit type, namely number. In contrast, SIENA provides predefined sets comprising

a larger number of types.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 92 -

An event filter may contain a set of operators with varying expressive power. From left to

right, the sets outlined in Figure 3.29 are supersets of each other and hence increase in their

expressive power. The representations may support equality and inequality operators, less

than and greater than magnitude operators that may be combined with equality operators, or

magnitude operators that can be combined to form range operators. JEDI and CEA only

support equality operators whereas SIENA supports equality, magnitude, and range

operators.

An event filter may employ a set of combinators with varying expressive power that may be

used to combine terms including types and operators. The expressive power of the set of

combinators outlined in Figure 3.29 increases from left to right. The structure may not contain

any combinator or may contain either a single implicit combinator or an arbitrary number of

combinators. CEA supports an implicit conjunctive combinator while SIENA provides a range

of arbitrarily applicable combinators.

Expressive Power

Implicit

Combinator

Implicit None Arbitrary

Operator

MagnitudeEquality Range

Type

Predefined

Figure 3.29. Event filter expressive power.

Mobility. Another functional event service property, which is becoming increasingly important

with the emergence of technologies for mobile devices and components, is the support for

entity mobility. Figure 3.30 summaries the degree of mobility that may be provided by an

event service.

Many event services do not support mobility; all entities of such an event system have a

static location. However, an event system may contain software components representing

entities that may move location from one host machine to another thereby assuming the

address of the current host machine. The mobile code category refers to event services that

support entities that can move from one computer to another and subsequently execute at

their destination. JEDI supports this feature through its concept of reactive objects. Loke et al.

[80, 81] propose an extension to Elvin that enables mobile code, referred to as mobile

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 93 -

agents, to migrate from one host to another in order to perform computations on behalf of

mobile multi-agent applications.

The mobile device category is used to refer to event services that support portable

computing devices, such as notebook computers and handheld devices, which may move

location while keeping their addresses, thereby moving the entities they host. Mobile devices

may host nomadic and collaborative entities and may be capable of wireless networking.

Nomadic entities interact through either a fixed network infrastructure or a mobile computing

environment to which they connect via nodes acting as access gateway. Characteristically,

they may suffer periods of disconnection while moving between points of connectivity. For

example, SIENA’s mobility support service allows nomadic entities to connect to proxy

components using wireless connections based on GPRS technology. These proxy

components run on event servers that act as access points and transparently manage (and

synchronise) subscriptions and events on behalf of a moving entity. In contrast,

collaborative entities use a wireless network to interact with other mobile entities that have

come together at some common location. Collaborative entities may use ad hoc networks to

support communication without the need for a separate infrastructure, thus allowing loosely

coupled entities to communicate and collaborate in a spontaneous manner.

Mobile Code

Mobility

Static Entity

Collaborative
Entity

Nomadic Entity

Mobile Device

Figure 3.30. Mobility support.

Composite Events. Subscribers may require an event service to recognise the occurrence

of a specific pattern of two or more particular events possibly propagated by different

producers. Such a combination of event occurrences is called a composite event.

As depicted in Figure 3.31, an event service may omit composite events. However, when

supported, the occurrence of composite events causes the service to notify subscribers

accordingly. Subscribers may specify the number of the events involved and the time

window in which the events involved must occur. Exactly two or three or more events may

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 94 -

be defined along with the time window that may be defined implicitly by the event service or

explicitly by the subscriber application. As part of their work on CEA, Bacon et al. [82] have

defined an application-level language for specifying occurrences of event sequences of

interest. Monitors then use a combination of event filters to detect composite events that

conform to these sequences. Pietzuch et al. [64] propose a general composite event

detection framework that is similar to the CEA approach in that it also introduces a high-level

specification language for event occurrences of interest. However, this framework has been

designed to accompany existing event-based middleware architectures and has adopted the

interval timestamp model [83] for handling the clock uncertainties that are intrinsic to

distributed systems.

Supported

Time

Explicit Implicit

Number

Three or More Two

Composite Events

Omitted

Figure 3.31. Composite events.

Non-functional Features

Quality of Service. The QoS of an event service may be configured according to the

requirements of a particular application. Figure 3.32 shows that we divide the QoS supported

by an event service into four categories describing the behaviour of an event service when

propagating and delivering events.

The real-time category explores the guarantees provided by an event service regarding the

timely propagation of events. Real-time guarantees can be either best effort, soft or hard. In

the best effort case, no deadlines can be associated with events. An event service

supporting soft real-time provides guarantees with a probability that is sufficient to be used

for soft real-time deadlines and a hard real-time service provides guarantees with a

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 95 -

probability that is sufficiently high to be used for hard real-time deadlines. The CORBA

notification service allows deadlines defining earliest and latest delivery time to be assigned

to events that are enforced with a probability that is sufficient to be used for soft real-time

deadlines. Generally, hard real-time guarantees are difficult to provide as they require

predictable communication pattern, ideally utilised in a small-scale environment. This is

particularly true for distributed event systems. Distributed event systems are traditionally

based on anonymous one-to-many communication patterns that tend to be unpredictable and

are likely utilised in systems consisting of a large number of loosely-coupled entities.

However, the TAO RT event service, an extension to the CORBA event service that was

developed for avionics applications, supports hard real-time guarantees. COSMIC [84] uses

event channels as an abstraction for network resources and allows applications to assign

timeliness properties to channels. It supports best effort guarantees in the form of non real-

time event channels as well as soft and hard real-time guarantees through soft real-time

channels and hard real-time channels respectively.

In order to influence the sequence in which events are delivered, a priority may be assigned

to an individual event. Usually, no priority can be assigned and therefore all events have

identical priority. An event service that supports alarm events allows a single priority to be

assigned to certain events. The CORBA notification service provides multiple priorities.

The store occupancy describes the maximum size of memory required by an event service

to operate at any given point in time during its lifetime. This size can be either implicit or it

may be configurable according to the requirements of a particular application. Implicit store

occupancy either imposes a fixed maximum memory size or allocates the required memory

dynamically whereas configurable store occupancy typically depends on a number of

parameters. These parameters may describe the maximum size of the queues that buffer

events as well as the maximum number of producers, consumers, and mediators that may be

supported by an event service.

The reliability category investigates the guarantees provided by an event service regarding

the delivery policy of events in the presence of failure. An event service is said to provide

best effort reliability if no specific delivery guarantees are made. Events may or may not be

delivered to subscribers in the presence of failure. An event service that supports reliable
connections guarantees events being delivered to all correctly functioning subscribers. Upon

restart from a failure, connections between producers and subscribers are re-established

without re-subscription and event delivery resumes. A persistent event service guarantees

events being delivered to all subscribers. Upon restart from a failure, connections between

producers and subscribers are re-established without re-subscription and persistently

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 96 -

buffered events are retransmitted. The CORBA notification service may support either of

these three delivery policies.

Real Time

Soft Best
Effort

Quality of Service (QoS)

Hard

Priority

Alarm No Multiple

Store Occupancy

Implicit Configurable

Reliability

Reliable
Connection

Persistent Best
Effort

Figure 3.32. Quality of service.

Ordering. An event service delivers events according to a certain order semantics. Figure

3.33 shows that an event service may deliver events in a certain order in a subset of the

system or system wide, i.e., throughout the system. Event services with a system wide

ordering strategy employ exactly one delivery order whereas event systems with subset

orders associate different ordering strategies with various parts of the system.

Events may be delivered in any order. Such unordered events may be received by any

subscriber in any order. FIFO order refers to a strategy where two events that are raised by

the same producer are delivered by consumers with matching subscriptions in the same

order they were raised. Causally ordered events are delivered in the order they were

published while totally ordered events are delivered in the same order by all subscribers but

not necessarily in the order they were raised [69]. Mechanisms for providing unordered and

FIFO order semantics are generally relatively straightforward since they only need to

consider events delivered to an individual subscriber. In contrast, enforcing causal and total

order semantics requires cooperation between all producers and subscribers involved.

Alternatively, events may be delivered according to an associated priority or deadline.

These semantics imply that the delivery of some event can be pre-empted in order to deliver

an event that has a higher priority or to deliver an event that has a deadline that is close to

expiring. The CORBA notification service supports various semantics for defining event

delivery order for a specific event channel, including any, FIFO, priority, and deadline order.

This approach allows applications with a single event channel to define a system wide order

and applications comprising multiple channels to associate a specific order with each

channel. CONCHA and TAO RT are other CORBA-based event services that support

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 97 -

delivery order semantics. CONCHA features totally ordered event delivery and TAO RT

CORBA provides a dispatching mechanism for priority-based event delivery.

Subset

Ordering

FIFO Any Total Causal Priority Deadline

System Wide

FIFOAny Total Causal Priority Deadline

Figure 3.33. Ordering.

Security. Event services may omit mechanisms for ensuring security or may support

security properties by providing techniques for event message confidentiality and for

authentication.

Event messages that contain sensitive content may be transmitted over a network in an

encrypted and therefore confidential form rather than as plain data. This enables producers

and consumers to keep event messages secret from third parties. For example, Elvin4

supports a security framework that exploits the Secure Socket Layer (SSL) protocol for

managing the security of its message transmissions over the Internet.

Essentially, authentication establishes the identity of specific events and serves as the basis

for a mechanism that grants access to certain events. Such an access control mechanism

may regulate access privileges for event dissemination, forwarding, and delivery. Access may

be granted to an individual event or to a set of events. Such a set of events may be defined

by various means. Access may be granted to events of a specific type, to the events

disseminated by a specific producer or group of producers, to the events described by a

subscription or by the subscriptions issued by a certain consumer, or to the events handled

by a particular mediator. For example, Elvin4’s security framework enables servers to

authorise access to events using keys, which may be associated with either a connection to a

specific entity or an individual event. Wang et al. [85] outline security issues in event services

without attempting to present an actual security model. Their work specially focuses on

Internet-scale event systems and discusses security paradoxes, such as anonymity vs.

authentication, that arise due to the nature of event systems.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 98 -

Supported

Authentication

Set of Events

Confidentiality

Individual Event

Security

Omitted

Figure 3.34. Security.

Failure Mode. The failure mode describes the behaviour of an event service in the presence

of a single component failing silently. As outlined in Figure 3.35, the failure mode category

explores support for the failed component being an entity, a middleware component, or a part

of the network.

A silently failed entity may be either a consumer or a producer. A failed consumer does not

cause the remainder of the system to suffer. A failed producer causes a partial or a total

system failure. A partial system failure affects the communication related to some event

types that may result in fewer events being propagated. No event communication can take

place in case of a total system failure. A system consisting of a single producer and a

number of consumers fails totally if the sole producer fails silently.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 99 -

Entity

Failure Mode

Middleware Network

Producer

Partial System
Failure

Total System
Failure

Partial System
Failure

Functional Geographical

Total System
Failure

Consumer Redundant Partial System
Failure

Total System
Failure

Figure 3.35. Failure mode.

A middleware component failing silently causes a partial or a total system failure similar to

the effect of a failed producer. A partial system failure affects either a geographical or a

functional part of the system. The former disconnects a part of the system from the rest of

the system. Event communication may take place within the partitions, but no event

communication takes place between the partitions. A geographical partial system failure may

be caused by a failing SIENA event server that is part of a hierarchical or an acyclic server

topology. The latter stops communication related to a particular event type throughout the

system. However, communication related to other event types does not suffer. A functional

partial system failure may be caused by a failed event channel in a CORBA event service

utilising multiple channels, each managing an specific event type. A failing centralised JEDI

event dispatcher causes a total system failure.

A part of the network failing silently may be redundant or may cause partial or total system

failure. A redundant part of the network failing in SIENA utilising a general non-hierarchical

server topology may not cause the remainder of the system to suffer.

A partial system failure disconnects a part of the system from the rest of the system. Event

communication may take place within the partitions, but no event communication takes place

between the partitions. SIENA utilising an acyclic non-hierarchical server topology behaves in

this manner. A system in which all producers are connected through a single network is

susceptible to total system failure where no event communication can take place.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 100 -

3.3 Classification of Event Systems

Table 3.1 illustrates how a taxonomy user may apply the taxonomy to existing event systems

by presenting a number of selected event services that have been categorised according to

the taxonomy presented in this thesis. These event services have been selected to cover

various properties and because sufficiently detailed documentation is available. The

commercial CORBA event service and CORBA notification service have been chosen due to

their widespread use and in the case of the notification service due to its support of a wide

range of non-functional features. SIENA and SECO, which have been designed in academia,

have been chosen because of their server topology and their organisation and interaction

model respectively.

 CORBA
Event Service

CORBA
Notification Service SIENA SECO

Event Model
Single mediator or

multiple, non-
functionally equivalent

mediators

Single mediator or
multiple, non-

functionally equivalent
mediators

Single or multiple
mediators Implicit

Event Service
Organisation

Single or multiple
distributed, separated

middleware

Single or multiple
distributed, separated

middleware

Single or multiple
distributed, separated

middleware

Distributed, collocated
middleware

Event Service
Interaction Model

Centralised
intermediate or

partitioned, distributed
intermediate

Centralised
intermediate or

partitioned, distributed
intermediate

Centralised
intermediate or

cooperative, distributed
intermediate

No Intermediate,
named (uSECO) or
implicit (mSECO)

Functional Event
Service Features

 Event Propagation
 Model Sporadic push and pull Sporadic push and pull Sporadic push Sporadic push

 Event Type Generic or Typed Typed Typed Typed

 Expressive
 Power N/A Application specific

attributes
Application specific

attributes
Application specific

object

 Event Filter

 Location N/A Producer, consumer,
and intermediate Intermediate Producer and

consumer

 Definition N/A Constraint language Constraint language Programming language

 Implementation N/A String String Object

 Evaluation N/A

 Mechanism N/A Implicit interpreted Implicit interpreted Implicit compiled

 Time N/A Propagation Propagation Propagation

 Expressive
 Power N/A

 Type N/A Predefined Predefined Predefined

 Operator N/A Range Range Range

 Combinator N/A Arbitrary Arbitrary Arbitrary

 Mobility Static Static Static and nomadic
entity Static

 Composite Events Omitted Omitted Omitted Omitted

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 101 -

 CORBA
Event Service

CORBA
Notification Service SIENA SECO

Non-Functional Event
Service Features

 Quality of Service

 Real-time N/A Soft N/A Best Effort

 Priority N/A Multiple N/A No

 Store Occupancy N/A Configurable N/A Implicit

 Reliability N/A
Best effort, reliable

connection or
persistent

N/A
Best effort (uSECO) or

reliable connection
(mSECO)

 Ordering Any Any, fifo, priority or
deadline Any Any

 Security

 Failure Mode

 Entity Partial system failure Partial system failure Partial system failure Partial system failure

 Middleware
Functional partial

system failure or total
system failure

Functional partial
system failure or total

system failure

Geographical partial
system failure or total

system failure
Results in failed entity

 Network Partial system failure Partial system failure Redundant or partial
system failure Partial system failure

Table 3.1. Categorisation of event systems.

3.4 Summary

This chapter presented a taxonomy of distributed event-based programming systems. The

taxonomy identifies a set of fundamental properties of event-based programming systems

and categorises them according to the event model and event service criteria. The event

service is further classified according to its organisation and interaction model, as well as

other functional and non-functional features. These properties are then arranged in a

hierarchical manner starting from the root of the taxonomy, which defines the relationship

between event system, event service and event model. Each of these properties is described

in detail and previously surveyed event systems are used as examples.

We consider the event model property to be the most important of the identified properties

since it classifies the part of an event system that is exposed to the application programmer.

The relative significance of other properties depends on the domain for which a specific event

system has been designed.

We have demonstrated how a taxonomy user may apply the taxonomy to existing event

systems by categorising a number of selected event services, which have been chosen to

cover various properties, according to the taxonomy.

Chapter 3: Taxonomy of Distributed Event-Based Programming Systems

- 102 -

Our taxonomy differs from related work in that it identifies an extensive set of generic event

system properties describing various systems dimensions in detail. The taxonomy considers

functional and non-functional properties, including mobility, security, and quality of service,

and describes the possible options for these properties. As a result, it can be used to classify

virtually any distributed event-based programming system regardless of system scale or

application domain whereas existing work focuses on providing a framework designed for a

specific application area or based on a particular high-level model.

Event systems may evolve together with future advancements in the information technology

industry. Such next-generation event systems may support additional, novel properties in

order to accommodate new application requirements that may result from these advances.

For example, a means for consumers to electronically pay producers for the information they

disseminate may arise as an important feature in future event-based systems. Consequently,

the taxonomy may need to be extended to support such novel properties. The hierarchical

structure on which our taxonomy is based may easily cope with such potential

enhancements. Adding novel properties or refining existing properties is straightforward as

such changes affect a specific part of the taxonomy only and do not require a reorganisation

of the existing hierarchy.

- 103 -

CHAPTER 4: THE STEAM EVENT-BASED
MIDDLEWARE FOR COLLABORATIVE
APPLICATIONS

STEAM is intended for collaborative applications that include a large number of highly mobile

(and stationary) components typically distributed over large geographical areas. This chapter

presents the rationale for the design of STEAM and the key concepts that reflect the

requirements of collaborative applications. We outline the notification model that has been

adopted by STEAM as well as STEAM’s approach to filtering event notifications at both the

consumer and the producer side according to multiple, functional and non-functional

attributes. We then introduce the communications architecture of STEAM before concluding

this chapter by presenting STEAM’s programming interface and discussing several related

issues.

4.1 Proximity-Based Event Notifications

Current approaches to event-based middleware supporting mobility mainly focus on

disseminating event notifications to nomadic application components and fail to address the

requirements of collaborative applications.

The STEAM event-based middleware provides for the spontaneous nature of collaborative

applications by exploiting proximity-based event dissemination. STEAM enables such

applications to define geographical scopes in order to bound event dissemination and to

associate these scopes with the specific locations at which the corresponding event

notifications are relevant.

4.1.1 Event-Based Middleware for Collaborative Applications

Existing research on event-based middleware for mobile computing has essentially

concentrated on handling disconnection on behalf of nomadic application components

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 104 -

migrating between points of connectivity. Relatively little work has been done to

accommodate collaborative application components that come together at a common location

in order to interact.

Accommodating Collaborative Applications

The event-based middleware presented in this thesis supports a style of application in which

collaboration is intrinsic when components are in close proximity. Components that comprise

this style of application are inherently mobile and may move together and apart over time.

Such components characteristically come together at a certain location and communicate

and collaborate and then come together at a different location and collaborate with other

components. Event-based middleware accommodating such collaborative applications must

therefore enable producers to disseminate event notifications to nearby consumers that are

more likely to be interested in event notifications the closer they are located to the publishing

producer. The design of the middleware presented in this thesis provides for the following key

requirements of collaborative applications:

• Ad hoc wireless communication. The middleware should support an event-based

programming model allowing collaborative application components, with significant

variations in speed from stationary to highly mobile, to come together at a certain

location and then to communicate and collaborate through wireless connections using

ad hoc networks.

• Inherently distributed system architecture. The middleware should exclusively use the

same physical machine as the components that comprise the collaborative application

and not rely on the presence of a designated service infrastructure.

• Event notification filtering precision. The middleware should support a range of event

notification filters that may be applied to various attributes of event notifications

including subject, content, and context, such as geographical location. Moreover, it

should allow a subscriber to combine event notification filters in order to describe the

exact subset of event notifications in which it is interested exploiting multiple criteria,

such as meaning, time, location, and quality of service.

• System scalability. A system exploiting event-based middleware for collaborative

applications should be able to easily cope with a large, dynamically changing

population of mobile components distributed over a large geographical area and the

resulting dynamic reconfiguration of the connections between the components.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 105 -

Event-based middleware supporting this collaborative style of application may be used in

various areas including indoor and outdoor smart environments, augmented reality, and

traffic management. For example, such middleware may be used to support augmented

reality games, in which players are interested in the status of game objects or indeed other

players, only when they are within close vicinity [86]. An example scenario from the traffic

management domain might include a crashed car disseminating an accident notification.

Approaching vehicles are interested in receiving these event notifications only when located

near the car.

Exploiting Proximity

STEAM provides for unanticipated interactions among collaborative application components

by allowing event producers to define geographical scopes, called proximities, that bound the

areas in which their event notifications are relevant. Event consumers residing or indeed

entering such areas can dynamically discover these proximities and subsequently establish

logical connections to the associated producers. The connections between the components

residing in a particular proximity are then used by producing components to disseminate their

event notifications, thereby allowing consumers to deliver events at the specific location

where they are valid. This concept of proximity therefore enables migrating components that

have come together at a certain location to spontaneously discover and interact with each

other.

Using Wireless Ad Hoc Communications

Several event services for the mobile computing domain have been proposed, including

JEDI, Elvin4, Mobile Push, and SIENA. Although there are some variations in these

approaches, their respective objectives are essentially to support nomadic application

components that use wireless communications to connect to a fixed infrastructure network.

In principal, collaborative application components may also use infrastructure networks.

However, due to the spontaneous nature of collaborative applications, they often use ad hoc

networks to prevent dependencies on a previously installed service infrastructure. Ad hoc

networks are immediately deployable in arbitrary environments and support communication

without the need for a separate infrastructure. This enables a changing pool of collaborative

components to spontaneously group together anywhere and at any time in order to achieve a

common goal. STEAM therefore focuses especially on accommodating the loosely-coupled,

collaborative application components that use ad hoc networks.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 106 -

4.1.2 Programming Model

STEAM provides a programming model that is based on proximity. Essentially, STEAM’s

programming model enables applications to define geographical scopes and to associate

these scopes with certain event notifications. Such geographical scopes represent a natural

way for mobile components to identify event notifications of interest and to deal with the

geographical dispersion of the system.

Collaborative applications may specify the shapes and the dimensions of their proximities.

Each of these proximities is then associated with event notifications of a specific type and

mapped to the particular geographical area where these event notifications are relevant. This

bounds the areas in which producers disseminate event notifications. Consumers residing

inside such proximities can discover event notifications of interest and may subsequently

deliver them.

Event Notification Scoping

Although the concept of event notification scoping, which has been introduced in ECO, has

also been adopted by Fiege et al. [75], their work uses scopes to provide an abstraction for

encapsulation and reusability in heterogeneous environments rather than as a means to

identify event notifications of interest for mobile components.

Supporting Mobile Applications

STEAM’s programming model provides a fundamentally different approach for supporting

collaborative mobile applications compared to the approaches that have been proposed to

support nomadic mobile applications. These programming models reflect the fact that their

main purpose is to provide mechanisms to (often explicitly) handle disconnection and

reconnection, as well as to cache and synchronise event notifications on behalf of

disconnected mobile components. For example, both JEDI’s and SIENA’s respective

programming models provide moveIn and moveOut operations for nomadic components to

explicitly connect to and disconnect from a point of connectivity. In contrast, STEAM supports

spontaneous interactions between a group of nearby mobile components through the concept

of proximity. Proximities allow mobile components to discover event notifications of interest

using location information rather than by connecting to a service infrastructure and are

therefore suited to support wireless communication using ad hoc networks. Furthermore,

STEAM specifically addresses the needs of mobile applications by extending ECO’s concept

of geographical scopes with a notion of proximity in which areas of interest can be mobile as

well as stationary.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 107 -

4.1.3 Architecture

Architectures of existing event-based middleware for the mobile computing domain reflect the

fact that they were designed to use infrastructure networks. STEAM’s architecture supports

wireless communication utilising the ad hoc network model without the aid of access points or

connections to a conventional fixed network.

Middleware Distribution

Event-based middleware traditionally employs logically centralised or intermediate

components to implement key middleware features and properties, such as event notification

filtering, peer discovery, routing, and non-functional attributes. Such middleware components

are typically hosted by physical machines that are part of a designated service infrastructure

in order to ensure that they are always accessible to application components.

A similar approach has been used by middleware for nomadic applications since designated

middleware components, which typically implement the mechanisms for handling

disconnection, can be hosted naturally by parts of the network infrastructure, for example by

wireless access points as suggested by Huang et al. [6]. This is also illustrated by SIENA and

Elvin4 as both use intermediate proxy components, which are hosted by parts of the service

infrastructure, for managing information on behalf of a moving entity. Likewise, JEDI and CEA

use intermediate components for event notification dispatching that are part of the network

infrastructure.

The architecture of STEAM is inherently distributed and is based on an organisation with

distributed collocated middleware [23]. The STEAM middleware is exclusively collocated with

application components and depends neither on centralised or intermediate components nor

on the presence of a designated service infrastructure.

