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Abstract 
 

Some concerns, such as debugging or logging 
functionality, cannot be captured cleanly, and are often 
tangled and scattered throughout the code base.  These 
concerns are called crosscutting concerns. Aspect-
Oriented Programming (AOP) is a paradigm that 
enables developers to capture crosscutting concerns in 
separate aspect modules.  The use of aspects has been 
shown to improve understandability and 
maintainability of systems.  

It has been shown that real-time concerns, such as 
memory management and thread scheduling, are 
crosscutting concerns [5, 6, 9, 11]. However it is 
unclear whether encapsulating these concerns 
provides benefits. We were interested in determining 
whether using AOP to encapsulate real-time 
crosscutting concerns afforded benefits in system 
properties such as understandability and 
maintainability. This paper presents research 
comparing the system properties of two systems: a 
real-time sentient traffic simulator and its Aspect-
Oriented equivalent.  An evaluation of AOP is 
presented indicating both benefits and drawbacks with 
this approach. 
 
1. Introduction 
 

When designing and building systems, it is often 
difficult to arrive at a design that modularises all 
required system features [12].  More often than not, 
there are certain features that will not fit well into any 
class structure we choose [4, 12, 14]. This is 
particularly true for certain kinds of functionality, such 
as logging, debugging or handling of real-time 
constraints. We build a well-formed object-model, and 

then try to align these features with it, but find we must 
compromise our design to make the dynamics work.  

Design compromises often lead to code that is 
“tangled” and “scattered” [4, 12, 14].  If two features 
are tangled, their code is intertwined, and difficult to 
separate.  If a feature is scattered, it means that code 
related to it appears around the system.  Tangling and 
scattering are summed up in the term “crosscutting”, 
and hurt certain system properties such as 
understandability, maintainability, testability, and 
reusability of our systems [15].  

Aspect-Orientation (AO) [12] is a paradigm that is 
intended to let us separate tangled code, and 
encapsulate scattered code more effectively.  AO 
allows us to express crosscutting behaviour in a 
separate “aspect” module, affording specification of 
behaviour that overlays our well-formed object-model 
without having to compromise it.   

Several studies have shown that AO is effective at 
improving modularity [4, 12, 14].  However, real-time 
systems are designed significantly differently from non 
real-time systems due to timing and predictability 
constraints [2]: programming constructs used in the 
implementation of real-time systems are generally 
stricter and more carefully defined than those for non 
real-time systems.  The results of studies on AO with 
non-real time systems do not necessarily reflect their 
appropriateness within the real-time domain.  There 
have been studies on the use of AOP for real-time 
concerns (outlined in Section 5), but none has 
addressed whether the structural benefits translate to 
improved system properties.   

In this paper, we evaluate how the use of an AO 
language compares to the use of an Object-Oriented 
(OO) real-time domain-specific language in terms of 
its effect on system properties (usability, 
maintainability, testability and reusability). We chose 
AspectJ [13] as the AO language, and Real-time Java 



(RTJava) [7] as the domain specific language. RTJava 
provides an extension to conventional Java that 
addresses seven real-time areas of concern [1]. AspectJ 
is based on Java, but allows description of crosscutting 
behaviour in class-like aspect-modules.  

We constructed two systems that both implemented 
a real-time sentient traffic simulation: OOSim, 
implemented in RTJava, and AOSim, implemented in 
AspectJ.  We identified RTJava code that appeared in 
OOSim and enclosed it in aspects for the AspectJ 
version.  We then assessed whether the use of aspects 
resulted in improvements in system properties.  

In the next section we provide background 
information necessary to understand the real-time and 
Aspect-Oriented content in the paper. Section 3 
describes the case study systems used in our work.  
Section 4 presents the results of our comparison 
between the aspect- and object-oriented 
implementations of the real-time simulator.  Section 5 
presents results from other studies related to our own.  
Section 6 summarises our experiment and findings. 
 
2. Background 
 

This section describes the two languages used.  
First, we discuss Real-time Java, describing its scope 
and the limitations of Java that it aims to address.  
Then we describe the Aspect-Oriented language, 
AspectJ, including a discussion of the AO paradigm 
itself, providing code examples. 

