
A Flexible, Scalable, Distributed, Fault Tolerant

Architecture for the Collection and Dissemination

of

Multimodal Traffic-Related Information

Alfonso Olias-Sanz

A dissertation submitted to the University of Dublin, in partial fulfilment of the requirements for the

degree of Master of Science in Computer Science

September 15, 2003

Declaration

I declare that the work described in this dissertation is, except where otherwise stated, entirely my own

work and has not been submitted as an exercise for a degree at this or any other university.

Signed: _________________

Alfonso Olias-Sanz

Date: September 15, 2003

2

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed: _________________

Alfonso Olias – Sanz

Date: September 15, 2003

3

Acknowledgements

I would like to acknowledge many people for helping me during my dissertation work. I would

especially like to thank my supervisor, Alexis Donelly, for his generous time and commitment. He

encouraged me to explore challenging and stimulating ideas.

Special thanks to the M.Sc NDS class, who have made this year an experience to remember. Thank you

lads for your endless friendship and for being there during the tough moments we have shared during

the duration of this master. I will never forget this year.

Thanks to my parents for therir constant love and support. I would also like to thank to my friends and

especially Marta and Carlos for their continuos support. Thank you for being there.

4

Abstract

Intelligent Transportation Systems (ITS) produce considerable quantities of dynamic data. ITS end-

users will require wide, rich and highly available services which will involve processing and

disseminating large amount of multimodal information. Dissemination of dynamic (time-varying)

traffic data have an associated a temporal coherency requirement (tcr), which depends on the nature of

the data and user tolerances.

This thesis aims to design and prototype a flexible, scalable/adaptable, distributed, fault-tolerant

architecture to be used as a framework to develop future ITS services for the collection and

dissemination of traffic related information. Requirements have been collected from the actual

European ITS framework architecture (KAREN) and Dublin City Council. The architecture prototypes

an end-user service for the dissemination of car parking data.

A more detailed and specific multi-tier architecture is designed and prototyped. Proxy servers can be

deployed in a configured clustered environment, thereby ensuring scalability, reliability, fault-

tolerance, and the full use of multiple machines while avoiding bottlenecks. Most attention is devoted

to the replication and availability mechanisms in the system so that individual implementations can

grow and adapt with local requirements. A new hybrid Lazy Pull and Push Algorithm is devised and

implemented. The algorithm is adaptive and can be tuned dynamically to suit data of varying urgencies

and varying frequencies of update. Information is manipulated and presented under cross-platform

and system independent XML standards, providing compatibility of information to end-users through

different media. Application crosscutting concerns have been addressed using an Aspect Oriented

Software Development (AOSD) approach in the implementation.

Preliminary performance measurements are presented with possible scenarios to illustrate the

versatility of the architecture and the degree to which it can be tailored to local, geographic

requirements.

Suggestions are proposed and described for future work that will enhance the actual system

architecture.

