

Distributed Systems Development: Can we Enhance
Evolution by using AspectJ?

Cormac Driver Siobhán Clarke

Distributed Systems Group,
Computer Science Department,

Trinity College Dublin,
Ireland

{Cormac.Driver, Siobhan.Clarke}@cs.tcd.ie

Abstract. Problems relating to modularity result in the under-performance of
the object-oriented software development paradigm in a number of areas. As-
pect-oriented software development (AOSD) is a relatively new technology that
extends modularisation capabilities in computer software. In particular, cross-
cutting concerns can be modularised. A crosscutting concern arises in a soft-
ware system when the implementation of a system requirement impacts on
more than one implementation module. Such a property hinders the ease with
which the software can evolve. With AOSD techniques, the ability to modular-
ise crosscutting concerns results in software that exhibits greater evolvability,
as it enhances changeability, pluggability and comprehensibility. This paper re-
ports on the impact on system evolvability arising from the re-implementation
of an existing object-oriented system using AOSD techniques. In particular,
AspectJ is used, which is an aspect-oriented extension to Java™.

We found that the use of AOSD techniques and AspectJ™ can greatly enhance
the modularisation of certain concerns, leading to enhanced evolvability proper-
ties. However, for other types of concern the effects on evolvability were less
positive. The difference between the two types of concerns related to the extent
to which they could actually be modularised using AspectJ.

1 Introduction

Software engineers have long been aware of the need to make software less complex,
with evolvability being a major benefit of complexity reduction. A concept that is
fundamental to reducing overall complexity levels in computer software is modular-
ity. By keeping related modules together, and separating them from modules address-
ing unrelated issues, software systems can evolve freely without establishing restric-
tive dependencies. The practice of dividing different areas of interest into separate,
independent modules is referred to as separation of concerns [1]. It has been estab-
lished that total separation of concerns is not possible with the current standard pro-
gramming paradigms [2]. Object-oriented programming is the current standard para-
digm for software development. Promoters of the approach claimed that it can
fundamentally aid software development by creating architectures that better fit with
domain models [3]. While this is true, the whole story is not being told. There are

many software development problems to which a suitable solution cannot be achieved
with object-orientation. Problems relating to modularity result in the underperfor-
mance of the object-oriented model. Object-oriented code suffers from two phenom-
ena known as code scattering and code tangling [4]. Scattering is evident when simi-
lar code is distributed throughout many system modules, with the risk of misuse and
inconsistencies at each point of use. Tangling occurs when two or more concerns are
implemented in the same implementation module (most commonly the object-
oriented class or method), making the module harder to understand and change. There
is a need for a new software development paradigm to address these shortcomings.

Aspect-Oriented Software Development (AOSD) is a relatively new technology
that extends modularisation capabilities in software development [5]. The AOSD
community propose that it is possible to modularise the crosscutting aspects of a sys-
tem using AOSD techniques. In this context, a crosscutting aspect can be thought of
as a requirement in a software system that affects more than one implementation
module during its implementation. Applying AOSD techniques can lead to a system
that exhibits cleanly captured concerns within its codebase and possesses numerous
beneficial properties, most notably evolvability.

This paper reports on our experience re-implementing an existing object-oriented
distributed software system using AOSD techniques and the AspectJ™ programming
language. The AspectJ version is assessed against evolvability properties such as
changeability, pluggability and complexity. We conclude that the extent to which evo-
lution is affected is directly related to the type of concern that is implemented. The
remainder of this paper is organised as follows. Section 2 provides background infor-
mation on the re-implemented software system, AppTrack, as well the aspect ap-
proach to AOSD and the AspectJ programming language. Section 3 presents two
crosscutting concerns, identified in the object-oriented version of the AppTrack sys-
tem, that were re-implemented using AspectJ. Section 4 discusses the impact that the
aspect-oriented re-implementation had on the evolvability properties of the system.
Section 5 presents work related to ours. Finally, section 6 presents our conclusions.

2 Background

2.1 AppTrack

AppTrack is a web-based distributed information system that was developed by a
team of programmers from the Computer Science Department, Trinity College Dub-
lin. The fundamental system requirement was to automate the department’s post-
graduate applications system, making it possible for students and department staff to
administer postgraduate applications online. The system was written using Java™.