Middleware Capabilities

STEAM’s inherently distributed architecture implies that every STEAM instance offers

identical capabilities to its application. In other words, every physical machine hosting

STEAM is capable of providing the same service to producers and consumers without

accessing remote components. The design of STEAM facilitates this by supporting various

distributed mechanisms to provide the desired middleware properties. Consequently, STEAM

provides decentralised techniques for peer discovery based on beacons, for routing event

notifications from producers to consumers without the aid of access points using multicast

groups and a distributed addressing scheme, for enforcing non-functional attributes, such as

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 108 -

event notification delivery order and priority, and for event notification filtering based on

combining multiple, producer-side and consumer-side filters.

Event Notification Filtering

Event notifications can not depend on intermediate components applying event notification

filters at a central location. STEAM therefore supports a distributed approach to filtering

allowing event notifications to be filtered at both the producer side and the consumer side.

Supporting event notification filtering on either side enables an application to exploit the

advantages of both approaches. Producer-side filtering is efficient as unwanted event

notifications are discarded close to their sources thereby limiting the use of communication

and computational resources. Consumer-side filtering on the other hand may result in

consumers discarding unwanted event notifications after they have been propagated.

However, applying filters at the consumer side enables filtering on the context of event

notifications, such as the geographical location (of consumers), that simply is not available at

the producer side.

STEAM supports a range of event notification filters that may be applied to a variety of event

notification attributes, including subject, content, and context, and allows combinations of

event notification filters. Significantly, combining event notification filters is beneficial to the

precision of filtering allowing a component to define the subset of event notifications in which

it is interested using multiple criteria, such as meaning, time, location, and quality of service.

4.1.4 Summary

The design of the STEAM middleware, in particular the design of its programming model and

architecture, addresses the requirements of collaborative applications. STEAM’s

programming model is based on the concept of using proximity to bound the dissemination

scope of event notifications. Such proximities represent a natural way for mobile application

components to identify event notifications that are of interest at a certain location and to

establish ad hoc wireless connections to other components residing in a particular proximity.

STEAM’s inherently distributed architecture enables wireless communication utilising the ad

hoc network model as it depends neither on the aid of access points nor on connections to a

conventional fixed network. Furthermore, it avoids designated middleware components that

may become communication bottlenecks with increasing system scale. STEAM’s middleware

capabilities incorporate a range of decentralised mechanisms that have been designed to

accommodate changing populations of mobile application components and consequently,

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 109 -

help to improve the scalability of a system. These mechanisms include a distributed approach

to event notification filtering based on combining multiple, producer-side and consumer-side

filters. Filters may be applied to the subject, content, and context of events and combining

them is beneficial to the precision of event notification filtering.

4.2 The STEAM Event Model

The STEAM event model has been designed to disseminate proximity-based event

notifications to the components that comprise collaborative applications. As illustrated in

Figure 4.1, collaborative applications are often hosted by mobile devices, which may migrate

with significant variations in speed from stationary to highly mobile, and communicate through

wireless connections using ad hoc networks. Collaborative applications that use STEAM can

act either as consumers or as producers of event notifications, or indeed as both.

Ad Hoc
Network

SSTTEEAAMM

Collaborative
Application

Producer

Mobile Device

SSTTEEAAMM

Collaborative
Application

Consumer

Mobile Device

SSTTEEAAMM

Collaborative
Application

Consumer

Mobile Device

SSTTEEAAMM

Collaborative
Application

Pro. & Con.

Mobile Device

Figure 4.1. STEAM event model.

STEAM implements an implicit event model [23] allowing entities to interact using event

types, thereby providing a notion of event-based communication where entities are

anonymous to each other but known by the middleware. Producers publish event notifications

of a specific type and consumers can subscribe to event notifications of particular types.

Producers may publish event notifications of several types and consumers may subscribe to

one or more event types.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 110 -

4.2.1 Supporting Mobility

The STEAM event model supports both stationary and mobile entities and uses proximities

for specifying the geographical scopes in which certain event notifications are relevant.

Figure 4.2 shows that this notion of proximity is defined firstly by the covered area, which is

described as a geometric shape with associated dimensions and a reference point that is

relative to this area, and secondly by a naval location. Proximities may be either stationary or

mobile. The reference point of a stationary proximity is attached to a naval represented by a

fixed point in space whereas the reference point of a mobile proximity is mapped to a moving

naval, which is characteristically represented by the location of a specific mobile producer.

Hence, a mobile proximity moves with the location of the producer to which it has been

attached. For example, a group of vehicles heading in the same direction may cooperate to

form a platoon in order to reduce their consumption of fuel. These vehicles might interact

using a mobile proximity that has been defined by the leading vehicle. Such a proximity might

be attached to a naval represented by the position of the leader thereby moving with its

location.

Proximity = {Area(Shape, Dimensions, Reference Point), Naval}

Figure 4.2. Proximity definition.

Stationary Scopes

Figure 4.3 depicts an application scenario that involves a stationary proximity. PC represents

a producer acting on behalf of a crashed car that is blocking the road. PC disseminates an

accident notification to approaching vehicles to prevent them from driving into the obstacle.

To facilitate this scenario, PC defines a circular shaped proximity and attaches the reference

point at the centre of this area to the naval defined by the location of the accident site. PC

thereby attaches this stationary proximity to the fixed location where the accident occurred

and bounds the scope within which accident events are disseminated. Approaching vehicles

discover this stationary proximity and can receive accident events once they reside inside the

proximity.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 111 -

Accident site

proximity

PC Crashed car producing events

PC

Vehicle interested in accident events

Producer disseminating events to vehicle

Movement of vehicle

Figure 4.3. Stationary proximity.

Mobile Scopes

Figure 4.4 illustrates a further application scenario exploiting a mobile proximity. PA

represents an ambulance rushing to an accident site using a mobile proximity to inform

nearby vehicles of its location in order for them to pull over and yield the right of way.

 Ambulance
proximity

PA Ambulance producing events

PA

Vehicle interested in ambulance events

Producer disseminating events to vehicle

Movement of vehicle or proximity

Figure 4.4. Mobile proximity.

Prior to disseminating events, PA defines a circular shaped proximity and attaches the

reference point at the centre of this area to the naval defined by the actual position of the

ambulance. This causes this mobile proximity to migrate with the ambulance. Vehicles

residing inside the proximity can receive ambulance events and temporarily suspend their

journeys while the ambulance is passing them. These vehicles may resume their travels once

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 112 -

the ambulance and its proximity have left. Vehicles travelling outside the proximity will not

receive these events and may therefore continue their respective journeys regardless.

4.2.2 Proximities

The STEAM event model combines the concepts of exploiting proximity to bound the range

within which event notifications are valid and of using event types to specify the kind of event

notifications producers intend to publish and in which consumers are interested. Producers

specify and then announce the type of event notification they intend to raise together with the

proximity within which events of this type are to be disseminated. Such an announcement

associates a specific event type with a certain proximity and implicitly bounds event

propagation. Announcements allow consumers to discover event types of interest as well as

the proximities that have been associated with them. Consumers can then receive event

notifications if (and only if) they reside inside a proximity in which events of an announced

type are raised.

Defining Proximities

In principal, either a consuming or a producing entity may define a proximity in which events

of a specific type are relevant. Consumers might wish to define proximities that describe their

interest in events published in certain areas depending on their (current) activities. For

example, a migrating consumer might define its scope of interest according to its actual travel

speed. Producers, on the other hand, might wish to define proximities describing the scopes

inside which their event notifications are valid. However, we believe that in many application

scenarios it is the producer that would define proximities, thereby allowing an application to

bound the scope within which specific events are disseminated. A producer may assess its

local conditions, which likely apply to all consumers within its vicinity, and may determine,

based on application requirements and these circumstances, the specific validity of its events

and consequently define an appropriate proximity. For example, a traffic light propagating its

status to approaching vehicles defines its proximity based on the location of the next traffic

light and on the local speed limit. Nevertheless, we admit the possibility of applications in

which consumers might wish to determine their proximities. A vehicle exceeding the local

speed limit, for example a police car on a call, may require a larger scope for receiving a

traffic light’s status compared to “ordinary” vehicles travelling within a given speed limit.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 113 -

Shape and Dimension

Producers are free to define the geometric shape and the dimensions of a proximity

according to the requirements of the application. A proximity may be of arbitrary complex

shape and its dimensions may be determined independently of the producer’s physical radio

transmission range as the underlying transport mechanism uses a multi-hop protocol to route

event messages from producer to consumer.

Complexity vs. Efficiency

The complexity of the shape of a proximity may vary from simple to complex. Such shapes

may range from two dimensional circles, squares, or polygons to three dimensional spheres,

cubes, or cylinders. However, the more complex the shape of a proximity is the more

demanding it will be to determine whether an entity resides within its boundaries. Hence,

applications have to consider the trade off between using a complex shape that describes an

area of interest exactly and a simpler shape that approximates an area for which membership

can be determined more efficiently.

Location

Proximities may be defined as nested and overlapping areas. Nesting allows a large

proximity to contain a set of smaller proximities subdividing the large area. Figure 4.5 depicts

two overlapping proximities of different shape and illustrates that multiple consuming and

producing entities may reside inside a certain proximity. These proximities have been

associated with events of type A and type B respectively. Consequently, consumers handling

these types receive events if they reside inside the appropriate proximity. Note that entities

located inside these areas handling other event types will not affect the propagation of these

events, assuming sufficient communication and computational resources are available.

Furthermore, since proximities may be mobile, their relationship, in terms of nesting and

overlapping, may change over time.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 114 -

Producer generating events of type X

Consumer interested in events of type X

CX

CA

PA PB

Proximity 1 (event type A)
Proximity 2

(event type B)

CB

PX

PX

PX

CB

CA,B

CA,BCA,B

CA,B
CX

CX

Producer disseminating events to consumer

Figure 4.5. Disseminating event notifications using overlapping proximities.

An example of overlapping stationary proximities might include a car disseminating an

accident notification within the vicinity of a traffic light that propagates its status to

approaching vehicles. An ambulance propagating a warning while travelling through the

scope of the traffic light might serve as an example of a mobile proximity temporarily

overlapping with a stationary proximity.

4.2.3 Event Types

The types of STEAM events provide an explicit and expressive data structure into which

event data can be mapped. Producers must define the event types that appropriately

describe their event data prior to disseminating event notifications of these types. Consumers

must subscribe to event types in order to have the middleware deliver subsequent event

notifications to them if they are located inside any proximity where event notifications of this

type are raised until they unsubscribe.

Subscriptions are Persistent

A consumer may move from one proximity to another without re-issuing its subscriptions.

Thus, subscriptions are persistent and will be applied transparently by the middleware every

time a subscriber enters a new proximity. This implies that a subscription to a specific event

type applies to all proximities handling these events even though the subscriber may only

receive a subset of these events at any time. A single subscription may result in events of a

particular event type raised by different producers in multiple proximities being delivered.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 115 -

Hence, the set of events received by a subscriber at a given time depends on its migration as

well as on the movements of producers and proximities.

Fire engine
proximity

PF Fire engine producing events of type F

PF

Vehicle subscribed to events of type F

Fire engine
proximity

PF

Producer disseminating events to vehicle

Movement of vehicle or proximity

Figure 4.6. Moving between proximities.

The example of Figure 4.6 shows two fire engines disseminating events of the same type

within their respective proximities. These events advise vehicles in a fire engine’s vicinity to

stop and yield the right of way. A vehicle passing through either or both of these proximities

will receive these events without having to re-issue its subscription.

Subject-Based vs. Content-Based Event Notifications

Event-based communication models often support a subscription mechanism that is based

either on the subject or the content of an event notification. The STEAM event model

supports an approach that enables consumers to subscribe to the subject and the content of

an event, thereby allowing applications to combine the ease of use of the subject-based

approach with the expressiveness of content-based mechanisms.

Defining Event Types in STEAM

Applications define event types to specify the functional and non-functional attributes of the

events they intend to disseminate. Figure 4.7 illustrates that a STEAM event type consists of

subject and content representing its functional attributes, as well as of a self-describing

attribute list representing its non-functional attributes. The subject defines the name of a

specific event type and the content defines the names and types of a set of associated

parameters. Non-functional attributes are self-describing in that they outline their respective

objective and provide a value to quantify this objective. These attributes describe the non-

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 116 -

functional properties of events, such as their context, dissemination semantics, and their

quality of service requirements.

content_name_type = {(par_name1, par_type1), (par_name2, par_type2), ..}

STEAM event type = {subject, content_name_type, attribute1, attribute2, ..}

content_value = {par_value1, par_value2, ..}

STEAM event instance = {subject, content_value, attribute1, attribute2, ..}

Figure 4.7. STEAM event type and instance definition.

Figure 4.7 also outlines that a STEAM event instance is defined in a similar manner by

specifying a subject, values for the corresponding content parameters, and an attribute list

that applies to a particular event instance rather than to an event type.

Definition Language

Producers and consumers must use a common vocabulary defined by the application to

agree on the name of an event type. As illustrated by CEA, event models may define a

specific language for defining event types similar to CORBA’s interface definition language.

Such languages can be used to pre-process the event types defined by a system and to

verify type compatibility.

Functional Attribute Value Type

Subject Subject String

Content Name Parameter Name String

Content Type
Parameter Type String,
Integer, Floating Point,

Location Coordinates, Time

Table 4.1. Defining functional attributes.

STEAM exploits an event type system based on a meta definition language that does not

require pre-processing and thus better suits the dynamic nature of collaborative applications.

This language enables applications to define event types using the set of functional and non-

functional attributes summarised in Table 4.1 and Table 4.2 respectively. Subjects and

content names can be defined using character strings while content types can be selected

from a predefined set of parameter types. The available non-functional attributes define the

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 117 -

quality of service requirements of event types as well as the routing requirements and the

location and time context of event notifications. Associating a proximity with an event type

results in defining the scope to which a set of functional and non-functional attributes applies.

Hence, this bounds the dissemination scope of event notifications and specifies a quality of

service zone that describes the non-functional requirements of certain events.

Non-Functional Attribute Value Type / Range

Event Notification Class NRT, SRT, HRT

SRT/HRT Deadline Time

NRT Expiration Time Time

NRT Delivery Order Unordered, FIFO, Causal, Total

Persistence Level Integer

Message Type Single-Hop, Multi-Hop

Producer Location Location Coordinates

Forwarder Location Location Coordinates

Publication Time Time

Table 4.2. Defining non-functional attributes.

Quality of Service. The quality of service requirements of an event type can be defined using

a combination of attributes that classify the timeliness requirements of event notifications as

either hard, soft, or best effort. Hence, an event type and its events can be classified as Hard

Real Time (HRT), Soft Real Time (SRT), or Non Real Time (NRT). HRT and SRT classes

require an additional attribute defining the actual delivery deadline of event notifications while

NRT event types allow applications to define optional attributes describing a time for

discarding expired event notifications and an explicit delivery order. HRT and SRT event

types do not define an explicit delivery order as this would contradict the implicit delivery

order described by delivery deadlines. Applications select appropriate deadlines for their

events according to their requirements and depending on the dimensions of their proximities.

The class of an event type also implies its reliability guarantees. HRT and SRT events are

delivered according to an exactly once semantics whereas NRT event delivery is best effort.

The mechanisms for enforcing event classes are likely to be affected by the dynamic nature

of the mobile computing environment for which STEAM has been designed. Attributes that

impose the quality of a service depend on the resources made available from the underlying

network, which may change with entity and indeed proximity migration. A technique for

achieving timeliness and reliability for real-time event-based communication in ad hoc

wireless networks has been proposed by Hughes and Cahill [87]. Their conceptual model is

the first to directly address the issue of achieving timeliness and reliability in dynamic

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 118 -

networks and essentially relies on predictive techniques to alleviate the impediments to real-

time event-based communication that are characteristic of mobile ad hoc environments. This

model essentially allows the non-functional requirements of an event type to be mapped to

the quality of service zone that is defined by the associated proximity. A proactive technique

for reserving the required network resources based on predictions on the future behavior of

mobile entities and indeed proximities is used to route messages from a producer to

consumers with a high probability. Providing strong guarantees in large scale, mobile

computing systems is usually more expensive than supporting a weaker quality of service

while weaker guarantees often support higher performance. Applications need to consider

this trade off when defining the classes of their event types.

Delivery semantics. The semantics of the delivery order of NRT event types can be

characterised as either unordered, FIFO ordered, causally ordered, or totally ordered [69].

Unordered event notifications, which is the default ordering semantics, may be received by

any subscriber in any order. Two FIFO ordered event notifications that are raised by the

same producer are delivered by consumers with matching subscriptions in the same order

they were raised. Causally ordered events are delivered in the order they were published

while totally ordered events are delivered in the same order by all subscribers but not

necessarily in the order they were raised. Causal and total ordering therefore affect event

delivery when consumers receive event notifications from multiple producers, for example

when consumers are members of overlapping or nested proximities. Members of such groups

are required to cooperate in order to deliver their events in the correct order.

Persistence. The attribute describing the persistence level of an event type defines the

maximum number of event notifications that producers cache on behalf of temporarily

unavailable consumers. Maintaining a large number of cached event notifications may require

substantial computational resources, which may be scarce on certain mobile devices, and

thus, the default persistence level is zero indicating that no events are stored. In many

application scenarios it often suffices to accurately describe the state of a producer by

buffering the most recently disseminated event. For example, a traffic light disseminating its

status can describe its current state by storing the latest event as previous light changes

have become obsolete. Similarly, an ambulance propagating approach warnings might only

store the event comprising its latest location.

Routing Strategy. The message type attribute allows applications to select an appropriate

routing strategy. Depending on the dimensions of a proximity and the radio range of the

available wireless transmitter event notifications can be disseminated using either single-hop

or multi-hop messages.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 119 -

Context. Location-based and time-based attributes describe the context of individual event

notifications. Such context information can be exploited at application level and geographical

location context represents the key enabling information required for supporting the concept

of using proximity to bound event dissemination.

Conflicting Attributes

These attributes are not all orthogonal to each other. Attributes defined by different event

types might contradict each other in the presence of overlapping and nested proximities for

instance, when defining distinct quality of service requirements or ordering semantics.

Moreover, attributes may compete for shared communication and computational resources.

In cases where attributes describing quality of service requirements or ordering semantics

conflict, the attributes defining the stronger semantics take precedence. Figure 4.8 illustrates

the dependencies between such non-functional attributes outlining their precedence from left

to right. For example, HRT event type classes are prioritised over SRT classes, which

precede NRT event types.

Event Type Class

HRT SRT NRT

Causal Order FIFO Order Any Order Total Order

Figure 4.8. Dependencies between non-functional attributes.

Type Safety

Explicitly defining the type of event notifications enables the middleware to use this

information when marshalling event notifications for transmission. In particular, the provided

name and type information is essential for unmarshalling serialised event notifications. This

approach also enables middleware to provide some notion of type safety for its event

notifications without relying on a pre-processor. Type information defined using the meta

language can be used to verify that the structure of individual event notifications conforms to

their respective event types. Such type checks can be performed at run time, for example

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 120 -

when event notifications are instantiated by producers. The structure of event notifications is

verified to be consistent with its event type according to the following rules:

• The subject of the event notification is identical to the subject defined by the event

type.

• The number of the values describing functional attributes is equal to the number of

event type parameters and the type of each of these values conforms to the type of its

parameter.

• The number of the values describing non-functional attributes equals the number of the

subset of non-functional event type attributes that require values from the application

and these values match the type of their respective attribute.

Event notifications that do not match these rules are returned to the producer without being

disseminated. Verifying the type of event notifications prior to their propagation causes

additional computation overhead for producers but allows consumers to receive events that

are consistent with their event types (assuming that they have been transmitted correctly).

This prevents consumers from having to validate their respective copies of event notifications

at the application level. However, this does not prevent applications from defining conflicting

event types with identical subject and different sets of functional and non-functional attributes.

Applications must use a common policy when defining the names of event types in order to

avert such type inconsistencies.

Attributes and Filters

Many of the non-functional attributes that express the semantics of event types are often

applied at a different (lower) middleware layer than event filters. As a result, system

resources might be used to enforce a certain semantics, for example in terms of timeliness or

ordering, on event notifications that may subsequently be discarded by a filter.

Classification of Attributes

STEAM event types allow applications to associate attributes either to an event type or to a

specific event instance. Such attributes apply to either a group of event notifications, i.e., to

event notifications of the same type, or to an individual event notification. As summarised in

Table 4.3, attributes can be categorised according to the level to which they apply and the

means by which they are specified. The values of attributes that are type specific, such as the

subject, the quality of service class, and the delivery semantics of event notifications, are

specified by applications when defining their event types. Attributes that apply to specific

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 121 -

event notification instances can be further subdivided depending on whether their values are

provided explicitly or implicitly. The values of attributes describing delivery deadlines and

expiration times must be explicitly specified by the application together with subject and

content when raising a particular event notification. The subject identifies the event type of an

individual event notification and hence, must be provided by both event type and event

notification. The values of attributes that describe the context of specific event notifications

can be provided implicitly by the middleware. For example, actual values describing the

geographical location of the producer or the time at which an event notification is published

are assigned by STEAM, thereby simplifying the programming model exposed to an

application.

Category Applied To Specified By Attribute

Event type Event type Application

Subject,
Event Notification Class,

NRT Delivery Order,
Persistence Level,

Message Type

Explicit event instance Event instance Application

Subject,
Content,

SRT/HRT Deadline,
NRT Expiration Time

Implicit event instance Event instance Middleware
Producer Location,
Forwarder Location,

Publication Time

Table 4.3. Classification of attributes.

STEAM Event Type Example

The example of Figure 4.9 shows an event type and an event instance of a traffic light

publishing its status, which serves to further illustrate the concept of using event types (and

attributes) in STEAM. The event type contains a subject “Traffic Light” and a set of two

content parameters describing the light status and the occurrence of the light change as

name and type pairs. The event type also comprises a set of attributes describing its non-

functional requirements. The first three non-functional attributes are event type specific and

define the notification class, the delivery semantics, and the type of message used for

disseminating event notifications. The remaining non-functional attribute relates to a

particular event instance and describes its producer location.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 122 -

TL_content = {(“Light Status”, String), (“Occurrence”, Time)}

Traffic Light event type = {“Traffic Light”, TL_content,

 Event Notification Class = NRT, Delivery Order = FIFO,

 Message Type = Single-Hop, Producer Location}

TL_content = {“Green”, Mon Aug 25 12:25:46 2003}

Traffic Light event instance = {“Traffic Light”, TL_content,

 Producer Location = (5320.0N, 615.0W)}

Figure 4.9. Traffic light event type and event instance example.

An event instance raised by the traffic light consequently contains the subject and parameter

values that correspond to the previously defined parameter types. The event instance specific

non-functional attribute provides coordinates describing the location of the traffic light. Note

that the value of this location attribute is implicitly provided by the event service.

4.3 Event Notification Filtering in STEAM

An event system may consist of a potentially large number of producers, all of which produce

events that may contain different information. As a result, the number of events propagated in

an event-based system may be very large. However, a particular consumer may only be

interested in a subset of the events propagated in the system. Event filters provide a means

to control the propagation of events. Ideally, filters enable a particular consumer to receive

only the exact set of events in which it is interested. Events are matched against the filters

and are only delivered to consumers that are interested in them, i.e., for which the matching

produced a positive result.

4.3.1 Exploiting Distributed Event Notification Filters

The STEAM event model supports a distributed approach to filtering that allows an

application to define event notification filters at both the producer and the consumer side.

Filters may be matched explicitly at either the producer or the consumer side or may be

evaluated implicitly. Furthermore, they may be applied to a range of functional and non-

functional attributes associated with an event notification, regardless of whether these

attributes have been specified at event type or at event instance level.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 123 -

Filtering on Functional Attributes

Filters can be applied to the functional attributes of an event notification, namely to its subject

and content. A consumer can therefore specify the type of the event notifications in which it is

interested and may define content predicates for selecting a subset of these event

notifications.

Filtering on Non-Functional Attributes

In addition to supporting event notification filtering on functional attributes, the STEAM event

model supports filtering on the non-functional attributes that can be associated with event

notifications. Such filters may be applied to a variety of non-functional attributes ranging from

context, such as geographical location, to temporal validity and the quality of service

available from the network. Filtering on geographical location serves as the basis for

proximity-based event notification dissemination. Applications may associate a proximity with

a certain event type, which can then act as an implicit event filter using location information to

determine whether or not to deliver an event notification to a particular consumer. Attributes

describing the temporal validity of event notifications can be used to implicitly filter expired

events, whereas quality of service attributes may be used to filter event notifications

according to their timeliness requirements. Such quality of service attributes may filter some

events in order to enable the timely delivery of other event notifications according to their

precedence.

