
An Evaluation of Aspect-Oriented Programming for Java-based Real-time
Systems Development

Shiu Lun Tsang, Siobhán Clarke, Elisa Baniassad
Distributed Systems Group,

Department of Computer Science,
Trinity College Dublin,

Dublin 2, Ireland
{ShiuLun.Tsang, Siobhan.Clarke, Elisa.Baniassad}@cs.tcd.ie

Abstract

Some concerns, such as debugging or logging
functionality, cannot be captured cleanly, and are often
tangled and scattered throughout the code base. These
concerns are called crosscutting concerns. Aspect-
Oriented Programming (AOP) is a paradigm that
enables developers to capture crosscutting concerns in
separate aspect modules. The use of aspects has been
shown to improve understandability and
maintainability of systems.

It has been shown that real-time concerns, such as
memory management and thread scheduling, are
crosscutting concerns [5, 6, 9, 11]. However it is
unclear whether encapsulating these concerns
provides benefits. We were interested in determining
whether using AOP to encapsulate real-time
crosscutting concerns afforded benefits in system
properties such as understandability and
maintainability. This paper presents research
comparing the system properties of two systems: a
real-time sentient traffic simulator and its Aspect-
Oriented equivalent. An evaluation of AOP is
presented indicating both benefits and drawbacks with
this approach.

1. Introduction

When designing and building systems, it is often
difficult to arrive at a design that modularises all
required system features [12]. More often than not,
there are certain features that will not fit well into any
class structure we choose [4, 12, 14]. This is
particularly true for certain kinds of functionality, such
as logging, debugging or handling of real-time
constraints. We build a well-formed object-model, and

then try to align these features with it, but find we must
compromise our design to make the dynamics work.

Design compromises often lead to code that is
“tangled” and “scattered” [4, 12, 14]. If two features
are tangled, their code is intertwined, and difficult to
separate. If a feature is scattered, it means that code
related to it appears around the system. Tangling and
scattering are summed up in the term “crosscutting”,
and hurt certain system properties such as
understandability, maintainability, testability, and
reusability of our systems [15].

Aspect-Orientation (AO) [12] is a paradigm that is
intended to let us separate tangled code, and
encapsulate scattered code more effectively. AO
allows us to express crosscutting behaviour in a
separate “aspect” module, affording specification of
behaviour that overlays our well-formed object-model
without having to compromise it.

Several studies have shown that AO is effective at
improving modularity [4, 12, 14]. However, real-time
systems are designed significantly differently from non
real-time systems due to timing and predictability
constraints [2]: programming constructs used in the
implementation of real-time systems are generally
stricter and more carefully defined than those for non
real-time systems. The results of studies on AO with
non-real time systems do not necessarily reflect their
appropriateness within the real-time domain. There
have been studies on the use of AOP for real-time
concerns (outlined in Section 5), but none has
addressed whether the structural benefits translate to
improved system properties.

In this paper, we evaluate how the use of an AO
language compares to the use of an Object-Oriented
(OO) real-time domain-specific language in terms of
its effect on system properties (usability,
maintainability, testability and reusability). We chose
AspectJ [13] as the AO language, and Real-time Java

(RTJava) [7] as the domain specific language. RTJava
provides an extension to conventional Java that
addresses seven real-time areas of concern [1]. AspectJ
is based on Java, but allows description of crosscutting
behaviour in class-like aspect-modules.

We constructed two systems that both implemented
a real-time sentient traffic simulation: OOSim,
implemented in RTJava, and AOSim, implemented in
AspectJ. We identified RTJava code that appeared in
OOSim and enclosed it in aspects for the AspectJ
version. We then assessed whether the use of aspects
resulted in improvements in system properties.

In the next section we provide background
information necessary to understand the real-time and
Aspect-Oriented content in the paper. Section 3
describes the case study systems used in our work.
Section 4 presents the results of our comparison
between the aspect- and object-oriented
implementations of the real-time simulator. Section 5
presents results from other studies related to our own.
Section 6 summarises our experiment and findings.

2. Background

This section describes the two languages used.
First, we discuss Real-time Java, describing its scope
and the limitations of Java that it aims to address.
Then we describe the Aspect-Oriented language,
AspectJ, including a discussion of the AO paradigm
itself, providing code examples.