AppTrack follows the standard three-tier architecture for data-driven web-based
applications. The application code was written using the Struts framework [6]. Struts
is an open-source framework from Apache’s Jakarta project for building web-based
applications. The framework encourages application architectures based on the Model
2 approach, a variation of the classic Model-View-Controller design pattern [7]. Users
interact with the system via a web browser displaying Java Server Pages (JSP). The

information gathered from the user via the forms on these pages is represented in the
application code by Struts-defined Form objects. Each Form object is associated
with a Struts Action object and the form information is used when the associated
action executes. Each Action object contains the core business logic related to a
piece of application functionality. The Action classes that make up the action
package use classes from the remaining packages (bean, mail and db) to carry out
their required behaviour. Once an action has been taken, the Action class redirects
the system user to the appropriate JSP.

The use of the Struts framework enforces design and implementation rules on the
application code i.e., classes must implement specific interfaces and follow certain
naming conventions. While conformance to the Struts framework leads to a good de-
gree of modularity, there remain some concerns (non-MVC related) that are not
cleanly separated. AppTrack is composed of 81 Java classes and 20 JSP.

2.2 Aspects and AspectJ

The aspect approach to AOSD was first proposed in [2]. A system property or re-
quirement to be implemented is an aspect if it cannot be cleanly encapsulated in a
component that is well localised, easily accessed and composed. The goal of aspect-
oriented programming (AOP) is to support the programmer in cleanly separating
components and aspects from each other, by providing mechanisms that make it pos-
sible to abstract and compose them to produce an overall system. This goal is
achieved by adding an aspect language and an aspect weaver to the set of standard
tools used in the implementation of a software system. The aspect language is sepa-
rate to the component language (Java, C++ etc.) and is used to program aspects. The
aspect weaver is used to integrate aspects written in the aspect language with the rest
of the program code, which is written in the component language. The aspect weaver
is a tool that accepts both component and aspect language as input and outputs the
combination of the two in pure component language. AspectJ [8] is the most promi-
nent and widely adopted [9] programming language supporting the aspect approach.

AspectJ is an aspect-oriented extension to Java that supports general-purpose as-
pect-oriented programming [10]. The word ‘aspect’ has a dual meaning in AspectJ,
with the meaning depending on the context in which the word is used. At the design
level an aspect is a concern that crosscuts (as previously described). At the implemen-
tation level it is a programming language construct that enables concerns to be im-
plemented in a modular fashion. This programming level aspect is the dominant unit
of decomposition in the AspectJ programming language.

AspectJ is based on a concept referred to as the dynamic joinpoint. Dynamic join-
points are points in the execution of a Java program e.g., method calls and class at-
tribute access. The joinpoint is the foremost new concept that AspectJ adds to Java,
with the majority of the rest of language being made up of simple constructs based
around this notion. Pointcuts and advice dynamically affect the program flow whereas
introduction statically affects a program’s class hierarchy. Pointcuts select certain
joinpoints (and values at those points). Advice is code that is executed when a specific
joinpoint, identified by a pointcut, is reached. Advice can be run before, after or
around a joinpoint. This is the dynamic behaviour of AspectJ. AspectJ uses introduc-

tion to statically modify a program’s static structure. The members of classes and the
relationships between classes may be modified by introducing new member variables
and methods into a class or by either defining new parents for an existing class or de-
fining that a class implements another class. Analogous to the class in object-oriented
programming, the aspect is AspectJ’s unit of modularity for encapsulating crosscut-
ting concerns. Aspects are defined in terms of pointcuts, advices and introductions.

3 Separated Concerns

The presence of crosscutting concerns in an application codebase greatly affects the
ease with which the application can evolve. Separating concerns is fundamental to
achieving a suitable level of modularity so as to enhance system evolution. AspectJ
aims to aid concern separation by providing explicit mechanisms to modularise code.

Following a manual investigation of the AppTrack codebase a variety of crosscut-
ting concerns were identified. These ranged from development concerns that imple-
ment house-keeping duties such as tracing and enforcing coding standards, to produc-
tion concerns implementing core application logic such as exception handling and
database transactions. Due to spatial limitations not all concerns can be discussed in
this paper. The following is a full list of the concerns that we identified, re-
implemented and assessed: Tracing, Transactions, Enforcing Factory Design Pattern,
Database Compatibility, Design by Contract (Preconditions), Exception Handling,
and Recording Bean Properties Modification. This section discusses the aspect-
oriented implementation of two of the most prominent concerns in the AppTrack
codebase, one a development concern (tracing) and the other a production concern
(transactions). We choose to discuss these concerns as their re-implementation is most
representative of the way in which AOSD with AspectJ can affect the evolvability of
a software system.