 
2.1. Real-time Java 
 

Java has a number of characteristics that make it 
difficult for real-time systems programming. Features 
such as automatic garbage collection and dynamic 
class loading introduce an unpredictability that breaks 
the temporal constraints associated with systems of a 
real-time nature. For example, the garbage collector 
may run at an unforeseen time leading to delays that 
may break the temporal constraints of a real-time 
system.  

The Real-time Specification for Java (RTSJ) has 
directly identified seven distinct areas where Java is 
limited for developing of real-time systems, providing 
language enhancements for threading, overriding 
garbage collection, and handling of external events.  
The seven areas are: 

 
• Thread scheduling and dispatching 
• Memory management  
• Synchronization and resource sharing 
• Asynchronous event handling  
• Asynchronous transfer of control 

• Asynchronous thread termination 
• Physical memory access  
 

2.2. AspectJ 
 

AspectJ is an Aspect-Oriented (AO) programming 
language. AO is intended to allow developers to 
modularise behaviour that does not fit cleanly into an 
object model. 
 
2.2.1. Structure of AspectJ Program. AO 
applications consist of a “core” and “aspects”. The core 
is a standard OO program and is implemented in a 
language such as Java. Aspects are separate modules 
that describe behaviour that is to be executed at precise 
locations in the core.   These locations are also 
described in the aspect module.  A “weaver” inserts 
calls to the aspect code into the core at compile time. 

AspectJ is an aspect-oriented extension to Java. It 
provides the advice construct for describing code that 
is to be inserted into the core at locations called 
joinpoints.   The code can be inserted before or after 
these locations. Around advice allows a programmer to 
specify code that should replace code at a joinpoint.  It 
also provides the pointcut construct for specifying at 
which joinpoints code should be executed. 
 

 
 

 
 

Figure 1: AspectJ Code Snippet 
 
2.2.2. Example. The following is a simple, classic 
example of encapsulating tracing behaviour using 
AspectJ. In standard OO programs, tracing behaviour 
such as System.out.println statements are 
generally intertwined with code requiring tracing 

aspect TracingExample { 
 //capture the execution of methods in  

//classes named * in methods named * 
 // with any parameters in package 
 // “example” 
 
pointcut trace() : execution(* *(..)) && 

within (example); 
 
before():trace(){ //Execute this code 

//before the above point is reached    
System.out.println (“Entering” 

thisJoinPoint.getSignature().getName
()); 

} 
 
after():trace() {//Execute this code 

//after the above point is reached      
System.out.println (“Existing” 

thisJoinPoint.getSignature().getName
());  

} 
} 



(tangling) and will also appear in multiple methods of 
the system (scattering). The following code illustrates 
the encapsulation of tracing code into a singular 
modular unit – the TracingExample aspect. 
 
3. System 
 

To conduct our experiment, we constructed aspect- 
and object-oriented real-time sentient traffic 
simulators.  We called these AOSim and OOSim 
respectively.  We initially constructed OOSim by 
evolving an existing sentient traffic simulator to 
include real-time considerations. We identified real-
time code in OOSim and encapsulated it into aspects in 
AOSim. This section describes the original simulator, 
outlines the design of OOSim and AOSim, and 
provides implementation details of both simulators. 
 
3.1. Original Design 
 

The Sentient Traffic Simulator was developed 
independently by the Distributed Systems Group in 
Trinity College Dublin. The simulator models a traffic 
management system that allows vehicles to self-drive 
along a stretch of four-lane highway.  Vehicles are 
equipped with sensors that allow them to determine 
speed and positioning information about vehicles 
surrounding them.  Vehicles react to their sensor 
information: a vehicle must allow emergency vehicles 
to pass and must reduce speed if approaching a slower 
moving vehicle.   

The design of this simulator is shown in Figure 2.  It 
contains only the basic constructs needed to model the 
sentient-traffic system.  

 

 

Figure 2: Sentient Traffic Simulator Class Structure 
 
We chose the simulator as the base system for our 

experiment because it strongly requires real-time 
functionality to properly model a traffic system.  In 

particular, scheduling and timing are of critical 
importance, because a vehicle needs the ability to react 
to any unexpected events in its environment in a timely 
and controlled manner. 
 