5

Table of Contents

Chapter 1

Introduction... 13

1.1Research Goal... 14

1.2Research Approach.. 15

1.3Dissertation Roadmap.. 15

1.3.1Intelligent Transportation Systems (ITS).. 15

1.3.2Key Technologies background.. 15

1.3.3Architecture design... 16

1.3.4Architecture implementation... 16

1.3.5Evaluation... 16

1.3.6Conclusions.. 16

Chapter 2

Intelligent Transportation Systems (ITS).. 17

2.1ITS basics.. 17

2.1.1ITS benefits... 17

2.1.1.1Safety... 18

2.1.1.2Security.. 18

2.1.1.3Efficiency/Economy ... 19

2.1.1.4Mobility and Access.. 19

2.1.1.5The Environment... 20

Chapter 3

Key Technologies Background.. 21

3.1Distributed Application Architectures.. 21

3.1.1 Client/Server Architectures ... 21

3.1.2 Peer To Peer Architectures... 21

3.2 Multimodal Systems.. 22

3.2.1Presentation Independence.. 22

3.2.1.1XML.. 22

3.2.1.2 DTD Vs Schema Definitions.. 23

3.2.2 XML Processing Implementations... 25

3.2.2.1 DOM.. 25

3.2.2.2 SAX.. 25

6

3.2.2.3 XSL / XSLT... 26

3.2.2.4 Java XML Frameworks... 26

3.2.2.5Technology choice... 27

3.2.3 Multimodal Presentation.. 27

3.2.3.1 WML.. 28

3.2.3.2 HTML... 28

3.2.3.3 XHTML... 28

3.2.3.4 VoiceXML and SALT.. 28

3.3 J2EE... 29

3.3.1 Filters... 29

3.3.1.1 Filter Life Cycle.. 30

3.3.2 Servlets.. 31

3.3.2.1Servlet Life Cycle.. 31

3.4 Group Communication.. 32

3.4.1 JXTA... 32

3.4.1.1JXTA Entities.. 33

3.4.1.2JXTA Protocols... 33

3.4.2 JGroups.. 35

3.4.2.1Channel.. 35

3.4.2.2Building Blocks... 35

3.4.2.3Flexible Protocol Stack.. 35

3.4.2.4 JGroups Successful Stories... 36

3.4.3JGroups Vs JXTA... 36

3.5 Aspect Oriented Software Development .. 37

3.5.1 AspectJ... 37

3.5.1.1Joinpoint Model... 37

Chapter 4

Architecture Design... 39

4.1 Collected Car Parking Requirements... 41

4.2 Layered Architecture Design.. 42

4.2.1Presentation Tier... 43

4.2.2Business Tier... 44

4.2.3Proxy Tier... 44

4.2.4Connector Tier.. 45

4.3Caching algorithms for updating data... 45

4.3.1Push Algorithm... 45

4.3.2Lazy Pull and Push Algorithm ... 46

4.3.2.1 Lazy Pull and Push Algorithm Definition.. 47

7

4.3.2.2 Targeting Traffic Data.. 50

4.3.2.3 Possible Overheads... 51

4.3.2.4 Performance Issues .. 51

4.4Clustering of Proxy-Servers... 52

4.4.1Load Balancing at the web layer... 53

4.4.1.1Load Balancing Algorithms and Mechanisms.. 53

4.4.1.2Fault Tolerance ... 55

4.4.2Cache Replication... 55

4.4.2.1 Managing replicated data.. 56

4.4.2.2Replication of data at the Web Tier... 58

4.4.2.3 Data Replication at the Proxy Tier.. 60

4.5Group Communication Middleware.. 63

4.5.1 JGroups Protocol Stack.. 64

4.5.1.1 FD Failure Detection.. 64

4.5.1.2 GMS - Group Membership service... 64

4.5.1.3 State Transfer.. 64

4.5.1.4 MERGE2 protocol.. 65

4.6 Data Model Definition... 65

4.6.1Schema Definition for Parking Data... 66

Chapter 5

Architecture Implementation...67

5.1 Presentation Tier... 67

5.1.1 XSLT Filter.. 67

5.1.1.1 XSLT Caching System .. 68

5.1.2 Front Controller... 70

5.1.2.1 Helper Classes.. 71

5.2Business Tier... 72

5.2.1Data Manager.. 72

5.3Proxy Tier... 74

5.3.1Proxy Server Component.. 74

5.3.1.1 The Command Channel.. 75

5.3.1.2 The Data Channel... 75

5.3.1.3 Cache Data Container... 75

5.3.1.4 Lazy Pull and Push Algorithm Implementation.. 77

5.4Connector Tier.. 78

5.5 Lazy Pull and Push Algorithm Scenarios... 78

5.5.1 Lazy Pull Scenario... 79

8

5.5.2 Push Scenario I.. 80

5.5.3 Push Scenario II... 80

Chapter 6

Evaluation.. 81

6.1 Architecture Evaluation.. 81

6.1.1Availability of the system.. 82

6.1.2Performance ... 83

6.1.3Communication Protocol.. 85

6.1.4Lazy Pull and Push Algorithm.. 85

6.1.4.1Tuning the algorithm for Traffic Data.. 86

6.2 Technology Evaluation.. 87

6.2.1 JGroups.. 87

6.2.1.1JGroups drawbacks.. 87

6.2.2The use of Aspects.. 89

6.2.2.1AspectJ.. 89

Chapter 7

Conclusions... 91

7.1Achievements.. 91

7.1.1Multimodality .. 91

7.1.2Scalability... 91

7.1.2.1Multimodal Presentation.. 92

7.1.2.2Scalability at the Presentation Tier.. 92

7.1.2.3Scalability at the Proxy Tier... 92

7.1.3Fault Tolerant ... 93

7.1.4Flexible caching algorithm.. 94

7.1.5Extensibility.. 94

7.2Potential users and Applications.. 95

7.3Future work.. 95

7.3.1Quality Of Service (QoS).. 95

7.3.2Multimodal Interaction... 96

7.3.3Extending the Traffic Data Schema Definition.. 96

7.3.4Collaborative Caches.. 96

Appendix..99

Parking Web Application.. 99

9

JGroups.. 101

Bibliography..105

10

Table of Figures

Figure 3.1 Data Binding Process.. 27

Figure 3.2 Servlet Chaining.. 31

Figure 4.1Multi-tiered Architecture.. 43

Figure 4.2 Temporal Coherency Problem.. 47

Figure 4.3 Load Balancing Mechanism..54

Figure 4.4 Group Communication...57

Figure 4.5 Data Replication At The Presentation Tier.......................................58

Figure 4.6 XSLT Caching System...59

Figure 4.7 Data Replication At The Proxy Tier... 60

Figure 4.8 Parking Data Replication... 62

Figure 4.9 Network Partition.. 63

Figure 4.10 Parking Schema..66

Figure 5.1 XSLT Filter.. 68

Figure 5.2 XSLT Transformer Cache... 69

Figure 5.3 Concurrency Access Control..70

Figure 5.4 Front Controller - Aspect - Command Factory................................. 72

11

Figure 5.5 Parking Data Manager..73

Figure 5.6 Parking Data Model.. 73

Figure 5.7 Proxy Tier.. 74

Figure 5.8 Concurrency Access Control..76

Figure 5.9 Lazy Pull Push Algorithm..78

Figure 5.10 Lazy Pull Scenario... 79

Figure 5.11 Push Scenario I..80

Figure 5.12 Push Scenario II.. 80

Figure 6.1 Response Time Average (milliseconds - Ms)................................... 83

Figure 6.2 Response Time Per Thread Request (milliseconds – Ms)..............84

Figure 6.3 Response Time Per Thread Request (milliseconds - Ms).............. 84

Figure 7.1 Scalability At The Proxy Tier I..93

Figure 7.2 Scalability At The Proxy Tier II.. 93

Figure 7.3 Collaborative Caches...97

Figure 7-7.4 Distributed System - Specialized Clusters.................................... 98

12

Chapter 1

Introduction

Nowadays information systems have become ubiquitous, and companies and organizations of all

sectors become drastically dependent on their computing resources, the servers must run perpetually,

providing a service to its end-users, and therefore demand high availability. In these environments the

cost of service interruption or failure can be substantial and critical in some situations. This class of

services include real-time applications (e.g. on-line transactions, electronic payment), on-line web

applications, collaborative applications (peer-to-peer), control systems such Intelligent Transportation

Systems (ITS), and many more.

Intelligent Transportation Systems (ITS) produce considerable quantities of dynamic data. ITS end-

users will require wide, rich and highly available ubiquitous services which will involve processing and

disseminating large amount of multimodal information. Dissemination of dynamic (time-varying)

traffic data have an associated a temporal coherency requirement (tcr), which depends on the nature of

the traffic data type (e.g. congestion information, public transportation schedules, weather information)

and user tolerances.

This thesis aims to design and prototype a flexible, scalable/adaptable, distributed, fault-tolerant

architecture to be used as a framework to develop future ITS services for the collection and

dissemination of traffic related information. Requirements have been collected from the actual

European ITS framework architecture (KAREN) and Dublin City Council. The architecture prototypes a

real-life end-user service for the dissemination of car parking data (e.g. availability of car parking

spaces) to its end-users.