3.1 Tracing

During the development of the object-oriented version of the AppTrack system the
development team predictably found themselves in situations where their expectations
had not been met by a certain piece of functionality that they had implemented. Non-
conformance to system requirements manifested itself as errors ranging from minor
bugs to major deficiencies. Although following a test-first [11] approach to system
development, they sometimes lapsed back into the classic scenario in which they
found themselves inserting printline method calls into the bodies of various AppTrack
methods so they could observe a) whether or not a method was being executed at run-
time and/or b) the values of any variables/parameters used within a method at run-
time. This approach to tracing is haphazard at best. Both code scattering and tangling
are manifest in the object-oriented implementation of this concern. Scattering occurs
because the same piece of tracing code was cut and paste into many different imple-
mentation modules. Tangling occurs because numerous classes not designed to cater
for tracing behaviour were required to encapsulate tracing logic, leading to the im-
plementation of at least two concerns within one implementation module. Full im-

plementation of the tracing concern in this manner required adding approximately five
lines of code to every method of every class. This was a huge undertaking for only
limited rewards as tracing is a development concern and this code is removed from
production releases of the system.

An aspect-oriented design for this concern would in theory provide pluggable trac-
ing functionality, implemented without affecting any other core concern [12]. This is a
stereotypical example of the kind of concern that can be modularised using AspectJ
(as illustrated in the next section).

3.1.1 Tracing Aspect Implementation

The implementation of the tracing concern consists of one aspect and two standard
Java classes. The LogEntry class is a simple bean class. This class contains a vari-
able and a set of accessor methods for each piece of information that is recorded about
each method call made during the execution of the system.

The Logger class contains the main low-level log-writing functionality used by
the logging aspect. makeEntry(LogEntry) from the Logger class accepts a
LogEntry object as a parameter, extracts the properties from this object and inserts
them into a log file on disk. makeEntry(LogEntry) is executed for each method
encountered during execution.

The two classes described combine to provide tracing functionality separate from
the remainder of the AppTrack codebase. However, they must be associated with the
codebase so that they can trace it. For each method that is executed when the system
is in operation, a LogEntry must be created and the makeEntry(LogEntry)
method must be invoked. This behaviour is encapsulated within the PointTracing
aspect, which is shown in figure 1. This aspect associates the tracing concern with the
rest of the concerns in the codebase. The PointTracing module is an aspect,
the new implementation module type introduced in AspectJ. This aspect declares a
pointcut, trace(), line 11, to capture the execution of every method that does not
reside within the ie.tcd.cs.mscnds.apptrack.aspect.log package. The
reason that method calls within the package containing the tracing concern are not
logged is to prevent an infinite sequence of logging calls. Once a joinpoint is identi-
fied, advice can be associated with it. In this case we chose to run the advice before
the execution of each method identified by the pointcut. The aspect contains five class
scope variables that correspond to those in the LogEntry class. These variables are
initialised with the appropriate context specific information, which is obtained from
the thisJoinPoint variable, lines 15 to 17. The arguments to the currently exe-
cuting method are returned from the printParameters(JoinPoint) method.
This method (not shown in figure 1) uses the thisJoinPoint variable to generate
a suitably formatted string containing the number of arguments, the type of each ar-
gument and the actual argument values for the current execution of the method.

All properties of the LogEntry class (barring ID) are set to the values obtained
from the current joinpoint, lines 19 to 23. The information about the current method is
then written to the log by passing the LogEntry object containing the relevant in-
formation to the makeEntry(LogEntry) method of the Logger class. By en-
capsulating this behaviour within the before() advice component of the Point-
Tracing aspect we avoid scattering and tangling it throughout each traced method.

Fig. 1. Tracing aspect

All code relating to the tracing concern was totally separated from the main

AppTrack codebase. Two classes and one aspect were added during the re-
implementation and these encapsulate the tracing concern, leaving the remainder of
the codebase oblivious1 to their existence. It is interesting to note here that the tracing
concern could have been implemented using an abstract aspect. By leaving the
trace() pointcut abstract, the PointTracing aspect would be totally application
independent. The abstract aspect could then be extended by the AppTrack developers,
with the pointcut being given an AppTrack specific implementation. This approach is
used in the re-implementation of the transactions concern.