3.2. OOSim Design 
 

To construct OOSim, we identified where real-time 
behaviour was required in the original simulator, and 
implemented that behaviour using RTJava. In some 
cases we replaced functionality, while in others we 
added new functionality.  

We examined functionality such as allowing 
emergency vehicles to pass, or slowing down, to assess 
where unpredictable delays occur, and where external 
events should be catered for.  Unpredictable delays 
occurred in the way threads where handled, and also 
where objects were allocated to memory and became 
subject to garbage collection. We re-implemented this 
functionality using RTJava constructs.    

 

 
 

Figure 3: Sentient Traffic Simulator Class Structure 
with RTJava Constructs 

 
Figure 3 illustrates the class structure of the 

Simulator that uses RTJava. A number of 
asynchronous event handler classes were added that are 
responsible for handling asynchronous events. 
SimulationUtil provides utility functions related 
to RTJava constructs. Two RealtimeThread 
subclasses, SimulationRTThread and 
SimulationPeriodicThread shown in Figure 3, 
were implemented which provide specific real-time 
threading behaviour required for the Simulator. Class 
RealtimeThread is shown in grey since it is part 
of the RTJava API. 



3.3. AOSim Design 
 

The aspect-oriented version of the Simulator 
(AOSim) was constructed by re-engineering OOSim. 

For each real-time area, we identified RTJava code 
that appeared in OOSim. We encapsulated this code 
into aspects, with one aspect for each real-time area.  

 

 
 

Figure 4: Simulator Aspects and Relationships 
 
Dashed-boxes in Figure 4 depict the aspects used.  

There is one aspect for each real-time area. Arrows 
show the core classes into which aspect-code is woven. 
For example, the MemoryManagement aspect 
encapsulates crosscutting code for the 
EmergencyVehicle, Car, Road, 
ViewableCar and ListofCars classes.  Once 
again, class RealtimeThread is shown in grey 
since it is part of the RTJava API. 

 
• Real-time Threading aspect: encapsulates the 

creation of real-time threads through subclassing 
and the starting of real-time threads 

• Memory Management aspect: encapsulates the 
creation of objects that are not subject to garbage 
collection 

• Synchronization and Resource Sharing aspect: 
encapsulates the waiting, locking, and notifying of 
objects 

• Asynchronous Event Handling aspect: 
encapsulates  the binding of asynchronous event 
handlers to events, the firing of asynchronous 
events, and the declaring of 
AsyncEventHandler parent by asynchronous 
event handler subclasses 

• Asynchronous Transfer of Control (ATC) aspect: 
encapsulates the throwing and handling of 
AsynchronouslyInterruptedException
, the handling of interruptible code, and the 
firing of interrupts 

• Asynchronous Thread Termination aspect: as with 
ATC  

• Physical Memory Access aspect: encapsulates the 
handling of exceptions thrown when accessing 
physical memory  

 
In AOSim, the locations of crosscutting code 

became joinpoints and we specified pointcuts to 
replace their functionality through weaving. 

 
3.4. Implementation 
 

This section describes the implementation of the 
each real-time area for the sentient traffic system.  For 
each area, we first describe the use of RTJava in the 
OO system (OOSim), and then describe the AO 
version (AOSim). 
 
3.4.1. Thread Scheduling and Dispatching.  

OOSim: Programmers using RTJava have more 
control over how threads are scheduled than with 
conventional Java. The constructor for 
RealtimeThread  is as follows: 

 
public RealtimeThread (SchedulingParameters 

scheduling, ReleaseParameters release, 
MemoryParameters memory, MemoryArea area, 
ProcessingGroupParameters group, 
java.lang.Runnable logic) 
 
OOSim uses RealtimeThread in two ways. The 

first approach involved subclassing 
RealtimeThread. The second approach uses 
anonymous inner classes.  

Subclassing of the RealtimeThread was used 
for real-time threads with the same behaviour.  These 
threads would have the same instantiation arguments 
for the RealtimeThread constructor. The 
subclasses are SimulationRTThread and 
SimulationPeriodicThread.  

