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Abstract

Existing on-demand ad hoc routing protocols assume
an idealised wireless network in which all links in the
network are either on or off and where all functioning
links are equally good. Such a model interprets the
fraction of packets that are dropped due to contention
or interference as broken links, which can in turn lead
to increased routing traffic and radio contention. As
an alternative to the traditional hop-count metric,
this paper presents a new metric for capturing the
cost of a route based on a statistical model of network
links. To investigate the impact of using this cost
metric, we present a probabilistic routing protocol,
SAMPLE, inspired by reinforcement learning tech-
niques. Different scenario-based performance evalua-
tions of the protocol in NS-2 are presented. In com-
parisons with AODV and DSR, SAMPLE exhibits
improved performance in both lossy and congested
wireless networks.

1 Introduction

Standard ad hoc routing protocols such as AODVT1]
and DSR2, 3] are based on a discrete model for links
in the network. This model is essentially based on
an assumption of perfect radio links and ignores the
effects of interference and network contention. Dis-
crete models of network links are generally based
on the last measurement (i.e. attempt to send a
packet, receipt of a packet or link monitoring ac-

tivity) of a link’s status. The first packet dropped
on a link is considered as evidence that the link has
broken. These models produce protocol implementa-
tions where route updates occur whenever the link-
level model indicates a link failure, despite the fact
that link failure may not be an actual failure but due
to interference or congestion in the wireless network.

Real-world wireless networks have properties that
are not present in the idealised network. We believe
that it is necessary to make statistical observations
of the network in order to measure - and hence react
to - these properties:

e Heterogeneous distribution of mobility. Not all
nodes in a network may be mobile at any given
time. Hence, some links in the network may
be longer-lived than others. The discrete model
considers a newly created /discovered link in the
network equal to a long-established link.

e Network congestion and interference. Under
congested network conditions, or when suffer-
ing from interference, the radio network interface
may not be 100% reliable [4], even for sending
packets to nodes that are within transmission
range. A discrete model of network links can
treat dropped packets due to network conges-
tion as a broken link. This can have the negative
side-effect of actually increasing network conges-
tion by generating additional routing traffic. In
such congested network conditions, the decision
to treat a network link as broken can only be



made on the basis of a number of measurements.
A statistical model of network links should be
able to operate more efficiently under congested
network conditions by adjusting to dropped and
delivered packets in a more gradual manner.

e Shortest Path is not enough. It has been sug-
gested [5] that the shortest-hop-path criteria is
not sufficient to determine optimal routes in an
802.11 based ad hoc network. Multiple shortest-
hop routes may be available, with widely varying
levels of reliability. Statistical information about
the quality of these routes could be used to dif-
ferentiate between multiple shortest-hop routes.

o Fluctuating link quality. Communication at bor-
derline communication ranges in 802.11 is unreli-
able due to the fluctuating quality of links. Dis-
crete models sometimes update routing entries
in a jitter-like manner at communication gray
zones, and often replace stable (but sometimes
longer) routes with newer, unreliable routes links
resulting in poor protocol performance [6].

This paper introduce SAMPLE, a probabilistic on-
demand ad hoc routing protocol based on a simple
statistical model and inspired by techniques from re-
inforcement learning. We compare the performance
of this protocol with that of AODV and DSR by sim-
ulation using NS-2. We find that the use of a sta-
tistical model can provide improvements in perfor-
mance, especially in congested network scenarios. In
one network scenario with a subset of stable nodes
we show that the SAMPLE routing protocol can de-
liver throughput approaching the theoretical limit for
802.11 networks.

Section 2 presents background material on proba-
bilistic routing protocols for both wireless and fixed
networks. Section 3 discusses the main features and
objectives of the SAMPLE routing protocol. Sec-
tion 4 introduces the statistical models used to rep-
resent network link quality in 802.11 networks, the
cost metric for routes as well as the probabilistic rout-
ing model. Section 5 describes the implementation
details of the SAMPLE routing protocol. Section 6
evaluates SAMPLE relative to AODV and DSR in
two different network scenarios.

2 Related Work and Back-
ground

To date, there has been limited research in the area
of probabilistic routing in mobile ad hoc networks.
However, statistical models of routing tables and
probabilistic flooding have been proposed as more ef-
ficient mechanisms for managing routing information
and limiting MAC layer flooding traffic respectively.