Filtering Precision

The STEAM event model allows an application to specify multiple event notification filters,

each of which may apply to a different attribute of a specific event notification. In other words,

several event notification filters may be combined and event notifications are only delivered to

consumers for which all filters match. Combining filters is beneficial to the precision of filtering

allowing a subscriber to define the subset of event notifications in which it is interested using

multiple criteria, including not only the meaning of an event notification, but also criteria such

as time and geographical location.

Distributing the Filtering Load

Event notification filtering at both the consumer and the producer side implies that a relatively

small number of filters is applied on a specific physical machine compared to traditional

approaches in which an arbitrarily large number of filters is evaluated sequentially on a single

machine hosting a mediator or a producer. Distributed event notification filtering allows

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 124 -

mobile devices to concurrently evaluate the filters that apply to a particular event. The

computational load of filter matching can therefore be distributed between several mobile

devices, which typically have limited computational resources.

Supporting Mobility

Event notification filtering based on subject and geographical context enhances the ability of

a system to accommodate the dynamically changing population of mobile entities by dividing

the system into bounded geographical scopes. A moving entity affects only the configuration

of the scope inside which it resides. An entity entering a scope causes other entities in the

same area to reconfigure, i.e., to update routing and subscription information, without

affecting entities residing outside the area. Consequently, exploiting proximity bounds the

propagation range of event notifications and of event notification filters. In particular, such

proximities limit the forwarding of event notifications and filters to a confined geographical

area.

4.3.2 Applying Distributed Event Notification Filters

The STEAM event model allows applications to define event notification filters that can be

applied to the subject, the content, and the geographical location of individual event

notifications.

Essential Filters

STEAM supports three essential event notification filters, namely subject, content, and

proximity filters. These filters may be combined and a particular event is only delivered to a

consumer if all filters match. Subject filters match the subject of events allowing a consumer

to specify the event type in which it is interested. Content filters contain a filter expression

that can be matched against the values of the parameters of an event. Content filters are

specified using filter expressions describing the constraints of a specific consumer. These

filter expressions can contain equality, magnitude, and range operators as well as ordering

relations. They may include variable, consumer local information, such as the consumer’s

geographical location. Proximity filters are the location filters that define the geographical

scope within which event notifications of a specific event type are relevant. These three filters

allow consumers to specify the set of event notifications in which they are interested using

the meaning and the geographical location criteria.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 125 -

Matching Filters

Producers and consumers implicitly specify their subject filters by subscribing to or

announcing event types. In addition, consumers may define content filters when subscribing

to event types. Similarly, producers may define proximity filters when announcing their event

types. Consumers obtain the proximity filter of a specific scope when discovering a proximity

associated with one of their event types. Figure 4.10 illustrates that both producers and

consumers may implicitly apply subject and proximity filter pairs to determine whether their

current location is within the geographical scope of a particular event type. As a result, events

are only delivered to a consumer if both subject filter and proximity filter match. The

consumer subsequently matches a received event notification against its content filter to

determine whether or not to deliver it to the application.

C

P Producer

Consumer
SSTTEEAAMM

Ad Hoc Network

SF Subject Filter
CF

SF

PF

Filter
Engine

Collaborative Application

C

CF Content Filter

PF Proximity Filter

SSTTEEAAMM

PF

SF

Filter
Engine

Collaborative Application

P

Figure 4.10. Matching distributed event notification filters.

Applying distributed event filters to functional attributes allows a system to combine the

advantages of both subject filters and content filters. Subject filters allow efficient event

matching, as a simple, subject-based table lookup algorithm can be used to evaluate them.

Content filters are expressive filters that can be matched against the parameter values of

event notifications. Applying content filters on the consumer side prevents consumers from

having to pass content filters to producers when subscribing. This implies that content filters

are not forwarded to producers when a consumer changes its location from one scope to

another and results in a simple, scalable approach to maintaining subscriptions and content

filters.

Maintaining Filters

The traditional approach of applying event filters on the producer side or on intermediate

middleware components results in matching an arbitrarily large number of filters on a single

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 126 -

machine. The number of filters depends on the number of subscribers as every one of an

arbitrarily large number of subscribers may provide a different filter. Hence, it will be difficult

to implement an efficient algorithm for retrieving and matching filters. In contrast, distributed

event filtering causes a relatively small, subscriber independent number of filters being

matched on each individual physical machine. Both content filter and proximity filter can be

retrieved using the event subject as the key for a simple table lookup algorithm, which results

in a constant retrieval time. We expect the number of filters to be retrieved on a specific

machine to be relatively small. The retrieved proximity filters represent the scopes inside

which an entity is currently located while the retrieved content filters represent the

subscriptions to a particular subject on a single machine. Most likely, there will be a single

proximity filter and a single content filter to be matched for each even type.

4.3.3 Defining Distributed Event Notification Filters

Producers may define subject filters and proximity filters when announcing the event types

they intend to disseminate while consumers define their subject filters and content filters

when subscribing to these event types. The remainder of this section outlines the concept of

entities defining their respective event notification filters by presenting event notification filter

examples that might be applied to event notifications describing the status of a “Flag” object

in an augmented reality game. Such an object may represent a bonus of some kind that can

be collected by players participating in the game. The content of event notifications published

by “Flag” objects, which is shown in Figure 4.11, may describe name and type of the

parameters that refer to the type and the location of the flag as well as to the bonus value it

currently represents.

subject = {“Game Flag”}

content = {(“Flag Type”, String), (“Flag Position”, Location), (“Flag Value”, Integer)}

Figure 4.11. Example of the subject and content of an event notification.

Subject Filter

Both producers and consumers define their subject filters simply by stating the subject of the

event type of interest. As illustrated in Figure 4.12, the subject filter in our example refers to

the event type that describes the status of the “Flag” object.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 127 -

subjectFilter = {“Game Flag”}

Figure 4.12. Defining a subject filter.

Content Filter

Content filters may consist of an arbitrary number of self-describing filter terms. As shown in

Figure 4.13, each term specifies the parameter to which the term applies along with an

operator and a value representing the second operand. These filter terms are matched

against the relevant parameters of an event notification either in a conjunctive or a disjunctive

manner, thus defining whether all or at least one of the terms that comprise a filter must be

true for the filter to match.

Filter Term = {Parameter Name, Operator, Value}

Figure 4.13. Filter term definition.

The example in Figure 4.14 depicts a conjunctive content filter comprising four filter terms.

The first of these terms matches a specific type of flag while the combination of the third term

and the fourth term matches a certain value range. The second term demonstrates that

content filters may contain filter expressions that can be applied to parameter values

describing a geographical location. Such a filter expression implicitly uses the actual location

of the consumer receiving the event notification when evaluating the filter expression.

Location-aware applications may use such a filter expression in order to determine whether

the consumer that defines the content filter is moving towards or indeed away from the

location stated by an event notification parameter.

contentFilter = conjunctive{ (“Flag Type” == “Blue”),

 (“Flag Position” DISTANCE_DECREASES),

 (“Flag Value” >= 50),

 (“Flag Value” <= 100)}

Figure 4.14. Defining a conjunctive content filter.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 128 -

Proximity Filter

Proximity filters specify the shape, dimensions, and reference point of a geographical area as

well as the location of the naval to which the shape is mapped. The naval may be either

stationary or mobile, thus referring to a fixed point in space or to the position of a moving

entity. The example in Figure 4.15 shows a filter for a circular shaped proximity whose

reference point is implicitly defined as the centre of the shape. The naval location of this

stationary proximity is described using absolute latitude and longitude coordinates. Event

notification filters defining mobile proximities use a reference to the service providing the

actual location of a mobile device instead, thereby mapping the proximity shape to a moving

naval.

shape = circle(radius)

navalLocation = location(latitude, longitude)

proximityFilter = stationary{shape, navalLocation}

Figure 4.15. Defining a stationary proximity filter.

4.4 Communications Architecture

The design of the STEAM communications architecture is motivated by our approach of

bounding the scope within which certain information is valid and by the characteristics of the

underlying wireless ad hoc network. We employ a transport mechanism that combines the

concepts of proximity and group communication and use a multicast protocol to route

messages between producers and consumers.

4.4.1 Exploiting Proximity Groups

Classical group communication [69, 88, 89] provides a one-to-many or many-to-many

communication pattern typically based on a reliable multicast protocol that allows a member

of a group to send messages to all members of that group. This communication pattern can

be used by producers to propagate event notifications to a group of consumers exploiting the

delivery semantics associated with the group. Group communication has therefore been

recognised as a natural means to support event-based communication models [7, 90].

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 129 -

An extension to classical process groups, called proximity groups [91, 92], has been

identified as a useful communication paradigm for mobile applications, especially those using

wireless local area networks [7, 91]. Proximity groups allow potentially mobile application

components to join a proximity group of interest and subsequently interact with its members

once they are within the same geographical area. In contrast, existing research in this area

has focussed on mechanisms in which membership is solely (and implicitly) based on the

position of application components. Components using routing protocols for group

communication based on geocast [93] automatically become a member of a geocast group

once located in the associated geographical area. Similarly, the communication groups for ad

hoc networks proposed by Roman et al. [94] rely solely on location information to determine

whether an application component is admitted to or eliminated from a group.

Functional and Geographical Aspects

Significantly, this notion of proximity groups defines membership by both functional and

geographical aspects. The functional aspect, i.e., the name of the group, represents the

common interest of group members based on the information that is propagated among

them. The geographical aspect, i.e., the geographical area, outlines the scope within which

the information is valid. In order to apply for proximity group membership, an application

component must firstly be interested in the group and secondly be located in the

geographical area that corresponds to the group. In contrast, classical group communication

defines groups solely by their functional aspect.

STEAM exploits proximity-based group communication as the underlying means for entities

to interact. Application components must therefore identify both the functional and the

geographical aspect that specifies a proximity group when applying for group membership

[91, 92]. The functional aspect represents the common interest of producers and consumers

based on the type of information that is propagated among them and the geographical aspect

outlines the scope within which the information is valid, i.e., the area within which the

corresponding event notifications are propagated. Hence, STEAM maps the subject of an

event type to the functional aspect and the associated proximity to the geographical aspect of

proximity groups.

Absolute and Relative Proximity Groups

A proximity group can be distinguished as either absolute or relative. The geographical area

associated with an absolute proximity group is geographically fixed whereas the geographical

area associated with a relative proximity group is relative to a moving point in space, most

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 130 -

likely one of the proximity group's mobile members. This notion of absolute and relative

proximity groups is orthogonal to the functional and geographical aspect of a group and

serves as the basis for the concept of exploiting stationary and mobile scopes on which

STEAM’s programming model is based.

Message Delivery and Membership Management

Similar to traditional group communication, proximity-based group communication provides a

means for a group member to disseminate messages to the other members of the proximity

group. Proximity groups include a form of membership management that enables them to

identify the sets of members to which individual messages are sent. Messages are delivered

according to a certain group specific semantics for example, in terms of reliability, timeliness,

and ordering. Message delivery is synchronised and as a result, proximity groups buffer

messages until their applications are ready to process them.

4.4.2 Locating Proximity Groups

The STEAM event model comprises a distributed mechanism for locating entities that wish to

interact rather than relying on a traditional, centralised approach based on exploiting a

naming service. This discovery mechanism, which is called the proximity discovery service, is

an integral part of STEAM and consequently, runs on every physical machine that hosts a

STEAM instance regardless of whether the local entities act either as producers or as

consumers, or indeed as both.

Announcing Proximity Groups

The proximity discovery service uses beacons to periodically announce relevant proximities

(and the associated event types) on behalf of its producers. The discovery service announces

the event type and proximity pairs that have been defined by its producers within the scope of

the respective proximity. This implies that the location at which these announcements are

disseminated can change when the device hosting a proximity discovery service migrates

and that the set of adjacent devices is likely to change as well. Whether or not other

stationary or mobile devices forward such announcements for them to reach a larger number

of entities depends on their dissemination policy. Such a policy might be influenced by the

enthusiasm of entities to provide communication and computational resources for forwarding

announcements in which they may not be interested themselves.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 131 -

Discovering Proximity Groups

The proximity discovery service enables its consumers to discover the announcements that

are relevant at their current location. Mobile (and stationary) consumers discover proximities

of interest and the associated event notifications will subsequently be delivered to

subscribers that are located inside the proximity. Significantly, the proximity discovery service

exploits the announcement concept to support mobility and to enable entities to discover

proximities rather than other entities, thereby allowing them to establish communication

relationships that feature a notion of anonymity in which entities are anonymous to each other

but known by the middleware.

The Discovery Algorithm

The proximity discovery service hosted by either a stationary or a mobile device allows its

entities to announce and discover relevant proximities and their event types according to the

following discovery algorithm:

• Initially, a proximity discovery service recognises the proximities that its producers

have defined.

• A proximity discovery service maintains a list describing all proximities inside which it is

currently located. A specific proximity description is discarded when the hosting mobile

device leaves the geographical area associated with this proximity description.

• A proximity discovery service periodically broadcasts messages announcing the

proximities defined by its producers within a certain discovery area relative to its

current location and the respective proximity scope. The broadcast period and the

discovery area are application specific and hence, can be configured for each

individual proximity discovery service.

• A proximity discovery service receiving a proximity announcement adds a proximity

description to its own list if it is currently located inside the associated geographical

area.

4.4.3 Mapping to Proximity Groups

The geographical scopes that can be specified by an application need to be mapped onto the

underlying proximity groups. Producers map the proximities they announce to specific

proximity groups, which they subsequently join in order to publish their event notifications.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 132 -

Consumers discover proximities and then map proximities that have been associated with

event types to which they have subscribed to proximity groups. Consequently, consumers

join a proximity group of interest once they enter the associated geographical scope and

leave the proximity group upon departure from the scope.

Addressing Scheme

There are two essential issues that need to be addressed when mapping announcements

and subscriptions to proximity groups. Firstly, an addressing scheme for uniquely identifying

groups is required and secondly, a means for consuming and producing entities to obtain the

correct group identifiers needs to be provided. An approach to addressing these issues,

based on statically generating a fixed number of unique and well-known group identifiers, has

been described by Orvalho et al. [32]. Another approach might involve using a centralised

lookup service for generating and retrieving group identifiers. However, neither of these

approaches suffices for applications that accommodate a dynamically changing number of

communication groups and depend on an inherently distributed architecture.

The STEAM event model exploits a decentralised addressing scheme in which identifiers

representing groups can be computed from event type and proximity pairs. Each combination

of event type subject and proximity (shape, dimensions, reference point, and naval location)

is considered to be unique throughout a system assuming that there is no justification for

applications to define multiple identical subject and proximity pairs for handling different

events. A textual description of such a pair is used as stimulus for a hashing algorithm to

dynamically generate hash keys that represent identifiers using node local rather than global

knowledge. Upon discovery of a proximity and the associated event type, producing and

consuming entities compute the corresponding group identifier if the subject is of interest.

This scheme allows entities to subsequently use these identifiers to join groups in which

relevant event notifications are disseminated. Moreover, it prevents entities that are not

interested in certain event notifications from joining irrelevant groups and consequently, from

receiving unwanted event notifications even though they might reside inside the proximity

associated with a group. We have validated this concept of using node local knowledge to

dynamically generate multicast group identifiers as part of our work on the mSECO extension

[14] to the ECO event model.

Proximity Group Semantics

The STEAM event model exploits the message delivery semantics associated with proximity

groups in order to provide end-to-end guarantees when delivering event notifications.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 133 -

Proximity group semantics therefore not only serve as the basis for the semantics of the

event service but also influences the set of non-functional attributes that might be supported.

In order to provide strong guarantees in terms of event notification delivery reliability and

timeliness, STEAM has been designed to use proximity groups that are based on a light-

weight, location-aware, atomic multicast protocol for Time-Bounded Medium Access Control

(TBMAC) [95]. The TBMAC protocol is based on time-division multiple access with dynamic

but predictable slot allocation and has been designed for use in multi-hop ad hoc networks. It

provides, with high probability, time-bounded access to the wireless medium for applications

with guaranteed response time requirements. Nevertheless, STEAM might use a version of

proximity groups that provides a weaker semantics and hence, imposes smaller

computational overhead when accommodating applications that do not require strong end-to-

end guarantees. A proximity group version providing a best-effort semantics might be based

on IP multicast.

4.4.4 Mapping to Ad Hoc Networks

STEAM allows entities to define geographical scopes independently of the physical

transmission range of their wireless radio transmitters. This implies that STEAM must support

multi-hop event dissemination for scenarios in which proximity exceeds the radio

transmission range of the sender.

Single-Hop Event Dissemination

Figure 4.16 outlines a single-hop event propagation scenario where the radio transmission

range of the sender covers the entire scope of the proximity.

Proximity

N

S Sender

Non group member

Receiver, proximity group member R

Message delivery

Radio transmission range

N

N

N

S

R
R

R

N

Figure 4.16. Single-hop event dissemination.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 134 -

Event messages are propagated within this radio transmission range and travel exactly one

hop in order to reach all potentially interested nodes. Proximity group members recognise the

group identifier of the event messages that are relevant to them and may subsequently

deliver these events. Nodes that are not members of such a proximity group ignore these

event messages.

Multi-Hop Event Dissemination

Figure 4.17 shows a multi-hop event propagation scenario in which the proximity exceeds the

radio transmission range of the sender. Proximity group member nodes must forward event

messages for them to reach other members of the group. Similar to single-hop event

dissemination, group members recognise the group identifier of relevant event messages and

may subsequently deliver these events. However, group members also forward relevant

event messages, thereby expanding their dissemination range. The maximum number of

hops such event messages may travel to reach any member of the group is bounded by the

proximity. Non group member nodes ignore these event messages and consequently do not

forward them. Multi-hop event dissemination generally increases the range within which

event messages can be propagated but characteristically imposes additional transmission

latency compared to single-hop transmissions.

Proximity

S

R

R

N

N

R

N

Figure 4.17. Multi-hop event dissemination.

Coverage

Coverage can be defined as the geographical area to which a particular sender can send

messages using either single-hop or multi-hop communication. A proximity is said to be

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 135 -

covered if the associated set of member nodes is a subset of the nodes to which event

messages can be propagated. Network partitions may occur in cases where an area defined

by a proximity is not covered by a specific sender. They may therefore occur in the kind of

multi-hop scenario illustrated in Figure 4.18, but not in single-hop scenarios where the radio

transmission range covers the whole proximity.

Techniques for preventing message loss due to coverage limitations must firstly anticipate a

network partition. Such partition anticipation can be based on a means for detecting link

failure between individual components in ad hoc networks [96-98] or on an approach that

assesses the quality of wireless connections to predict their future level of connectivity [99].

Consumers that are able to anticipate network partitions can then employ a means to recover

missed event notifications once they re-establish their connections to the members of a

group. Such consumers recover missed events by requesting a retransmission of previously

sent events. A producer may forward the event notifications it has cached according to its

persistence level to these consumers, thereby retransmitting the events that describe its

current state. Producers must retransmit these events without compromising the consistency

of concurrently raised event notifications.

Proximity

S

R

R

N

N

R

RP

RP Partitioned receiver

Message delivery prevented due to network partition

N

Figure 4.18. Network partitions in multi-hop event dissemination.

4.4.5 Routing Event Notifications

The concept of bounding the propagation scope of event notifications can also be exploited

when routing event messages from producers to consumers in order to optimise the

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 136 -

propagation of specific events. STEAM uses a producer’s geographical location and radio

transmission range in conjunction with the proximity in which specific event notifications are

to be published to transparently determine whether to use single-hop or multi-hop messages.

STEAM therefore supports both single-hop and multi-hop event dissemination and typically

uses cost efficient single-hop messages for publishing event notifications in proximities that

are likely to be covered by a producer’s wireless transmission range and employs multi-hop

messages only when transmitting event notifications beyond this range.

4.5 Interface Functions

The STEAM event model provides interface functions that differ from the interfaces of other

event models in that they reflect STEAM’s proximity-based programming model and its

distributed approach to event notification filtering.

4.5.1 Delivering Event Notifications

STEAM requires consumer applications to implement event delivery handlers and

subsequently to register these handlers when subscribing. This approach enables consumers

to potentially register a specific delivery handler with each of their subscriptions. Depending

on their requirements, applications may therefore provide either a delivery handler for an

individual subscription or for a set of subscriptions, for example for the subscriptions of a

particular consumer or for a certain event type.

deliveryHandler {

 deliver(eventNotification n) {

 //process event notifications

 …

 }

}

Figure 4.19. Delivering event notifications in STEAM.

Figure 4.19 shows the STEAM interface for delivering event notifications to consumer

applications. These event notifications comprise a subject that describes their respective

event type. This subject can therefore be used by applications using a single delivery handler

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 137 -

for receiving events of different types to distinguish these types and to process individual

event notifications accordingly.

4.5.2 STEAM Application Programming Interface

Figure 4.20 outlines the application programming interface supported by STEAM. These

interface functions reflect the fact that STEAM is based on an implicit event model as they

refer neither to explicit entities nor to designated components of any kind. Instead, the

functions for announcing and subscribing to event notifications refer to an event type, the

former indicating the actual type and the latter using a subject filter to name the type.

announce(eventType et, proximityFilter pf)

unannounce(eventType et)

subscribe(subjectFilter sf, deliveryHandler dh, contentFilter cf)

unsubscribe(subjectFilter sf, deliveryHandler dh, contentFilter cf)

raise(eventNotification n)

Figure 4.20. The application programming interface of STEAM.

The STEAM application programming interface also illustrates how producers and consumers

specify their respective event notification filters. Producers specify their proximity filters and

announce them together with their event types thereby grouping them into associated pairs

while consumers specify both their subject filters and their content filters together with their

delivery handlers. It is important to allow consumers to explicitly define their content filters

because some applications might wish to omit this optional filter. Consumers omitting content

filters express their interest in event notifications solely using their type, thereby employing a

classic, topic-based subscription mechanism.

4.6 Discussion

After describing the STEAM event model for collaborative applications in detail, there are

some issues remaining that we believe are essential to the rationale for the concepts

presented in this thesis. We therefore discuss our approach to improve the scalability of a

system together with issues related to supporting mobility in ad hoc environments.

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 138 -

4.6.1 Mobility

The STEAM event model addresses the challenge of accommodating mobile application

components that use ad hoc networks in a number of ways. STEAM is based on an

inherently distributed architecture in which the middleware is exclusively collocated with the

application components and does not depend on centralised or intermediate components.

Geographical scoping represents a natural way for mobile and stationary entities to identify

event notifications of interest. In other words, STEAM supports mobile computing by way of

its architecture and through the use of various decentralised techniques. One of the

techniques that is essential to supporting mobility in STEAM is the mechanism for discovering

peers, or more specifically for discovering proximities, that allows the correct producing and

consuming entities to establish communication relationships. The overhead caused by this

discovery mechanism is proportionally related to the frequency at which its periodic beacons

are transmitted and may be significant, especially when discovering proximities in large

geographical areas. The actual cost of discovering proximities is therefore being examined as

part of the evaluation of STEAM presented in this thesis. This discovery frequency also

influences the potential latency that entities might encounter when discovering proximities.

Entities, especially those that travel at high speeds, might wish to receive beacons frequently.

Hence, applications need to consider their requirements as well as the trade off between

discovery overhead and potential discovery latency when configuring the discovery

mechanism.

4.6.2 Scalability

A system exploiting event-based middleware for collaborative applications must be able to

easily cope with a large, dynamically changing population of mobile components and the

resulting dynamic reconfiguration of the connections between the components. Many of the

decentralised techniques we have discovered for supporting mobility naturally accommodate

changing populations and as a result, help to improve the scalability of a system. STEAM’s

inherently distributed architecture avoids designated middleware components that may

become communication bottlenecks with increasing system scale. The concept of proximity-

based event notification dissemination bounds the geographical scope within which certain

information is valid and thus, limits forwarding of event notification and configuration

information which may lead to a reduction in the required communication and computational

resources. Combining multiple event notification filters improves the filtering precision and

consequently, reduces the number of potentially unwanted event notifications being

Chapter 4: The STEAM Event-Based Middleware for Collaborative Applications

- 139 -

propagated. Moreover, decentralised filtering helps to improve the scalability of a system by

distributing the computational load of filter matching as a small number of filters are typically

evaluated on each specific machine.