A more detailed and specific multi-tiered architecture is designed and prototyped. Proxy servers can be

deployed in a configured clustered environment, thereby ensuring scalability, reliability, fault-

tolerance, and the full use of multiple machines while avoiding bottlenecks. Most attention is devoted

to the replication and availability mechanisms in the system so that individual implementations can

grow and adapt with local requirements. A new hybrid Lazy Pull and Push Algorithm is devised and

implemented. The algorithm is adaptive and can be tuned dynamically to suit data of varying urgencies

and varying frequencies of update. Information is manipulated and presented under cross-platform

and system independent XML standards, providing compatibility of information to end-users through

different media. Application crosscutting concerns have been addressed using an Aspect Oriented

Software Development (AOSD) approach in the implementation

Preliminary performance measurements are presented with possible scenarios to illustrate the

versatility of the architecture and the degree to which it can be tailored to local, geographic

requirements.

13

Suggestions are proposed and described for future work in this area that will enhance the actual system

architecture.

1.1 Research Goal
The main aim of this dissertation is to provide a flexible, scalable, adaptable, distributed, fault tolerant

architecture for the collection and dissemination of multimodal traffic-related information.

Multimodality

The system must provide the ability for an end-user to interact with the system using multiple

interaction techniques during a session. These means that the system has to provide cross-platform and

device independent traffic information, this will allow afterwards to transform such information to a

specific platform or device presentation.

Scalability

The system must have the ability to provide the same service when increasing the number of

components to handle load increase. The system will have to be able to handle a large number of end-

users and an increment of traffic-related services; this will perform an increment of the information to

collect and disseminate, with the consequent increment of computational and network load.

Availability

The system must run perpetually, providing the service to its end-users. This means that the system

has to run perpetually, providing its services at any time.

Fault tolerant
The system has to continue providing its functionality even in the presence of failures. Failures militate

against performance, reliability, and availability in the system, since if a failure occurs the service

would not be available, suffer a performance decrement, and does not work correctly. The system has

to provide to provide mechanism to recover from a failure.

The strategy to provide such highly available, reliable, scalable, and fault tolerant architecture leads to a

clustered environment. Proxy-servers can be deployed to absorb and increment of the workload, a

failover mechanism will deal with server crashes, a load balancing mechanism will spread the work

load through the different running servers. A replicated caching system will allow providing reliable

and consistent traffic information.

14

Flexibility and Adaptability
The system has to provide the flexibility to add new IST services and has to be able to adapt to their

needs. A multi-tiered architecture with decoupled components between layers will allow adding new

services easily. The system will have to adaptable in order to fit services’ information requirements and

constraints, the design and implementation of a new, adaptable hybrid caching algorithm will allow the

system to fulfil these requirements and constraints.

1.2 Research Approach
To achieve the goals of the thesis, several tasks were carried out. The first task was a comprehensive

literature survey that looked at the different ITS, especially at the actual European ITS framework

architecture (KAREN). This study provided the end-user requirements related with the prototype to

develop. The second task was to look at the different technologies and select those that would allow

achieving the goals. The third task was to study the actual Dublin City Council data model which was

extended for future new uses. The fourth was to design the actual architecture following an object-

oriented analysis and design (OOA, OOD). The architecture implementation was performed by usage of

object-oriented programming (OOP) techniques, several crosscutting concerns were founded and

addressed by an aspect oriented software design (AOSD) approach.

The last task was to evaluate the architecture from different points of view (availability, scalability,

performance, flexibility, adaptability) and compare the results with the initial goals.

1.3 Dissertation Roadmap
This section describes briefly each of the remaining chapters contained in this dissertation.

1.3.1 Intelligent Transportation Systems (ITS)
This chapter provides background information about Intelligent Transportation Systems, their goals

and benefits. Some of the most relevant (US, Japan, Australian and European ITS) are presented.

1.3.2 Key Technologies background
This chapter describes the different technology choices that may provide different solutions for the

architecture implementation. A deeper study and understanding of these technologies is performed and

used to select the core technologies to achieve the goals.

15

1.3.3 Architecture design
This chapter provides an explanation of the architecture developed, how the architecture has been

layered in different tiers, their roles and responsibilities. How have been applied the selected core

technologies and where. The different caching algorithm implemented in the architecture (Lazy Pull-

Push and Push) are covered fully in details. The clustering environment devised is explained in detail,

covering issues such load balancing, cached data replication, failover mechanism. The middleware used

for reliable group communications is introduced and detailed.

1.3.4 Architecture implementation
This chapter provider further details of the implementation of the designed architecture. Any

problematic issue encountered during the implementation phase is also presented as well as the

solution proposed.

1.3.5 Evaluation
This chapter provides an objective evaluation of the actual implementation of the architecture, as well

as the different design and architectural decisions that have been taken and consequently influenced the

final result. The evaluation will help to contrast the initial objectives and the achieved goals; and will

provide useful information for future researchers.

1.3.6 Conclusions
This chapter summarizes the work that has been carried out and the goals and objectives achieved

during the duration of this challenging project. It also refers some architectural and design

considerations and decisions, that have been taken during this dissertation. These decisions have

influenced drastically the final result. Different types of users can benefit from the use of this project.

The knowledge obtained during this dissertation, will help the many possibilities described for

improving the proposed architecture as future work.

16

Chapter 2

Intelligent Transportation Systems (ITS)

This chapter describes the Intelligent Transportation Systems basics, their benefits and the principal

ongoing projects.

2.1 ITS basics
ERTICO (ITS Europe) [1], ITS Asia-Pacific [2] and ITS America [3], supported by ITS organizations

including ITS Australia [4], have joined together to present a global view of the future of Intelligent

Transport Systems. This view demonstrates how transport in the 21st Century will be safer, cleaner,

more efficient, more secure, and more readily available to more people through the effective application

of modern computer and communications technology to transport – Intelligent Transport Systems.