PERA (Probabilistic Emergent Routing Algorithm
[7]) uses swarm intelligence inspired algorithms to
build and manage statistical routing information in
an ad hoc network. In contrast to the routing pro-
tocol presented in this paper, PERA is a proactive
routing algorithm and statistical models of routes
are maintained and updated by control and signalling
packets. These control packets are called ants, and
they opportunistically explore multiple paths to a
destination. However, due to the overhead of pro-
active routing PERA actually performs slightly worse
than AODV. This is mainly due to the high cost
of transmitting extra control packets in a radio net-
work relative to the incremental cost of increasing the
packet size. MANSI (Multicast for Ad Hoc Network
with Swarm Intelligence [8]) also uses separate con-
trol packets to explore multiple routes in a network.

Gossip-Based Ad Hoc Routing [9] applies prob-
abilistic broadcast to route finding within AODV.
Probabilistic broadcast is different to probabilistic
routing since it operates only for route discovery. It
attempts to limit the amount of MAC layer traffic
in the network during flooding by exploiting the sta-
tistical likelihood of packets arriving at a destination
over more than one route in a dense enough network.
Gossip has been found to be able to reduce control
traffic by up to 35%, although the routes found by
gossiping may be 10-15% longer than those found by
flooding. A similar approach is outlined in [10].

In fixed network environments such as WANSs, both
AntNet [11] and Ant-based Control [12] have shown
that statistical routing protocols can perform as well
and often better than traditional routing protocols.
AntNet is an adaptive, mobile-agents-based algo-
rithm inspired by work on the ant colony metaphor.
Ant-based Control uses a very similar approach to



AntNet, but has been designed specifically for tele-
phone networks. Both protocols periodically launch
network exploration agents, called forward ants to
every destination to find lower cost routes through
the network. For AntNet, at each node the ants
will choose their next hop probabilistically using that
node’s routing table. As the ants visit a node, they
record their arrival time and the node identity. An
ant reaching its destination is converted to a backward
ant that calculates a round-trip time to the destina-
tion over the route chosen by the forward ant. This
round-trip time is compared to the average round-
trip time to that destination. If the new round-trip
time is smaller, the probability of choosing that route
is increased. If the new time is larger, that route’s
probability is decreased.

3 Objectives and Summary of
the Approach

This project had the initial aim of building a reac-
tive routing protocol for ad hoc networks based on
a statistical model of network links. Existing statis-
tical routing algorithms such as AntNet and PERA
are, however, proactive routing protocols. They use
separate control and maintenance packets (ants) to
discover new routes in the network. Each node keeps
a routing table, which for each destination gives the
probability of choosing each neighbouring node as the
next hop. However, only the exploratory ant packets
are routed probabilistically to the next hop, as nor-
mal network traffic (i.e. non-ant packets) is routed to
the next hop with the highest probability in the rout-
ing table for a given destination. In order to construct
a reactive routing protocol that is suitable for mo-
bile ad hoc networks, we must be able to exploit new
routes and changing routes as nodes move in the net-
work. In effect, we required on-demand exploration
of routes but without the overhead of techniques such
as flooding.

SAMPLE is a reactive probabilistic routing pro-
tocol based on a statistical model of network links.
Routing information is distributed in the network in
an on-demand manner by attaching it to data pack-

ets, and not as separate control traffic. The rout-
ing of packets is done probabilistically at each node,
so packets may travel on new routes or suboptimal
routes. The potential increased cost of this prob-
abilistic routing is a trade-off against the benefit of
discovering lower cost routes and distributing routing
information in the network.

SAMPLE is strongly inspired by the field of rein-
forcement learning. Reinforcement-learning [13, 14]
describes a class of problems within machine learning
in which agents attempt to optimize its interaction
with a dynamic environment through trial and error.
In SAMPLE, the routing agent interacts with the en-
vironment by deciding which neighbour to forward a
packet to, or to take the option of broadcasting the
packet. In response to these decisions, the routing
agents obtain information about the quality of net-
work links with their neighbours.