- 140 -

CHAPTER 5: STEAM ARCHITECTURE AND
ALGORITHMS

This chapter presents a prototypical implementation of the STEAM event model, which is

based on the concepts and algorithms described earlier in this thesis. We first outline the

architecture of this prototype and discuss the functionality of its main components as well as

the means by which these components provide for proximity-based event notifications. We

then describe the key enabling algorithms and protocols that have been implemented to

accommodate collaborative applications along with a demonstration program that illustrates

how such applications may use STEAM.

5.1 STEAM Architecture

The STEAM architecture incorporates the use of group communication and location-

awareness in order to provide proximity-based event notification dissemination that can be

exploited to support mobility in collaborative applications. Such collaborative applications

characteristically comprise components that are hosted by mobile devices and interact

through IEEE 802.11b-based ad hoc wireless local area networks [9, 100]. Depending on the

application areas in which they are used, such portable computing devices may range from

handheld devices, such as personal digital assistants, to notebook computers. Some of these

application areas might therefore impose requirements related to (battery) power supply and

memory footprint on the middleware they use. However, addressing such requirements

directly is considered to be beyond the scope of this prototype.

5.1.1 Overview

As illustrated in Figure 5.1, the architecture of the STEAM middleware essentially consists of

four key components that reflect the main features of the event service. The Event Service

Nucleus (ESN) implements STEAM’s application programming interface and is therefore

explicitly exposed to applications. The event service nucleus can be regarded as STEAM’s

Chapter 5: STEAM Architecture and Algorithms

- 141 -

central component since it interconnects the remaining components and because it provides

a filter engine that applies and maintains the various event notification filters that may be

defined by the producing and consuming entities that comprise an application. The event

service nucleus exploits a Proximity-based Group Communication Service (PGCS) for

disseminating event notifications in various proximity-based multicast groups. This service is

therefore responsible for routing event notifications from producers to consumers and for

enforcing their delivery semantics.

Event Service Nucleus

Proximity-Based
Group Communication Service

IEEE 802.11b Network (Ad Hoc Network Model)

Location
Service

Data Fusion

Dead Reckoning

Sensor Sensor

Filter Engine

Event Propagator

Event Dispatcher

API
Proximity
Discovery

Service
Proximity Mgr.

Prox. Discovery

Membership Mgr. Message Delivery

Figure 5.1. The architecture of the STEAM middleware.

The Proximity Discovery Service (PDS) provides the means for potentially mobile entities to

announce and discover event notifications of interest. The discovery mechanism uses

location information to map proximity scopes to the subscriptions of its consumers and as a

result, manages the proximity groups that are relevant at its current location. This implies that

the proximity discovery service is responsible for maintaining a consistent notion of the

relationship between proximity groups and subscriptions at any given time whilst considering

the migration of entities and indeed of proximities. STEAM depends on a Location Service

(LS) to supply geographical location information. The location service uses sensor data to

compute the current geographical location of the mobile device and subsequently provides

this location information to the middleware and to event producers and consumers hosted by

the device.

Chapter 5: STEAM Architecture and Algorithms

- 142 -

5.1.2 Distribution

Figure 5.2 illustrates that every mobile device has identical STEAM capabilities. These

capabilities are implemented by the event service nucleus and by the services providing

proximity-based group communication, proximity discovery, and location information that run

on each machine. Applications may connect a variable number of consumers and producers

to the middleware on each mobile device, thereby allowing individual devices to initiate and

participate in one or more event-based communication sessions. Each of these entities

regulates the propagation of its proximity-based event notifications by exploiting the concepts

of announcements and subscriptions. STEAM augments these well-known and widely-used

concepts in order to support scoped event notification dissemination and ultimately mobility.

The event type and proximity information announced by producers is exploited by the

discovery mechanism primarily to establish communication relationships between mobile

entities rather than to optimise event notification routing. Subscriptions are used locally to

map consumer interests to the sets of currently available event notifications being

disseminated within the discovered proximities.

C

P Producer

Consumer

SSTTEEAAMM

Mobile Device A

PDS ESN LS

P C P

Application

S

S

Mobile Device B

PGCS

SSTTEEAAMM

PDS ESN LS

CCP

Application

S PGCS

Ad Hoc
Network

Sensor

SS
TT
EE
AA
MM

Raise

Announce

Unannounce

P Deliver

Subscribe

Unsubscribe

C

SS
TT
EE
AA
MM

Figure 5.2. Mobile devices hosting STEAM middleware.

Chapter 5: STEAM Architecture and Algorithms

- 143 -

5.1.3 Proximity-Based Event Notification Management

STEAM’s approach of exploiting proximity to support mobility in collaborative applications

affects all the mechanisms used to handle event-based communication. The various

decentralised techniques used by STEAM are incorporated in its means of announcing,

subscribing to, raising, and delivering event notifications, as described in the following

sections.

Announcing and Discovering Proximity-Based Event Notifications

The means of announcing and discovering proximity-based event notifications implemented

by the STEAM middleware allows every mobile device to maintain an event type and

proximity filter repository on behalf of its entities. This repository is part of the event service

nucleus and contains the filters that describe the proximities that are available at the device’s

current location as well as type information describing the events that are associated which

these proximities.

Mobile Device A

SSTTEEAAMM

ESN

Event Type
Proximity Filter

PDS

LS

PGCS

P

Mobile Device B

Announce
Ad

Hoc
NW

PGCS ESN

Event Type
Proximity Filter

PDS

LS

C
Announce

SSTTEEAAMM

Send Receive

Periodically Update

Type Repository

Figure 5.3. Announcing and discovering proximity-based event notifications.

Figure 5.3 illustrates this discovery mechanism by outlining an example in which a mobile

device (A) disseminates announced information on behalf of a producer to another mobile

device (B) that hosts a consumer. Initially, the newly announced event type and proximity

filter pair is added to the local event type repository of device A. The proximity discovery

service of this device subsequently disseminates this information periodically in its vicinity

Chapter 5: STEAM Architecture and Algorithms

- 144 -

using a well-known “discovery” proximity group. The discovery service of device B, which is

located nearby device A, eventually receives these beacons and updates its own repository

with this information. Newly discovered event type information is also made available to the

application using an event announcement delivery handler. In general, the proximity

discovery mechanism announces and discovers event types and proximities on behalf of its

entities, regardless of them being producers or consumers. Every discovery service

periodically assesses its event type repository, thereby disseminating the type-proximity pairs

that have been announced by its producers and discarding the proximities that have expired,

i.e., that no longer cover its current location.

Subscribing to Proximity-Based Event Notifications

Subscribing consumers cause the middleware to map subscription information to the set of

currently available proximities and as a result, may cause the event service to join one or

more proximity groups and subsequently to deliver the event notifications disseminated in

these groups. Figure 5.4 illustrates this subscription mechanism and shows that subscriptions

issued by consumers on a mobile device are maintained in another local repository. These

subscription repositories therefore contain the subject filter, content filter, and delivery

handler triples supplied by their subscribers. The subject filter of a newly issued subscription

is applied to the names of the event types maintained in the event type repository. A

matching subject filter identifies an event type and proximity pair of interest and results in the

middleware joining the proximity group that corresponds to this pair. Notably, subscriptions

are maintained locally and hence, do not require transmission of subscription messages.

 Mobile Device A

SSTTEEAAMM

ESN

Event Type
Proximity Filter

PDS

LS

PGCS

Mobile Device B

Ad
Hoc
NW

PGCS ESN

Event Type
Proximity Filter

ESN

Subject Filter
Content Filter

DeliveryHandler

PDS

LS

C

SSTTEEAAMM

Subscribe

Join

Verify

Apply

Subscription Repository

Figure 5.4. Subscribing to proximity-based event notifications.

Chapter 5: STEAM Architecture and Algorithms

- 145 -

A proximity discovery service verifies the mapping of subscriptions to event types upon

updating its event type repository. This may lead to a change in the set of proximities of

interest and consequently may cause a change in proximity group memberships. Such

membership changes may apply when a mobile device enters or leaves the scope of a

proximity, which may lead to the addition of a new membership or to the cancellation of an

existing one.

Raising Proximity-Based Event Notifications

Figure 5.5 outlines an example in which a producer hosted by mobile device A raises event

notifications. The subject of these event notifications is used to retrieve the event type and

proximity pairs that describe the scopes in which a specific event notification is to be

disseminated. Once these pairs have been identified, the associated group identifiers can be

determined and the event notification can be propagated using the correct proximity groups.

In general, we expect an individual event notification to be disseminated in a single proximity

group. However, some applications might require specific event notifications to be

propagated simultaneously in multiple, overlapping proximity groups. Consumers that have

subscribed to such proximity groups may consequently receive multiple copies of these event

notifications as each membership may result in the delivery of their event notifications.

 Mobile Device A

SSTTEEAAMM

ESN

Event Type
Proximity Filter

PDS

LS

PGCS

P

Mobile Device B

Raise
Ad

Hoc
NW

PGCS ESN

Event Type
Proximity Filter

ESN

Subject Filter
Content Filter

DeliveryHandler

PDS

LS SSTTEEAAMM

Send

Verify

Figure 5.5. Raising proximity-based event notifications.

Chapter 5: STEAM Architecture and Algorithms

- 146 -

Delivering Proximity-Based Event Notifications

The STEAM event service receives event notifications propagated in proximity groups it has

previously joined. Mobile device B, shown in Figure 5.6, illustrates the means of delivering

such event notifications. Event notifications received in a particular proximity group are

verified to conform to the corresponding event type before their content is matched. In other

words, the subject of an event notification can be used to retrieve its type information from

the type repository and to obtain the correct content filter(s) and delivery handler(s) from the

subscription repository. These delivery handlers are then used to pass event notifications that

match their content filters to the application.

 Mobile Device A

SSTTEEAAMM

ESN

Event Type
Proximity Filter

PDS

LS

PGCS

Mobile Device B

Ad
Hoc
NW

PGCS ESN

Event Type
Proximity Filter

ESN

Subject Filter
Content Filter

DeliveryHandler

PDS

LS

C

SSTTEEAAMM

Deliver

Receive

Verify

Match

Figure 5.6. Delivering proximity-based event notifications.

5.2 The STEAM Event Service

Applications connect to the STEAM event service by obtaining device-local entity objects that

provide either a producer or a consumer interface. This allows applications to connect a

variable number of entities to the middleware on each mobile device.

5.2.1 Event Notifications and Event Types

STEAM’s event notifications are typed since they are described by an expressive structure

into which a set of functional and non-functional attributes can be mapped. An individual

Chapter 5: STEAM Architecture and Algorithms

- 147 -

event notification is therefore defined firstly by a type describing its structure and secondly by

an instance describing the specific values of its attributes. This approach of explicitly defining

the type of event notifications enables the middleware to exploit type information in order to

verify that event notifications conform to their respective types.

Event Types

Producers define event types as objects that comprise subject, content, and a non-functional

attribute list. The event type content can be specified as a set of a variable number of

parameters in which each parameter is of a particular type. The set of currently available

types contains commonly used types, such as string, integer, and floating point, as well as

location and time types that describe the context of event notifications. The location type in

particular is essential for supporting collaborative applications that exploit proximity-based

event notifications.

S_EventParameterDeclaration* epd;
SP_dsEventType* et;
const int numParameter = 5;

epd = new S_EventParameterDeclaration[numParameter];
epd[0] = S_EventParameterDeclaration("String", S_STR);
epd[1] = S_EventParameterDeclaration("Integer Number", S_INT);
epd[2] = S_EventParameterDeclaration("Floating Point Value", S_DBL);
epd[3] = S_EventParameterDeclaration("Geographical Location", S_POS);
epd[4] = S_EventParameterDeclaration("Time", S_TIM);
et = new SP_dsEventType("Example Subject", numParameter,
 &epd, SP_SINGLE_HOP);

Figure 5.7. Defining the structure of an event type.

The example shown in Figure 5.7 illustrates how STEAM allows producers to define the

structure of an event type as an object. This example shows an event type comprising

subject and content, the former defining a character string value and the latter defining a set

of five parameter name-type pairs that reflect the currently available parameter types.

Applications may therefore define event types by dynamically defining content structures that

address their requirements.

Event Notifications

Once an event type has been defined, producers may instantiate event notifications that

conform to the structure of this event type. Figure 5.8 shows an example of an event

notification of the previously defined type. Note that the application explicitly provides the

Chapter 5: STEAM Architecture and Algorithms

- 148 -

values for the parameters describing context. A producer application may retrieve the current

time from the underlying operating system and the actual location information by means of

the location service provided by STEAM. Once such an event notification has been

propagated and delivered, a consumer application may access its content using the

operators of the event notification object.

SP_dsEvent* ei;
S_ParameterValue* pv = new S_ParameterValue[numParameter];

pv[0] = SP_ParameterValueSTR(“Some text”);
pv[1] = SP_ParameterValueINT(1500);
pv[2] = SP_ParameterValueDBL(123.456);
pv[3] = SP_ParameterValuePOS(5320.0N, 615.0W);
pv[4] = SP_ParameterValueTIM(Mon Aug 25 12:25:46 2003);
ei = new SP_dsEvent(et->subject(), numParameter, &pv, *et);

Figure 5.8. Instantiating an event notification.

Supported Attributes

The current version of the STEAM event service implementation supports a range of

functional and non-functional event notification attributes. These attributes include subject

and content of event notifications as well as location and time attributes that may be used to

describe the context of certain event notifications. Applications may explicitly associate

context attributes with event instances by defining them as part of the content structure. In

addition, the middleware will implicitly associate a producer and a forwarder location attribute

with every event notification that is being disseminated in order to enable geographical

filtering. As these location attributes are transparently managed by the middleware,

applications are neither required to define nor to instantiate them. Furthermore, STEAM

features an attribute that allows applications to select the routing strategy that best suits their

requirements. A shown in Figure 5.7, such attributes can be associated with individual event

types and specify whether related event notifications are propagated using single-hop or

multi-hop messages. Support for other attributes, including attributes describing event

notification delivery semantics and quality of service requirements has not been implemented

yet. As a result, all event types are implicitly classified as non real-time.

Type Safety

This approach of explicitly defining the type of event notifications also enables the

middleware to provide some notion of type safety for its event notifications without relying on

Chapter 5: STEAM Architecture and Algorithms

- 149 -

a pre-processor. Type information can be used to verify that the content of event notifications

conform to their respective types. Such type checks may be performed at run time, for

example when event notifications are instantiated by producers. Furthermore, type

information is essential for unmarshalling event notifications that have been serialised for

transmission. The middleware can use such type information to create consumer side objects

describing event notifications that have been disseminated and to verify that these event

notifications are of the correct structure.

5.2.2 Event Notification Filters

STEAM supports the three essential event notification filters. Subject filters contain a string

value that is matched against the name of an event type. Content filters comprise a set of

expressive and self-describing filter terms that can be applied to the content parameters of

event notifications. Proximity filters describe a two dimensional geographical area that

specifies either the stationary or mobile scope within which event notifications are

propagated.

Content Filters

Consumers may define content filters that contain a variable set of either conjunctive or

disjunctive filter terms. One or more of these terms may be applied to each event notification

parameter. For example, two terms containing magnitude operators might be applied to a

numeric parameter in order to filter a parameter range. This dynamic content filter structure

combined with the set of available operators enables applications to define their filter

requirements in an expressive manner compared to approaches where the number of filter

terms depends on the number of event notification parameters, for example as proposed by

JEDI.

S_INT, S_DBL, S_TIM operators : "==", "<>", "<", ">", "<=", ">="

S_STR operators : "==", "<>"

S_POS operators : DISTANCE_INCREASES, DISTANCE_DECREASES,

 WITHIN_RANGE, BEYOND_RANGE

Figure 5.9. Content filter term operators.

Chapter 5: STEAM Architecture and Algorithms

- 150 -

As summarised in Figure 5.9, the set of operators that can be applied to a particular

parameter depends on its type. STEAM supports operators for parameter types describing

context. This allows applications to exploit the context of the producer sending an event

notification together with the consumer context when determining content filter constraints.

For example, location-aware consumers can use their actual location when applying range

operators on location parameters instantiated by producers. Furthermore, applications may

exploit historical context information when filtering event notifications. Consumers may define

distance operators that use their previous and current location in order to determine whether

they are moving towards or indeed away from a certain producer. Note that the matching

result of such filter terms might be inconclusive, for example when such terms are applied to

stationary consumers. Such inconclusive filter terms are excluded when computing the

matching result of a content filter.

Proximity Filters

The example shown in Figure 5.10 illustrates how filters referring to stationary and mobile

proximities, which will eventually be mapped onto absolute and relative proximity groups

respectively, may define either circular or rectangular areas. These shapes are defined by

their dimensions and by a reference point located inside their area. For example, circular

shapes are defined by a radius and by a reference point that is naturally located at the centre

of the circle. Proximity filters then map these reference points to either a fixed or a moving

naval, depending on whether they are stationary or mobile. For example, the rectangular

proximity filter maps its reference point to a fixed naval whereas the circular filter defines a

mobile proximity which is implicitly mapped to a naval represented by the actual location of its

producer. Regardless of their shape, proximity filters provide an inside function that

enables the middleware to verify whether an entity resides within the specified area.

SP_Shape* rectangle;
SP_Shape* circle;
SP_ProximityFilter* pf_r;
SP_ProximityFilter* pf_c;
SLS_Location* naval = new SLS_Location(5320.0N, 615.0W);

rectangle = new SP_Rectangle(x_dim, y_dim, x_ref, y_ref);
pf_r = new SP_ProximityFilter(rectangle, SP_ABSOLUTE, naval);

circle = new SP_Circle(radius);
pf_c = new SP_ProximityFilter(circle, SP_RELATIVE);

Figure 5.10. Instantiating stationary and mobile proximity filters.

Chapter 5: STEAM Architecture and Algorithms

- 151 -

5.2.3 Repositories

Decentralised repositories maintain announcement and subscription information on behalf of

the entities located on specific mobile devices. Type repositories handle event types and

proximity filters on behalf of both producing and consuming entities while subscription

repositories manage subject filters, content filters, and event notification delivery handlers in

support of their consumers. Repositories hosted by a certain mobile device maintain only

information that is relevant to this device. Type repositories exclusively manage event types

and proximity filters that are relevant at the location of a device and are of interest to the

device’s entities, while subscription repositories only handle subscriptions of local consumers.

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Proximity Filter
Attributes

Event Type Content

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Proximity Filter
Attributes

Event Type Content

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Proximity Filter
Attributes

Event Type Content

Type Repository

Retrieve

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Content Filter
Delivery Handler

Subscription Repository

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Content Filter
Delivery Handler

Subject

Proximity Filter
Attributes

Proximity Filter
Attributes

Content Filter
Delivery Handler

Retrieve

Figure 5.11. Maintaining announcement and subscription information.

Figure 5.11 illustrates the organisation of these repositories, which enables the middleware to

retrieve information related to a certain event type. Type repositories hold the event type

content as well as a list of the proximity filters and attributes that are associated with a

specific subject whereas subscription repositories contain the lists of content filters and

delivery handlers that relate to some subject. This organisation scales well as it can easily

cope with a variable number of event types and event filters and is flexible in terms of

catering for potential extensions required by future versions of STEAM. For example, type

repositories might need to be extended to maintain attributes that are specific to a subject

rather than to a proximity filter. Both repositories have been implemented as hash tables in

order to allow for an access mechanism with a constant retrieval time.

5.2.4 Addressing Scheme

STEAM’s distributed addressing scheme replaces the kind of centralised approach

traditionally used for identifying peers of interest and therefore represents a key enabling

Chapter 5: STEAM Architecture and Algorithms

- 152 -

mechanism to STEAM’s inherently distributed architecture. This addressing scheme enables

mobile devices to recognise proximities of interest and to locally compute proximity group

identifiers from event type and proximity information. This technique is based on using

serialised descriptions of individual event type and proximity pairs, which are considered to

be unique throughout a system, as the stimuli for a hashing algorithm generating group

identifiers.

Collisions

Depending on a number of factors, including the quality of the hash function and the ratio of

stimuli to potential identifiers, this approach might lead to colliding identifiers. Such collisions

occur when two distinct stimuli x and y generate the same identifier. In other words, there

exist stimulus pairs, such that x ≠ y, for which h(x) = h(y). Collisions may result in different

kinds of event notifications being disseminated in proximity groups using the same identifier.

This does not affect a system provided that such proximity groups occupy different

geographical scopes, i.e., that groups do not overlap. Overlapping proximity groups with

colliding identifiers can lead to unwanted event notifications being received by certain mobile

devices. However, such devices will be prevented from delivering unwanted event

notifications to their applications as the middleware’s run-time type checking mechanism

detects and eventually discards these event notifications. Hence, colliding group identifiers

may lead to additional use of communication and computational resources, but will not cause

delivery of unwanted event notifications.

Computing Group Identifiers

The STEAM middleware uses a hash algorithm that generates 24 bit group identifiers from

variable length character strings. The implemented algorithm is based on a combination of a

hash function for such stimuli proposed by Preiss [101] with the approach of using a hash

function multiplier [102] in order to reduce the chance of collisions. Figure 5.12 depicts the

structure of the character strings that describe event type and proximity pairs. Such strings

comprise the subject of event types and the particulars of proximity filters. Proximity filters are

described by their shapes, by an indicator for stationary and mobile scopes, and by the

coordinates that specify the location of the filters’ navals. Note that a mobile proximity filter

always describes its initial naval location since its actual naval location might change over

time therefore enabling mobile devices to generate consistent group identifiers.

Chapter 5: STEAM Architecture and Algorithms

- 153 -

Dimension (x, y) Reference (x, y)

Radius (r)

Shape S / M Naval (lat, lng)

Proximity Subject (s)

Figure 5.12. Computing group identifiers from event type and proximity pairs.

Application Example

The application illustrated in Figure 5.13 and Figure 5.14 shows a producer and a consumer

implementing a traffic light scenario in which a light disseminates its status to approaching

vehicles. Figure 5.13 outlines the producer application generating event notifications on

behalf of a traffic light. After starting STEAM and a location service, the producer defines a

“Traffic Light” event type that describes the light’s status and location as well as a stationary

proximity. This proximity surrounds the traffic light and uses single-hop messages when

disseminating event notifications. The producer then announces its event type and proximity

filter pair before instantiating and raising event notifications that conform to this event type.

//start location service and STEAM
SLS_SteamLocationService* sls = new SLS_SteamLocationService();
S_Steam* steam = new S_Steam(*sls);

//obtain producer entity
SP_SteamProducerEntity* sp = steam->obtainProducerEntity();

//define event type and proximity filter
S_EventParameterDeclaration* epd;
SP_dsEventType* et;
SP_Shape* cir;
SLS_Location *cLoc;
SP_ProximityFilter* pf;
const int nParameter = 2;

epd = new S_EventParameterDeclaration[nParameter];
epd[0] = S_EventParameterDeclaration("Status", S_STR);
epd[1] = S_EventParameterDeclaration("Location", S_POS);
et = new SP_dsEventType(“Traffic Light”, nParameter, &epd, SP_SINGLE_HOP);
cir = new SP_Circle(50.0);
sls->position(cLoc); //retrieve current location
pf = new SP_ProximityFilter(cir, SP_ABSOLUTE, *cLoc);

Chapter 5: STEAM Architecture and Algorithms

- 154 -

//announce event type and proximity filter
sp->announce(*et, *pf);

//instantiate event notification
SP_dsEvent* ei;
S_ParameterValue* pv = new S_ParameterValue[nParameter];

pv[0] = SP_ParameterValueSTR(“Green”);
pv[1] = SP_ParameterValuePOS(*cLoc);
ei = new SP_dsEvent(et->subject(), nParameter, &pv, *et);

//raise the event notification
sp->raise(*ei);

Figure 5.13. A producer generating event notifications.

Figure 5.14 shows the consumer application acting on behalf of a vehicle. The consumer

implements its event notification delivery handler and starts STEAM and a location service in

a manner similar to the producer. The consumer then defines a content filter that uses

geographical location information to filter out “Traffic Light” event notifications unless the

vehicle is driving towards the traffic light.