2.1. Real-time Java

Java has a number of characteristics that make it
difficult for real-time systems programming. Features
such as automatic garbage collection and dynamic
class loading introduce an unpredictability that breaks
the temporal constraints associated with systems of a
real-time nature. For example, the garbage collector
may run at an unforeseen time leading to delays that
may break the temporal constraints of a real-time
system.

The Real-time Specification for Java (RTSJ) has
directly identified seven distinct areas where Java is
limited for developing of real-time systems, providing
language enhancements for threading, overriding
garbage collection, and handling of external events.
The seven areas are:

• Thread scheduling and dispatching
• Memory management
• Synchronization and resource sharing
• Asynchronous event handling
• Asynchronous transfer of control

• Asynchronous thread termination
• Physical memory access

2.2. AspectJ

AspectJ is an Aspect-Oriented (AO) programming
language. AO is intended to allow developers to
modularise behaviour that does not fit cleanly into an
object model.

2.2.1. Structure of AspectJ Program. AO
applications consist of a “core” and “aspects”. The core
is a standard OO program and is implemented in a
language such as Java. Aspects are separate modules
that describe behaviour that is to be executed at precise
locations in the core. These locations are also
described in the aspect module. A “weaver” inserts
calls to the aspect code into the core at compile time.

AspectJ is an aspect-oriented extension to Java. It
provides the advice construct for describing code that
is to be inserted into the core at locations called
joinpoints. The code can be inserted before or after
these locations. Around advice allows a programmer to
specify code that should replace code at a joinpoint. It
also provides the pointcut construct for specifying at
which joinpoints code should be executed.

Figure 1: AspectJ Code Snippet

2.2.2. Example. The following is a simple, classic
example of encapsulating tracing behaviour using
AspectJ. In standard OO programs, tracing behaviour
such as System.out.println statements are
generally intertwined with code requiring tracing

aspect TracingExample {
 //capture the execution of methods in

//classes named * in methods named *
 // with any parameters in package
 // “example”

pointcut trace() : execution(* *(..)) &&

within (example);

before():trace(){ //Execute this code

//before the above point is reached
System.out.println (“Entering”

thisJoinPoint.getSignature().getName
());

}

after():trace() {//Execute this code

//after the above point is reached
System.out.println (“Existing”

thisJoinPoint.getSignature().getName
());

}
}

(tangling) and will also appear in multiple methods of
the system (scattering). The following code illustrates
the encapsulation of tracing code into a singular
modular unit – the TracingExample aspect.

3. System

To conduct our experiment, we constructed aspect-
and object-oriented real-time sentient traffic
simulators. We called these AOSim and OOSim
respectively. We initially constructed OOSim by
evolving an existing sentient traffic simulator to
include real-time considerations. We identified real-
time code in OOSim and encapsulated it into aspects in
AOSim. This section describes the original simulator,
outlines the design of OOSim and AOSim, and
provides implementation details of both simulators.

3.1. Original Design

The Sentient Traffic Simulator was developed
independently by the Distributed Systems Group in
Trinity College Dublin. The simulator models a traffic
management system that allows vehicles to self-drive
along a stretch of four-lane highway. Vehicles are
equipped with sensors that allow them to determine
speed and positioning information about vehicles
surrounding them. Vehicles react to their sensor
information: a vehicle must allow emergency vehicles
to pass and must reduce speed if approaching a slower
moving vehicle.

The design of this simulator is shown in Figure 2. It
contains only the basic constructs needed to model the
sentient-traffic system.

Figure 2: Sentient Traffic Simulator Class Structure

We chose the simulator as the base system for our

experiment because it strongly requires real-time
functionality to properly model a traffic system. In

particular, scheduling and timing are of critical
importance, because a vehicle needs the ability to react
to any unexpected events in its environment in a timely
and controlled manner.

3.2. OOSim Design

To construct OOSim, we identified where real-time
behaviour was required in the original simulator, and
implemented that behaviour using RTJava. In some
cases we replaced functionality, while in others we
added new functionality.

We examined functionality such as allowing
emergency vehicles to pass, or slowing down, to assess
where unpredictable delays occur, and where external
events should be catered for. Unpredictable delays
occurred in the way threads where handled, and also
where objects were allocated to memory and became
subject to garbage collection. We re-implemented this
functionality using RTJava constructs.