In the second approach, methods create real-time 
threads directly using the RealtimeThread as an 
anonymous inner class. This requires the programmer 
to specify all constructor arguments each time a thread 
is created. This was useful when different parameters 
are required for each individual real-time thread. 

AOSim: Aspects were used for creation and 
starting of real-time threads.  Encapsulating code 
needed for creating real-time threads requires wrapping 



each segment of code in a method, and in turn 
wrapping those methods in advice to describe the 
RTJava inner class definitions and operations (A 
similar process is used for handling anonymous inner 
classes in the asynchronous transfer of control and 
asynchronous thread termination areas). Additionally, 
the creation of the RealtimeThread object requires 
a number of different parameters, with each parameter 
needing to be separately created.  The createRTThread 
aspect captures all real-time thread creation calls and 
replaces them with parameter creation and initialisation 
code. 
 
pointcut createRTThread():execution(*  

*.createNewSimulationRTThread()); 
 
RealtimeThread around():createRTThread()  { 
 // thread creation code 
} 
 

Aspects were adopted for the starting of real-time 
threads. A feasibility check is performed before 
starting each one. The executeRTThread 
pointcut captures all thread construction calls.  The 
after advice indicates that a feasibility check is 
executed after those calls.  

 
pointcut executeRTThread():call(* 

*.createNewRealtimeThread(..)); 
 
after() : executeRTThread() { 
 // code for checking feasibility and     
 // starting of the real-time thread 
} 

3.4.2. Memory Management. 
OOSim: RTJava introduces three new types of 

memory areas: physical memory, immortal memory 
(persistent until JVM termination), and scoped 
memory (immortal memory within an execution 
scope). We used immortal memory for all OOSim 
objects that we did not want garbage-collected: Car, 
EmergencyVehicle, ViewableCar, 
ListOfCars and Road.  

We created immortal object memory with and 
without argument constructors.  Creating objects with 
no argument constructors involved a call to the 
newInstance method of the ImmortalMemory 
class.  Objects with argument constructors required a 
number of additional steps relating to the building of 
the parameters necessary to create that object. This 
involved additional operations involving Class and 
Object arrays as well as the Constructor object. 

AOSim: Aspects remove the need for core classes 
to reference the ImmortalMemory object. 
 
 
 

aspect MemoryManagement { 
… 
pointcut createViewableCarMemory(String 
 thread, boolean isVeh) 

:call(simulation.ViewableCar.new(String, 
boolean)) && args (thread, isVeh);  

 
ViewableCar around(String thread, boolean 

isVeh): createViewableCarMemory(thread, 
isVeh) { 

 // building and initialising of        
// ViewableCar parameters and allocation 
// to immortal memory 

} 
This pointcut is an example of immortal memory 

creation for the ViewableCar object.  The pointcut 
captures all of the ViewableCar constructor calls in 
the Simulator, including all the parameters. The 
implementation specified in the around advice 
replaces the constructors implementation in the 
ViewableCar object. In the 
MemoryManagement aspect there is one pointcut 
for each immortal object 
 
3.4.3. Synchronization and Resource Sharing.  

OOSim: The ListOfCars object in the 
Simulator requires locking because all vehicles access 
it to obtain information about nearby vehicles. The 
design and implementation of the synchronization of 
the ListOfCars object was translated into real-time 
from that of the original simulator.   

AOSim: The code below shows the code contained 
in the SynchronizationAspect of AOSim. 
 
pointcut updateAction():execution(* 

ViewableCar.*Poll(..)); 
 
before():updateAction(){      
 // wait and lock object 
} 
 
after():updateAction() {               
 // notify objects waiting for lock 
} 

The pointcut shown above specifies that all methods 
with names ending in “Poll” are to be synchronized.  
The before advice implements the waiting and 
subsequent locking of the shared resource before the 
specified method (e.g. clearPoll) is executed. The 
after advice performs the notification after the 
operations in the captured method have been executed. 
 