The statistical model that SAMPLE uses attempts
to estimate the probability of a transmission over a
given link being successful. This model is used to
calculate the cost of using a given link in the network.
SAMPLE uses a model for the cost of links and routes
in the network that is designed to approximate the
number of radio transmissions' needed to deliver a
packet along that link or route. The cost of a route
is represented as the sum of the costs of each of its
links.

Each data packet that a routing agent transmits
in the network allows it to advertise the cost of its
routes for both the source and destination of the data
packet. The routing information advertised by rout-
ing agents is sampled by other routing agents when
receiving or promiscuously receiving packets. These
routing agents then calculate the cost of their route
to the given source or destination via the node which
it received the packet from. The cost advertised by
routing agents is the optimal cost from its neighbour-
ing nodes. When routing, the estimated route cost
via each available neighbouring node is used to de-
cide which node to forward a packet to. The next
hop is chosen probabilistically, with the lowest cost
route being chosen with the greatest probability.

Itransmissions made by the 802.11 protocol, i.e. including
the number of retransmissions that are made until the packet
is acknowledged successfully



SAMPLE can send packets along routes which are
currently considered to be suboptimal. This is done
in the hope of discovering better routes by improv-
ing the routing information available to the routing
agents. There is a trade-off between the quality of
the information available for routing and the amount
of ’sub-optimal’ actions required to gather that in-
formation which is closely related to the idea of Ex-
ploration vs. FExploitation within machine learning.
We use a greedy heuristic and action selection mech-
anism inspired by reinforcement learning techniques
in order to try and limit the amount of exploration
we perform and to restrict that exploration to useful
areas of the network.
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Figure 1: Routing Information Updating using Rein-
forcement Learning

We have introduced the idea of route decay in
SAMPLE as a mechanism to remove stale routing
information from the tables of the routing agents.
This is similar to pheromone trail evaporation used in
[15]. Each agent stores the last-advertised route cost
to a given destination from each of its neighbours.
However, the agent considers this value to decay (i.e.
grow steadily larger) from the time it is advertised. In
this way, routes that are not advertised are gradually
eliminated from consideration for routing decisions.
This ties in closely with the idea of reinforcement in
SAMPLE: the use of a route increases the probability
of that route being used, and the more successful a

route is, the more it is advertised throughout the net-
work. Figure 1 illustrates how the routing decision
taken by a routing agent and route decay combine to
update the routing information used by other routing
agents in the network.

SAMPLE has been designed with a certain type of
ad-hoc network in mind, that used to provide inter-
net access to a metropolitan area. In this network
scenario, the majority of traffic either originates or
terminates at a small number of nodes in the net-
work (i.e. those providing internet access). We also
assume that traffic flows will have a certain level of
bi-directionality (e.g. acknowledgement packets in
TCP). In this scenario, attaching routing information
to every data packet has some interesting properties:

e The amount of effort used for routing to a given
destination is relative to the popularity of that
destination. Hence the quality of routing infor-
mation is higher for more popular traffic destina-
tions, such as nodes providing internet gateway
services.

e Good routes in one direction will often also be
good routes in the reverse direction (since 802.11
requires bidirectional communication). For this
reason, routes to either end of a traffic flow are
closely related. By attaching routing informa-
tion to data packets we exploit routes in one
direction of flow in order to efficiently transfer
routing information about the reverse flow to
where it is needed.

4 Statistical Model of Network
Links in SAMPLE

This section introduces the statistical model of net-
work link quality and the probabilistic routing model
used in the design of the SAMPLE protocol.

4.1 Statistical Model for Network

Links

A statistical model for network links should provide
a statistical measure of the link’s performance over



a period of time. The quantity that we attempt to
measure is the probability of successfully transmit-
ting a unicast packet to a given neighbour node. In
order to do this, we sample the rate of a number of
different events within a small time window 7 into
the past? . The events that we monitor are:

e Attempted Unicast Transmissions, r 4

e Successful Unicast Transmissions, rg

Received Unicast Transmissions, 7

Received Broadcast Transmissions, rp

e Promiscuously Received (overheard) Unicast
Transmissions, rp

The rate of these events is used to estimate the proba-

bility of an attempted unicast transmission being suc-

cessful, i.e. we attempt to estimate the future value

of 1. Since a successfully received packet is indica-

tive of a functioning network link, we allow receive

events to influence our estimation to a configurable
rs +af (ry +re +rp)

eXtenl:
( ) TA IB 717 7 rp
TA ( B )

The parameter « represents our belief about the
probability of successfully transmitting a packet in
the case that we have received but not attempted to
transmit. The parameter 8 controls how much re-
ceived packets are weighted compared to transmitted
packets. For the experiments carried out in this paper
we used values of 0.5 and 0.2 for a and f respectively.