Intelligent Transport Systems and Services (ITS) describes any system or service that makes the

movement of people or goods more efficient and economical, thus more "intelligent". Whether offering

"real-time" information about current traffic conditions, in-vehicle destination guidance, or on-line

information for journey planning, the variety of ITS tools available today enable authorities, operators

and individual travellers to make better informed, more intelligent transport decisions.

ITS can make every journey quicker, more comfortable, less stressful, and safer. To enable a better

understanding of ITS, how it works, and its value to the transport sector and our daily lives, there are

summarised some of its main benefits.

2.1.1 ITS benefits
The benefits of ITS technology are multifaceted, a variety of products and services have demonstrated

their effectiveness in:

• Saving human lives.

• Augmenting the overall safety of our roads

• Decreasing journey times and journey-related trip planning

• Reducing some of the harmful effects of transport on the environment

These systems has shown to be the way forward in improving transport facilities and functions for the

future. Some of the main benefits of ITS can be grouped according to the following results: (I) safety, (II)

security, (III) efficiency and money, (IV) mobility and access, and (V) the environment.

17

2.1.1.1 Safety
ITS will help reduce injuries and save lives, time and money by making transport safer [4]:

“ITS will help the drivers of cars, trucks and buses avoid getting into crashes and help keep them from

running off the road. ITS will help maintain safe distances between vehicles and safe speeds approaching

danger spots. ITS will help improve visibility for drivers, especially at night and in bad weather.

ITS will provide information about work zones, traffic congestion, road conditions, pedestrian crossings

and other potential hazards.

ITS will help detect the crashes that do occur, determine the severity of the crash and likely injuries, and

help emergency management services provide assistance. ITS will help select the closest and most

appropriate rescue unit to respond. ITS will adjust traffic signals to clear the way for emergency

vehicles.

ITS will connect responding units to medical care facilities to help provide initial care for the injured

and help medical care facilities prepare to deliver more complete treatment when injured people arrive.“

2.1.1.2 Security
ITS will help prepare for, prevent and respond to disaster situations, whether from natural causes,

human error, or attacks [4]:

“ITS will help keep watch over transport facilities.

ITS will help provide personal security for people using the public transport system.

ITS will monitor freight, especially hazardous materials, through the entire supply chain.

ITS will help transport and safety/security agencies coordinate their activities and their information so

they can respond more effectively to incidents of all kinds.

ITS will help identify the best routes for evacuating people at risk and for directing emergency services

to incidents and disaster sites.

ITS will help the transport system, and all the other parts of the economy that depend on transport, to

return to normal as rapidly as possible following a crisis, through better management of the transport

system, more efficient interagency communications, and better and more timely information to the

public.“

18

2.1.1.3 Efficiency/Economy
ITS will save time and money for travelers and the freight industry [4]:

“ITS will deliver fast, accurate and complete travel information to help travelers decide whether to make

a trip, when to start, and what travel modes to use. ITS will provide his information both prior to a trip

and as the trip proceeds.

ITS will help drivers select and follow safe, efficient routes to their destination. ITS will let drivers pay

tolls without having to stop.

ITS will help freight move swiftly and reliably using the right combination of ship, truck, train and

plane.

ITS will help track freight, enabling its owners to know where it is at all times and when it is due to

arrive at its destination, and allowing for better planning and scheduling of critical processes.

ITS will enable more reliable and timely commercial vehicle management. ITS will automatically keep

track of safety-related information about the vehicle, its driver and its cargo. ITS will help communicate

this information to the authorities so that, as appropriate, vehicles can be cleared through checkpoints

without stopping.

ITS will help the people who build, manage and maintain the transport system. ITS will help the

transport system carry more traffic safely and efficiently by keeping traffic flowing, clearing incidents

quickly, and managing construction and maintenance to minimize disruptions. ITS will help schedule

road management vehicles and help them work more precisely and efficiently. “

2.1.1.4 Mobility and Access
ITS provides travel opportunities and additional travel choices for more people in more ways, wherever

they live, work and play, regardless of age or disability [4]:

“ITS will help travelers plan and take trips that use the best and most convenient combination of travel

modes: private car, public transport, passenger rail – and walking and cycling, too .ITS will open new

employment and recreation opportunities and help make travel time more productive.

ITS will help all travelers get where they need to go regardless of age or disability and regardless of

where they live. ITS will provide better information on available services to travelers who cannot or

choose not to drive including those who are mobility- or sight-impaired.

19

ITS will also help make it easier to pay for transport services. The future will include a single electronic

payment mechanism to pay for fuel, tolls, public transport fares, parking, and a variety of other charges

that busy travelers encounter every day.

ITS will help convey the needs and interests of transport system customers to the people who manage

the system, helping to ensure a transport system that is responsive to those needs and interests. ITS will

help managers of the transport system to make services safer and simultaneously available for motorists,

cyclists, pedestrians, and users of public transport.

ITS will help focus the transport system on meeting the needs of all its customers. Better meeting

customer needs means a renewed focus on customer service and effective operations. “

2.1.1.5 The Environment
ITS helps to make travel faster and smoother, eliminates unnecessary travel, and reduces time caught in

traffic congestion [4]:

“ITS will keep traffic flowing on urban freeways, on toll roads, at commercial vehicle checkpoints and

elsewhere. Reducing delays due to congestion and incidents means that energy waste, wear–and–tear,

and the pollution caused by stop–and–go driving are also reduced.

 ITS will help vehicles operate more efficiently. ITS will provide location–specific information about

weather and road conditions. ITS will help vehicles to anticipate danger spots and hills, and to smoothly

adopt appropriate speeds.

 ITS will help to plan efficient routes and guide drivers along these routes. This helps to reduce fuel

consumption and emissions.

ITS will help make public transport more reliable, effective and attractive, thereby accelerating its use.

ITS will provide better information on schedules and connections. ITS will help public transport users

stay in touch with their employers and their families while in transit.”

20

Chapter 3

Key Technologies Background

This chapter describes the different technology choices that may provide different solutions for the

architecture implementation. A deeper study and understanding of these technologies based on the

requirements collected (see below, 4.1, page 41) has influenced the technologies used to provide an

architecture that suits the initial objectives.