Figure 3: Sentient Traffic Simulator Class Structure
with RTJava Constructs

Figure 3 illustrates the class structure of the

Simulator that uses RTJava. A number of
asynchronous event handler classes were added that are
responsible for handling asynchronous events.
SimulationUtil provides utility functions related
to RTJava constructs. Two RealtimeThread
subclasses, SimulationRTThread and
SimulationPeriodicThread shown in Figure 3,
were implemented which provide specific real-time
threading behaviour required for the Simulator. Class
RealtimeThread is shown in grey since it is part
of the RTJava API.

3.3. AOSim Design

The aspect-oriented version of the Simulator
(AOSim) was constructed by re-engineering OOSim.

For each real-time area, we identified RTJava code
that appeared in OOSim. We encapsulated this code
into aspects, with one aspect for each real-time area.

Figure 4: Simulator Aspects and Relationships

Dashed-boxes in Figure 4 depict the aspects used.

There is one aspect for each real-time area. Arrows
show the core classes into which aspect-code is woven.
For example, the MemoryManagement aspect
encapsulates crosscutting code for the
EmergencyVehicle, Car, Road,
ViewableCar and ListofCars classes. Once
again, class RealtimeThread is shown in grey
since it is part of the RTJava API.

• Real-time Threading aspect: encapsulates the

creation of real-time threads through subclassing
and the starting of real-time threads

• Memory Management aspect: encapsulates the
creation of objects that are not subject to garbage
collection

• Synchronization and Resource Sharing aspect:
encapsulates the waiting, locking, and notifying of
objects

• Asynchronous Event Handling aspect:
encapsulates the binding of asynchronous event
handlers to events, the firing of asynchronous
events, and the declaring of
AsyncEventHandler parent by asynchronous
event handler subclasses

• Asynchronous Transfer of Control (ATC) aspect:
encapsulates the throwing and handling of
AsynchronouslyInterruptedException
, the handling of interruptible code, and the
firing of interrupts

• Asynchronous Thread Termination aspect: as with
ATC

• Physical Memory Access aspect: encapsulates the
handling of exceptions thrown when accessing
physical memory

In AOSim, the locations of crosscutting code

became joinpoints and we specified pointcuts to
replace their functionality through weaving.

3.4. Implementation

This section describes the implementation of the
each real-time area for the sentient traffic system. For
each area, we first describe the use of RTJava in the
OO system (OOSim), and then describe the AO
version (AOSim).

3.4.1. Thread Scheduling and Dispatching.

OOSim: Programmers using RTJava have more
control over how threads are scheduled than with
conventional Java. The constructor for
RealtimeThread is as follows:

public RealtimeThread (SchedulingParameters

scheduling, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
java.lang.Runnable logic)

OOSim uses RealtimeThread in two ways. The

first approach involved subclassing
RealtimeThread. The second approach uses
anonymous inner classes.

Subclassing of the RealtimeThread was used
for real-time threads with the same behaviour. These
threads would have the same instantiation arguments
for the RealtimeThread constructor. The
subclasses are SimulationRTThread and
SimulationPeriodicThread.

In the second approach, methods create real-time
threads directly using the RealtimeThread as an
anonymous inner class. This requires the programmer
to specify all constructor arguments each time a thread
is created. This was useful when different parameters
are required for each individual real-time thread.

AOSim: Aspects were used for creation and
starting of real-time threads. Encapsulating code
needed for creating real-time threads requires wrapping

each segment of code in a method, and in turn
wrapping those methods in advice to describe the
RTJava inner class definitions and operations (A
similar process is used for handling anonymous inner
classes in the asynchronous transfer of control and
asynchronous thread termination areas). Additionally,
the creation of the RealtimeThread object requires
a number of different parameters, with each parameter
needing to be separately created. The createRTThread
aspect captures all real-time thread creation calls and
replaces them with parameter creation and initialisation
code.

pointcut createRTThread():execution(*

*.createNewSimulationRTThread());

RealtimeThread around():createRTThread() {
 // thread creation code
}

Aspects were adopted for the starting of real-time
threads. A feasibility check is performed before
starting each one. The executeRTThread
pointcut captures all thread construction calls. The
after advice indicates that a feasibility check is
executed after those calls.

pointcut executeRTThread():call(*

*.createNewRealtimeThread(..));

after() : executeRTThread() {
 // code for checking feasibility and
 // starting of the real-time thread
}

3.4.2. Memory Management.
OOSim: RTJava introduces three new types of

memory areas: physical memory, immortal memory
(persistent until JVM termination), and scoped
memory (immortal memory within an execution
scope). We used immortal memory for all OOSim
objects that we did not want garbage-collected: Car,
EmergencyVehicle, ViewableCar,
ListOfCars and Road.