Note that this is quite a simple estimate of delivery
ratio. More complicated measures could be devised
and other variables considered. Our goal here is not
to design an accurate predictor for delivery ratio, but
rather to show how such a predictor be incorporated

(1)

into a routing protocol. For comparison, the E (:—i)

function used by AODV is 1 if the latest transmis-
sion was successful and there has been communica-
tion within a timeout period, and 0 otherwise.

2For the experiments in this paper 7=10s

4.2 Model of route cost

We use our measure of link quality to define a mea-
sure of cost for routes in the network. The cost metric
is then used to compare routes in the network, where
routes with a smaller cost will probabilistically be
more likely to be chosen. The cost for a route, D, is
defined as the sum of each cost d over r — 1 network
links in the route:

r—1

D({n,-l,n,é,...,mr}) = Ed(nis,msH)

s=1

(2)

The d function is based on the estimated delivery
ratio introduced in Section 4.1. The d function should
reflect the number of radio transmissions (including
retransmissions) needed by the 802.11 MAC protocol
to deliver one packet over a network link. Labelling
the estimated delivery ratio as A, then, the following
are desirable properties of our d function:

e If A =1, then d = 1. i.e. with a perfect link,
exactly one transmission is required to deliver
each packet

e If A =0, then d = . i.e. if a link is completely
broken, then no number of attempted transmis-
sions will deliver a packet over it

We define further restrictions on the d function by
reference to the 802.11 MAC protocol. Note that the
event counts that we use to calculate A in Equation
1 are the event counts reported by the actual MAC
protocol. In 802.11 a radio transmission will be re-
tried up to 7 times® before it is considered failed and
causes a unicast failure notification to be sent to the
routing protocol [16, 17].

Let us consider an example where we attempt n
802.11 unicasts over a given link and only one of them
succeeds. In this case, r4 = n and rs = 1, and

A=FE (:—i) = L. We know that this required at least
14+7(n—1)=1+7852
deliver the one successful packet required 1 + 7@

radio transmissions. So to

3For simplicity, we ignore the case when only 4 retransmis-
sions are used.



radio transmissions. We note that this expression
meets the criteria that we set our d function at the
boundary values of \. We therefore use this as our d
function:

(1))

- 3)

This cost function d is our expected minimum num-
ber of radio transmissions to successfully deliver one
packet over the given link.

Using this cost function, the goal of our routing
protocol becomes to compute the optimal cost from
the source of packets to a given destination. Each
node computes its cost to the destination from that
of its neighbours and from the link costs to the neigh-
bours. We label the optimal cost from node N to a
given destination, O, as Dp(N). Thus, we get:

dN) =1+7

Dp(N) = min (Dp(M) +d(N, M)),  Dp(P)=0

(4)
A similar cost function is found in AODV, where
the corresponding D function is the hop-count.

4.3 Probabilistic Routing using Esti-
mated Route Cost

The previous section introduced a model for the cost
of routes in the network based on statistical measure-
ment of the links in those routes. Theoretically, if the
true values of the delivery ratios, d were available, we
could calculate the values of the D function for every
source and destination node in the network. In the
case that the true D values were known and avail-
able at all nodes, the decision of where to forward a
given packet can be made quite easily. The routing
protocol can choose to forward to the next-hop with
the lowest D value, or in the case where a number of
(nearly) optimal choices are available we can choose
the next-hop on a per-packet basis according to some
policy (e.g. sticky, round-robin, etc.).