3.1 Distributed Application Architectures
Distributed Systems are collection of (probably heterogeneous) components whose distribution is

transparent to the user so that the system appears as one local machine. This is in contrast to a network,

where the user is aware that there are several machines, and their location, storage replication, load

balancing and functionality is not transparent. Distributed systems usually use some kind of client-

server organisation. Distributed systems, and specifically peer-to-peer architectures are considered by

some to be the "next wave" of computing.

3.1.1 Client/Server Architectures
Client/Server architecture is a common form of distributed system in which software is split between

server tasks and client tasks. A client sends requests to a server, according to some protocol, asking for

information or action, and the server responds. This is analogous to a customer (client) who sends an

order (request) on an order form to a supplier (server) who dispatches the goods and an invoice

(response). The order form and invoice are part of the "protocol" used to communicate in this case. There

may be either one centralised server or several distributed ones. This model allows clients and servers

to be placed independently on nodes in a network, possibly on different hardware and operating

systems appropriate to their function.

3.1.2 Peer To Peer Architectures
Peer to Peer (P2P or p2p) architectures are a type of network in which each component has equivalent

capabilities and responsibilities. This differs from client/server architectures, in which some

components are dedicated to serving the others. Peer-to-peer systems are generally simpler, and do not

provide a single point of failure as it is in the nature of Client/Server architectures.

21

3.2 Multimodal Systems
Multimodal systems support communication with the user through different modalities such as voice,

gesture, and typing. Modality refers to the type of communication channel used by the system to

acquire information from end-users. Multimodality is the capacity of the system to communicate with

an end-user along different types of communication channels and to extract and communicate meaning

automatically [5].

The following described technologies and standards allow building systems with a certain degree of

multimodality.

3.2.1 Presentation Independence

3.2.1.1 XML
One of the objectives of the implemented architecture is to provide compatibility of information to end-

users through different media. The way to achieve this need is by choosing a system-independent

standard of representing data. XML has a number of features [6] [7]that make appropriate its choice.

3.2.1.1.1 XML Effective Uses
• Data transfer within an “application”: XML is being used as the primary information format to

transfer data between two software components deployed on different hardware nodes. The data is

marshalled into XML document(s), transmitted to the other component, and then unmarshalled by

the receiver.

• Application integration: Legacy systems, like legacy data sources, often prove to be highly coupled

and low cohesion “kludges” – it simply isn’t possible to turn them into a collection of services that

are loosely coupled and highly cohesive without a major rewrite.

• Data storage (files): Applications are using XML documents to maintain configuration information

and are even using XML as their primary file formats.

• Data storage (databases): XML is now being stored in databases, either natively in XML databases

or as large columns (e.g. blobs) in non-XML databases.

22

3.2.1.1.2 Advantages of XML
• XML is cross platform: XML is an enabling technology for system integration.

• XML is standards based: The World Wide Web Consortium (www.w3c.org) is defining and

promoting technical standards for XML.

• XML enjoys wide industry acceptance: Developers, tool vendors, and industry standards bodies

are clearly working with and on XML.

• XML documents are human readable: As you have seen, XML documents are fairly easy to read.

• XML separates content from presentation: An XML document does not include formatting

instructions; it can be displayed in various ways. Keeping data separate from formatting

instructions means that the same data can be published to different media. XML technologies such

as XSL and XSLT enable you to store data in a common format yet render it in many different

manners.

• XML is extensible: With XML, you can write your own tags to describe the content in a particular

type of document. Another aspect of XML's extensibility is that you can create a file, called a

schema, to describe the structure of a particular type of XML document. If the XML document

follows the constraints established in a schema is said to conform to that schema.

3.2.1.2 DTD Vs Schema Definitions
There are two ways for XML data type content definition [7] DTDs and Schemas [8].

Before the XML Schema standard was defined, the primary schema definition format for XML was the

Document Type Definition (DTD) borrowed from Standard Generalized Mark-up Language (SGML).

Without a DTD, there is no way to validate that a document conforms to an expected format. It is

necessary to validate that documents conform to the schema defined in a DTD to make sure that your

program both generates and consumes valid data. A DTD is sufficient to tell you what constitutes a

valid document or collection of data, but it is up to us to decide how to represent the elements of a DTD

in a program.

Every XML [9] [10]document has a set of elements and attributes that are allowed to appear in it, as

well as a structure defining the permitted relationships between those elements and attributes. In

simple terms, you can use only a certain set of tags in any particular document, and those tags may

appear only in a particular order. The rules that define how an XML document is put together are

defined in a schema. XML schemas use XML syntax to describe the relationships among elements,

attributes and entities. XML Schema is a significantly more powerful language than DTD

23

DTDs can be used to define content models (the valid order and nesting of elements) and, to a limited

extent, the data types of attributes of elements within a document, but they have a number of serious

limitations:

• They are written in different (non-XML) syntax.

• They have no support for namespaces (scoping).

They only offer extremely limited data typing. DTDs can only express the data type of attributes in

terms of explicit enumerations and a few coarse string formats; there is no facility for describing

numbers, dates, currency values, and so forth. Furthermore, DTDs have no ability to express the data

type of character data in elements.

They have a complex and fragile extension mechanism based on little more than string substitution.

Every XML document has a set of elements and attributes that are allowed to appear in it, as well as a

structure defining the permitted relationships between those elements and attributes. In simple terms,

you can use only a certain set of tags in any particular document, and those tags may appear only in a

particular order. The rules that define how an XML document is put together are defined in a schema.

XML schemas use XML syntax to describe the relationships among elements, attributes and entities.

XML Schema is a significantly more powerful language than DTD

The XML Schema offers a range of new features designed to address the limitations of DTDs [9]:

• Richer data types. Booleans, numbers, dates and times, URIs, integers, decimal numbers,

real numbers, intervals of time, etc.

• User defined types. In addition to these simple, predefined types, there are facilities for

creating other types and aggregate types.

• Attribute grouping. This allows common attributes that apply to all elements in a schema

to be explicitly assigned as a group.