3.2 Transactions

AppTrack is a web-based information system. Like most systems of this nature it has
an underlying database and can cater for multiple simultaneous users. It is necessary
to employ a transaction service in order to retain data integrity while serving the re-
quests of multiple users. Data access is a fundamental functional requirement while a
transaction service affecting data access is considered to be a non-functional require-
ment. This distinction is the cause for their proposed separation in the aspect-oriented
re-implementation of the AppTrack system. AppTrack’s data access and transactions
functionality is implemented together (in the db package) resulting in extremely tight
coupling. Each key object in the system (e.g., Applicant, Application) has a
database handler class associated with it to cater for its data access needs (e.g., Ap-
plicantHandler). Any class that wants to use data access functionality can only
gain access to the classes that will deliver this functionality (handler classes) by going
through the Transaction class. Consequently, in practice you must declare an in-
stance of the Transaction class and obtain an instance of the database handler
class you require (e.g., ApplicantHandler) from the Transaction class. The
Transaction class initialises the handler object with a connection to the database

1 “whether the writer of the main code has to be aware that aspects will be applied to it [13]”

and provides implementations of transaction interface methods (commit, rollback etc.)
to manipulate this connection as appropriate, meaning that data access and transac-
tions are extremely tightly coupled.

3.2.1 Transactions Aspect Implementation

The first stage in the implementation of the aspect-oriented version of the transactions
concern involved deconstructing the existing architecture and removing the depend-
ency relationship between the class providing transactional behaviour and the data-
base handler classes. Following the completion of this task the codebase contained da-
tabase handler classes for each major object in the system but no facility for obtaining
database connections for these handlers to use. The main responsibility of the transac-
tions concern is the establishment, distribution and maintenance of these database
connections. The Transaction aspect, partially illustrated in figure 2, contains all
of the transactional functionality. Transaction is an abstract2 aspect that contains
the following methods: setup(JoinPoint), commit(), rollback()and
freeConnection(java.sql.Connection). Alongside these methods are
two abstract pointcuts (figure 2, lines 6 and 8): standardTransaction() (read-
only) and transactionForUpdate() (write). The following pieces of advice
run at the joinpoints identified by the pointcuts (their behaviour involves calling the
transaction methods listed above): before() : standardTransaction(),
after() : standardTransaction(), before() : transactionForUp-
date(), and after() : transactionForUpdate().

Database handler classes now require a valid database connection object to be
passed to their constructor. This connection must come from the class that wants to
access the database i.e., the class previously a client of the object-oriented Trans-
action class. The methods in the Transaction aspect rely on the existence of a
class scope variable of type java.sql.Connection named connection
within any class affected by the transactions concern. It is this connection variable
that is manipulated by the transactions concern. All usage of this variable from within
the classes making up the transactions concern is achieved via the use of Java’s re-
flection mechanisms. We must note here that AspectJ’s introduction mechanism could
have been used to introduce the connection variable into the classes requiring data ac-
cess functionality without actually placing the variable in the classes themselves, fur-
ther encapsulating the concern implementation. Such a solution would necessitate
statically introducing the variable into each relevant class, hence naming each af-
fected class in the Transaction aspect. We felt that the loss of genericity associ-
ated with this approach was unacceptable.

The setup(JoinPoint) method (figure 2, line 10) establishes a connection to
the database and sets the connection variable in the affected class to have the
same value as this new database connection. The JoinPoint argument to the
method is used to discover the type of the current class, and Java’s reflection mecha-
nisms are used to retrieve and manipulate the connection variable from the current

2 The aspect is abstract because we felt that separating the main transactional behav-
iour from the weaving specification would help reduce overall concern complexity.

Fig. 2. Transaction aspect - abstract pointcuts and setup(JoinPoint) method

Fig. 3. AppTrack class using the Transaction aspect

Fig. 4. Advice in the Transaction aspect

Fig. 5. WeaveTransaction aspect

class. The current class can now use its connection variable in declaring an instance of
the database handler class it requires. This usage is illustrated in figure 3.

The commit() method of the Transaction aspect invokes the
java.sql.Connection.commit() method on the connection variable and
uses the freeConnection(Connection) method to return the connection to the
AppTrack connection pool. A call to the commit() method makes up the behaviour
of the after advice, illustrated in figure 4. The after : TransactionForUpdate
advice contains some extra behaviour. It first attempts to commit the database opera-

tion. If the committal of the operation’s effects is unsuccessful then the effects are
rolled back.

Still unexplained are the two abstract pointcuts at lines 6 and 8 in figure 2. These
pointcuts must be given concrete definitions by the aspect that specifies the crosscut-
ting behaviour i.e., the aspect that extends the abstract Transaction aspect.