//implement delivery handler
class Vehicle_cbdImplementation : public SC_CallbackDelivery {
public:
 void deliver(SC_dsEvent*& ei) {
 //process event notification
 char* status = ei->parValSTR(0);
 ..
 }
}

//start location service and STEAM
SLS_SteamLocationService* sls = new SLS_SteamLocationService();
S_Steam* steam = new S_Steam(*sls);

//instantiate delivery handler implementation
Vehicle_cbdImplementation* dh = new Vehicle_cbdImplementation();

//obtain consumer entity
SC_SteamConsumerEntity* sc = steam->obtainConsumerEntity();

//define content filter
SC_ConjunctiveContentFilter* cf = new SC_ConjunctiveContentFilter();
cf->addTermPOS(1, SC_POS_DISTANCE_DECREASES);

//subscribe consumer
sc->subscribe("Traffic Light", *dh, cf);

//receive event notifications
..

Figure 5.14. A consumer receiving event notifications.

Chapter 5: STEAM Architecture and Algorithms

- 155 -

5.3 Discovering Proximities

The proximity discovery mechanism allows entities to announce and discover event type and

proximity filter pairs that describe either stationary or mobile scopes. This mechanism uses

the type repository for maintaining the set of event types and associated proximity filters that

is of interest to the entities hosted by a certain mobile device. These event type and proximity

filter pairs together with the subscriptions issued by local consumers represent the functional

and geographical aspects that determine proximity group membership.

The proximity discovery mechanism essentially comprises two algorithms, one for

disseminating event type and proximity filter pair announcements and another for handling

such announcements upon receiving them. Both algorithms operate on the type repository of

a particular mobile device and collaborate in order to maintain the relevant locally and

remotely specified event type and proximity filter pairs. Hence, type repositories are

maintained according to geographical relevance and are independent of the set of issued

subscriptions.

5.3.1 Announcing Event Types and Proximity Filters

Figure 5.15 describes the algorithm that is used to announce and to a certain extent maintain

the event type and proximity filter pairs on a particular mobile device. The algorithm

periodically traces through all event type and proximity filter pairs stored in a type repository

in order to announce the pairs that have been defined by local producers and to verify the

geographical validity of proximity filters. Hence, the algorithm essentially maintains stationary

and mobile proximity filters that are relevant at the actual location of a mobile device and

periodically announces filters with a locally specified naval.

Stationary Proximity Filter

As shown in Figure 5.15, stationary proximity filters remain in a repository as long as their

scope includes the current location of the mobile device regardless of whether they have

been specified locally or remotely. An individual proximity filter is removed from the repository

once the device has left the associated scope. Removing a proximity filter may lead to a

change to the set of proximity groups that the device has previously joined. Any group

membership associated with such a filter is cancelled regardless of whether functional

interest, expressed by related subscriptions, remains.

Chapter 5: STEAM Architecture and Algorithms

- 156 -

Mobile Proximity Filter

The dynamic aspect of mobile proximity filters causes some variation in the means by which

such filters are maintained and announced. Mobile proximity filters specified by local

producers always (by definition) include the actual location of the mobile device and migrate

together with the device. Consequently, the migration of a mobile device does not cause such

proximity filters to expire. These filters can therefore be announced without verifying their

validity. In addition to enabling remote devices to discover mobile proximity filters, these

announcements provide a means for disseminating location updates describing the migration

of mobile filters. Every mobile proximity filter is therefore updated with the latest device

location prior to being announced. The validity of remotely specified mobile proximity filters is

verified when updates on their latest locations are discovered. This prevents validity checks

using cached and therefore potentially obsolete (due to migration) location information.

for (all event type and proximity filter pairs in the repository) {

 if (proximity filter is stationary) {

 if (current location is inside the proximity) {

 if (naval is defined locally) {

 announce event type and proximity filter pair

 }

 } else {

 remove proximity filter from repository

 update proximity group membership

 }

 }

 else if ((proximity filter is mobile) and (naval is defined locally)) {

 update naval location with current location

 announce event type and proximity filter pair

 }

}

Figure 5.15. Announcing event type and proximity filter pairs.

Chapter 5: STEAM Architecture and Algorithms

- 157 -

5.3.2 Discovering Event Types and Proximity Filters

Figure 5.16 describes the algorithm that handles event type and proximity filter pairs upon

their reception. The algorithm adds newly discovered event types and proximity filters to the

type repository of any mobile device residing inside the proximity filter’s scope regardless of

the set of available subscriptions. In addition, proximity group membership is updated for

subscriptions that map to the event types of newly discovered proximity filters. On the other

hand, known proximity filters, whose scopes no longer include the device’s location, are

removed from the repository and associated proximity group memberships are cancelled.

Other event type and proximity filter pairs describe information that is either irrelevant at the

current location or already known and are therefore discarded.

Stationary and Mobile Proximity Filters

Remotely specified event type and proximity pairs are handled similarly regardless of whether

they describe stationary or mobile proximity filters. Both stationary and mobile proximity filters

that are no longer relevant at the current location are removed from the repository. Mobile

filters are removed based on their latest naval location while being identified according to

their initial naval location. This enables the middleware to identify mobile proximity filters even

though their actual naval location changes.

receive event type and proximity filter pair

if ((event type and proximity filter pair is not already in the repository) and

 (current location is inside the proximity))

 update repository with event type and proximity filter pair

 update proximity group membership

}

else if ((event type and proximity filter pair is already in the repository) and

 (current location is not inside the proximity))

 remove proximity filter from repository

 update proximity group membership

}

else {

 discard received event type and proximity filter pair

}

Figure 5.16. Discovering event type and proximity filter pairs.

Chapter 5: STEAM Architecture and Algorithms

- 158 -

5.3.3 Maintaining Event Types and Proximity Filters

Figure 5.15 and Figure 5.16 show how event types and associated stationary and mobile

proximity filters are announced, discovered, and maintained. These figures imply that

proximity filters may be added and eventually removed from a particular type repository

whereas event types are persistently maintained once they have been discovered even in the

absence of corresponding proximity filters. Table 5.1 summaries the approach reflected by

the discovery mechanism for maintaining proximity filters. The geographical validity of locally

defined filters as well as of remotely specified stationary filters is verified periodically whereas

remotely specified mobile proximity filters can only be checked upon receiving

announcements with the latest naval updates.

 Periodically Maintained
(when announced) Maintained Upon Discovery

 Locally Specified Remotely Specified Locally Specified Remotely Specified

Stationary
Proximity Filter

Mobile
Proximity Filter

Table 5.1. Maintaining proximity filters.

5.3.4 Discovery Range

The proximity discovery service periodically disseminates announcements comprising event

type and proximity filter pairs inside the geographical area specified by the respective

proximity filter. In addition to this producer perspective on the discovery scope, applications

may wish to impose a notion of discovery scope that is driven by a consumer’s point of view.

For example, a mobile device in a smart environment may only wish to discover available

services on behalf of its user once they are within a certain range. Consumers hosted by a

specific mobile device describe their area of interest by defining a discovery range that is

applied by the proximity discovery service when receiving announcements. Consequently,

the scope of proximity discovery is determined by combining the areas defined by a proximity

and by a consumer discovery range. Event type and proximity filter pairs are only discovered

at locations included in both scopes as the discovery mechanism firstly applies its discovery

scope and then, as shown in Figure 5.16, verifies the proximity area.

Chapter 5: STEAM Architecture and Algorithms

- 159 -

5.4 Disseminating Event Notifications and Announcements

Both event notifications and announcements are disseminated using the proximity-based

group communication service. An individual proximity group essentially comprises a multicast

group and an associated geographical scope. Entities join and leave multicast groups

according to their location, i.e., they join when entering and leave upon departing the

associated scope, and use the filters that describe these scopes as well as the types of the

propagated information to verify geographical and structural correctness of the messages

they receive.

Multicast groups disseminating event notifications are functionally and geographically

described by the associated event type and proximity filter pair while groups disseminating

announcements are described by the consumer discovery range and a type describing

announcement messages. In fact, a well-known combination of a single multicast group with

an announcement type is used when propagating announcement messages on behalf of the

proximity discovery service. However, proximity-based multicast groups essentially route both

event notifications and announcements from a sender to multiple receivers using either

single-hop or multi-hop messages.

5.4.1 Proximity-Based Multicast Groups

The proximity-based group communication service uses the group identifiers generated from

event type and proximity filter pairs as addresses for its multicast groups. These proximity-

based multicast groups enforce the semantics associated with message delivery and

implement the programming interface provided by the proximity-based group communication

service.

Dissemination Semantics

The current version of the STEAM event service uses a proximity-based group

communication service that is based on IP multicast. Exploiting IP multicast for disseminating

messages provides best-effort delivery semantics, which does not guarantee that any

subscriber will necessarily receive a specific event notification nor that an individual

announcement will be received by nearby devices. The current implementation of STEAM

therefore provides a best-effort event service but has been designed to use proximity groups

that are based on the TBMAC protocol [95]. Hence, a future version of STEAM will provide

strong guarantees in terms of event notification delivery reliability and timeliness.

Chapter 5: STEAM Architecture and Algorithms

- 160 -

Programming Interface

Figure 5.17 summarises the programming interface supported by the proximity-based group

communication service. This interface differs from other group communication interfaces due

to the fact that it supports proximity-based message dissemination. Joining as well as leaving

a specific proximity group requires a particular description of a proximity, known as a

proximity filter cell, that includes the actual proximity filter as well as the associated event

type subject in addition to the group identifier. Messages may be disseminated in a specific

group using the send operation while specifying the nature of these messages as either

single-hop or multi-hop. The receive operation blocks until either a single-hop or a multi-

hop message becomes available in any of the previously joined proximity groups. Because

they are based on IP multicast, these proximity groups support a membership mechanism

that only requires consumers to join proximity groups in order to receive messages while

producers may disseminate messages without being group members. Moreover, specific

proximity groups may be joined or indeed used without explicitly creating them. Hence, the

STEAM middleware maintains membership only on behalf of consumers and is not

concerned with creating and deleting individual proximity groups.

class SPGC_ProximityGroupCommunication {
public:
 //join a specific proximity-based multicast group
 void join(SPGC_GroupId& id, SPGC_ProximityFilterCell* pfc);

 //leave a specific proximity-based multicast group
 void leave(SPGC_GroupId& id, SPGC_ProximityFilterCell* pfc);

 //disseminate either a single-hop or a multi-hop message in a specific
 //proximity-based multicast group
 void send(SPGC_GroupId& id, SP_PropagationType pt, const String msg);

 //receive either a single-hop or a multi-hop message disseminated in
 //any of the previously joined proximity-based multicast groups
 void receive(String msg);

 //instantiate proximity groups and set routing optimisation mode
 SPGC_ProximityGroupCommunication(double gossip_p, double gossip_d);
};

Figure 5.17. The programming interface of the proximity-based group communication service.

5.4.2 Routing Messages

STEAM implements a routing protocol that exploits proximity to control multicast-based

flooding of the underlying ad hoc network. This approach provides a means for disseminating

Chapter 5: STEAM Architecture and Algorithms

- 161 -

messages in a one to many manner within the boundaries defined by a proximity without

introducing extra overhead for maintaining routing information. Such routing information

characteristically needs to be updated more frequently with increasing speed of mobile

devices and thus, approaches that attempt to maintain routing information are less suited for

applications comprising highly mobile entities [103]. Other, well-known routing protocols for

wireless ad hoc networks, such as AODV, DSR, TORA, and DSDV, which have been

discussed and compared in [104-106], focus on peer to peer routing rather than on

multicasting.

Single-Hop and Multi-Hop Routing

Messages may be disseminated using either a single-hop or a multi-hop routing protocol.

Single-hop messages are propagated in their respective proximity groups within the physical

radio transmission range of the sending device. Devices that are members of such groups

can receive these messages and may subsequently deliver them to their applications without

having to forward them. Multi-hop messages are propagated using a variation of flooding in

which messages are forwarded in multicast groups and within the boundaries of their

proximities. Member devices use sequence numbers to identify new messages that they

need to forward. These sequence numbers are based on a combination of a device’s IP

address, which we assume to be available, and a sender-side message counter that makes

them unique. The sequence numbers of forwarded messages are temporarily stored in a

sliding window buffer thereby preventing multiple forwarding of individual messages.

Forwarding Strategy

Our approach of routing multi-hop messages in multicast groups implies that devices only

forward messages in which they are interested. Multicast group members forward their

messages while other devices residing in the associated scope will neither receive nor

forward these messages. This applies to multicast groups disseminating event notification

messages and announcement messages alike. However, since all devices need to discover

proximities and use the well-known discovery group when doing so, all devices located in a

certain proximity effectively forward announcement messages even if they are not interested

in the actual event type and proximity described by a specific message.

Receiving Single-Hop and Multi-Hop Messages

Figure 5.18 describes the algorithm used by the receive operation shown in Figure 5.17

when handling singe-hop and multi-hop messages. The algorithm initially obtains certain data

Chapter 5: STEAM Architecture and Algorithms

- 162 -

from the message header, including sender location, forwarder location, message sequence

number, and proximity identifier. This identifier is subsequently used to verify that the

structure of the received messages conforms to the expected message type and to retrieve

the correct proximity filter. The sender location is used when checking the proximity of mobile

groups, thereby ensuring that the latest naval location is utilised. This additional group

membership check prevents unwanted messages, for example received due to colliding

group identifiers, from being delivered. The algorithm forwards multi-hop messages after

updating their forwarder location with the current location and returns these newly received

messages to its event service.

receive(msg)

//extract sender location, forwarder location, sequence number, and proximity identifier

deserialise(msg, sLoc, fLoc, seq, pKey)

//check simulated transmission range

if (simulatedTransmissionRange.inside(cLoc, fLoc)) {

 //verify subject and retrieve relevant proximity filter

 if verify(pKey) {

 pf = retrieve(pKey)

 //single-hop or multi-hop message

 multi_hop = foo(seq)

 //handle single-hop or new multi-hop message

 if ((not multi_hop) or (multi_hop and not slidingWindow.seen(seq))) {

 inside = pf.inside(cLoc, sLoc)

 if (inside and multi_hop) {

 //forward multi-hop message

 updateForwarderLocation(msg, cLoc)

 send(pKey.groupId(), msg)

 slidingWindow.insert(seq)

 }

 if (inside) return msg

 }

 }

}

Figure 5.18. Receiving single-hop and multi-hop messages.

Chapter 5: STEAM Architecture and Algorithms

- 163 -

Optimisations Techniques

Depending on the number and the distribution of participating devices, flooding-based multi-

hop routing can produce a large number of forwarded messages and may result in individual

devices receiving several copies of the same message. We have addressed this by

extending the algorithm described in Figure 5.18 with a gossip-based optimisation technique

[107]. Such gossip-based approaches reduce the overhead of flooding-based routing

protocols by assigning some message forwarding probability to each device. Applications can

specify gossip parameters Gossip(d, p), which are then applied by the algorithm when

determining whether or not to forward messages. These parameters compel devices located

beyond distance d from the initial sender of a message to forward messages with a

probability p. Devices residing inside the scope defined by d gossip with probability 1, thereby

preventing the gossip from potentially dying in conditions where a sender has relatively few

neighbours. The impact of exploiting this optimisation technique on the number of transmitted

messages and the message loss ratio have been investigated in the evaluation chapter of

this thesis.

Simulating Radio Transmission Range Limitations

The algorithm shown in Figure 5.18 also includes a mechanism for simulating the limits of the

physical radio transmission range of a device. Applications may specify a transmission radius

that causes this simulator to discard all messages that have been received from devices

beyond that range. This mechanism has proven to be valuable when evaluating prototypical

STEAM application scenarios.

5.5 Exploiting Geographical Location Information

The STEAM event service has been designed to support collaborative applications in which

application components can be either stationary or mobile and interact based on their

geographical location. This implies that the STEAM middleware as well as the entities hosted

by a particular mobile device are aware of their geographical location at any given time.

Sensing Location

STEAM comprises a location service that uses sensor data to compute the current

geographical location of its mobile device and subsequently supplies this location information

to the middleware and to the producers and consumers hosted by the device. The location

service may collect data from a single sensor or from a range of sensors and use a data

Chapter 5: STEAM Architecture and Algorithms

- 164 -

fusion algorithm to compute its current location. Using data provided by multiple sensors may

increase the accuracy of the location. The variety of available sensors may depend on the

environment in which they are used, for example whether location data is provided indoors or

outdoors, and on the service infrastructure that is available to them. For example, location

systems, such as Bats [21] and Cricket [108], use sensors that rely on a previously deployed

infrastructure when computing location data. These systems sense indoor locations by

interacting with devices installed at known, fixed locations. A large range of sensors,

including compass, speedometer, inertial tracker, GPS and differential GPS receivers, as well

as ultrasonic sensors [21, 108], may be exploited for providing data to the location service. In

order to accommodate outdoor applications, for example in the traffic management domain,

STEAM exploits a version of the location service that uses a GPS satellite receiver to supply

two-dimensional location information based on latitude and longitude coordinates.

Simulating Migration

In addition to providing location information based on sensor data, the location service can

supply location information using a set of predefined coordinates. This allows applications to

specify routes that describe the migration paths of certain entities, which are then used to

simulate entity movements along these paths. For example, an application might define the

route according to which an entity representing a vehicle travels. This simulation mode of the

location service can be used for modelling the interactions of moving entities without having

to provide for either an actual environment or a potentially vast quantity of equipment and

has, especially in combination with the transmission range simulator, proven to be invaluable

for the evaluation of prototypical STEAM applications. The combination of transmission range

and migration simulators enables entities hosted by physically nearby devices to simulate

migration as well as the potentially resulting loss of connectivity.

5.6 Summary

This chapter presented a prototypical implementation of the STEAM event model. The

architecture of the STEAM event service incorporates the use of group communication and

location-awareness in order to provide proximity-based event notification dissemination for

mobile entities. Every mobile device hosting STEAM has identical capabilities that enable

entities to interact through IEEE 802.11b-based ad hoc networks and provide a means for

entities to announce and discover proximity-based events as well as to subscribe to and raise

event notifications.

Chapter 5: STEAM Architecture and Algorithms

- 165 -

This STEAM event service allows applications to define event types as objects that comprise

subject, content, and non-functional attributes. These objects are used to verify that raised

event notifications conform to their types. STEAM maintains these types together with event

delivery handlers and subject, content, and proximity filters in decentralised repositories.

The key enabling techniques used by the middleware include a distributed discovery service,

a decentralised addressing scheme, and a location service that uses sensor data to compute

the current geographical location of mobile devices and the entities hosted by them. The

discovery service allows entities to announce and discover event type and proximity filter

pairs that describe either stationary or mobile scopes and therefore, comprises two

algorithms, one for disseminating event type and proximity filter pair announcements and

another for handling such announcements upon receiving them. Both algorithms operate on

the type repository of a particular mobile device and collaborate in order to maintain the

relevant locally and remotely specified event type and proximity filter pairs. The addressing

scheme enables mobile devices to recognise proximities of interest and to locally compute

proximity group identifiers from event type and proximity information. This technique is based

on using serialised descriptions of individual event type and proximity pairs, which are

considered to be unique throughout a system, as the stimuli for a hashing algorithm

generating group identifiers.

This chapter also presented the routing protocol that has been implemented to disseminate

event notifications using either single-hop or multi-hop messages as well as the gossip-based

optimisation mechanism used to reduce the number of forwarded multi-hop messages.

- 166 -

CHAPTER 6: EVALUATION

This chapter evaluates the approach to supporting collaborative applications that is being

proposed in this thesis. We have selected a number of collaborative application scenarios

from a range of domains, including traffic management, augmented reality, and emergency

services, in order to reflect various application behaviours and to demonstrate how the

components that comprise these collaborative applications can be interconnected in

inherently distributed topologies through wireless communication and ad hoc networks.

Specifically, we present a number of evaluation experiments, which have been conducted

using these scenarios, to demonstrate how the objectives of this thesis have been met with

respect to event notification filtering precision and system scalability, and to show the cost of

event notification dissemination, proximity discovery, and event notification processing. The

specific goal of each of the experiments along with the relevant configuration parameters are

outlined in detail in their respective sections below.

All evaluation experiments presented in this thesis have been conducted by implementing the

selected scenarios as prototypical applications. Each of the consuming and producing entities

that comprise these applications is represented by an independent STEAM instance and

interacts with other entities using a real ad hoc network. The entities and their STEAM

instances are hosted by a number of notebook computers running the Microsoft Windows XP

operating system on a 1GHz Intel Pentium III processor. Each machine is equipped with a

Lucent Orinoco Gold WiFi PCMCIA card with a channel capacity of 11 Mbit/s providing the ad

hoc network connection for inter entity communication. One or more entities may reside on a

notebook computer. Entity locations and mobility are simulated throughout these experiments

using the location service of their respective STEAM instances while the hosting notebook

computers were placed within ad hoc communication reach of each other. The radio

transmission range TR for each machine was simulated to be TR = 200 meters. This ensures

that an entity discards all communication messages received from entities located beyond TR,

even though the distance between the physical locations of their host machines is less than

TR. Multiple runs were conducted for each experiment and the data collected was averaged

over those runs.

Chapter 6: Evaluation

- 167 -

6.1 Disseminating Event Notifications

The main objective of this experiment is to evaluate how exploiting proximity limits event

notification forwarding and consequently the cost of disseminating event notifications. The

primary measurement of interest is an abstract quantity we refer to as cost. We assign a

relative cost to the dissemination of a single event notification. Cost describes the number of

messages required when propagating an event notification from a producer to the consumers

residing within its radio transmission reach and the forwarding of this message to consumers

beyond this range. Hence, cost depends on the number of consumers residing within a

particular proximity and provides a qualitative indication of the bandwidth required for event

notification dissemination. For example, the cost of a producer disseminating an event

notification to three subscribers, each of which forwarding the message that describes the

event notification once, is described as 4; one message sent by the producer and 3

messages forwarded by the subscribers. This allows us to measure the effect of different

application behaviours on this cost independently of the actual content of an event notification

while varying a number of application parameters. These parameters include the migration

speed of the entities, the range of the proximity within which event notifications are

disseminated, the number of subscribers, and the distribution of these subscribers.

6.1.1 The Application Scenarios

We have selected a number of scenarios from various application domains for this

experiment. These scenarios differ in the distribution of their respective consumers relative to

a producer and as a result, in the ad hoc network topologies through which event notifications

are disseminated. Table 6.1 summarises the chosen application scenarios and outlines the

type of circular shaped proximity used.

Scenario Application
Domain Description Proximity

Type

(A1)

(A2)
Traffic

Management

This scenario includes a broken down car disseminating accident
warnings to vehicles within its vicinity. Figure 6.1 depicts that this
scenario is set on a two way road. A producer acting as the broken
down car propagates event notifications to consumers representing
the vehicles. These vehicles are randomly distributed on the lanes of
the road. Scenario (A1) uses a static network topology (defined by the
vehicle distribution) to measure the effect of proximity range and the
number of subscribers on event dissemination cost. Scenario (A2)
focuses on the effect of subscriber speed and thus, uses a
dynamically changing network topology that reflects vehicle
movements. The vehicles start their journeys at their respective
random locations, drive along the lanes, and turn upon reaching the
end of the part of the road specified by the application.

Absolute

Chapter 6: Evaluation

- 168 -

Scenario Application
Domain Description Proximity

Type

(B1)

(B2)
Traffic

Management

This scenario includes an ambulance disseminating event
notifications to nearby vehicles for them to yield the right of way. As
shown in Figure 6.1, this scenario is set similarly to the previous
scenario on a two way road and comprises an ambulance entity
propagating its event notifications to a number of randomly distributed
consumers representing vehicles. Scenarios (B1) and (B2), like
scenarios (A1) and (A2), concentrate on static and dynamic network
topologies respectively. In contrast to scenario (A2), which comprises
a static producer and moving consumers, scenario (B2) involves the
ambulance moving along the road propagating event notifications to
stopped vehicles. The other main difference to the previous scenario
is the type of the proximity used.

Relative

(C) Traffic
Management

This scenario includes a traffic light propagating its status to the
vehicles passing through an intersection. As outlined in Figure 6.1,
these vehicles are randomly distributed on the lanes approaching a
four way intersection. This scenario, as well as all subsequent
scenarios, consider static network topologies only.

Absolute

(D) Augmented
Reality

This scenario includes an augmented reality game in which a
particular player informs other players of its game status. Figure 6.1
illustrates that these players can reside anywhere inside the game
space, which is described by the proximity, and hence, their locations
have been determined randomly.