However, in reality the d values that are available
in the network are estimates. Hence the D values cal-
culated from the d values are estimates. Also, since
the effect of changing d values may take a number of
messages passed in the network to propagate to all

the D values based on that d value, the D values in
the network may also be out of date. This inaccuracy
in the D values available to the routing protocol has
two implications:

e The accuracy of the d values improves the more
frequently the links are sampled - we should at-
tempt to measure link quality in the network
regularly. In order to compare available routes,
we require accurate information about the route
cost for each of the options. For these reasons,
it is desirable to sample the quality of the links
along possible routes continuously or at least pe-
riodically.

e The ideal routing policy may not be to forward
to the next-hop with the lowest D value - since
these values are estimates, the choice of next-
hop should be made statistically, i.e. we should
examine and use routes which are currently esti-
mated to be sub-optimal since they may in fact
be optimal, or may become optimal as the net-
work changes.

It is important for the routing protocol to attempt ac-
tions which are currently considered sub-optimal in
order to gather accurate information about the net-
work. In artificial intelligence research, this trade-off
between using the optimal choices that have been al-
ready calculated and choosing sub-optimally in order
to improve the knowledge of the system is described
as Ezploration vs. Exploitation. One standard tech-
nique for exploration is to use Boltzmann-distributed
exploration [18]. In SAMPLE, for each of the possi-
ble next hops M the decision of which link to route
a packet from node N is chosen probabilistically be-
tween the set of possible next hops:
e—(D(M)+d(N,M))/T

-3 e~ (PMN)Fd(N, M) /T

P(M) (5)

The parameter T is called the temperature, and
determines the likelihood of choosing sub-optimal ac-
tions. The higher the temperature, the more likely
a sub-optimal action is likely to be chosen. Varying
the temperature controls the amount of exploration
that will be taken. For the experiments conducted



in Section 6, a value of T = 3 was used. The ef-
fects of varying T for different network scenarios are
examined in [...].

We will also use a simple greedy heuristic in order
to restrict exploration to useful areas of the network:
we will only allow node N to forward to those neigh-
bouring nodes with a D value that is less than that
of N. The greedy heuristic also helps prevent packets
from entering routing loops after which they would
be dropped.

The sampling of available routes and links in the
network by SAMPLE is done in a continuous, on-
demand manner by using each data packet trans-
mitted to sample a possible link. We use each data
packet to advertise information about routes to both
its source and destination. In this way, we relate the
amount of routing traffic for a given destination to
the frequency of its use as a traffic source or destina-
tion.

5 The SAMPLE Routing Proto-
col

This section presents the implementation of SAM-
PLE based on the statistical models of routes and
probabilistic routing presented in Section 4.

In the SAMPLE routing protocol we transfer rout-
ing information on-demand and opportunistically as
much as possible, including the use of promiscuous
receiving by nodes in the network. Separate routing
packets are used as little as possible.

Each routing agent stores route cost information
for its neighbouring nodes, as well as the last adver-
tised D value from those neighbours for each destina-
tion or source node in use. Each packet sent by the
routing protocol will contain the information shown
in Table 1. Any node receiving or promiscuously re-
ceiving a packet will store the D values for its neigh-
bouring node, and also update the event counts iden-
tified in Section 4.1 for that neighbouring node. Us-
ing this information, the routing agent can calculate
its D values to attach to any packet that it transmits.

5.1 Probabilistic Packet Forwarding

In normal operation, a routing agent receiving a
unicast packet updates its routing tables and then
chooses a next hop according to the greedy heuris-
tic and Boltzmann-distributed selection identified in
Section 4.3. The agent then unicasts the packet to-
wards the next hop that it has selected. If this unicast
fails, the routing agent updates its routing tables and
repeats the procedure (decrementing the TTL of the
packet).

SAMPLE

Destination
source 1> G

Advertised
Route Cost

Eliminated by

Greedy Heuristic Route (link) Gost

Figure 2: Routing decision

Figure 2 illustrates the choices available to the
routing agent at node C and the probabilistic routing
decision made. The figure shows the cost that each
node has advertised for routing towards G.

The figure shows how node C has calculated its
route cost. D has advertised a route cost of 9, and C
estimates the link cost between C and D as 4. Hence
C calculates its route cost via D as 13. Similarly, C
calculates its route cost via E as 12. C advertises its
lowest available route cost, 12.