3.4.4. Asynchronous Event Handling.  

OOSim: In the original simulator, events are 
generated as a result of sensor information. For 
example, when an emergency vehicle is behind, a 
“change lane” event is generated, or when a slower car 
is ahead and the lanes on either side are busy, a “slow 
down” event is generated, and so on. OOSim handles 



these events as asynchronous events. Asynchronous 
event handling enables a system to handle events or 
happenings that may occur asynchronously outside of 
the JVM. A number of asynchronous event handler 
classes were implemented in the real-time version of 
the Simulator, as seen in Figure 3. These classes 
provide the operations that are performed when a 
particular asynchronous event is triggered or fired. For 
example, when an exception is raised, it is handled by 
the FaultTriggeredEventHandler class, 
which performs the necessary operations to handle 
such faults. 

AOSim: Aspects were used to bind events to 
handlers, fire events and to perform inheritance 
declarations in asynchronous event handler classes.  
 
pointcut fireEvent(Class eventClass, String 

bindName) :call(* *.fireAsyncEvent (Class, 
String)) && args (eventClass, bindName); 

 
void around(Class eventClass,  
  String bindName) {  
 // perform binding and firing actions 
} 

The pointcut shown above captures all calls to the 
fireAsyncEvent method that takes arguments of 
Class and String types. The around advice 
includes the implementation that is executed in place 
of those in the fireAsyncEvent method. All 
constructs related to the binding and firing of 
asynchronous events is now contained in the aspect.  

 
declare parents: eventHandler.*EventHandler 

extends AsyncEventHandler;  
 

The declare parents declaration specifies that 
all classes ending in EventHandler and in the 
eventHandler package extends the 
AsyncEventHandler class. In OOSim, all 
asynchronous event handler classes must extend the 
AsyncEventHandler class (and provide concrete 
implementation for the handleAsyncEvent 
method). This aspect allows the inheritance declaration 
to appear only once. 
 
3.4.5. Asynchronous Transfer of Control. 

 OOSim: Vehicle processing based on out-of-date 
sensor information needs to be interrupted.  We used 
asynchronous transfer of control to throw an exception 
into the threads performing this processing.  We used 
the fire approach, in which blocks of code can be 
interrupted (each object has a method called 
interruptible*(), for example 
interruptibleUpdateViewableCar()) and 
Java’s exception handling mechanism. 

Both mechanisms are implemented in the 
ViewableCar object. Arbitrary decisions were made 
as to which approach to apply.   

 AOSim: In the fire method approach, aspects are 
used to modularise the throwing of the 
AsynchronouslyInterruptedException 
exception:  

 
declare soft: 

AsynchronouslyInterruptedException : 
execution(* *.run 
(AsynchronouslyInterruptedException)) 

  && within(simulation); 
 

The declare soft statement indicates that all 
run methods which takes the exception as an argument 
are required to throw an 
AsynchronouslyInterruptedException 
(soft refers to checked exceptions). This aspect 
applies to all classes in the simulation package as 
indicated by the within construct. 

The code below specifies an aspect that handles 
interruptible code by catching all calls to the 
appropriate thread’s interrupted method:  

  
pointcut catchAIE() : call (* 

*.interruptible*(..)) && 
within(simulation); 

  
after() : catchAIE() { 
 // catch AsynchronouslyInterruptedException 
} 

 
We were able to apply aspects in this way because 

the same code could be executed each time the 
exception was caught.  If different operations had been 
required (based on who was throwing the exception, 
for instance), then a separate aspect would be needed 
for handling each one. 

 
3.4.6. Asynchronous Thread Termination.  

OOSim: The original simulator implemented thread 
termination by calling the interrupt method for 
normal thread. This is not a reliable way to kill threads 
because parts of the system affected by this terminated 
thread may be left in an inconsistent state. We changed 
this to use RTJava, which provides a means to handle 
thread termination that uses ATC techniques in 
conjunction with the interrupt method, defined by 
RealtimeThread in the RTJava API, and that 
allows for clean up (restoring inconsistent data).  