It is the WeaveTransaction aspect that provides a concrete implementation of
the Transaction aspect, hence implementing the abstract pointcuts. Figure 5 illus-
trates the concrete implementation of the transactionForUpdate() pointcut.

While the aspect-oriented re-implementation of the transactions concern has sig-
nificantly reduced code tangling, total separation was not possible with the approach
we took. The number of transaction-related lines of code evident in each business
logic class has been considerably reduced. Each class now contains only one line of
code related to the transactions concern. This is the line declaring the
java.sql.Connection variable that is manipulated by the Transaction as-
pect. Although a positive level of syntactic separation has been achieved, the transac-
tions concern and the core code are still semantically tightly coupled.

3.3 Summary of Aspect-Oriented Re-implementation

At the beginning of this section we listed the full set of concerns that were identified
in the original AppTrack codebase and re-implemented using aspect-oriented tech-
niques. Of the seven concerns re-implemented, five were separated completely. How-
ever, only two had the property of obliviousness which allows developers to code
core business logic without having to take the aspects that affect it into consideration.
These two concerns are the development concerns, tracing and enforce factory design
pattern. The remaining separated concerns did not exhibit obliviousness because to
fully understand the areas of the system to which these concerns are related, develop-
ers had to be aware of the existence of the aspects and their effect on the system.

Two concerns could not be fully separated from the AppTrack codebase. The two
concerns in question are the most important production concerns that we re-
implemented. Both the transactions concern and the exception handling concern could
not be entirely separated due to the level of intimacy required with the core codebase
that they affect.

4 Impact on Evolvability

A major selling point of the AOSD paradigm is the claim that increased separation of
concerns produces the benefit of enhanced evolvability. In this section we assess the
evolvability of the AspectJ version of the AppTrack system under the following head-
ings: changeability/extensibility, pluggability, complexity, and lines of code.

As software evolution is intrinsically linked with the act of changing and extending
software, the impact on the changeability/extensibility of the software is of great im-
portance. Software system components are often updated or only used in certain con-
texts. If these components are easily pluggable then system evolution is simplified.
For this reason we assess pluggability. The ease with which a system can evolve is di-

rectly related to the complexity of the system. If it is logically constructed and can be
easily understood by a developer who was not involved in the original development
effort, then it is likely that the system can evolve relatively freely. System complexity
can also be related to system size, with complexity escalating as codebase size in-
creases. Therefore, we assess the reduction or increase in the number of lines of code
required for a concern implementation.

4.1 Changeability/Extensibility

There are two general areas in which the system may change – the aspect itself may
need to be modified, or the core system may need to be modified. The AspectJ im-
plementation of the tracing concern can be easily modified to alter the information
that is recorded at runtime. This requires making minor, logically related alterations to
each of the three classes involved in the implementation. To log a new property about
each method executed you would need to add that property to the LogEntry bean
class, set the property in the PointTracing aspect and write the property to the log
file in the Logger class. To make such a change to the object-oriented implementa-
tion would require making changes to every method that is logged, as well as the
LogEntry and Logger classes. The tracing aspect does not need to be considered
when altering the behaviour of the core system.

The methods that provide transactional behaviour in the aspect-oriented implemen-
tation of the transactions concern are, at a high-level, basically the same as those in
the object-oriented implementation. Their actual implementation is made more com-
plex as a result of the use of Java’s reflection mechanisms. Hence there is no gain re-
garding the extensibility of these methods and it could be argued that the heightened
complexity hinders their extensibility. However, significant difference is evident in
the area of extending the system as a whole. A new class that requires database access
now has the option of whether or not this data access should be transactional. The de-
veloper is no longer locked into using transactions. Of course, it is generally a good
idea to use transactions when accessing data in a distributed environment. To acquire
transactional behaviour for a method containing standard database access, a one-line
entry must be made in the WeaveTransaction aspect naming the method requir-
ing transactional data access. The class that the method resides in must of course con-
tain the java.sql.Connection variable necessary for the operation of the trans-
actions concern. The increased encapsulation of the transactions concern makes
general extension of the AppTrack system less complex and time consuming, as pro-
gramming for transactions is no longer a major coding issue. However, the increased
complexity of the solution as a whole means that changing/extending this area of the
system requires a greater knowledge of the implementation of the concern than be-
fore. This is discussed in greater detail in section 4.3

4.2 Pluggability

The tracing concern is completely pluggable. The three classes composing the con-
cern implementation do not define any dependencies with any classes outside of the

package in which they reside. This means that a production release of the code can be
generated simply by excluding the tracing package when compiling/weaving the sys-
tem. This is far more convenient than manually deleting scattered and tangled tracing
code from every affected method across the codebase.