• Refinable archetypes or "inheritance". This is probably the most significant new feature in

XML Schemas. A content model defined by a DTD is "closed": it describes only what may

appear in the content of the element. XML Schema admit two other possibilities: "open"

and "refinable".

• Namespace support. This allows the co-existence of multiple schemas without name

conflicts between those schemas.

24

3.2.2 XML Processing Implementations
For the manipulation of XML documents we have different approaches that can be used:

• DOM parsers

• SAX parsers

• XSL/XSLT

• Java XML frameworks

• JAXP

• JAXB

3.2.2.1 DOM
The DOM specification [11] defines a tree-based approach to navigating an XML document. In other

words, a DOM parser processes XML data and creates an object-oriented hierarchical representation of

the document that you can navigate at run-time.

The tree-based W3C DOM parser creates an internal tree based on the hierarchical structure of the XML

data. You can navigate and manipulate this tree from your software, and it stays in memory until you

release it. DOM uses functions that return parent and child nodes, giving you full access to the XML

data and providing the ability to interrogate and manipulate these nodes.

3.2.2.2 SAX
The SAX specification [12] defines an event-based approach whereby parsers scan through XML data,

calling handler functions whenever certain parts of the document (e.g., text nodes or processing

instructions) are found.

In SAX's event-based system, the parser doesn't create any internal representation of the document.

Instead, the parser calls handler functions when certain events (defined by the SAX specification) take

place. These events include the start and end of the document, finding a text node, finding child

elements, and hitting a malformed element.

SAX development is more challenging, because the API requires development of call-back functions

that handle the events. The design itself also can sometimes be less intuitive and modular. Using a SAX

parser may require you to store information in your own internal document representation if you need

to rescan or analyze the information—SAX provides no container for the document like the DOM tree

structure.

The strength of the SAX specification is that it can scan and parse gigabytes worth of XML documents

without hitting resource limits, because it does not try to create the DOM representation in memory.

Instead, it raises events that you can handle as you see fit. Because of this design, the SAX

implementation is generally faster and requires fewer resources. On the other hand, SAX code is

25

frequently complex, and the lack of a document representation leaves you with the challenge of

manipulating, serializing, and traversing the XML document.

3.2.2.3 XSL / XSLT

3.2.2.3.1 Extensible Stylesheet Language (XSL).
XSL [10] enables you to present data in a paginated format. XSL supports the ability to apply

formatting rules to elements, to apply formatting rules to pages to add things like headers and footers,

and to render XML documents on various display technologies. XSL is typically used to publish

documents, often for printing, whereas XSLT is used to generate mark-up-oriented presentations such

as HTML or VoiceXML.

3.2.2.3.2 Extensible Stylesheet Language Transformations (XSLT)
XSLT [10] enables you to transform data from one format to another. XSLT is often used to rearrange

the order of the content within an XML document so that it makes the most sense for display. XSLT is

effectively used to transform data documents into presentation documents, and then a user interface

technology such as XSL or a Cascading Style Sheet (CSS) is used to publish or display the data. It is

important to recognize that XSLT suffers from performance issues when compared to traditional

programming languages.

3.2.2.4 Java XML Frameworks

3.2.2.4.1 JAXB
Java Architecture for XML Binding (JAXB) [13] provides an API and tools that automate the mapping

between XML documents and Java objects.

JAXB makes XML easy to use by compiling an XML schema into one or more Java classes. The

combination of both the schema and the generated java classes using the binding framework enable to

perform the following operations on an XML document:

• Unmarshal XML content into a set of Java technology-based objects representation

• Access, update and validate the Java representation against schema constraint using an

object method calls.

• Marshal the Java representation of the XML content into XML content

• JAXB provides a standard way of mapping between XML and Java code.

26

Figure 3.1 Data Binding Process

3.2.2.4.2 JAXP Java API for XML Processing (JAXP)
The Java API for XML Processing (JAXP) [14] supports processing of XML documents using DOM,

SAX, and XSLT. JAXP enables applications to parse and transform XML documents independent of a

particular XML processing implementation.

3.2.2.5 Technology choice
Based of the described technologies for XML processing and manipulation, XSL/XSLT will be used for

XML content transformations in order to provide content to end-users in different multimodal ways.

JAXB will be used to generate a set of java classes that will bind application dependant Schema

definition. These classes it will provide ease of XML trees content creation through an object oriented

approach.

JAXP provides flexible mechanism for XML parsers swapping, any parser swap will depend on the

application needs, with the benefit of avoiding any code change, the technology's pluggable

architecture allows any XML- conformant parser to be used.

3.2.3 Multimodal Presentation
Multimodal Interface is a multi channel delivery technology that simply adapts contents. The usability

of the same document on "poor" channels is very different from the usability on "rich" channels like the

web. It could probably be better if the user could use the different channels in the same moment to visit

27

the same service. Multimodal interfaces are interfaces where the interaction between the service and the

user is kept on using different channel simultaneously. For example a user can choose to complete a

form speaking, but can navigate to the next page using the pen given with its PDA.

3.2.3.1 WML
Wireless Mark-up Language (WML) [15]is a mark-up language inherited from HTML. WML is based

on XML, so it is much stricter than HTML. WML is used to create pages that can be displayed in a WAP

browser (WAP phone). The Wireless Application Protocol (WAP) is an application communication

protocol used to access used to access services and information. This protocol is for handheld devices

such as mobile phones. This protocol uses WML for the creation of web applications for mobile devices.

3.2.3.2 HTML
The Hyper Text Mark-up Language (HTML) [16]is a language for publishing hypertext on the World

Wide Web (www). A HTML files containing small mark-up tags that tell the Web browser how to

display the page.

3.2.3.3 XHTML
The Extensible Hyper Text Mark-up Language (XHTML) [16] is a language that reproduces, subsets,

and extends HTML, reformulated in XML. XHTML document are XML-based, and ultimately are

designed to work in conjunction with XML-based user agents. XHTML is the successor of HTML.

3.2.3.4 VoiceXML and SALT
Speech interfaces enable users to interact with applications using their voices rather than through the

computer keyboard and monitor. Some of these interfaces can be voice mail or an IVR (Interactive Voice

Response) system at your bank. These applications prompt users for input, respond with request data,

and perform online tasks for users.