We created immortal object memory with and
without argument constructors. Creating objects with
no argument constructors involved a call to the
newInstance method of the ImmortalMemory
class. Objects with argument constructors required a
number of additional steps relating to the building of
the parameters necessary to create that object. This
involved additional operations involving Class and
Object arrays as well as the Constructor object.

AOSim: Aspects remove the need for core classes
to reference the ImmortalMemory object.

aspect MemoryManagement {
…
pointcut createViewableCarMemory(String
 thread, boolean isVeh)

:call(simulation.ViewableCar.new(String,
boolean)) && args (thread, isVeh);

ViewableCar around(String thread, boolean

isVeh): createViewableCarMemory(thread,
isVeh) {

 // building and initialising of
// ViewableCar parameters and allocation
// to immortal memory

}
This pointcut is an example of immortal memory

creation for the ViewableCar object. The pointcut
captures all of the ViewableCar constructor calls in
the Simulator, including all the parameters. The
implementation specified in the around advice
replaces the constructors implementation in the
ViewableCar object. In the
MemoryManagement aspect there is one pointcut
for each immortal object

3.4.3. Synchronization and Resource Sharing.

OOSim: The ListOfCars object in the
Simulator requires locking because all vehicles access
it to obtain information about nearby vehicles. The
design and implementation of the synchronization of
the ListOfCars object was translated into real-time
from that of the original simulator.

AOSim: The code below shows the code contained
in the SynchronizationAspect of AOSim.

pointcut updateAction():execution(*

ViewableCar.*Poll(..));

before():updateAction(){
 // wait and lock object
}

after():updateAction() {
 // notify objects waiting for lock
}

The pointcut shown above specifies that all methods
with names ending in “Poll” are to be synchronized.
The before advice implements the waiting and
subsequent locking of the shared resource before the
specified method (e.g. clearPoll) is executed. The
after advice performs the notification after the
operations in the captured method have been executed.

3.4.4. Asynchronous Event Handling.

OOSim: In the original simulator, events are
generated as a result of sensor information. For
example, when an emergency vehicle is behind, a
“change lane” event is generated, or when a slower car
is ahead and the lanes on either side are busy, a “slow
down” event is generated, and so on. OOSim handles

these events as asynchronous events. Asynchronous
event handling enables a system to handle events or
happenings that may occur asynchronously outside of
the JVM. A number of asynchronous event handler
classes were implemented in the real-time version of
the Simulator, as seen in Figure 3. These classes
provide the operations that are performed when a
particular asynchronous event is triggered or fired. For
example, when an exception is raised, it is handled by
the FaultTriggeredEventHandler class,
which performs the necessary operations to handle
such faults.

AOSim: Aspects were used to bind events to
handlers, fire events and to perform inheritance
declarations in asynchronous event handler classes.

pointcut fireEvent(Class eventClass, String

bindName) :call(* *.fireAsyncEvent (Class,
String)) && args (eventClass, bindName);

void around(Class eventClass,
 String bindName) {
 // perform binding and firing actions
}

The pointcut shown above captures all calls to the
fireAsyncEvent method that takes arguments of
Class and String types. The around advice
includes the implementation that is executed in place
of those in the fireAsyncEvent method. All
constructs related to the binding and firing of
asynchronous events is now contained in the aspect.

declare parents: eventHandler.*EventHandler

extends AsyncEventHandler;

The declare parents declaration specifies that
all classes ending in EventHandler and in the
eventHandler package extends the
AsyncEventHandler class. In OOSim, all
asynchronous event handler classes must extend the
AsyncEventHandler class (and provide concrete
implementation for the handleAsyncEvent
method). This aspect allows the inheritance declaration
to appear only once.

3.4.5. Asynchronous Transfer of Control.

 OOSim: Vehicle processing based on out-of-date
sensor information needs to be interrupted. We used
asynchronous transfer of control to throw an exception
into the threads performing this processing. We used
the fire approach, in which blocks of code can be
interrupted (each object has a method called
interruptible*(), for example
interruptibleUpdateViewableCar()) and
Java’s exception handling mechanism.

Both mechanisms are implemented in the
ViewableCar object. Arbitrary decisions were made
as to which approach to apply.