The transactions concern is not cleanly pluggable in the same manner as the tracing
concern. The solution is designed to work with a database connection declared in each
class requiring transactional data access. The Transaction aspect is responsible
for initialising, manipulating and closing connections to the database. Unplugging the
aspect and recompiling the system would result in a total loss of database connectivity
due to connections not being initialised. However, the amount of effort required to
gain standard data access capabilities (should they ever be required) following the
removal of the aspect-oriented implementation is minimal when compared to remov-
ing the use of transactions in the object-oriented version and using standard non-
transactional data access.

4.3 Complexity

The integration of the aspect-oriented tracing concern with the AppTrack codebase
reduces overall system complexity. Although there is a learning curve involved to get
up to a sufficient level of understanding and competence with AspectJ, the modularity
achieved by the new implementation makes the remainder of the codebase more
streamlined, readable and generally more comprehensible. The re-implementation
also enforces consistent behaviour. All methods are treated equally i.e., the same in-
formation is logged for each method. This was not necessarily the case with the ob-
ject-oriented solution (due to mistakes inherent to scattering), a phenomenon that of-
ten caused confusion. It is our view that the benefits of the new solution negate the
disadvantage of the learning curve involved in understanding the solution.

Despite the reduction in tangling and increased separation of the transactions con-
cern, we consider the aspect-oriented implementation of the concern to be more com-
plex than its object-oriented counterpart. This complexity arises for a number of rea-
sons. Firstly, the use of Java’s reflection mechanisms to create generic versions of
methods that can cater for all classes affected by the concern without explicitly nam-
ing them complicates the implementation. The methods of the Transaction aspect
require significant study before a comprehensive understanding is attained. Secondly,
each class that contains methods requiring transactional data access must declare a
variable of type java.sql.Connection. For an observer of the code looking at a
class containing data access code, this can be quite confusing. In addition, the base
system appears to work without the initialisation or committal of the database connec-
tion held by the class. The data access portions of the system can only be understood
with full knowledge of the relatively complex, reflection-based, transactions concern.
According to [14], due to the nature of the concern, separation of transaction interface
methods is syntactic rather than semantic. This, they argue, is because transactions
should be implemented with the rest of the application semantics. They state that
AOSD and specifically the AspectJ programming language can be used to achieve
some level of syntactical separation, but that the developer should be aware of its very
syntactic-only nature. It appears that this is the case with the re-implementation of the

transactions concern in the AppTrack system. This adds to the complexity of the new
implementation.

4.4 Lines of Code

Approximately 360 methods are logged by the tracing concern, the implementation of
which accounts for 105 lines of code in total. If the object-oriented tracing concern
was implemented across the whole codebase then each method would require aug-
mentation with approximately 5 lines of tracing code. As well as this, the two sup-
porting classes required, LogEntry and Logger, make up 60 lines of code. This
brings the estimated total number of lines of code needed for a full object-oriented
implementation to 1860. The aspect-oriented solution requires only 5.65% of the code
necessary for the object-oriented solution.

One whole class (the object-oriented Transaction class) and 33 lines of tangled
transactions code were removed from the AppTrack codebase as a result of the as-
pect-oriented re-implementation. However, the aspect-oriented implementation of the
module providing the transactional behaviour is 16 lines longer than the object-
oriented version it replaces. This means that a total saving of 17 lines of code was
achieved with the aspect-oriented implementation of the transactions concern.

5 Related Work

The authors of [15] describe the implementation of a web-based information system
using an early version of AspectJ. They outline four aspect/class associations and
state that they employed a policy of only using class-directional aspects, where the
aspect knows about the class(es) it affects but the opposite is not true. The tracing as-
pect adheres to this association, whereas the classes affected by the transactions as-
pect rely on its existence. We have seen the disadvantages of this relationship in the
implementation of the transactions concern. Overall, the authors concluded that the
use of AOSD techniques in the development of a web-based system resulted in a fast,
well-structured system in a reasonable amount of time. The authors of this paper do
not address evolvability explicitly, which is the focus of this paper.