VoiceXML

Voice eXtensible Mark-up Language (VoiceXML) [17] is an XML-based Internet mark-up language for

developing speech interfaces. It is the language of what is called as “voice Web” which enables

telephone access to Internet-hosted content.

A VoiceXML dialog (the rough equivalent of an HTML page) describes prompts that an application

speaks to the user, defines and collects responses from the user, and describes program control flow.

28

Users access VoiceXML by dialling the phone number of the application. From the user’s point of view,

this phone number is the equivalent of a Web page’s URL. The user can call from any type phone,

including landline, cellular and satellite. VoiceXML language was decided to be novel rather than

extend HTML. This was because speech-enabled interfaces are so radically different from visual

presentations such as current Web browsers.

SALT

The Speech Application Language Tags (SALT) [18] enables voice interfaces definitions. SALT extends

existing mark-up languages such as HTML, XHTML, and XML. SALT enables voice access to

information from applications, and Web services from PCs, telephones, tablet PCs, and wireless voice

enabled personal digital assistants (PDAs).

3.3 J2EE
The Java 2 Platform, Enterprise Edition (J2EE) [19] defines the standard for developing multi-tier

enterprise applications. J2EE simplifies enterprise applications by basing them on standardized,

modular components, by providing a complete set of services to those components, and by handling

many details of application behaviour automatically, without complex programming.

The Java 2 Platform, Enterprise Edition, takes advantage of many features of the Java 2 Platform,

Standard Edition, such as "Write Once, Run Anywhere" portability, JDBC API for database access,

CORBA technology for interaction with existing enterprise resources, and a security model that protects

data even in internet applications. Building on this base, Java 2 Enterprise Edition adds full support for

Enterprise JavaBeans components, Java Servlets API, Java Server Pages TM and XML technology. The

J2EE standard includes complete specifications and compliance tests to ensure portability of

applications across the wide range of existing enterprise systems capable of supporting J2EE.

3.3.1 Filters
Filters, as they are called in the JavaServlet specification version 2.3 [20], are introduced as a new

component type. Filters basically are java classes that can dynamically intercept requests from a client

before they access a resource; manipulate this request and intercept responses from resources before

they are sent back to the client; and manipulate these responses if it is necessary.

The use of Filters in the architecture is important for several reasons:

• The first one and the most important for the presented architecture is that they are used to

catch Servlet’s request and response, and transform this response. This functionality gives

29

us the flexibility to provide content to the end-user in other formats rather than XHTML.

We can provide content in XML, VoiceXML and WML. In order to accommodate all these

different clients, there is usually a strong component of transformation or filtering; that in

this case is easily solved using Filters.

• The second one is that Filters provide a clean way of modularize the code. The code is

decoupled from the Servlet component and can be easily reused by another application.

Modularized code is easier to manage and debug. So at the end you are improving code

reuse.

• The third is that multiple Filters can be written and applied to the same URL pattern. This

allows us to create a decoupled Filter chaining, as the order of execution of these filters is

determined in the deployment descriptor file (web.xml).

• The fourth is that a Filter can be applied to different URL patterns, providing great

flexibility and extensibility to web applications.

3.3.1.1 Filter Life Cycle
Like Servlets, filters have a specification-defined lifecycle [21]:

• Filters are initialized by calling their init () method. The init () method is supplied with a

FilterConfig object that allows the filter to access initialization parameters as well as

reference to the ServletContext.

• The “doFilter ()” method of the filter is invoked during the request processing of a resource.

It is in the “doFilter ()” method that you can inspect the request, modify request headers,

modify the response, or skip the processing of the underlying resource altogether.

• The “destroy ()” method is called when the filter is destroyed.

30

Figure 3.2 Servlet Chaining

3.3.2 Servlets
A Servlet is a Java programming language class used to [19] [21] extend the capabilities of servers that

host applications accessed via a request-response programming model. Although Servlets can respond

to any type of request, they are commonly used to extend the applications hosted by Web servers. For

such applications, Java Servlet technology defines HTTP-specific Servlet classes. The javax.servlet and

javax.servlet.http packages provide interfaces and classes for writing Servlets. All Servlets must

implement the Servlet interface, which defines life-cycle methods.

Java Servlet technology provides the following:

• Dynamic, user-oriented content.

• Scalability.

• Platform independence.

3.3.2.1 Servlet Life Cycle
The life cycle of a Servlet is controlled by the container in which the Servlet has been deployed. When a

request is mapped to a Servlet, the container performs the following steps:

• If an instance of the Servlet does not exist, the Web container

• Loads the Servlet class.

• Creates an instance of the Servlet class.

• Initializes the Servlet instance by calling the init method.

• Invokes the service method, passing a request and response object.

31

• If the container needs to remove the Servlet, it finalizes the Servlet by calling the Servlet’s

destroy method.

3.4 Group Communication
Peer-to-peer (P2P) computing (or peer-to-peer networking) means an environment where different

systems talk to each other in a distributed way, ideally without any central point, in opposition to

classical client-server model. In a P2P network peers act both as clients and servers, and can do things

like distributed computing, resource sharing, instant messaging, etcetera. Examples of P2P systems

include Napster, Gnutella, Freenet, ICQ, Jabber and JXTA.

3.4.1 JXTA
JXTA [22] is an Open Network Programming platform for Peer-to-Peer computing, with a set of

protocols (XML-based) and standards that support peer-to-peer applications. The protocols defined in

the standard are also not rigidly defined, so their functionality can be extended to meet specific needs

or requirements.

JXTA is layered in three distinct tiers [22]:

• The core layer: Provides the basic mechanisms of peer groups, peer pipes and peer

monitoring; allowing peers to organize themselves into groups, logically connect to each

other through pipes and monitor and control the behaviour and activity of peers.

• The service layer: Builds on the very basic functionality of the core layer to add extra

functionality and facilitate application development. It provides functions that allow for

searching, sharing, indexing and caching code and content, and will also be used to

provide custom application-specific functions, such as secure messaging.