Absolute

(E) Emergency
Services

This scenario includes a search and rescue operation comprising a
coordinator directing a group of distributed searchers, each
responsible for examining an equal part of the search area. Figure 6.1
depicts these searchers being homogeneously distributed in the
search area defined by the proximity.

Absolute

Table 6.1. Description of the application scenarios.

Chapter 6: Evaluation

- 169 -

Proximity

Proximity

Scenarios (A1) and (B1)

Scenario (C)

Proximity

Scenario (D)

Proximity

Scenario (E)

Proximity

Scenarios (A2) and (B2)

Figure 6.1. Application scenario overview.

6.1.2 The Experiment

The experiment comprises four notebook computers placed on the sides of a 5 by 5 meters

square communicating through wireless ad hoc connections. One machine hosts the event

producing entity and the remaining three host the consumers. Each of these machines

accommodate an equal share of the consumers.

The cost of event dissemination has been evaluated for each of the application scenarios.

The behaviour of each scenario involves the basic service requests of the producer

announcing the subject of its events together with the associated proximity before publishing

event notifications and consumers subscribing to them. All consumers are assumed to be

interested in these event notifications and thus, do not filter the event notification content.

Parameters

The measurements have been conducted as a function of a number of application

parameters.

Saturation: Each scenario involves a geographical area of circular shape, defined by a radius

of 700 meters, surrounding its producer. All consumers reside within this area and their

Chapter 6: Evaluation

- 170 -

number defines the saturation of the area. Saturations range from sparse populations,

comprising 60 consumers, to dense populations consisting of 240 consumers. These

saturations reflect congestion in the traffic management scenarios and result in average

distances between vehicle locations varying from 47 meters to 12 meters in (A) and (B), and

from 187 meters to 47 meters in (C). They define the number of payers residing in (D)’s game

space of 1.5 km2 and the search area for each searcher in (E) to range from 160 by 160

meters to 80 by 80 meters.

Proximity: Proximity defines the circular shaped, geographical area surrounding a producer

within which event notifications are disseminated. In other words, proximity defines the set of

consumers residing inside the area of interested to which event notifications are

disseminated. The radius of this proximity PR varies from 100 meters to 700 meters. These

ranges have been selected to include both proximities in which all consumers can be reached

using a single-hop radio transmission (PR <= TR) and proximities that require multi-hop

routing (PR > TR). The largest proximity covers the whole scenario area enabling event

notification propagation to all consumers. In scenarios (A), (B), and (C), the variations of the

proximity range may reflect different road conditions causing changes to the speed limit. In

scenarios (D) and (E), these ranges may reflect different game spaces and search areas

respectively.

Speed: Producers and consumers may migrate according to predefined routes with a certain

speed. The speed chosen for scenarios (A2) and (B2), which evaluate event notification

dissemination cost as a function of mobility, ranges from 10 miles per hour to 70 miles per

hour. In scenarios (A2), this selection reflects vehicles approaching an accident site on a road

with varying speed limits and road conditions (congestion, weather, time of the day) that may

cause them to drive even slower than the actual speed limit. Similarly, the varying speed in

scenario (B2) indicates situations ranging from a slowly moving ambulance navigating through

heavy traffic to an ambulance driving at high speed.

Protocols

The main objective of this experiment is to record the cost of event notification dissemination

using application scenarios (A) to (E) while exploiting STEAM’s proximity-based multicast

protocol. An additional goal involves evaluating the effect of the proposed gossip-based

optimisation technique on this cost. We have repeated the measurements conducted on the

scenarios based on static ad hoc network topologies using the previously described

configuration, while applying the gossip parameters G(d=200.0, p=0.8). These parameters

compel entities outside the single-hop distance of d = 200.0 meters to retransmit messages

Chapter 6: Evaluation

- 171 -

with a probability of p = 0.8. This combination of retransmission distance and relatively high

gossip probability [107] have been chosen with the intention of preventing message loss.

Conducting this experiment with a single set of gossip parameters suffices to evaluate the

effect of this optimisation technique on the cost. Discovering the ideal gossip parameters for

the respective application scenarios is considered outside the scope of this thesis.

Proximity Shape

We have chosen to exploit circular shaped proximities in this experiment since they provide a

natural means to specify an area surrounding a single producer. In addition, they enable

entities to use a simple distance calculation when determining the status of their proximity

membership. Exploiting other proximity shapes, such as rectangles, affects the latency for

determining whether or not an entity is located inside a particular proximity, but does not

influence the cost evaluated in this experiment.

Latency of Event Notification Dissemination

This experiment is concerned with the evaluation of event notification dissemination cost

outlining an indication of the bandwidth required. It does not consider the latency of event

notification dissemination as we argue that latency might be of lesser interest in a system

based on asynchronous, best-effort communication. Moreover, this latency depends directly

on the topology of the underlying ad hoc network in terms of the physical location of the

participating nodes. Hence, conducting meaningful latency measurements using our

scenarios requires the deployment of a significant number of machines hosting the entities

that comprise the applications.

Overhead

The overhead caused by proximity discovery is excluded in this experiment and is evaluated

separately in section 6.2. This overhead reflects the cost of proximity discovery for a certain

time period and as such cannot be mapped directly to the dissemination cost of a single

event notification. Proximity discovery does not influence the results of the measurements

conducted on the scenarios based on static network topologies provided proximities are

being discover prior to event notification dissemination. Subsequent updates are not required.

In scenarios based on dynamic network topologies, proximity discovery is configured to

propagate updates prior to the dissemination of each event notification in order to accurately

reflect the actual topology.

Chapter 6: Evaluation

- 172 -

Coverage

Coverage can be defined as the geographical area to which a particular producer can send

event notifications using either single-hop or multi-hop communication. A proximity is said to

be covered if the associated set of subscribers is a subset of the entitles to which a specific

producer can propagate event notifications. Network partitions may occur in cases where an

area defined by a proximity is not covered by a specific producer. In general, they are more

likely to occur in application scenarios exploiting sparsely populated proximities. The

saturations in this experiment have been chosen with the intention of preventing message

loss due to coverage limitations. In order to verify this, the message loss ratio is recorded for

all measurements.

6.1.3 Results and Analysis

This section summarises the results of the conducted measurements and discusses the

findings.

Cost of Event Dissemination

Figure 6.2, Figure 6.3, and Figure 6.4 illustrate the cost of event notification dissemination as

a function of proximity range for the static ad hoc network topologies described by application

scenarios (A1), (B1), and (C) to (E).

0
50

100
150
200
250

0 100 200 300 400 500 600 700

Proximity Range [m]

D
el

iv
er

y
C

os
t

Saturation 60 Saturation 120 Saturation 180 Saturation 240

Figure 6.2. Cost of event notification dissemination in scenario (A1) as a function of proximity

range.

These figures show a significant difference when comparing event dissemination cost within

the single-hop reach to the cost beyond this range. The cost of disseminating event

notifications inside the single-hop reach is low and independent of both proximity range and

Chapter 6: Evaluation

- 173 -

saturation as a single message suffices to reach all subscribers. Beyond the singe-hop

range, all results show similar tendencies of increasing costs with expanding proximities and

rising saturations as every subscriber residing inside a certain proximity forwards messages.

Increasing a proximity causes an rising number of subscribers to forward messages in order

to cover a larger geographical area. In essence, these figures illustrate how proximities

bound event notification dissemination cost by bounding the number of subscribers that

forward a certain message. Other approaches [106] characteristically use mechanism based

on hop distance from source to destination to control flooding in ad hoc networks.

0

50
100

150
200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
el

iv
er

y
C

os
t

0

50

100

150

200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
el

iv
er

y
C

os
t

Scenario (B1) Scenario (C)

Figure 6.3. Cost of event notification dissemination in scenarios (B1) and (C) as a function of

proximity range.

These figures also illustrate that exploiting proximity for defining propagation ranges enables

STEAM to transparently select the appropriate protocol when disseminating event

notifications. STEAM uses its cost efficient single-hop protocol for raising event notifications

in proximities that are covered by the producer’s TR and employs the multi-hop version only

when transmitting messages beyond TR. Other middleware platforms typically use either a

single-hop protocol with propagation range limitations or a more expensive multi-hop protocol

for both short and long range event notifications dissemination.

Chapter 6: Evaluation

- 174 -

0

50

100

150

200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
el

iv
er

y
C

os
t

0

50

100

150

200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
el

iv
er

y
C

os
t

Scenario (D) Scenario (E)

Figure 6.4. Cost of event notification dissemination in scenarios (D) and (E) as a function of

proximity range.

Furthermore, the results recorded for scenario (A1) and (B1) are virtually identical

demonstrating that, given a similar configuration, the cost for disseminating event

notifications in absolute and relative proximities are comparable.

0
20
40
60
80

100

0 10 20 30 40 50 60 70 80
Subscriber Speed [miles/hour]

D
el

iv
er

y
C

os
t Proximity 200m

Proximity 400m

Proximity 600m

Figure 6.5. Cost of event notification dissemination in scenario (A2) for a saturation of 120 as

a function of subscriber speed.

Figure 6.5 and Figure 6.6 depict the delivery costs recorded for scenarios (A2) and (B2)

respectively as a function of migration speed for a subset of the proximities previously used.

These proximities have been chosen to include both single-hop and multi-hop transmissions

ranges. Essentially, both figures show that these costs, similar to the costs in static network

topologies, are low within single-hop reach and increase with expanding proximities beyond

single-hop range. Significantly, they illustrate that cost does neither depend on the speed of

subscribers nor on the speed of the producer. This is due to the fact that STEAM exploits

proximities to control multicast-based flooding and consequently does not introduce extra

overhead for maintaining routing information that needs to be updated more frequently with

increasing migration speed. The study of flooding-based multicast protocols for ad hoc

networks presented by Lee et al. [103] presents similar conclusions and hence, argues that

Chapter 6: Evaluation

- 175 -

neither the number of transmitted messages nor the associated delivery ratio is a function of

the speed of the communicating entities.

0
20
40
60
80

100

0 10 20 30 40 50 60 70 80
Producer Speed [miles/hour]

D
el

iv
er

y
C

os
t Proximity 200m

Proximity 400m

Proximity 600m

Figure 6.6. Cost of event notification dissemination in scenario (B2) for a saturation of 120 as

a function of producer speed.

Cost of Event Dissemination Using Gossiping

Figure 6.7 illustrates the reduction in dissemination cost when applying a gossip-based

optimisation technique to our application scenarios. The results shown represent the cost

reduction averaged over the data found for saturations ranging from 120 to 240 for each

scenario. As discussed below, cost reduction measured for saturations 60 was found to be

rendered meaningless due to message losses and have thus been excluded. In essence,

Figure 6.7 demonstrates that a significant dissemination cost reduction can be achieved by

using optimisation techniques provided the saturation is sufficiently high to prevent message

loss. For the given application scenarios and the chosen retransmission probability,

saturations of 120 or more were found to fulfil this requirement.

0%

10%

20%

30%

0 100 200 300 400 500 600 700

Proximity Range [m]

C
os

t R
ed

uc
tio

n

Scenario (A1) Scenario (B1) Scenario (C) Scenario (D) Scenario (E)

Figure 6.7. Event notification dissemination cost reduction due to gossiping.

Chapter 6: Evaluation

- 176 -

Message Loss Ratio

The message loss ratio was found to be negligible in almost all measurements. Only the

measurements conducted with the smallest saturations (60) and gossiping consumers in

scenarios (C), (D), and (E) caused the ad hoc network to partition. As a result, a significant

number of consumers were excluded from the ad hoc network and did not receive any

messages. As summarised in Figure 6.8, message loss ratios of up to 30% are recorded for

proximity ranges above 300 meters. An optimisation technique based on a gossiping

probability that depends on the number of node neighbours [107] might be better suited for

these scenarios. Scenarios (A1) and (B1) were not affected as their consumers are distributed

in a relatively small subsection of the proximity area.

0%
10%

20%
30%

40%

0 100 200 300 400 500 600 700

Proximity Range [m]

Lo
ss

 R
at

io

Scenario (C) Scenario (D) Scenario (E)

Figure 6.8. Fraction of gossiping consumers losing event notifications in scenarios with a

saturation of 60.

6.2 Discovering Proximities

The main objective of this experiment is to examine the cost of announcing event types and

associated proximities. In other words, this experiment evaluates the overhead of discovering

event notifications of interest. Similar to the previous experiment, the primary measurement

of interest is an abstract quantity we refer to as cost. We assign a relative cost to announcing

and discovering a proximity associated with a specific event type. Cost describes the number

of messages required when propagating an announcement message from a producer to the

consumers residing within its radio transmission reach and the forwarding of this message to

consumers beyond this range. Cost depends on the number of consumers residing within the

proximity that is announced and on the consumer discovery range, which is defined

individually by consumers allowing them to describe their scope of interest. Hence, cost

provides an qualitative indication of the bandwidth required for announcement dissemination.

Chapter 6: Evaluation

- 177 -

Since announcement messages are propagated using periodic beacons, costs reflect the

discovery overhead related to a certain time interval. We measure the effect of different

application behaviours on this cost as a function of the consumer discovery range.

The results of this experiment outline the main communication overhead imposed by the

STEAM middleware. Other basic service requests in STEAM, such as subscribe and

unsubscribe, do not result in additional inter-entity interaction.

6.2.1 The Application Scenarios

The results of the previously presented experiment outline that neither proximity type nor

entity speed affects the cost of propagating messages in STEAM. We have therefore chosen

to use a subset of the application scenarios presented in section 6.1 in this experiment,

namely scenarios (C) and (D), expecting them to characteristically manifest the cost for

discovering proximities. These scenarios feature different application behaviour which is

reflected by their ad hoc network topologies. Specifically, scenario (C) features application

behaviour where entities randomly populate a subsection of a given proximity whereas the

entities in scenario (D) reside at arbitrary locations anywhere inside a certain proximity.

6.2.2 The Experiment

The experiment has been set up using the configuration previously described in section 6.1

and proximity discovery cost has been measured for both application scenarios. The

behaviour of each scenario involves the producer announcing the type of its event

notifications together with the associated proximity and consumers subscribing to this event

type.

Parameters

The measurements have been conducted as a function of a number of application

parameters.

Saturation: The previously described saturations ranging from 60 to 240 are used in this

experiment.

Proximity: The proximity ranges have been chosen to include PR‘s of 200 meters and 400

meters. The former allows STEAM to propagate announcement messages using single-hop

Chapter 6: Evaluation

- 178 -

transmissions whereas the latter requires multi-hop transmissions. Thus, these ranges have

been selected in order to evaluate both transmission modes.

Discovery range: The radius of the circular shaped discovery range, describing the consumer

scope of interest, is varied from 50 meters to 600 meters in order to cover the two proximities

for which the measurements are conducted. Short ranges are chosen by consumers that are

only interested in discovering proximities in their immediate vicinity whereas larger ranges

enable them to discover proximities in a wider area. For example, vehicles in scenario (C)

might wish to use different discovery ranges depending on their maximum speed; an

agricultural vehicle may be content with a small discovery range whereas a police car may

require a substantially larger range. Players in scenario (D) might vary their discovery ranges

depending on whether they migrate in an urban or an open game space.

6.2.3 Results and Analysis

As previously described, the measurement are conducted using various saturations for each

of the scenarios. The results shown have been averaged over the data collected for these

saturations.

Discovery Cost

Figure 6.9 shows the cost of discovering proximities as a function of the discovery range. The

cost for discovering a proximity in single-hop scenarios (SH Scenario (X)) is constant and,

compared to multi-hop scenarios (MH Scenario (X)), very low. Moreover, this cost is

independent of the discovery range, which can be explained by the fact that message

propagation is limited by the proximity range.

0

50

100

150

0 100 200 300 400 500 600
Discovery Range [m]

D
is

co
ve

ry
 C

os
t

SH Scenario (C)
M H Scenario (C)
SH Scenario (D)
M H Scenario (D)

Figure 6.9. Cost of proximity discovery in scenarios (C) and (D) as a function of the discovery

range.

Chapter 6: Evaluation

- 179 -

The cost of proximity discovery in multi-hop scenarios grows linearly with increasing

discovery range since messages are being forwarded to cover a larger discovery scope.

However, this cost can be limited by choosing a discovery range that is appropriately small

for a particular application.

Coverage

Figure 6.10 illustrates the discovery coverage for both scenarios as a function of the

discovery range. This discovery coverage defines the ratio of the number of entities

discovering a specific proximity to the number of entities residing inside this proximity. A

discovery coverage of less than 100% indicates entities residing inside an undiscovered

proximity whereas a discovery coverage of more than 100% signifies that some entities

located beyond a proximity range discover the proximity. Discovery coverage is important

from an application programmers perspective as entities unaware of a certain proximity will

neither be able to join nor to receive disseminated event notifications.

0%
50%

100%
150%
200%
250%

0 100 200 300 400 500 600
Discovery Range [m]

C
ov

er
ag

e
R

at
io SH Scenario (C)

M H Scenario (C)
SH Scenario (D)
M H Scenario (D)

Figure 6.10. Discovery coverage ratio in scenarios (C) and (D) as a function of the discovery

range.

As shown in Figure 6.10, coverage in single-hop scenarios remains at 100% once the

discovery range exceeds the proximity range. Entities residing outside the proximity will not

receive any announcement messages regardless of their discovery range. This implies that

discovery ranges larger than proximity ranges do not impose additional overhead. In contrast,

coverage in multi-hop scenarios increases beyond 100% for discovery ranges exceeding

proximity ranges adding extra overhead. Discovery ranges that match proximity ranges are

ideal in that they do not add extra overhead while enabling all entitles residing within the

proximity to receive announcement messages. However, such an ideal range may not exist

for some application since multiple, potentially different proximity ranges may be associated

with certain event types.

Chapter 6: Evaluation

- 180 -

In essence, discovery cost can be reduced by decreasing the discovery range, but discovery

ranges that are smaller than proximity ranges compromise discovery coverage and

consequently may lead to event notification loss.

6.3 Event Notification Filtering Precision

This section presents our evaluation of STEAM’s event notification filtering engine, which

demonstrates that combining event notification filters, each applied to a different event

notification attribute, is beneficial as it increases the filtering precision. A prototypical

application scenario from the traffic management domain has been implemented for this

experiment. The scenario simulates the interaction between vehicles passing through an

intersection and the intersection’s traffic light disseminating its light status. The scenario is

modelled according to the intersection of North Circular Road (NCR) and Prussia Street

(PST) located in Dublin’s inner city. It is based on real data, which has been provided by

Dublin City Council [109], describing vehicle movements and light status at the intersection

over a period of 24 hours.

6.3.1 The Intersection Scenario

Figure 6.11 illustrates the intersection and outlines how the traffic flow can be broken up into

two distinct phases. The intersection comprises two approaches; approach one describes the

traffic flows arriving from east and west whereas approach two describes the traffic flows

arriving from north and south. Approach one comprises three lanes and approach two

comprises of four lanes. The traffic light for both approaches is considered to be located in

the centre of the intersection at the stated latitude and longitude coordinate.

Chapter 6: Evaluation

- 181 -

Approach 2

Approach 1

L2
L1

L1

L3

L2

L4 L3

Lx: Lane x

53º21.416'N - 6º17.291'W

N

Figure 6.11. The North Circular Road and Prussia Street intersection.

The Data

The intersection data provided by Dublin City Council’s traffic management system was

acquired over a period of 24 hours starting on the 3rd of December 2002 at 6 pm. As outlined

in Table 6.2, the data consists of a sequence of data records, each describing a cycle

duration and the number of vehicles passing through the intersection on each individual lane

during the cycle.

Number of Vehicles

Approach 1 (NCR) Approach 2 (PST) Record Time Cycle
[s]

Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 Lane 4

1 18:01 118 12 5 0 10 5 0 0

2 18:03 120 8 4 0 7 2 0 0

3 18:05 120 6 5 0 12 0 0 0

…

Table 6.2. The first three records of the intersection data.

The example phase scheme of Figure 6.12 shows how the cycle time defines the duration for

two approaches to complete their respective phases. Each phase consists of a sequence of

light changes. The proportion of the cycle length that is assigned to one particular phase is

Chapter 6: Evaluation

- 182 -

called the split. The split between the phase of approach one and two is constant at a ratio of

45% to 55%.

REDAMBERGREEN RED

REDAMBERGREEN

Approach 2

Approach 1

Cycle Length

Phase 1 Duration

Phase 2 Duration

Figure 6.12. Example phase scheme for a two-approach intersection.

6.3.2 The Experiment

The experiment includes three notebook computers placed 5 meters apart communicating

through wireless ad hoc connections. One machine hosts the traffic light, acting as a STEAM

producer, and the other two accommodate the vehicles, represented as STEAM consumers.

The vehicles are split between the two consumer machines according to the approach on

which they travel. Each of these vehicles is connected to a separate STEAM instance with an

independent location service simulating the vehicle’s route.

Approach 1

L2

Proximity
 Range

S2

S5 S4

S3

Sx: Vehicle at Stage x

S6

S1

Transmission
Range

Figure 6.13. Modelling the intersection.

The traffic light raises an event of type “Traffic Light” every second for each approach. Each

of these events describes the light status and contains the name of the approach as well as

Chapter 6: Evaluation

- 183 -

the location of the light. Vehicles approach the intersection in their respective lanes at an

average speed of 25 miles per hour (the intersection is located in a 30 miles per hour zone).

Each vehicle follows a pre-defined route according to its approach lane. Figure 6.13 depicts

an example route of a vehicle in lane two of approach one. The vehicle is shown at stages S1

to S6 of its journey through the intersection. The available intersection data does not describe

the behaviour of an approaching vehicle in terms of queuing; it only indicates the number of

vehicles passing the intersection during a green light sequence. Hence, vehicles are

modelled to reflect this behaviour arriving at the intersection in time to pass the light during a

green light sequence. Table 6.3 summarises the number of events raised for each approach

and the total number of vehicles passing through the intersection on each individual lane.

 Approach 1 (NCR) Approach 2 (PST)

 Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 Lane 4

Number of Events
Propagated 84373 84373

Number of
Vehicles 6652 3320 3728 3038 1383 2802 1135

Table 6.3. The configuration of the experiment.

Configuration

This experiment comprises multiple runs, each run exploiting a different combination of event

notification filters. Each of these runs simulates the intersection interactions using the same

stimuli while recording the number of event notifications delivered to the vehicles. Table 6.4

outlines the specific combinations of event filters used in the runs. The subject filter allows

vehicles to subscribe to “Traffic Light” events and the content filter matches events on behalf

of vehicles moving towards the traffic light on a particular approach. As shown in Figure 6.13,

the absolute proximity filter defines the radius of the area of interest surrounding the traffic

light. The radius has been set to 40 meters to allow for vehicle braking distance (16 meters)

and update rate (once per second) of the location service simulating vehicle movements. This

radius guarantees that an approaching vehicle receives at least two events before having to

decide whether or not to stop at the light. In general, omitted filters do not affect event

dissemination, events are simply passed on. The traffic light’s wireless transmitter limits the

communication range of event dissemination in case of an omitted proximity filter. We

assume the radio transmission range in the modelled urban environment to be 200 meters

and hence, events will be ignored by vehicles travelling beyond this transmission reach. For

example, vehicles in run (A), in which all filters are omitted, will receive all disseminated

Chapter 6: Evaluation

- 184 -

events once they are inside the transmission range of the traffic light. The vehicle shown in

Figure 6.13 would receive all events propagated at stages S2 to S5 of its journey.

Run Subject Filter Content Filter Proximity Filter

(A) None None None

(B) "Traffic Light" None None

(C) "Traffic Light" Approach,
Towards Light None

(D) "Traffic Light" None Proximity Range

(E) "Traffic Light" Approach,
Towards Light Proximity Range

Table 6.4. The configuration of the runs.

In essence, the traffic light announces its events and the associated proximity as required by

the specific run and subsequently disseminates the light status for each approach. Vehicles

specify the required subject and content filters before commencing their journeys through the

radio transmission range of the intersection’s traffic light. Depending on their location and the

combination of filters used in a particular run, vehicles will receive and deliver subsets of the

generated events.

Vehicle Speed

As previously described, all vehicles in this experiment approach the intersection at a given

averaged speed of 25 miles per hour. Vehicles, which might travel at lower average speeds,

for example due to congestion, or indeed speeding vehicles may receive different numbers of

events compared to the results recorded in this experiment. Slow vehicles may receive more

events and speeding vehicles may receive fewer events. Nevertheless, measurements on

such vehicles might still indicate relative decreases similar to the results shown below as the

ratios of overall, transmission range, and proximity travel times remain unchanged. These

ratios and consequently the relative decreases might be affected for vehicles travelling at

drastically varying speeds, for example when slowing down in order to avoid collision with

pedestrians or cyclists. However, we expect similar experimental conclusions, with respect to

event notification filtering precision.