Although not presented in this paper, AppTrack’s exception handling concern was
re-implemented with AspectJ. In [16], Lippert and Lopes describe their investigation
into the ability of AOSD techniques to ease the tangling and scattering related to ex-
ception handling in standard Java applications. They conclude that the use of AOP,
specifically AspectJ, can drastically reduce the portion of application code related to
exception detection and handling. More significantly, along with the reduction in code
size, they found that AspectJ provides better support for different configurations of
exception handling behaviour with respect to standard Java. Greater support for reuse,
incremental development, cleaner program texts and automatic enforcement of con-
tracts were also achieved. While our implementation of AppTrack’s exception han-
dling concern was different to their implementation (due to structure imposed by the
Struts framework), we believe there is consistency between the two sets of findings.

A number of experiments were carried out at the University of British Columbia to
assess the capabilities of AOP in two main areas – debugging and change. The results
of these experiments, which involved participants undertaking programming exercises
using AspectJ and a control language, are described in [17]. The results of the experi-
ments led the researchers to two key insights. The first of these is that programmers
may be better able to understand an aspect-oriented program when the effect of the
aspect code has a well-defined scope. Our findings support this conclusion. The trac-
ing concern, with a well-defined scope, is relatively easy to understand. In contrast,
the scope of the complex transactions concern is less well-defined. This concern af-
fects various methods that are spread throughout classes contained in numerous dif-
ferent application packages. The second insight is that the presence of aspect code
may alter the strategies programmers use to address tasks perceived to be associated
with aspect code. We did not conduct any programmer performance comparison
analysis. The researchers behind this study did not use concerns similar to ours in
their experiments and hence do not discuss implementation issues akin to those ex-
perienced during the re-implementation of the transactions concern.

The area of aspect-oriented implementations of transactions concerns has been the
subject of two papers in recent times. The authors of [14] begin their paper by high-
lighting that they feel it does not make sense to use AOP techniques to separate con-
currency control from the other parts of a distributed system. They state that while
AOP, specifically AspectJ, can be used to achieve some level of transaction-related
code separation, the separation achieved is purely syntactic rather than semantic.
Their attempts at analysing the extent to which it is possible to aspectise transaction
interfaces, like ours, resulted in separation that is, in some cases, artificial and leads to
rather confusing code. The authors of [18] argue that the kind of transparency sought
by the authors of [14] should not be confused with obliviousness, which is supported
by AspectJ and allows an application programmer to not worry about inserting hooks
in the code so it is later affected by the aspects. They state that this does not mean that
the programmer should not be aware that the aspects intercept the application code.
Likewise, the programmer should be aware of the code that their aspects affect. They
state that in this sense there may be strong dependencies between AspectJ modules
and standard classes, reducing some of the benefits of modularity, including evolva-
bility. It is clear from our approach to separating AppTrack’s transactions concern
with AspectJ that hooks (in the form of the specifically named database connection
variable) did have to be added to the application code to cater for the behaviour of the
aspect that affects them. We feel that this gives more weight to the findings of Kien-
zle and Guerraoui in [14].

Finally, Alexander and Bieman discuss the challenges of aspect-oriented technol-
ogy in [20]. The paper seeks to understand both the strengths and weaknesses of
AOSD and to raise awareness of the potential negative side-effects of its use. The au-
thors seek to assess whether or not the benefits created by AOSD are worth the poten-
tial negative side-effects. The paper does not put forward a concrete stance on this is-
sue.

6 Conclusions

We discussed our experience re-implementing an object-oriented web-based informa-
tion system with AspectJ, a programming language that supports the aspect-oriented
software development paradigm. We then considered the effects this re-
implementation process had on the evolvability properties of the system. In the new
version of the system, code relating to the implementation of tracing and transactions
concerns is separated from the core application codebase as much as was possible
with the approach we took. This separation is total in the case of the tracing concern
and partial in the case of the transactions concern.

Our main contribution is to evaluate the effect that the use of the AOSD techniques
supported by AspectJ has on the evolvability of computer software. While the effect
on evolvability brought about by the re-implementation of the transactions concern is
considered less than impressive, the evolvability of the tracing concern is greatly im-
proved. The ease of maintenance afforded by the aspect-oriented implementation is a
source of heightened productivity. Changeability, pluggability and comprehensibility,
important properties in relation to maintenance, are greatly enhanced in the new ver-
sion of the tracing concern. Statements made in [19] support our conclusions regard-
ing maintenance and productivity. The author asserts that not only is it true that the
real benefits of AOSD are seen in the latter stages of the software development life-
cycle, but that this behaviour is vital. Without the benefit of simplified maintenance
and increased productivity, AOSD would fail to deliver on some of its key promises.
This paper shows that for certain concerns, implemented with AspectJ, it does not fail
to deliver. However, the heightened complexity of the transactions concern can actu-
ally serve as a hindrance to maintenance productivity levels if the developer undertak-
ing the maintenance task is not familiar with both the AppTrack application and
AOSD (and the relevant AOP mechanism, in this case AspectJ).