 AOSim: In the fire method approach, aspects are
used to modularise the throwing of the
AsynchronouslyInterruptedException
exception:

declare soft:

AsynchronouslyInterruptedException :
execution(* *.run
(AsynchronouslyInterruptedException))

 && within(simulation);

The declare soft statement indicates that all
run methods which takes the exception as an argument
are required to throw an
AsynchronouslyInterruptedException
(soft refers to checked exceptions). This aspect
applies to all classes in the simulation package as
indicated by the within construct.

The code below specifies an aspect that handles
interruptible code by catching all calls to the
appropriate thread’s interrupted method:

pointcut catchAIE() : call (*

.interruptible(..)) &&
within(simulation);

after() : catchAIE() {
 // catch AsynchronouslyInterruptedException
}

We were able to apply aspects in this way because

the same code could be executed each time the
exception was caught. If different operations had been
required (based on who was throwing the exception,
for instance), then a separate aspect would be needed
for handling each one.

3.4.6. Asynchronous Thread Termination.

OOSim: The original simulator implemented thread
termination by calling the interrupt method for
normal thread. This is not a reliable way to kill threads
because parts of the system affected by this terminated
thread may be left in an inconsistent state. We changed
this to use RTJava, which provides a means to handle
thread termination that uses ATC techniques in
conjunction with the interrupt method, defined by
RealtimeThread in the RTJava API, and that
allows for clean up (restoring inconsistent data).

AOSim: The implementation for thread termination
nearly identical to the implementation for transfer of
control, except that after throwing
AsynchronouslyInterruptedException,
a call to the interrupt() method is made.

pointcut catchAIE() : call (*
.interrupted(..)) && within(simulation);

after() : catchAIE() {
 // catch AsynchronouslyInterruptedException
 // call to interrupt()
}

3.4.7. Physical Memory Access. Hardware constraints
kept us from being able to implement physical memory
access for OOSim or AOSim. Instead, we provide a
theoretical analysis of the design.

OOSim: Vehicles (Vehicle, Car and
EmergencyVehicle objects) all require physical
memory access. Attributes in these objects such as
velocity and position coordinates are regularly
accessed and modified and would therefore benefit
from being allocated to fast physical memory. This
would have involved the getting and setting of specific
positions and sizes of physical memory locations as
well as the throwing and handling of a number of
exceptions.

AOSim: We would have used aspects to modularise
exception-catching code at each point of physical
memory access:

pointcut catchPhysicalMemoryException() : call

(* *.PhysicalMemoryAccess(..)) &&
within(simulation);

after() : catchPhysicalMemoryException() {
 // catch all thrown exceptions
}

The pointcut captures all methods in the
simulation package ending with
PhysicalMemoryAccess. The after advice
provides the implementation for the catching of the
different exceptions that are thrown during access of
physical memory addresses.

4. Results

This section provides the results for the comparison
of OOSim and AOSim.

We used the C&K [3] metrics suite in our
evaluation because it provides the most comprehensive
and best validated set of measures [10]. We adapted
the calculation of each metric for use with aspects.

The application of the C&K suite involves
measurement against several metrics, including
number of children, and number of methods per class.
These individual results are then used in combination
to assess system properties, such as testability and
maintainability.

For each metric we describe how it is calculated,
and its individual results, in terms of the change in
value from OOSim to AOSim. These values are

summarised in Figure 5. We then describe the metrics’
combined effect on system properties. Finally, we
discuss factors affecting the results.

-20

-15

-10

-5

0

5

10

15

20

WMC 8 2 2 6 18 18 4
DIT -1 0 0 0 0 0 0
NOC -2 0 0 0 0 0 0
CBO -2 -2 0 -10 -3 -3 -15
RFC 12 14 4 13 18 18 6
LCOM 0 0 -2 0 0 0 0

Thread
Sched &

Disp
Mem Mgmt Synchro &

Sharing
Asynch

Event Hand

Asynch
Control
Transf

Asynch
Thread
Term

Phys Mem
Access

Figure 5: Change in Individual Results due to Use
of Aspects1

4.1. Individual Results: OOSim-AOSim

4.1.1. Weighted Methods per Class. Weighted
Methods per Class (WMC) is a measure of the number
of methods implemented within a class. To apply this
to AOP, we counted aspects as classes, and advice
blocks as methods belonging to aspects.