The two nodes A and B at the left of figure 2 are not
considered as next hops by C since their advertised
route cost is higher than that of C. When making the
decision about which node to forward a packet to, C
considers only D and E as next hops. The decision
as to whether E is chosen as the next hop is made
according to the Boltzmann selection formula:

6_12/T 1
= (6)
e—lZ/T +€_13/T 1 +€_1/T
The higher the value of T', the less likely that E
will be chosen as the next hop. i.e. if the temper-

ature parameter T is increased, the estimated sub-
optimal next-hop D will be chosen more often. D is

P(E) =




| Field Name | Field Type |

Field Contents |

ORIGIN IP Address The original source of the packet
DESTINATION IP Address The final destination of the packet
SEQUENCENUMBER Integer Generate at source node
SOURCEDIST Floating-Point Dg;e(N)
DESTINATIONDIST | Floating-Point Dgest (N)
HADERROR Boolean if the packet’s previous transmission failed
IPPACKET Data Packet IP Packet, or empty

Table 1: SAMPLE Packet Format (N is the node transmitting the packet)

sub-optimal as its total route cost is 13 compared to
a value of 12 for E.

5.2 Routing table decay

In order to remove stale values from our routing ta-
bles, we let the D values in our routing tables ’decay’
unless they are re-advertised. We do this by growing
these values exponentially. E(D) = D.aT, where T
is the time elapsed since the D value was advertised.
In our experiments, we set this value to 1.1.

5.3 Packet flooding and duplicate sup-
pression

There are situations where the broadcast of packets
is both required and desirable. In the case that no
routing information is available, such as before the
network has been bootstrapped with traffic or the
routing information has gone stale, the routing pro-
tocol must still be able to function correctly. Also,
in continuous operation, we would like to be able to
discover new network links and routes that become
available. For these reasons, we allow the routing
agent to broadcast a packet. In the case that no
routes are available, the broadcast action will always
be taken. However, we also allow this action to be
chosen during normal operation, with a certain (al-
beit low) probability.

The probability of choosing the broadcast action
is a configurable parameter of the SAMPLE routing
protocol. It is effected by assigning a virtual cost to
the action of broadcasting, and making the broad-
cast action one of the options considered when using

the Boltzmann Equation. The broadcast action is
assigned a cost by adding a fixed amount* to the es-
timated cost of the current node. In this way, the
more options that are available to the routing agent,
and the better the quality of those options, the less
likely the broadcast action is to be chosen. When
there are very few next-hops to choose between, or if
the links to those next-hops are very poor, the broad-
cast action is more likely to be chosen.

Any routing agent receiving the broadcasted
packet will forward it if its D value for the packet
destination is lower than that of the previous node,
and if it has not received the packet before. This
serves to reduce but not eliminate the amount of du-
plicate packets in the network.

Each routing agent keeps a record of the last packet
it forwarded from a given destination by its sequence
number. If this packet is received again, it will be
discarded. In the case that a routing agent retries
transmitting a packet after a failed transmission, the
packet will be marked as '"HADERROR’. This field al-
lows a receiving routing agent to disable its duplicate
suppression mechanisms for that packet.

5.4 Pro-active replies

In order for routing information to spread effectively
in the network, there should be traffic in both direc-
tions along a flow. In many real-world networks, this
will be the case (e.g. TCP acknowledgements). How-
ever, in the case of CBR traffic (used in our evalua-
tion) we allow the routing protocol to generate rout-

4For the experiments described in Section 6, this value was
7.



ing packets to received packets. This is controlled
by a configurable parameter, MAXRECEIVEDWITH-
OUTSEND, which specifies how many packets a node
can receive without sending a packet in response. In
the case of TCP traffic this mechanism will not be
invoked except for the first packet received. This re-
sponse packet is the only packet that SAMPLE sends
which contains only routing information. For the ex-
periments in 6, the routing protocol was configured to
send 1 response packet for every 10 unacknowledged
packets delivered.

6 Experimental Results and

Discussion

We have implemented the SAMPLE routing protocol
described in Section 4 in the NS-2 network simulator
[19]. We compare the performance of the SAMPLE
routing protocol to that of AODV and DSR in two
different network scenarios.