Our findings lead us to the conclusion that the extent to which evolution is affected
is directly related to the type of concern that is implemented. The implementation of
the tracing concern has a well-defined scope. It is confined to the classes that com-
pose the tracing package and those classes define no restrictive dependency relation-
ships. The concern’s behaviour has global scope in that it affects the entire applica-
tion, hence it does not deal with any application specific components. For these
reasons total separation was possible and the evolvability benefits are substantial.
Conversely, the implementation of the transactions concern affects only specific
points in the application and defines restrictive dependency relationships with the core
code that it affects. For these reasons the affect on evolvability is less positive. Hav-
ing that said, given a sufficient knowledge of the concern, the ease with which it can
be modified is enhanced (as described in section 4.1).

The conclusions drawn from our evaluation of the re-implemented AppTrack sys-
tem indicate that there is a definite value associated with the practice of re-
implementing an existing object-oriented codebase using AOSD techniques as sup-
ported by AspectJ. The separation afforded by these techniques leads to benefits in
the evolution stage of the software lifecycle. However, these benefits may not be off-
set by other issues that arise as a result of the separation. We conclude that the value
added to system evolvability afforded by an AspectJ re-implementation can indeed be

significant. However, it is directly related to the genre of the concern that is re-
implemented.

Acknowledgements

Many thanks to Elisa Baniassad and the anonymous reviewers for their comments on
early drafts of this paper.

References

1. E W. Dijkstra. “A Discipline of Programming”. Prentice-Hall, 1976.
2. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, J. Irwin. “Aspect-

Oriented Programming”. ECOOP, 1997.
3. B. Meyer. “Object-Oriented Software Construction”. Prentice-Hall, 1997.
4. S. Clarke, W. Harrison, H. Ossher, P. Tarr. “Subject-Oriented Design: Towards Improved

Alignment of Requirements, Design and Code”. OOPSLA, 1999.
5. http://www.aosd.net – The aspect-oriented software development website: December 2nd,

2002.
6. http://jakarta.apache.org/struts/ – The Struts page on the Apache Jakarta project website:

December 2nd, 2002.
7. E. Gamma, R. Helm, R. Johnson, J. Vlissides. “Design Patterns. Elements of Reusable Ob-

ject-Oriented Software”. Addison Wesley, 1995.
8. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold. “An Overview of

AspectJ”. ECOOP 2001.
9. R. Bodkin. “Aspect-Oriented Programming with AspectJ”. Slides from a talk given at

SDWest, 2002.
10. E. Hilsdale, J. Hugunin. “Introduction to Aspect-Oriented Programming with AspectJ”.

Tutorial 3, AOSD 2002.
11. R. Jeffries, A. Anderson, C. Hendrickson, K. Beck. “Extreme Programming Installed”. Ad-

dison-Wesley, 2000.
12. The AspectJ Team. “The AspectJ Programming Guide”. Available from the official AspectJ

website – http://www.aspectj.org.
13. T. Elrad, R. Filman, A. Bader. “Aspect-Oriented Programming”. Communications of the

ACM. October 2001 - Volume 44, Number 10. p31.
14. J. Kienzle, R. Guerraoui. “AOP: Does it Make Sense? The Case of Concurrency and Fail-

ures”. ECOOP, 2002.
15. M. Kirsten, G. Murphy. “Atlas: A Case Study in Building a Web-Based Learning Environ-

ment using Aspect-Oriented Programming”. OOPSLA 1999.
16. M. Lippert, C. Lopes. “A Study on Exception Detection and Handling Using Aspect-

Oriented Programming”. ICSE 2000.
17. R. Walker, E. Baniassad, G. Murphy. “An Initial Assessment of Aspect-Oriented Program-

ming”. ICSE 1999.
18. S. Soares, E. Laureano, P. Borba. “Implementing Distribution and Persistence Aspects with

AspectJ”. OOPSLA, 2002.
19. J. Memmert. “AOP and Evidence of Improvements”. Thread on the aosd-discuss mailing

list. February 20th, 2002.
20. R. Alexander, J. Bieman. “Challenges of Aspect-Oriented Technology”. ICSE, 2002.