4.1.2. Depth of Inheritance Tree. Depth of
Inheritance Tree (DIT) is the maximum distance from
a class node to the root of the tree. DIT only changed
in the area of thread scheduling. The OOSim
RealtimeThread class needed two subclasses
SimulationRTThread and
SimulationPeriodicThread to specialise
thread instantiation (Section 3.4.1). These classes were
not required in AOSim because the specialised
behaviour was moved into the RTThreadAspect
aspect.

4.1.3. Number of Children. Number of Children
(NOC) is the number of immediate subclasses of a
class. There are two fewer child classes in AOSim,
reducing the NOC by two. As was described for DIT,
the RealtimeThread class in AOSim did not
require subclassing.

1 The values of each of the metrics are given as a reduction or

increase representing the change that is incurred by the particular
metric as a direct consequence of using aspects. Thus, a negative
value indicates a reduction due to the use of aspects, whereas a
positive value indicates an increase.

4.1.4. Coupling Between Objects. Coupling between
Objects (CBO) is a count of the number of other
classes from which elements are used i.e. calls or
attribute accesses between classes. To apply this to
aspects, we considered aspects coupled to classes only
if the aspects explicitly name the classes. For instance,
if we have the joinpoint call(* *(..)), then the
aspect is not coupled to any classes. However, if we
have the joinpoint
call(example.Test.methodName(..)), then
the aspect is coupled to Test. In five of seven real-
time areas (all except synchronization and resource
sharing), the CBO value has decreased. In the
synchronization and resource sharing areas there was
no change in coupling.

4.1.5. Response For Class. Response For Class (RFC)
is the number of methods that can potentially be
executed in response to a message received by an
object of a class. When a call is made to a method that
is affected by an aspect, that class will invoke code
described in the aspect. These core-to-aspect
invocations are counted when calculating RFC. RFC
was increased in all real-time areas.

4.1.6. Lack of Cohesion of Methods. Lack of
Cohesion of Methods (LCOM) is the degree to which
methods within a class are related to one another in
terms of shared variables. To adapt this for AO
evaluation, we considered pointcuts and advice blocks
to be methods. Only the synchronization and resource
sharing real-time areas showed change to the LCOM,
since in OOSim these classes require multiple methods
to share an instance variable, while in AOSim they do
not.

Table 1: Combination of Individual Results for

System Properties

Weighted
Methods

/Class

Depth of
Inheritance

Tree

Number of
Children

Coupling
Between
Objects

Response
for a Class

Lack of
Cohesion

of
Methods

WMC DIT NOC CBO RFC LCOM
 Avg: +8.28 -0.14 -0.28 -5 +12.14 -0.28

Understandability +3.82
Maintainability +5.14
Reusability +0.51
Testability +1.68

4.2. Metrics Combined into System Properties

 in Table 1 shows which individual results are
used when assessing system properties.
Understandability relies on WMC, DIT, CBO, and
RFC. These individual metrics all contribute to the
effort required on the part of the developer to
understand a code base. If the depth of the inheritance

tree is high, for instance, it may take more effort to
determine which attributes and behaviour are passed
down to a given class. Maintainability relies on
metrics that affect the changeability of the code base: if
coupling is high, it will be more difficult to scope the
ramifications of a change. Nearly all metrics are taken
into account to forecast the effort required to reuse a
portion of a code base; the more dynamic metric, RFC,
however, is not taken into account because control
flow is not as great a factor for reuse. Testability is
indicated by all metrics contributing to the behaviour
of a system including the RFC individual result: if
more calls can result from calls to methods in a class,
then the effort required to test that class will be
increased.

Table 1 also shows the average change from
OOSim to AOSim for each individual metric. Next to
each system property is the average change for its
relevant individual results. As before, a negative
number indicates a benefit of AOSim over OOSim; a
positive number indicates that AOSim was worse.

AOSim showed the greatest improvement in
modularity (measured by a combination of LCOM and
CBO [8]). Overall each of the system properties was
hurt in AOSim. Understandability and maintainability
suffered more than reusability and testability as they
rely on both WMC and RFC, the two worst affected
individual results.