AOSim: The implementation for thread termination 
nearly identical to the implementation for transfer of 
control, except that after throwing 
AsynchronouslyInterruptedException, 
a call to the interrupt() method is made. 



pointcut catchAIE() : call (* 
*.interrupted*(..)) && within(simulation);
  

after() : catchAIE() { 
 // catch AsynchronouslyInterruptedException 
 // call to interrupt() 
} 

 
3.4.7. Physical Memory Access. Hardware constraints 
kept us from being able to implement physical memory 
access for OOSim or AOSim.  Instead, we provide a 
theoretical analysis of the design.  

OOSim: Vehicles (Vehicle, Car and 
EmergencyVehicle objects) all require physical 
memory access. Attributes in these objects such as 
velocity and position coordinates are regularly 
accessed and modified and would therefore benefit 
from being allocated to fast physical memory. This 
would have involved the getting and setting of specific 
positions and sizes of physical memory locations as 
well as the throwing and handling of a number of 
exceptions. 

AOSim: We would have used aspects to modularise 
exception-catching code at each point of physical 
memory access:  

 
pointcut catchPhysicalMemoryException() : call 

( * *.PhysicalMemoryAccess(..)) && 
within(simulation); 

 
after() : catchPhysicalMemoryException() { 
 // catch all thrown exceptions 
} 

The pointcut captures all methods in the 
simulation package ending with 
PhysicalMemoryAccess. The after advice 
provides the implementation for the catching of the 
different exceptions that are thrown during access of 
physical memory addresses. 

 
4. Results 
 

This section provides the results for the comparison 
of OOSim and AOSim.   

We used the C&K [3] metrics suite in our 
evaluation because it provides the most comprehensive 
and best validated set of measures [10].  We adapted 
the calculation of each metric for use with aspects. 

The application of the C&K suite involves 
measurement against several metrics, including 
number of children, and number of methods per class.  
These individual results are then used in combination 
to assess system properties, such as testability and 
maintainability.   

For each metric we describe how it is calculated, 
and its individual results, in terms of the change in 
value from OOSim to AOSim. These values are 

summarised in Figure 5.  We then describe the metrics’ 
combined effect on system properties.  Finally, we 
discuss factors affecting the results. 
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Figure 5: Change in Individual Results due to Use 
of Aspects1 

 
4.1. Individual Results: OOSim-AOSim 
 
4.1.1. Weighted Methods per Class. Weighted 
Methods per Class (WMC) is a measure of the number 
of methods implemented within a class. To apply this 
to AOP, we counted aspects as classes, and advice 
blocks as methods belonging to aspects. 

 
4.1.2. Depth of Inheritance Tree. Depth of 
Inheritance Tree (DIT) is the maximum distance from 
a class node to the root of the tree. DIT only changed 
in the area of thread scheduling.  The OOSim 
RealtimeThread class needed two subclasses 
SimulationRTThread and 
SimulationPeriodicThread to specialise 
thread instantiation (Section 3.4.1).  These classes were 
not required in AOSim because the specialised 
behaviour was moved into the RTThreadAspect 
aspect. 

 
4.1.3. Number of Children. Number of Children 
(NOC) is the number of immediate subclasses of a 
class. There are two fewer child classes in AOSim, 
reducing the NOC by two.  As was described for DIT, 
the RealtimeThread class in AOSim did not 
require subclassing. 
 

                                                           
1 The values of each of the metrics are given as a reduction or 

increase representing the change that is incurred by the particular 
metric as a direct consequence of using aspects.  Thus, a negative 
value indicates a reduction due to the use of aspects, whereas a 
positive value indicates an increase.  



4.1.4. Coupling Between Objects. Coupling between 
Objects (CBO) is a count of the number of other 
classes from which elements are used i.e. calls or 
attribute accesses between classes. To apply this to 
aspects, we considered aspects coupled to classes only 
if the aspects explicitly name the classes.  For instance, 
if we have the joinpoint call(* *(..)), then the 
aspect is not coupled to any classes.  However, if we 
have the joinpoint 
call(example.Test.methodName(..)), then 
the aspect is coupled to Test. In five of seven real-
time areas (all except synchronization and resource 
sharing), the CBO value has decreased.  In the 
synchronization and resource sharing areas there was 
no change in coupling. 