6.3.3 Results and Analysis

Figure 6.14 and Figure 6.15 summarise the number of event notifications vehicles deliver to

the application in each of the runs (A) to (E). Figure 6.14 illustrates the overall number of

Chapter 6: Evaluation

- 185 -

event notifications delivered on each of the lanes of the intersection. These quantities depend

on the number of vehicles passing through a particular lane and show the traffic flow being

heaviest on lane 1 of the NCR approach. Figure 6.15 shows the average number of event

notifications delivered by an individual vehicle, which is similar for each lane, and also shows

substantial reduction in delivered events when applying content or proximity filters.

0

100000

200000

300000

400000

500000

NCR Lane 1 NCR Lane 2 NCR Lane 3 PST Lane 1 PST Lane 2 PST Lane 3 PST Lane 4

Approach

Ev
en

ts
 D

el
iv

er
ed

(A) No Filter (B) Subject Filter (C) Content Filter (D) Proximity Filter (E) Combined Filters

Figure 6.14. The number of event notifications delivered on each of the lanes.

Figure 6.16 demonstrates the precision of event filtering by comparing the results of runs (B)

to (E) with the result of run (A) outlining the relative decrease in events delivered. The results

of runs (A) and (B) are virtually identical and thus no decrease was measured. This is due to

the fact that all events have the same subject in all runs. Events of an unrelated subject

would have been delivered in (A) but not in (B). We argue that this is a straightforward

concept and have therefore decided to exclude it from this experiment. The jitter between the

results recorded for (A) and (B) is caused by the best effort semantics of our middleware.

0
10
20
30
40
50
60
70
80

NCR Lane 1 NCR Lane 2 NCR Lane 3 PST Lane 1 PST Lane 2 PST Lane 3 PST Lane 4

Approach

Ev
en

ts
 D

el
iv

er
ed

 P
er

Ve
hi

cl
e

(A) No Filter (B) Subject Filter (C) Content Filter (D) Proximity Filter (E) Combined Filters

Figure 6.15. The average number of events delivered by individual vehicles on each lane.

Chapter 6: Evaluation

- 186 -

Run (C) shows a relative decrease averaging at around 75%. The content filter matches

events on the vehicle’s approach, thus filtering approximately 50% of all disseminated events,

and passes events only if a vehicle is moving towards the traffic light discarding 50% of the

remaining events. The relative decrease found in run (D) averages at around 80%. The

proximity filter bounds the propagation range preventing events from being delivered to

vehicles travelling outside the proximity area. The ratio of transmission range to proximity

range, which is 200 meters to 40 meters, accounts for the decrease found. The final run (E)

measured a substantial relative decrease of approximately 95%. This is hardly surprising

considering a combination of filters has been applied. In fact, this result can be explained by

combining the decreases found in (C) and (D). Significantly, this run delivers the exact subset

of event notifications in which this application is interested, discarding unwanted events.

0%

20%

40%

60%

80%

100%

NCR Lane 1 NCR Lane 2 NCR Lane 3 PST Lane 1 PST Lane 2 PST Lane 3 PST Lane 4

Approach

R
el

at
iv

e
D

ec
re

as
e

(B) Subject Filter (C) Content Filter (D) Proximity Filter (E) Combined Filters

Figure 6.16. Precision of event notification filtering for various filter combinations.

6.4 Raising and Delivering Event Notifications

This experiment illustrates the behaviour of producers and consumers in terms of

performance when raising and delivering event notifications respectively. In particular, it

focuses on measuring the effect of parameters that typically describe the scale of a system

on the latency of retrieving and matching various types of event notification filter. Hence, the

main objective of this experiment is to demonstrate that our approach to maintaining event

notification filters limits the effect of varying system scale on the latency of producers raising

and consumers delivering event notifications.

Chapter 6: Evaluation

- 187 -

6.4.1 The Experiment

This experiment comprises a producer hosted by one notebook computer disseminating

events to one or more consumers running on another notebook. Each entity is connected to

an independent STEAM instance and the host machines are placed 3 meters apart

communicating through a wireless ad hoc connection. The locations of these entities have

been chosen to allow the producer to reach all consumers with a single-hop radio

transmission and the radius of the circular proximity area has been set accordingly.

Measurements

Measurements were conducted to determine the latency for producers to raise and for

consumers to deliver event notifications. Producer latency represents the time for an

application to invoke the raise operation and thus, includes processing (filtering and

marshalling) and sending of an event notification. In other words, the recorded latency

embodies an indication of the throughput of a producer. The consumer latency specifies the

time to process a received event notification and to pass it to the application invoking the

delivery handler. These measurements were conducted by averaging the latency over 100

runs. In addition, the latencies for retrieving and matching subject filters, content filters, and

proximity filters have been recorded by averaging their latencies over 100,000 runs.

Event Type and Content Filter

The producer announces and generates event notifications of subject “Performance”. The

corresponding even type, which is outlined in Figure 6.17, specifies a set of parameters

comprising each of the parameter types currently supported by STEAM.

const int numPar = 5;
S_EventParameterDeclaration* epd;
SP_dsEventType* et;

epd = new S_EventParameterDeclaration[numPar];
epd[0] = S_EventParameterDeclaration("Integer Name", S_INT);
epd[1] = S_EventParameterDeclaration("Time Name", S_TIM);
epd[2] = S_EventParameterDeclaration("Location Name", S_POS);
epd[3] = S_EventParameterDeclaration("String Name", S_STR);
epd[4] = S_EventParameterDeclaration("Double Name", S_DBL);
et = new SP_dsEventType("Performance", numPar, &epd, SP_SINGLE_HOP);

Figure 6.17. Definition of the “Performance” event type.

Chapter 6: Evaluation

- 188 -

Consumers subscribe to these event notifications and employ the conjunctive content filter

shown in Figure 6.18. The specified filter expression consists of a set of filter terms, one of

which is applied to each of the event notification parameters. The actual values of these filter

terms have been chosen to match all disseminated event notifications.

SC_ConjunctiveContentFilter* cf;

cf = new SC_ConjunctiveContentFilter();
cf->addTermINT(0, SC_GREATER, 0);
cf->addTermTIM(1, SC_GREATER, 0);
cf->addTermPOS(2, SC_POS_WITHIN_RANGE, 200.0);
cf->addTermSTR(3, SC_STR_EQUAL, "Some Text");
cf->addTermDBL(4, SC_GREATER, 0.0);

Figure 6.18. Definition of the conjunctive content filter applied to the disseminated event

notifications.

Parameters

The measurements have been conducted as a function of a number of application

parameters.

Announcements: In addition to announcing (and raising) “Performance” event notifications,

the producer announces a number of other event types (and their proximities) simulating a

scenario in which it handles a (large) system that comprises several event types. This

typically imposes extra computational load on producers.

Subscribers: The producer disseminates its event notification and indeed its announcements

to a number of interested consumers, which subsequently subscribe to these event types.

Similar to adding announcements, adding subscribers simulates the effect of increasing

system scale on producers.

Subscriptions: Consumers may subscribe to several event types causing them to maintain

multiple subscriptions and content filters. This simulates the effect of increasing system scale

on consumers.

6.4.2 Results and Analysis

The data collected for producer and consumer latencies have been summarised in this

section. The latencies for producers raising and consumers delivering event notifications are

Chapter 6: Evaluation

- 189 -

shown. The latencies for retrieving and matching event notification filters are depicted as

parts of the overall producer and consumer latencies.

Latency of Producers Raising Event Notifications

Figure 6.19 depicts the measured producer-side latencies as a function of the number of

announced event types and associated proximities and the number of subscribed consumers.

The latency for raising an event of type “Performance” was found to be approximately 1.8

milliseconds, which is equivalent to a throughput of just above 550 event notifications per

second. The latencies recorded for subject filter retrieval and matching (SF rtv + match) and

proximity filter retrieval (PF retrieval) are 1.55 and 1.45 microseconds respectively.

Marshalling and sending event notifications (mainly) accounts for the remaining latency

(Other).

1

10

100

1,000

10,000

1/1 10/30 20/60 30/90 40/120
Announced Event Types / # Subscribers

La
te

nc
y

[u
s/

ev
en

t]

Other
SF rtv+match
PF retrieve

Figure 6.19. Latency of a producer raising an event notification as a function of the number of

announced event notification types and the number of subscribers.

These results demonstrate that the latencies for raising event notifications and, in particular,

for processing event notification filters are independent of the numbers of announced event

types and subscribers.

Latency of Consumers Delivering Event Notifications

Figure 6.20 illustrates the recorded consumer side latencies as a function of the number of

subscriptions to other event types maintained by the consumer. The latencies for retrieving

and matching subject filters, content filters, and proximity filters, as well as the overall latency

for delivering event notifications, are independent of the varying number of subscriptions.

Marshalling and invocation of the application delivery handler (mainly) accounts for the

remaining latency (Other).

Chapter 6: Evaluation

- 190 -

0

15

30

45

1 10 20 30 40
Subscriptions

La
te

nc
y

[u
s/

ev
en

t]
Other
CF match
CF retrieve
SF rtv+match
PF match
PF retrieve

Figure 6.20. Latency of a consumer delivering an event notification as a function of the

number of subscriptions to other event notification types.

Some of the latencies outlined in Figure 6.19 and Figure 6.20 are application specific.

Content filter matching depends on the number of filter terms and on the type of the

parameter to which these terms apply, proximity filter evaluation latency may vary with the

geographical shape of the proximity area, and passing event notifications to an application

depends on the delivery handler. Even though evaluating these application specific latencies

is straightforward, we have decided to exclude such an evaluation as it represents a

insignificant contribution in the context this thesis.

In conclusion, the measurements recorded in this experiment demonstrate that the latency for

processing event notification filters, specifically their retrieval and matching, is independent of

parameters defining the scale of a system.

6.5 Summary

This chapter presented four experiments evaluating various collaborative application

scenarios using the STEAM middleware.

The first of these experiments shows the cost of disseminating event notifications for different

application behaviours and various static and dynamic ad hoc network topologies. The

experiment demonstrates how exploiting proximity limits this cost by bounding event

notification forwarding. Using proximities for defining event propagation ranges allows

STEAM to transparently select the appropriate protocol for disseminating event notifications.

A cost effective single-hop protocol can be employed for disseminating event notifications

within the radio transmission range of a producer whereas a more expensive multi-hop

protocol has to be used for reaching entitles residing beyond the single-hop reach. The

experiment also illustrates that event dissemination cost in dynamic ad hoc network

Chapter 6: Evaluation

- 191 -

topologies is independent of both subscriber and producer migration speed. In addition, this

experiment demonstrates that the cost of disseminating events in absolute and relative

proximities are comparable and that optimisation techniques, for example based on

gossiping, may be exploited to reduce dissemination cost in areas with a sufficiently high

node saturation.

The second experiment shows the cost associated with announcing and discovering event

types and proximities and thus, outlines the overhead of entities discovering event

notifications of interest. Not surprisingly, the cost of disseminating announcement messages

exhibited behaviour similar to the cost of disseminating event notifications in that a single-hop

protocol suffices when discovering proximities within radio transmission range of the

producer. Discovery cost is bounded by the proximity range and by the discovery range

defined by consumers. This allows consumers to reduce discovery cost by decreasing their

discovery range. However, this may compromise delivery coverage and consequently lead to

event notification loss.

The third experiment evaluates STEAM’s event notification filtering engine and demonstrates

that combining event notification filters applied to different event notification attributes

increases the filtering precision. This experiment models a specific intersection of Dublin’s

inner city and simulates interactions between vehicles moving through the intersection and

the intersection’s traffic light over a period of 24 hours based on real data provided by Dublin

City Council. The relative decrease in the number of event notifications delivered to these

vehicles has been measured for various filters. Although, applying either a content filter or a

proximity filter results in a significant reduction in the number of delivered event notifications,

the most significant decrease was found when combining subject filters, content filters, and

proximity filters. Significantly, combining these filters resulted in the exact subset of event

notifications of interest being delivered to this application and unwanted event notifications

being discarded by the middleware.

The final experiment outlines the behaviour of producers and consumers in terms of

performance when raising and delivering event notifications respectively while focusing on

the effect of varying system scale on this behaviour. The measurements demonstrate that the

latencies for processing event notifications and, in particular, for processing event notification

filters are independent of application parameters that typically describe the scale of a system.

In addition, the results of these experiments demonstrate that various techniques employed

by STEAM allow a system to easily cope with a large, dynamically changing population of

entities distributed over a large geographical area. Exploiting proximities to bound event

notification dissemination and their discovery allows an application to divide a large

Chapter 6: Evaluation

- 192 -

geographical area into multiple, potentially independent sub-areas, each handling their event

notifications locally. This enables STEAM to transparently select an appropriate protocol for

disseminating messages and to limit message forwarding to the predefined area. Combining

event notification filters that apply to different event notification attributes allows the

middleware to discard unwanted event notifications and to process event notifications and

especially their filters in a manner that is independent of the scale of a system and the

number of deployed filters.

- 193 -

CHAPTER 7: CONCLUSIONS AND FUTURE
WORK

This thesis presented the STEAM event-based middleware designed to support the highly

mobile (and stationary) entities that comprise collaborative applications.

This chapter summarises the most significant achievements of the work described in this

thesis and outlines its contribution to the state of the art. This thesis is then concluded with a

discussion of related research issues that remain open for future work.

7.1 Achievements

The motivation for the work presented in this thesis arose from the observation that state of

the art research in distributed event-based programming systems for wireless networks has

mainly focussed on accommodating nomadic applications.

Nomadic applications are characterized by the fact that mobile entities make use of the

wireless network primarily to connect to a fixed network infrastructure but may suffer periods

of disconnection while moving between points of connectivity. As discussed in chapter 1 and

chapter 2 of this thesis, the main goal of event-based middleware supporting nomadic

applications has consequently been to handle disconnection while entities migrate from one

designated access gateway to another. This implies that such middleware has focused on

providing a means to cache and synchronise relevant information on behalf of a disconnected

entity and to forward it via the new access gateway upon reconnection.

As described in chapter 2, event-based middleware traditionally employs logically centralised

or intermediate components to implement key features and properties of the middleware.

Application components may utilise centralised lookup and naming services to discover peers

in order to communicate with them. Intermediate components may be used to route event

notifications from producers to consumers and to apply event notification filters. Moreover,

they may enforce non-functional attributes, such as event notification delivery order and

priority. However, the central problem with this approach arises with increasing system scale

Chapter 7: Conclusions and Future Work

- 194 -

as such middleware components may become a liability due to availability and bandwidth

limitations.

Centralised or intermediate middleware components are typically hosted by physical

machines that are part of a designated service infrastructure in order to ensure that they are

always accessible to application components. The disadvantage of exploiting such an

infrastructure is that its installation and maintenance requires substantial resources while

limiting communication between entities to the geographical areas in which the infrastructure

has previously been made available.

A similar approach has been used by middleware for nomadic applications since designated

middleware components, which typically implement the mechanisms for handling

disconnection, can be hosted naturally by parts of the network infrastructure, for example by

wireless access gateways as suggested by Huang et al. [6]. As discussed in chapter 2, this is

also illustrated by SIENA and Elvin4 as both use intermediate proxy components, which are

hosted by parts of the service infrastructure, for managing information on behalf of a moving

entity. Likewise, JEDI and CEA use intermediate components for event notification

dispatching that are part of the network infrastructure.

Such an approach is inadequate for event-based middleware supporting collaborative

applications that can be characterised by the fact that mobile entities use the wireless

network to interact with other mobile entities that have come together at some common

location. Collaborative entities migrate within some area, establish associations with other

entities dynamically, and typically group into formations of entities that have a common goal.

Although these applications may use infrastructure networks, they will often use ad hoc

networks since they are immediately deployable in arbitrary environments and support

communication without the need for a separate infrastructure. Consequently, middleware

accommodating collaborative applications can not rely on the presence of a designated

service infrastructure.

It can be observed in the state of the art that other work does not attempt to support this style

of mobile application in which collaboration is intrinsic when entities are in close proximity

(see chapter 2), even though this application style can be useful in the ubiquitous and

sentient computing domain allowing loosely coupled, inherently mobile entities to move

together and apart over time.

The main challenge was to design event-based middleware that supports collaborative

applications without the aid of a separate service infrastructure while avoiding centralised and

intermediate components. A further challenge was to provide event filtering with high

precision allowing an entity to use multiple functional and non-function criteria when

Chapter 7: Conclusions and Future Work

- 195 -

identifying event notifications of interest. The final challenge was to develop decentralised

techniques that improve system scalability for applications composed of large numbers of

interconnected mobile (and stationary) entities distributed over large geographical areas. This

has been achieved. The resulting architecture, captured as an event model known as

STEAM, has been presented in this thesis.

STEAM provides for unanticipated interactions among collaborative application components

by allowing event producers to define geographical scopes that bound the areas in which

their event notifications are relevant. Event consumers residing or indeed entering such areas

can dynamically discover these proximities and subsequently establish logical connections to

the associated producers. The connections between the entities residing in a particular

proximity are then used by producers to disseminate their event notifications thereby allowing

consumers to deliver events at the specific location where they are valid.

Such geographical scopes represent a natural way for mobile entities to identify events of

interest and enable entities that have come together at a certain location to spontaneously

discover and interact with each other. STEAM specifically addresses the needs of mobile

applications by extending the concept of geographical scopes introduced by ECO (see

chapter 2) with a notion of proximity in which areas of interest can be mobile as well as

stationary.

The architecture of STEAM is inherently distributed and is based on an organisation with

distributed collocated middleware [23]. The STEAM middleware is exclusively collocated with

application components and depends neither on centralised or intermediate components nor

on the presence of a designated service infrastructure.

STEAM’s inherently distributed architecture implies that every STEAM instance offers

identical capabilities to its application. Every physical machine hosting STEAM is capable of

providing the same service to producers and consumers without accessing remote

components. The design of STEAM facilitates this by supporting various distributed

mechanisms to provide the desired middleware properties. Consequently, STEAM provides

decentralised techniques for peer discovery based on beacons, for routing event notifications

from producers to consumers without the aid of access points using multicast groups and a

distributed addressing scheme, for enforcing non-functional attributes, such as event

notification delivery order and priority, and for event filtering based on combining multiple,

producer-side and consumer-side filters.

Event notifications can not depend on intermediate components applying event filters at a

central location. STEAM therefore supports a distributed approach to filtering allowing event

notifications to be filtered at both the producer side and the consumer side thereby enabling

Chapter 7: Conclusions and Future Work

- 196 -

applications to exploit the advantages of both filter locations. In particular, applying filters at

the consumer side enables filtering on the context of event notifications, such as the

geographical location (of consumers), that is not available at the producer side.

STEAM supports a range of event filters that may be applied to a variety of event notification

attributes, including subject, content, and context, such as geographical location. As

demonstrated in chapter 6, combining such event filters is beneficial to the precision of

filtering allowing an entity to define the subset of event notifications in which it is interested

using multiple criteria, such as meaning and location.

Many of the decentralised techniques we have discovered for supporting mobility naturally

accommodate a dynamically changing population of mobile entities and as a result, help to

improve the scalability of a system. STEAM’s inherently distributed architecture avoids

designated middleware components that may become communication bottlenecks with

increasing system scale. The concept of proximity-based event dissemination bounds the

geographical scope within which certain information is valid and thus, limits forwarding of

event notification and configuration information which may lead to a reduction in the required

communication and computational resources. Combining multiple event filters improves the

filtering precision and consequently, reduces the number of potentially unwanted event

notifications being propagated. Decentralised filtering also helps to improve the scalability of

a system by distributing the computational load of filter matching as a small number of filters

are typically evaluated on each specific machine.

Another of the decentralised techniques featured by STEAM is also worthy of mention.

STEAM’s distributed addressing scheme replaces the kind of centralised approach

traditionally used for identifying peers of interest and therefore represents a key enabling

mechanism to STEAM’s inherently distributed architecture. This addressing scheme enables

entities to recognise proximities of interest and to obtain the correct proximity group identifiers

using device local rather than global knowledge based on a textual description of discovered

event type and proximity pairs.

These concepts and techniques were realised in a prototype implementation of the STEAM

event model. As described in chapter 6, a range of collaborative application scenarios were

then selected to conduct a number of evaluation experiments. These experiments

demonstrate how the objectives of this thesis were met with respect to event filtering

precision and system scalability. They also show the cost of event dissemination, proximity

discovery, and event notification processing.

A further contribution of this thesis is a taxonomy of distributed event-based programming

systems. The taxonomy is structured as a hierarchy of the fundamental properties of a

Chapter 7: Conclusions and Future Work

- 197 -

distributed event-based programming system and can be used as a framework to describe an

event system according to a variety of criteria including its event, organisation, and

interaction models. The taxonomy was applied to our middleware as well as a selection of

other event systems to compare their middleware properties.

7.2 Open Research Issues

As is always the case with research, there are some issues that remain open for possible

future work. The event model presented in this thesis supports attributes that classify event

notifications according to their timeliness requirements. The mechanism for enforcing these

classes of events is likely to be affected by the dynamic nature of the mobile computing

environment for which STEAM has been designed. The main area for future exploration

therefore includes the issue of achieving timeliness and reliability for real-time event-based

communication in ad hoc wireless networks.

The design assumptions for real-time event-based communication typically include access to

a network infrastructure, a known upper bound on the number of participating entities, and

known resource requirements. Infrastructure networks have an implicit assumption of known

connectivity in the absence of failed network components [110]. Real-time event models often

assume a known maximum number of entities connected to the physical medium as well as

known resource requirements for the communication between these entities [111]. As a result

of these assumptions, event transmission schedules for avoiding collisions are typically

planned statically and the correctness of these schedules regarding temporal overlaps are

verified off-line.

The characteristics of mobile applications using ad hoc wireless networks that render these

assumptions inappropriate include dynamic connectivity, unpredictable latency, and

limitations to the available resources. The quality of the connections between mobile entities

is directly related to entity migration and hence, may vary over time. Entity migration and the

fact that mobile applications typically comprise changing populations of entities leads to

connections being established highly dynamically. These variations in connection quality in

combination with the possibility of colliding transmissions caused by multiple entities

simultaneously accessing the shared wireless medium result in unpredictable routing

latencies that prevent static transmission planning.

A technique for achieving timeliness and reliability for real-time event-based communication

in ad hoc wireless networks has been proposed by Hughes and Cahill [87]. Their conceptual

model is the first to directly address the issue of achieving timeliness and reliability in

Chapter 7: Conclusions and Future Work

- 198 -

dynamic networks and essentially relies on predictive techniques to alleviate the impediments

to real-time event-based communication that are characteristic of mobile ad hoc

environments. This model exploits STEAM’s concept of bounding the event propagation

range for dividing a large, highly dynamic network topology into smaller and therefore less

dynamic topologies. This model essentially allows the non-functional requirements of an

event type to be mapped to a quality of service zone that is defined by the associated

proximity. The focus of this model is then to use predictive techniques to reduce reaction to

mobility and topological changes. A proactive technique based on the ability to predict entity

and indeed proximity movements is used for reserving the network resources required to

achieve probabilistic guarantees on path availability for routing events from a producer to

consumers. The techniques proposed by this quality of service model therefore represent a

possible approach for enforcing the classes of events that are supported by STEAM.

7.3 Conclusion

This chapter summarised the motivations for and the most significant achievements of the

work presented in this thesis. In particular, it outlined how this work contributes to the state of

the art in distributed event-based programming system for the mobile computing domain by

providing an event-based middleware for accommodating collaborative applications that use

wireless ad hoc networks. The chapter was concluded with some suggestions for possible

future work arising from the research undertaken as part of this thesis.

- 199 -

APPENDIX: SUMMARY OF TAXONOMY
PROPERTIES

This appendix summarises the taxonomy of distributed event-based programming systems

presented in chapter 3 of this thesis. The identified hierarchy of event system properties is

presented in this appendix in order to allow for convenient use of the taxonomy when

classifying distributed event-based programming systems.