-4
-2
0
2
4
6
8

10
12

Understandability 4.25 3.5 1.5 2.25 8.25 8.25 -1.25
Maintainability 6 4.66666667 2 3 11 11 -1.6666667
Reusability 0.6 0 0 -0.8 3 3 -2.2
Testability 1.75 3 1 0.75 3.75 3.75 -2.25

Thread
Sched &

Disp
Mem Mgmt Synchro &

Sharing

Asynch
Event
Hand

Asynch
Control
Transf

Asynch
Thread
Term

Phys Mem
Access

Figure 6: Average change over all system
properties for real-time areas

4.3. Real-time Areas and System Properties

AspectJ showed greater impact in some real-time
areas than in others. As is depicted in Figure 6, it was,
on average, better for physical memory access where
each of the system properties were improved and can
be attributed to decreased coupling.

The remaining areas, on average, fared worse, due
in large part for their poor performance in the WMC
and RFC metrics.

4.4. Discussion

The results from Table 1 and Figure 6 show that
some metrics fared better than others. For example,
system properties declined in physical memory access
but increased by varying amounts in all other areas.

Not surprisingly, modularity (LCOM and CBO) is
never negatively affected by the use of aspects. By
design, aspects result in code with greater modularity.
We discovered that the use of wildcards (* construct)
can maximise modularity improvements. They
eliminate the need for explicit naming and hence
further reduce coupling and cohesion. We found it
beneficial to make design choices that will allow more
generic method naming in the core, and allow
wildcards to be used in aspects. Examples of such
choices are: limiting the number of types of threads, or
keeping uniform the way in which exceptions are
handled for asynchronous transfer of control. The
greater the code duplication, the greater the modularity
benefits as provided by wildcards.

We found that encapsulating concerns into aspects
if they are not crosscutting leads to more methods
(WMC) and more complex control flows (RFC). This
adversely affects system properties. Memory
management and asynchronous transfer of control are
examples of this. Our results suggest that delaying the
encapsulation of RTJava concerns into aspects until
crosscutting is evident will reduce the impact of this.

5. Related Work

We compare our work to two kinds of research:
comparisons between AO and OO real-time systems,
and the use of aspects in real-time research.

5.1. AO Comparisons to OO

A number of studies have shown AO to be
significantly more effective than OO for system
development [4, 12, 14]. The formats of these studies
have all involved an initial development using OO and
a subsequent redevelopment of the same system in AO.
Evaluation has mostly been based on traditional
metrics such as lines of code and sites of change, with
the AO version of the applications being a clear winner
in each study. For example in [12], Kiczales et al.
illustrate how AO was adopted to significantly reduce
the LOC in their image processing system, which in
turn lead to benefits in reusability and maintainability

due to reduced code tangling. The main difference
between these studies and ours relates to the metrics
used and the non real-time nature of the systems
adopted for their evaluations.

jRate is an open source ahead-of-time compiled
implementation of the RTSJ that is developed using
AO techniques [5]. AspectJ and Aspect C++ were used
to capture concerns such as memory, real-time threads,
and asynchrony. Its design and performance is
compared to other RTSJ implementations developed
using OO. Their evaluation was based on the RTJPerf
benchmarking suite [5], which contains a number of
tests designed to measure the design and performance
of RTSJ implementations. In terms of performance,
jRate was found to be both more efficient and
predictable than the RTSJ reference implementation.
These gains were attributed to the use of aspect
languages, since they are better able to deal with static
and dynamic crosscutting concerns. This work
contrasts ours due to its focus on RTJava performance
over software engineering issues such as system
properties.

5.2. Aspects Applied to Real-time Systems

[9] documents the methodology and benefits of
applying AOP to address non-functional requirements
such as distribution, real-time, and fault tolerance.
Aspects for each requirement were developed using
AspectC++. The research introduces a real-time aspect
to handle temporal constraints posed by the real-time
domain. A watchdog (per-thread watchdog timer) is
proposed to monitor and regulate the execution of
component code, ensuring that it is processed within
the required time boundaries. This study indicated that
aspects could be useful in improving real-time systems
performance predictability. Without AOP, the
watchdog code would have to be inserted manually
into the component code wherever necessary. This
work is complementary to ours, since our metrics do
not address predictability of systems, whereas this
work does not address system design issues.

 [6] describes work on automating the translation of
Java code into scope aware RTJava code (i.e.
automating the creation of RTSJ memory scopes). A
reference-probing aspect is used to determine the legal
RTSJ ScopedMemory assignments. Some of the
benefits derived from AO included more modular
code, lower development costs, and better real-time
predictability. Though they found benefits of using
aspects, they did not assess the impact that aspects
have on code understandability and maintainability due
to the indirection added by aspects.