 
4.1.5. Response For Class. Response For Class (RFC) 
is the number of methods that can potentially be 
executed in response to a message received by an 
object of a class. When a call is made to a method that 
is affected by an aspect, that class will invoke code 
described in the aspect. These core-to-aspect 
invocations are counted when calculating RFC. RFC 
was increased in all real-time areas. 

 
4.1.6. Lack of Cohesion of Methods. Lack of 
Cohesion of Methods (LCOM) is the degree to which 
methods within a class are related to one another in 
terms of shared variables. To adapt this for AO 
evaluation, we considered pointcuts and advice blocks 
to be methods.  Only the synchronization and resource 
sharing real-time areas showed change to the LCOM, 
since in OOSim these classes require multiple methods 
to share an instance variable, while in AOSim they do 
not. 

 
Table 1: Combination of Individual Results for 

System Properties 
 

Weighted 
Methods 

/Class 

Depth of 
Inheritance 

Tree 

Number of 
Children 

Coupling 
Between 
Objects 

Response 
for a Class 

Lack of 
Cohesion 

of 
Methods 

 
 
 

WMC DIT NOC CBO RFC LCOM 
 Avg: +8.28 -0.14 -0.28 -5 +12.14 -0.28 

Understandability +3.82           
Maintainability +5.14          
Reusability +0.51            
Testability +1.68           

  
 
4.2. Metrics Combined into System Properties 
 

 in Table 1 shows which individual results are 
used when assessing system properties.  
Understandability relies on WMC, DIT, CBO, and 
RFC.  These individual metrics all contribute to the 
effort required on the part of the developer to 
understand a code base.  If the depth of the inheritance 

tree is high, for instance, it may take more effort to 
determine which attributes and behaviour are passed 
down to a given class.  Maintainability relies on 
metrics that affect the changeability of the code base: if 
coupling is high, it will be more difficult to scope the 
ramifications of a change.  Nearly all metrics are taken 
into account to forecast the effort required to reuse a 
portion of a code base; the more dynamic metric, RFC, 
however, is not taken into account because control 
flow is not as great a factor for reuse.  Testability is 
indicated by all metrics contributing to the behaviour 
of a system including the RFC individual result: if 
more calls can result from calls to methods in a class, 
then the effort required to test that class will be 
increased. 

Table 1 also shows the average change from 
OOSim to AOSim for each individual metric.  Next to 
each system property is the average change for its 
relevant individual results.  As before, a negative 
number indicates a benefit of AOSim over OOSim; a 
positive number indicates that AOSim was worse.   

AOSim showed the greatest improvement in 
modularity (measured by a combination of LCOM and 
CBO [8]). Overall each of the system properties was 
hurt in AOSim. Understandability and maintainability 
suffered more than reusability and testability as they 
rely on both WMC and RFC, the two worst affected 
individual results. 
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Figure 6: Average change over all system 
properties for real-time areas 

 
4.3. Real-time Areas and System Properties 
 

AspectJ showed greater impact in some real-time 
areas than in others.  As is depicted in Figure 6, it was, 
on average, better for physical memory access where 
each of the system properties were improved and can 
be attributed to decreased coupling.   



The remaining areas, on average, fared worse, due 
in large part for their poor performance in the WMC 
and RFC metrics. 

 
4.4. Discussion 
 

The results from Table 1 and Figure 6 show that 
some metrics fared better than others. For example, 
system properties declined in physical memory access 
but increased by varying amounts in all other areas.   

Not surprisingly, modularity (LCOM and CBO) is 
never negatively affected by the use of aspects. By 
design, aspects result in code with greater modularity. 
We discovered that the use of wildcards (* construct) 
can maximise modularity improvements. They 
eliminate the need for explicit naming and hence 
further reduce coupling and cohesion. We found it 
beneficial to make design choices that will allow more 
generic method naming in the core, and allow 
wildcards to be used in aspects. Examples of such 
choices are: limiting the number of types of threads, or 
keeping uniform the way in which exceptions are 
handled for asynchronous transfer of control. The 
greater the code duplication, the greater the modularity 
benefits as provided by wildcards. 