Since the SAMPLE routing protocol combines
routing information with data packets, the metric of
number of routing packets is not a valid one for com-
parison with AODV and DSR. For this reason, we use
the number of transmissions (unicast or broadcast)
that each protocol makes per application packet sent
during the simulation run as a metric to compare the
protocols. This metric represents the cost to the net-
work of routing each data packet. For AODV and
DSR, this metric should indicate the amount of rout-
ing traffic generated in the simulation. For SAM-
PLE, this will represent both the pro-active response
packets discussed in section 5.4 and the data packets
broadcast by the exploration mechanism discussed in
section 5.3.

Effect of Packet Loss in a Random
Network

6.1

This scenario is approximately that used in [20]. A
simulation arena of 1500m x 300m is used, with
the transmission power of the radio interfaces set to
250m. Random way-point mobility model is used,
with a maximum speed of 20 m/s and varying pause

times. Constant bit rate traffic of 64 byte packets,
4 packets a second, with 10 flows between random
pairs of nodes is used. We introduce packet loss to
the simulation in order to measure how well the dif-
ferent protocols operate in networks with lossy links.

Firstly, we compare the SAMPLE routing proto-
col to AODV and DSR with no packet loss added to
the simulation. Figure 3 shows the packet delivery ra-
tio and transmissions-per-packet metrics as they vary
with the level of mobility in the network. In this
scenario, SAMPLE actually has a marginally worse
packet delivery ratio than AODV and DSR, with a
cost (in terms of network transmissions) similar to
that of DSR.

Delivery Ratio vs Pause Time
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Figure 3: Comparison of SAMPLE with AODV and
DSR with no packet loss



Radio interference is simulated by introducing ran-
dom packet loss into the simulation. An NS-2 Error-
Model is used to drop packets both at the transmitter
and receiver (each with half the rate shown in the re-
sults). This is a simplistic simulation of interference
in the wireless network as packet loss is not intro-
duced as a function of signal strength. However, it is
indicative of the effect of lossy network links on the
routing protocols.

Figure 4 shows the performance of the routing pro-
tocols as the level of packet loss in the network in-
creases. Data points shown are the average of at least
30 simulation runs with varying traffic and mobility
scenarios.

The SAMPLE routing protocol manages to main-
tain good performance for packet loss levels at which
AODV and DSR show significantly reduced perfor-
mance. For packet loss rates of up to 20%, SAM-
PLE has packet delivery ratio above 85%, with only
slight increase in the number of transmissions made
per packet. At a 20% packet loss rate, however,
AODV and DSR have packet delivery ratios of 60%
and 10% respectively, and produce more than double
the amount of radio transmissions for each packet
sent compared to SAMPLE.

6.2 Metropolitan Area Ad Hoc Net-
work

We have also evaluated the performance of SAMPLE
against that of AODV and DSR in a network sce-
nario based on a metropolitan ad-hoc network. In
this scenario, there are a subset of nodes in the net-
work that are not mobile. The network scenario is
motivated by the recent appearance of ad-hoc net-
works designed to supply internet access to mobile
nodes. We believe this scenario is representative of
the type of metropolitan area ad hoc networks that
are found in Mesh Networks[21].

In this scenario, we anticipate that certain nodes
in the network will be immobile for extended periods
of time, and that the traffic patterns in the network
will be concentrated on those subset of nodes which
have internet connectivity. In the experiments pre-
sented here we use 3 server nodes. Each client sends
constant-bit-rate traffic to one of the servers at a rate
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Figure 4: Effect of Packet Loss Rate

of 4 packets per second. The number of client nodes
in the network is varied in order to create congestion
in the network.

Figure 5 shows the layout of the simulation arena.
There are 33 fixed nodes in our simulations, and 50
mobile nodes. The 3 server nodes are the fixed nodes
at the centre of the simulation arena. The fixed nodes
in the simulation provide stable links in the network
which the routing protocols could exploit.

Figure 7 shows the variation in performance of the
three routing protocols as the number of clients in
the network is increased. For these figures the packet
size sent by clients was kept fixed at 64 bytes, sent 3
times a second. Figure 8 shows the same experiment,
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Figure 5: Simulation Arena, showing fixed node po-
sitions (transmission range is 100m)

this time with 512 byte packets. Offered Throughput
is used in both figures to enable comparison of the
results.