Event System

Event Service Event Model

Event Model

Implicit Mediator Peer to Peer

Multiple Single

Non Functionally
Equivalent

Functionally
Equivalent

Event Service

Interaction ModelOrganisation Features

Appendix: Summary of Taxonomy Properties

- 200 -

Centralised

Separated
Middleware

Collocated
Middleware

Multiple Single

Separated
Middleware

Multiple Single

Collocated
Middleware

Distributed

Organisation

Intermediate

Distributed
Intermediate

Partitioned

Implicit Named Point to Point

No Intermediate

Interaction Model

Cooperative

Non-Hierarchical Hierarchical

Multiple Single

Centralised
Intermediate

Functional

Event
Type

Non-Functional

Features

Event Propagation
Model

Event
Filter

QoS Mobility Ordering Failure Mode Composite
Events

Security

Appendix: Summary of Taxonomy Properties

- 201 -

Sporadic

Push Pull

Event Propagation
Model

Periodic

Pull Push

Expressive
Power

Generic

Event Type

Typed

Fixed

Name and Number
Parameters

Name and String
Parameters

Application
Specific

Object Attributes Name

Expressive Power

Event Filter

Evaluation Implementation Definition Location

Producer,
Consumer and
Intermediate

Location

Producer and
Consumer

IntermediateProducer Nowhere Producer and
Intermediate

Consumer Consumer and
Intermediate

Appendix: Summary of Taxonomy Properties

- 202 -

Constraint
Language

Definition

Programming
Language

Language Subset

String

Implementation

Object Function

Mechanism

Compiled

Implicit Pre-processed

Interpreted

Implicit Pre-processed

Time

Propagation Subscription

Evaluation

Expressive Power

Implicit

Combinator

Implicit None Arbitrary

Operator

MagnitudeEquality Range

Type

Predefined

Appendix: Summary of Taxonomy Properties

- 203 -

Mobile Code

Mobility

Static Entity

Collaborative
Entity

Nomadic Entity

Mobile Device

Supported

Time

Explicit Implicit

Number

Three or More Two

Composite Events

Omitted

Real Time

Soft Best
Effort

Quality of Service (QoS)

Hard

Priority

Alarm No Multiple

Store Occupancy

Implicit Configurable

Reliability

Reliable
Connection

Persistent Best
Effort

Appendix: Summary of Taxonomy Properties

- 204 -

Subset

Ordering

FIFO Any Total Causal Priority Deadline

System Wide

FIFOAny Total Causal Priority Deadline

Supported

Authentication

Set of Events

Confidentiality

Individual Event

Security

Omitted

Entity

Failure Mode

Middleware Network

Producer

Partial System
Failure

Total System
Failure

Partial System
Failure

Functional Geographical

Total System
Failure

Consumer Redundant Partial System
Failure

Total System
Failure

- 205 -

BIBLIOGRAPHY

[1] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems, Concepts and

Design, Third ed: Pearson Education Limited, 2001.

[2] Object Management Group, The Common Object Request Broker: Architecture and

Specification: Object Management Group, 1995.

[3] Sun Microsystems Inc., Java Remote Method Invocation (RMI) Specification: Sun

Microsystems Inc., 1996.

[4] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri,

"Generic Support for Distributed Applications," IEEE Computer, vol. 33, pp. 68-76,

2000.

[5] G. Cugola, E. D. Nitto, and A. Fuggetta, "The JEDI Event-Based Infrastructure and its

Application to the Development of the OPSS WFMS," IEEE Transactions on Software

Engineering (TSE), vol. 27, pp. 827-850, 2001.

[6] Y. Huang and H. Garcia-Molina, "Publish/Subscribe in a Mobile Environment," in

Proceedings of the Second ACM International Workshop on Data Engineering for

Wireless and Mobile Access (MobiDe'01). Santa Barbara, CA, USA, 2001, pp. 27-34.

[7] R. Meier, "Communication Paradigms for Mobile Computing," ACM SIGMOBILE

Mobile Computing and Communications Review (MC2R), vol. 6, pp. 56-58, 2002.

[8] H.-A. Jacobsen, "Middleware Services for Selective and Location-based Information

Dissemination in Mobile Wireless Networks," presented at Advanced Topic Workshop

on Middleware for Mobile Computing (IFIP/ACM Middleware 2001), Heidelberg,

Germany, 2001.

[9] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, "IEEE 802.11 Wireless Local Area

Networks," IEEE Communications Magazine, pp. 116-126, 1997.

[10] M. Weiser, "Ubiquitous Computing," IEEE Hot Topics, vol. 26, pp. 71-72, 1993.

Bibliography

- 206 -

[11] P. Verissimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser, "CORTEX:

Towards Supporting Autonomous and Cooperating Sentient Entities," in Proceedings

of the European Wireless Conference. Florence, Italy, 2002.

[12] Object Management Group, CORBAservices: Common Object Services Specification -

Notification Service Specification, Version 1.0: Object Management Group, 2000.

[13] Sun Microsystems Inc., Java Distributed Event Specification: Sun Microsystems Inc.,

1998.

[14] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, "Filtering and Scalability in the ECO

Distributed Event Model," in Proceedings of the 5th International Symposium on

Software Engineering for Parallel and Distributed Systems (ICSE/PDSE 2000).

Limerick, Ireland: IEEE Computer Society, 2000, pp. 83-95.

[15] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation of a Wide-

Area Event Notification Service," ACM Transactions on Computer Systems, vol. 19, pp.

283 - 331, 2001.

[16] I. Podnar, M. Hauswirth, and M. Jazayeri, "Mobile Push: Delivering Content to Mobile

Users," in Proceedings of the International Workshop on Distributed Event-Based

Systems (ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 563-570.

[17] P. Sutton, R. Arkins, and B. Segall, "Supporting Disconnectedness – Transparent

Information Delivery for Mobile and Invisible Computing," in Proceedings of the IEEE

International Symposium on Cluster Computing and the Grid (CCGrid 2001). Brisbane,

Australia: IEEE CS Press, 2001, pp. 277-285.

[18] R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless Ad Hoc

Networks," in Proceedings of the International Workshop on Distributed Event-Based

Systems (ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 639-644.

[19] R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for

Collaborative Mobile Applications," in Proceedings of the 4th IFIP International

Conference on Distributed Applications and Interoperable Systems (DAIS'03), LNCS

2893. Paris, France: Springer-Verlag Heidelberg, Germany, 2003, pp. 285-296.

[20] D. Chambers, G. Lyons, and J. Duggan, "Design of Virtual Store using Distributed

Object Technology," in Proceedings of the 5th International Symposium on Software

Engineering for Parallel and Distributed Systems (PDSE/ICSE 2000). Limerick, Ireland:

IEEE Computer Society, 2000, pp. 66-75.

Bibliography

- 207 -

[21] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A.

Hopper, "Implementing a Sentient Computing System," IEEE Computer, vol. 34, pp.

50-56, 2001.

[22] H. Muller and C. Randell, "An Event-Driven Sensor Architecture for Low Power

Wearables," in Proceedings of the Workshop on Software Engineering for Wearable

and Pervasive Computing (SEWPC/ICSE2000). Limerick, Ireland: IEEE Computer

Society, 2000, pp. 39-41.

[23] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems,"

in Proceedings of the International Workshop on Distributed Event-Based Systems

(ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 585-588.

[24] Sun Microsystems Inc., Java AWT: Delegation Event Model: Sun Microsystems Inc.,

1997.

[25] Microsoft Corporation, C# Language Specification, Version 0.28: Microsoft

Corporation, 2001.

[26] S. Maffeis, "Developing Publish/Subscribe Applications with iBus," SoftWired AG,

White Paper 1999.

[27] M. Erzberger and M. Altherr, "Every Dad Needs a Mom - Message-Oriented

Middleware," SoftWired AG, White Paper 1999.

[28] S. J. Kang, S. H. Park, and J. H. Park, "ROOM-BRIDGE: A Vertically Configurable

Network Architecture and Real-Time Middleware for Interoperability between

Ubiquitous Consumer Devices in Home," in Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware 2001). Heidelberg,

Germany: Springer-Verlag, 2001, pp. 232-251.

[29] R. Meier and V. Cahill, "Location-Aware Event-Based Middleware: A paradigm for

Collaborative Mobile Applications?," presented at the 8th CaberNet Radicals

Workshop, Ajaccio, Corsica, France, 2003.

[30] Object Management Group, CORBAservices: Common Object Services Specification -

Event Service Specification: Object Management Group, 1995.

[31] T. Harrison, D. Levine, and D. Schmidt, "The Design and Performance of a Real-Time

CORBA Event Service," in Proceedings of the 1997 Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA'97). Atlanta, Georgia,

USA: ACM Press, 1997, pp. 184-200.

Bibliography

- 208 -

[32] J. Orvalho, L. Figueiredo, and F. Boavida, "Evaluating Light-weight Reliable Multicast

Protocol Extensions to the CORBA Event Service," in Proceedings of the 3rd

International Enterprise Distributed Object Computing Conference (EDOC'99).

University of Mannheim, Germany, 1999.

[33] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed

Applications," in Proceedings of the Second International Workshop on Services in

Distributed and Networked Environments (SDNE'95). Whistler, British Columbia,

Canada, 1995, pp. 148-155.

[34] K. O'Connell, T. Dinneen, S. Collins, B. Tangney, N. Harris, and V. Cahill, "Techniques

for Handling Scale and Distribution in Virtual Worlds," in Proceedings of the Seventh

ACM SIGOPS European Workshop. Connemara, Ireland: ACM Press, 1996, pp. 17-

24.

[35] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, "Content Based Routing

with Elvin4," in Proceedings of AUUG2K. Canberra, Australia, 2000.

[36] S. Maffeis, "Client/Server Term Definition," in Encyclopedia of Computer Science, 4th

Edition, A. Ralston, D. Hemmendinger, and E. Reilly, Eds.: International Thomson

Computer Publishing, 2000.

[37] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman, "An

Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems," in

Proceedings of the 19th International Conference on Distributed Computing Systems

(ICDCS'99). Austin, TX, USA, 1999, pp. 262-272.

[38] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman,

"Exploiting IP Multicast in Content-Based Publish-Subscribe Systems," in Proceedings

of IFIP/ACM International Conference on Distributed Processing (Middleware 2000).

New York, USA: Springer-Verlag, 2000, pp. 185-207.

[39] I. Sommerville, Software Engineering: Addison Wesley, 1995.

[40] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra, "Matching Events in a

Content-based Subscription System," in Proceedings of the 18th ACM Symposium on

Principles of Distributed Computing (PODC'99). Atlanta, GA, USA, 1999, pp. 53-61.

[41] C. Krishna and K. Shin, Real-Time Systems: The McGraw-Hill Companies, Inc., 1997.

[42] A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Addison

Wesley Longman Limited, 1996.

Bibliography

- 209 -

[43] Oxford Dictionary of Computing, Fourth ed. Oxford: Oxford University Press, 1996.

[44] S. Mullender, Distributed Systems: Addison Wesley, 1993.

[45] Object Management Group, CORBAservices: Notification Service Specification –

Request For Proposal: Object Management Group, 1996.

[46] BEA Systems et al., "CORBAservices: Notification Service Specification - Joint

Revised Submission," Object Management Group, Technical Report Telecom 98-11-

01, November 1998.

[47] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 3.0; Chapter 3: OMG IDL Syntax and Semantics: Object

Management Group, 2002.

[48] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 3.0; Chapter 13: ORB Interoperability Architecture: Object

Management Group, 2002.

[49] Object Management Group, CORBAservices: Common Object Services Specification -

Trading Object Service Specification: Object Management Group, 1997.

[50] Object Management Group, CORBAservices: Management of Event Networks –

Request For Proposal: Object Management Group, 1998.

[51] Object Management Group, CORBAservices: Common Object Services Specification -

Management of Event Domains Specification: Object Management Group, 2000.

[52] D. C. Schmidt, "Real-Time CORBA with TAO (The ACE ORB),"

http://www.cs.wustl.edu/~schmidt/TAO.html, 2003.

[53] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 3.0; Chapter 15: General Inter-ORB Protocol: Object

Management Group, 2002.

[54] D. M. Geary, "Chapter 9, The Delegation Event Model (AWT 1.1 and Beyond)," in

Graphic Java 2, Mastering the JFC: AWT, vol. 1, 2001.

[55] Sun Microsystems Inc., JavaBeans Specification: Sun Microsystems Inc., 1997.

[56] Sun Microsystems Inc., Swing Component Set: Sun Microsystems Inc., 1998.

[57] Sun Microsystems Inc., EmbeddedJava Specification: Sun Microsystems Inc., 1999.

[58] Sun Microsystems Inc., PersonalJava Specification: Sun Microsystems Inc., 2000.

Bibliography

- 210 -

[59] Sun Microsystems Inc., Jini: Distributed Event Specification: Sun Microsystems Inc.,

1999.

[60] Sun Microsystems Inc., Java Distributed Leasing Specification: Sun Microsystems Inc.,

1998.

[61] Microsoft Corporation, Distributed Component Object Model (DCOM) Architecture:

Microsoft Corporation, 1997.

[62] C. Ma and J. Bacon, "COBEA: A CORBA-Based Event Architecture," in Proceedings of

the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS).

Santa Fe, New Mexico, USA, 1998, pp. 117-131.

[63] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Middleware

Architecture," in Proceedings of the International Workshop on Distributed Event-

Based Systems (ICDCS/DEBS'02). Vienna, Austria, 2002, pp. 611-618.

[64] P. Pietzuch, B. Shand, and J. Bacon, "A Framework for Event Composition in

Distributed Systems," in Proceedings of the 4th ACM/IFIP/USENIX International

Conference on Middleware (Middleware 2003). Rio de Janeiro, Brazil, 2003.

[65] V. Cahill, A. Condon, D. Kelly, S. McGerty, K. O'Connell, G. Starovic, and B. Tangney,

"MOONLIGHT: VOID Shell Specification," Dept. of Computer Science, Trinity College

Dublin, Ireland, Technical Report TCD-CS-95-15, 1995.

[66] K. O'Connell, V. Cahill, A. Condon, S. McGerty, G. Starovic, and B. Tangney, "The

VOID Shell: A Toolkit for The Development of Distributed Video Games and Virtual

Worlds," in Proceedings of the Workshop on Simulation and Interaction in Virtual

Environments. University of Iowa, Iowa City, USA, 1995, pp. 172-177.

[67] M. Haahr, "Implementation and Evaluation of Scalability Techniques in the ECO

Model," in Dept. of Computer Science: Trinity College Dublin, Ireland, 1998.

[68] G. Starovic, V. Cahill, and B. Tangney, "An Event Based Object Model for Distributed

Programming," in Proceedings of the International Conference on Object Oriented

Information System. London, UK: Springer-Verlag, 1995, pp. 72-86.

[69] K. Birman, Building Secure and Reliable Network Applications: Manning Publishing

Co., 1996.

[70] K. O'Connell, "System Support for Distributed Multi-User Virtual Worlds," in Dept. of

Computer Science: Trinity College Dublin, Ireland, 1997.

Bibliography

- 211 -

[71] G. Cugola and C. Ghezzi, "The Design and Implementation of PROSYT: An

Experience in Developing an Event-Based, Mobile Application," in Proceeding of the

IEEE 8th International Workshop on Enabling Technologies: Infrastructures for

Collaborative Enterprises (IEEE WET ICE'99). Stanford University, Stanford, California,

USA, 1999.

[72] M. Caporuscio, A. Carzaniga, and A. L. Wolf, "Design and Evaluation of a Support

Service for Mobile, Wireless Publish/Subscribe Applications," Department of Computer

Science, University of Colorado, Boulder, Colorado, USA, Technical Report CU-CS-

944-03, January 2003.

[73] M. Caporuscio, A. Carzaniga, and A. L. Wolf, "An Experience in Evaluating

Publish/Subscribe Services in a Wireless Network," in Proceeding of the Third

International Workshop on Software and Performance (ISSTA/WOSP 2002). Rome,

Italy, 2002.

[74] B. Segall and D. Arnold, "Elvin Has Left The Building: A Publish/Subscribe Notification

Service With Quenching," in Proceedings of AUUG97. Brisbane, Australia, 1997.

[75] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann, "Engineering Event-Based

Systems with Scopes," in Proceedings of the 16th European Conference on Object-

Oriented Programming (ECOOP 2002). Málaga, Spain: Springer-Verlag, 2002, pp.

309-333.

[76] B. Martin, C. Pedersen, and J. Bedford-Roberts, "An Object-Based Taxonomy for

Distributed Computing Systems," IEEE Computer, vol. 24, pp. 17-27, 1991.

[77] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise, "A Framework for Event-based

Software Integration," ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 5, pp. 378 - 421, 1996.

[78] D. S. Rosenblum and A. L. Wolf, "A Design Framework for Internet-Scale Event

Observation and Notification," in Proceedings of the The Fifth Symposium on the

Foundations of Software Engineering (FSE5) and The Sixth European Software

Engineering Conference (ACM SIGSOFT ESEC97). Zurich, Switzerland, 1997, pp.

344-360.

[79] Iona Technologies, "Orbix 3 Product Family," Iona Technologies, White Paper April

1999.

Bibliography

- 212 -

[80] A. Padovitz, S. W. Loke, and A. B. Zaslavsky, "Using the Publish-Subscribe

Communication Genre for Mobile Agents," in Proceedings of the First German

Conference on Multiagent System Technologies (MATES'03), LNCS 2831. Erfurt,

Germany: Springer-Verlag Heidelberg, Germany, 2003, pp. 180-191.

[81] S. W. Loke, A. Padovitz, and A. B. Zaslavsky:, "Context-Based Addressing: The

Concept and an Implementation for Large-Scale Mobile Agent Systems," in

Proceedings of the 4th IFIP International Conference on Distributed Applications and

Interoperable Systems (DAIS'03), LNCS 2893. Paris, France: Springer-Verlag

Heidelberg, Germany, 2003, pp. 274-284.

[82] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed

Applications," in Proceedings of the Seventh ACM SIGOPS European Workshop.

Connemara, Ireland, 1996, pp. 9-16.

[83] C. Liebig, M. Cilia, and A. Buchmann, "Event Composition in Time-Dependent

Distributed Systems," in Proceedings of the Fourth IECIS International Conference on

Cooperative Information Systems. Edinburgh, Scotland, 1999, pp. 70-78.

[84] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira, "COSMIC: A Middleware for Event-

Based Interaction on CAN," in Proceedings of the 9th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA2003). Lisbon, Portugal,

2003.

[85] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, "Security Issues and Requirements

for Internet-scale Publish-Subscribe Systems," in Proceedings of the 35th Hawaii

International Conference on System Sciences (HICSS). Big Island, Hawaii, USA, 2002.

[86] N. Reijers, R. Cunningham, R. Meier, B. Hughes, G. Gaertner, and V. Cahill, "Using

Group Communication to Support Mobile Augmented Reality Applications," in

Proceedings of the 5th IEEE International Symposium on Object-oriented Real-time

distributed Computing (ISORC 2002). Crystal City, VA, USA, 2002, pp. 297-306.

[87] B. Hughes and V. Cahill, "Towards Real-time Event-based Communication in Mobile

Ad Hoc Wireless Networks," in Proceedings of 2nd International Workshop on Real-

Time LANS in the Internet Age 2003 (ECRTS/RTLIA03). Porto, Portugal, 2003, pp. 77-

80.

[88] F. Cristian, "Synchronous and Asynchronous Group Communication," Communications

of the ACM, vol. 39, pp. 88-97, 1996.

Bibliography

- 213 -

[89] G. V. Chockler, I. Keidar, and R. Vitenberg, "Group Communication Specifications: A

Comprehensive Study," ACM Computing Surveys, vol. 33, pp. 427-496, 2001.

[90] G. Banavar, T. Chandra, R. Strom, and D. Sturman, "A Case for Message Oriented

Middleware," presented at Proceedings of the 13th International Symposium on

DIStributed Computing (DISC'99), Bratislava, Slovak Republic, 1999.

[91] M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill, "Towards Group

Communication for Mobile Participants," in Proceedings of Principles of Mobile

Computing (POMC'2001). Newport, Rhode Island, USA, 2001, pp. 75-82.

[92] R. Meier, M. O. Killijian, R. Cunningham, and V. Cahill, "Towards Proximity Group

Communication," presented at Advanced Topic Workshop on Middleware for Mobile

Computing (IFIP/ACM Middleware 2001), Heidelberg, Germany, 2001.

[93] Y.-B. Ko and N. H. Vaidya, "GeoTORA: A Protocol for Geocasting in Mobile Ad Hoc

Networks," in Proceedings of the 8th International Conference on Network Protocols

(ICNP 2000). Osaka, Japan, 2000.

[94] G.-C. Roman, Q. Huang, and A. Hazemi, "Consistent Group Membership in Ad Hoc

Networks," in Proceedings of the 23rd International Conference on Software

Engineering (ICSE 2002). Toronto, Canada, 2001, pp. 381-388.

[95] R. Cunningham and V. Cahill, "Time Bounded Medium Access Control for Ad Hoc

Networks," in Proceedings of the Second ACM International Workshop on Principles of

Mobile Computing (POMC'02). Toulouse, France: ACM Press, 2002, pp. 1-8.

[96] T. Goff, N. B. Abu-Ghazaleh, D. S. Phatak, and R. Kahvecioglu, "Preemptive Routing

in Ad Hoc Networks," in Proceedings of the Seventh Annual International Conference

on Mobile Computing and Networking (MOBICOM 2001). Rome, Italy, 2001, pp. 43-52.

[97] K. Paul, S. Bandyopadhyay, A. Mukherjee, and D. Saha, "Communication-Aware

Mobile Hosts in Ad-Hoc Wireless Network," in Proceedings of the International

Conference on Personal Wireless Communications (ICPWC'99). Jaipur, India, 1999,

pp. 83-87.

[98] L. Qin and T. Kunz, "Pro-Active Route Maintenance in DSR," ACM SIGMOBILE Mobile

Computing and Communications Review (MC2R), vol. 6, pp. 79-89, 2002.

[99] G. Gaertner, E. O'Nuallain, A. Butterly, K. Singh, and V. Cahill, "802.11 Link Quality

and its Prediction - An Experimental Study," 2004, submitted for publication.

Bibliography

- 214 -

[100] B. O'Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion:

Standards Information Network IEEE Press, 1999.

[101] B. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in

C++: John Wiley & Sons, Inc., 1999.

[102] P. S. Wang, C++ with Object-Oriented Programming: PWS Publishing Company, 1994.

[103] S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, "A Performance Comparison

Study of Ad Hoc Wireless Multicast Protocols," in Proceedings of IEEE INFOCOM

2000. Tel Aviv, Israel, 2000.

[104] C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina, "Performance Comparison of

Two On-demand Routing Protocols for Ad Hoc Networks," IEEE Personal

Communications Magazine Special Issue on Mobile Ad Hoc Networks, vol. 8, pp. 16-

29, 2001.

[105] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, "A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols," in Proceedings

of the 4th Annual International Conference on Mobile Computing and Networking.

Dallas, Texas, USA, 1998.

[106] Z. J. Haas, J. Deng, B. Liang, P. Papadimitratos, and S. Sajama, "Wireless Ad Hoc

Networks," in Wiley Encyclopedia of Telecommunications, J. G. Proakis, Ed. New

York: John Wiley & Sons, 2002.

[107] Z. Haas, J. Y. Halpern, and L. Li, "Gossip-Based Ad Hoc Routing," in Proceedings of

the 21st Annual Joint Conference of the IEEE Computer and Communications

Societies (Infocom 2002). New York City, USA, 2002, pp. 1707-1716.

[108] N. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Location-Support

System," in Proceedings of the 6th ACM/IEEE Annual International Conference on

Mobile Computing and Networking (ACM MOBICOM 2000). Boston, Massachusetts,

USA: ACM Press, 2000, pp. 32-43.

[109] Dublin City Council, "http://www.dublincity.ie," Dublin City Council, Civic Offices, Wood

Quay, Dublin 8, Ireland, 2003.

[110] R. Ramanathan and M. Steenstrup, "Hierarchically-Organized, Multihop Mobile

Wireless Networks for Quality-of-Service Support," IEEE Mobile Networks and

Applications, vol. 3, pp. 101-119, 1998.

Bibliography

- 215 -

[111] J. Kaiser and M. Mock, "Implementing the Real-Time Publisher/Subscriber Model on

the Controller Area Network (CAN)," in Proceedings of the 2nd International

Symposium on Object-oriented Real-time distributed Computing (ISORC99). Saint-

Malo, France, 1999, pp. 172-181.