We found that encapsulating concerns into aspects 
if they are not crosscutting leads to more methods 
(WMC) and more complex control flows (RFC). This 
adversely affects system properties. Memory 
management and asynchronous transfer of control are 
examples of this. Our results suggest that delaying the 
encapsulation of RTJava concerns into aspects until 
crosscutting is evident will reduce the impact of this. 
 
5. Related Work 
 

We compare our work to two kinds of research: 
comparisons between AO and OO real-time systems, 
and the use of aspects in real-time research. 

 
5.1. AO Comparisons to OO 
 

A number of studies have shown AO to be 
significantly more effective than OO for system 
development [4, 12, 14]. The formats of these studies 
have all involved an initial development using OO and 
a subsequent redevelopment of the same system in AO. 
Evaluation has mostly been based on traditional 
metrics such as lines of code and sites of change, with 
the AO version of the applications being a clear winner 
in each study. For example in [12], Kiczales et al. 
illustrate how AO was adopted to significantly reduce 
the LOC in their image processing system, which in 
turn lead to benefits in reusability and maintainability 

due to reduced code tangling. The main difference 
between these studies and ours relates to the metrics 
used and the non real-time nature of the systems 
adopted for their evaluations.   

jRate is an open source ahead-of-time compiled 
implementation of the RTSJ that is developed using 
AO techniques [5]. AspectJ and Aspect C++ were used 
to capture concerns such as memory, real-time threads, 
and asynchrony.  Its design and performance is 
compared to other RTSJ implementations developed 
using OO. Their evaluation was based on the RTJPerf 
benchmarking suite [5], which contains a number of 
tests designed to measure the design and performance 
of RTSJ implementations. In terms of performance, 
jRate was found to be both more efficient and 
predictable than the RTSJ reference implementation. 
These gains were attributed to the use of aspect 
languages, since they are better able to deal with static 
and dynamic crosscutting concerns. This work 
contrasts ours due to its focus on RTJava performance 
over software engineering issues such as system 
properties. 

 
5.2. Aspects Applied to Real-time Systems 
 

[9] documents the methodology and benefits of 
applying AOP to address non-functional requirements 
such as distribution, real-time, and fault tolerance.  
Aspects for each requirement were developed using 
AspectC++. The research introduces a real-time aspect 
to handle temporal constraints posed by the real-time 
domain. A watchdog (per-thread watchdog timer) is 
proposed to monitor and regulate the execution of 
component code, ensuring that it is processed within 
the required time boundaries. This study indicated that 
aspects could be useful in improving real-time systems 
performance predictability. Without AOP, the 
watchdog code would have to be inserted manually 
into the component code wherever necessary.  This 
work is complementary to ours, since our metrics do 
not address predictability of systems, whereas this 
work does not address system design issues.   

 [6] describes work on automating the translation of 
Java code into scope aware RTJava code (i.e. 
automating the creation of RTSJ memory scopes). A 
reference-probing aspect is used to determine the legal 
RTSJ ScopedMemory assignments. Some of the 
benefits derived from AO included more modular 
code, lower development costs, and better real-time 
predictability. Though they found benefits of using 
aspects, they did not assess the impact that aspects 
have on code understandability and maintainability due 
to the indirection added by aspects. 
 



6. Summary 
 

The aim of our study was to evaluate the 
effectiveness of AOP techniques for separation of 
concerns in the development of the seven enhanced 
areas of Java-based real-time systems development. 
We applied the C&K Metrics suite to assess and 
compare an AO and OO system in terms of system 
properties.  

We found that AOSim improved modularity over 
OOSim. This is indicated by the reduction in coupling 
(CBO) and cohesion (LCOM) in all of the seven 
RTJava areas. We also found that WMC, and RFC 
individual results were hurt.  These individual results 
negatively affected all of the system properties, with 
the greatest negative impact on understandability and 
maintainability.   

We found that for real-time systems, the greatest 
gain can come from making the aspect-core 
relationship generic and broad. We suggest minimizing 
the number of kinds of real-time threads, and 
maximising the amount of redundant code pulled into a 
single aspect. 
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