6. Summary

The aim of our study was to evaluate the
effectiveness of AOP techniques for separation of
concerns in the development of the seven enhanced
areas of Java-based real-time systems development.
We applied the C&K Metrics suite to assess and
compare an AO and OO system in terms of system
properties.

We found that AOSim improved modularity over
OOSim. This is indicated by the reduction in coupling
(CBO) and cohesion (LCOM) in all of the seven
RTJava areas. We also found that WMC, and RFC
individual results were hurt. These individual results
negatively affected all of the system properties, with
the greatest negative impact on understandability and
maintainability.

We found that for real-time systems, the greatest
gain can come from making the aspect-core
relationship generic and broad. We suggest minimizing
the number of kinds of real-time threads, and
maximising the amount of redundant code pulled into a
single aspect.

7. Acknowledgements

We would like to thank Vinny Reynolds for supplying
the original sentient traffic system. As well, we would
like to thank Andrew Jackson for help with Aspect-
encapsulation, and for comments on earlier drafts of
this paper. Finally, we would like to thank the
anonymous reviewers for their comments.

8. References

[1] Bollella. G., et al. The Real-time Specification for Java.
Addison-Wesley, 2000.

[2] Burns, A., and Wellings, A. Real-time Systems and
Programming Languages: Ada 95, real-time Java and real-
time POSIX, Harlow: Pearson Education, 2001.

[3] Chidamber, S.R., and Kemerer, C.F. “A Metrics Suite for
Object-Oriented Design” in Proceedings IEEE Transaction
on Software Engineering, Vol.20, No.6, 1994, pp. 476-493.

[4] Coady, Y., and Kiczales, G. “Back to the Future: A
Retroactive Study of Aspect Evolution in Operating System
Code” in Proceedings International Conference on Aspect-
Oriented Software Development (AOSD’03), Boston
Massachusetts, USA, 2003, pp. 50-59.

[5] Corsaro, A., and Schmidt, D. “Evaluating Real-time Java
Features and Performance for Real-time Embedded Systems”
in Proceedings Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS'02), San
Jose, California, USA. 2002, pp. 90-100.

[6] Deters, M., Leidenfrost, N., and Cytron R. “Translation of
Java to Real-time Java using Aspect” in Proceedings
International Workshop on Aspect-Oriented Programming
and Separation of Concerns, Lancaster, United Kingdom,
2001, pp. 25-30.

[7] Dibble, P. Real-time Java: platform programming,
Prentice Hall, 2002.

[8] Fairley, R. Software Engineering Concepts, McGraw-
Hill Series in Software Engineering and Technology,
McGraw-Hill Book Company, 1985.

[9] Gal, A., Schroder-Preikschat W., and Spinczyk, O. “On
Aspect-Orientation in Distributed Realtime Dependable
Systems” in Proceedings Seventh IEEE International
Workshop on Object-oriented Real-time Dependable
Systems (WORDS ‘02) , San Diego, California, USA,
pp.216-270.

[10] Harrison, R., Counsell S.J., and Nithi R.V. “An
Evaluation of the MOOD Set of Object-Oriented Software
Metrics” in Proceedings IEEE Transactions on Software
Engineering, Vol.24, No.6, 1998, pp. 491-496.

[11] Holmes, D., Noble, J., and Potter, J. “Aspects of
Synchronisation” in Proceedings Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 25)
Pacific, Melbourne, Australia, 1997, pp 7-18.

[12] Kiczales, G., et al. “Aspect-Oriented Programming” in
Proceedings European Conference for Object-Oriented
Programming (ECOOP’97), Jyväskylä, Finland, 1997, pp.
220-242.

[13] Kiczales, G., et al. “An Overview of AspectJ” in
Proceedings European Conference for Object-Oriented
Programming (ECOOP’01), Budapest, Hungary, 2001, pp.
327-353

[14] Lippert, M., and Lopes, C. “A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming” in Proceedings International Conference on
Software Engineering (ICSE’00), Limerick Ireland. 2000, pp.
418-427

[15] Tourwé, T., Birchau, J., and Gybels, K. “On Existence
of the AOSD-Evolution Paradox” in Proceedings
International Conference on Aspect-Oriented Software
Development Workshop on Software-engineering Properties
of Languages for Aspect Technologies, Boston, USA, 2003.