As the number of clients in the network is in-
creased, the offered throughput to the routing pro-
tocols is increased. This in turn increases the level
of network congestion and the amount of contention
that the MAC protocol must deal with. This in-
creased congestion increases the number of failed
MAC unicasts in the network.

Figures 7 and 8 show that this increased network
congestion affects the AODV and DSR protocols
quite heavily, but that the SAMPLE protocol is able
to continue to operate effectively with high levels of
network congestion.

In [22] it was demonstrated that for multi-hop
802.11 networks, the achievable throughput is signif-
icantly less than the transmission rate of the radio
interfaces. For simple chain topologies, they demon-
strated that there is a theoretical maximum through-
put of % of the maximum single-hop throughput,
but that 802.11 only achieves about % in practice.
The maximum throughput is further decreased when
operating with network topologies other than the
chain. For a 2Mbps transmission rate, the single-hop
throughput for data when packet headers and inter-
frame timing is taken into account is around 1.7Mbps.
Thus, the maximum achievable data throughput in
an 802.11 ad-hoc network is 1.7MbpsX %, or approx-
imately 0.25Mbps (which [22] achieved using 1500
byte packets). Figure 6 shows that SAMPLE man-
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ages to approach this limit in this scenario.
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Figure 6: Delivered Throughput with varying load,
512 byte packets.

6.3 Discussion of Results

The results presented in the previous section show
that the use of a statistical model and probabilis-
tic routing allow for better performance in the face
of adverse network conditions. We believe that the
SAMPLE protocol performs better than AODV and
DSR in these conditions for a number of reasons:

e In congested networks, or when suffering from
interference, all links will have less than 100%
reliability. In this situation, AODV and DSR
generate increased routing traffic in response to
dropped packets (Figure 7 for example shows a
clear increase in traffic as congestion increases).
In congested networks particularly this increased
traffic can add to radio contention and fur-
ther worsen the problem. By not treating ev-
ery dropped packet as a broken link, SAM-
PLE avoids generating a large number of routing
packets.

In the scenario of the metropolitan ad-hoc net-
work, there are a subset of the links in the net-
work which are stable. In congested network sce-
narios, a statistical model can distinguish these
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Figure 7: Performance with Varying Load. 64 byte packets

stable links in the network from those links which
are changing. A discrete model, however, does
not allow differentiation between multiple avail-
able links in this manner.

The routing protocol uses a number of config-
urable parameters to control its behaviour and
the level of exploration carried out. We are in-
vestigating how these parameters affect the per-
formance of the protocol in different network sce-

narios, in order to determine reasonable default
values. We are also investigating whether these
configuration parameters could be automatically
adjusted by the routing protocol in response to
observed network traffic.

6.4 Future Work

However, the SAMPLE protocol as presented has a
number of issues which require further research:

e All nodes in the network use promiscuous listen-

ing as part of normal operation. This results in
increased battery usage and processing by nodes
taking part in the network. Research is ongoing
to reduce the amount of promiscuous listening
required by the protocol.

e The use of multiple routes in a probabilistic man-

ner means that packets will be delivered out-
of-order more often using SAMPLE than using
AODV or DSR. The interaction of this out-of-
order delivery with higher level network proto-
cols such as TCP is a possible drawback to this
approach.

e Configuration parameters used by the protocol.

The statistical model used. In SAMPLE, we use
quite a simple model of links in the network. Re-
search is ongoing to investigate the accuracy of
this model, and to investigate the use of other
statistical models.

7 Conclusions

We have presented a new metric to represent the cost
of routes in an ad-hoc network that is based on a sta-

tistical model of network links.

Based on this cost

metric, we have presented SAMPLE, a new proba-
bilistic on-demand ad hoc routing protocol inspired
by techniques from reinforcement learning. We have
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carried out a series of scenario-based experiments
that demonstrate higher packet delivery ratios with
less transmissions than AODV and DSR in lossy and
congested ad-hoc networks. In the particular sce-
nario of a metropolitan area ad-hoc network SAM-
PLE displays significantly improved performance and
throughput over AODV and DSR. Also, we have
identified a number of areas for future research on
the use of statistical models, probabilistic routing and
reinforcement learning in ad-hoc routing protocols.
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