• The application layer: Applications use services to access the JXTA network and utilities.

This is the layer at which Sun expects the development community to develop most of the

code, built upon the core functionality and services provided by Sun. Users are intended to

interact directly with applications, which can use provided or 3-rd party service layer

functions.

The goals of JXTA are [22]:

“ - Operating system independence.

 - Language independence.

 - Providing services and infrastructures for P2P applications ”.

32

There are also conceptual goals. These goals include the following [22]:

“Provide mechanisms to allow peers to monitor each other and resources.

 Provide an infrastructure for routing and communications between peers.

 Communication with peers behind firewalls and other barriers is a key part of this goal.

 Queries are distributed throughout the system

 Distribute information about peers and network resources thought the network. group level.

 Groups use authentication and credentials to control access and/or enable security

 Use groups to organize peers and to give context to services and applications.”

3.4.1.1 JXTA Entities
• Peers: A peer is any device that runs some/all JXTA Protocols.

• Peer Groups: A peer group is a collection of Peers that have agreed upon a common set of

rules to publish, share and access resources

• JXTA Pipes: JXTA pipe is the primary channel for JXTA communication Mechanism for

establishing unidirectional, asynchronous peer Communication.

• Messages: A message is the information transmitted using Pipes is packaged as messages,

which define a binary envelope to transfer either binary or XML.

• Advertisements: All JXTA network resources are represented by Advertisements as XML

documents.

3.4.1.2 JXTA Protocols

3.4.1.2.1 Peer Discovery Protocol
Peer Discovery Protocol (PDP) enables a peer to find advertisements on other peers and can be used to

find any of the peer, peer group, or advertisements. This protocol is the default discovery protocol for

all peer groups, including the World Peer Group. It is conceivable that someone might want to develop

a premium discovery mechanism that might or might not choose to leverage this default protocol, but

the inclusion of this default protocol means that all JXTA peers can understand each other at the very

basic level.

Peer discovery can be done with or without specifying a name for either the peer to be located or the

group to which peers belong. When no name is specified, all advertisements are returned.

33

3.4.1.2.2 Peer Resolver Protocol
Peer Resolver Protocol (PRP) enables a peer to send and receive generic queries to search for peers, peer

groups, pipes, and other information. Typically, this protocol is implemented only by those peers that

have access to data repositories and offer advanced search capabilities.

3.4.1.2.3 Peer Information Protocol
Peer Information Protocol (PIP) allows a peer to learn about the capabilities and status of any other peer.

For example, a ping message can be sent to see if a peer is alive. A query can also be sent regarding a

peer's properties where each property has a name and a value string.

3.4.1.2.4 Peer Membership Protocol
Peer Membership Protocol (PMP) allows a peer to obtain group membership requirements, to apply for

membership and receive a membership credential along with a full group advertisement, to update an

existing membership or application credential, and to cancel a membership or an application credential.

Authenticators and security credentials are used to provide the desired level of protection.

3.4.1.2.5 Pipe Binding Protocol
Pipe Binding Protocol (PBP) allows a peer to bind a pipe advertisement to a pipe endpoint, thus

indicating where messages actually go over the pipe. In some sense, a pipe can be viewed as an

abstract, named message queue that supports a number of abstract operations such as create, open,

close, delete, send, and receive. Bind occurs during the open operation, whereas unbind occurs during

the close operation.

3.4.1.2.6 Endpoint Routing Protocol
End Routing Protocol (ERP) allows a peer to ask a peer router for available routes for sending a message

to a destination peer. For example, when two communicating peers are not directly connected to each

other, such as when they are not using the same network transport protocol or when they are separated

by firewalls or NATs, peer routers respond to queries with available route information--that is, a list of

gateways along the route. Any peer can decide to become a peer router by implementing the Peer

Endpoint Protocol.

34

3.4.2 JGroups
JGroups is a toolkit for reliable multicast communication. It can be used to create groups of processes

whose members can send messages to each other, in other words, helps us to create p2p and

client/server applications. The main features of JGroups include:

• Group creation and deletion.

• Group’s members can be spread across LANs or WANs.

• Joining and leaving of groups.

• Membership detection and notification about joined/left/crashed members.

• Detection and removal of crashed members.

• Sending and receiving of member-to-group messages (point-to-multipoint).

• Sending and receiving of member-to-member messages (point-to-point).

JGroups consists of three well defined parts:

• The Channel API used to build reliable group communication applications.

• The Building Blocks which are layered on top of the channel and provide higher

abstraction level.

• The Protocol Stack.

3.4.2.1 Channel
Channels are used to join a group and send messages across the network. A channel is then the atomic

interaction unit that represents the handle to the communication group. Channels allow us to send and

receive messages to / from all other peers in the group. Every peer in the group knows who the other

members are.

3.4.2.2 Building Blocks
JGroups offers Building Blocks that provide more sophisticated APIs on top of a Channel. Building

Blocks are intended to save application time development as they already provide the functionality,

avoiding us to write such code.

3.4.2.3 Flexible Protocol Stack
The most powerful feature of JGroups is its flexible protocol stack, which allows developers to adapt it

to exactly match their application requirements and network characteristics. The benefit of this is that

you only pay for what you use. By mixing and matching mini-protocols, various differing application

requirements can be satisfied. The composition of protocols to be used is defined by the creator of the

Channel. Protocols are layered in a bidirectional stack.

35

Some of the protocols provided by JGroups are:

• Transport protocols: UDP (IP Multicast), TCP, JMS

• Fragmentation of large messages.

• Reliable unicast and multicast message transmission.

• Lost messages are retransmitted

• Failure detection, crashed members are excluded from the membership

• Ordering protocols: Atomic (all-or-none message delivery), FIFO, Causal, Total Ordering

(sequencer or token based).

• Membership service.

• Encryption.

• State Transfer.

3.4.2.4 JGroups Successful Stories
Based on the benefits above described that JGroups can provide to the architecture implementation,

there are a set of successful projects that have definitely influenced in the choice of this toolkit. The most

relevant are:

• Jboss (Clustering of Enterprise Java Beans).

• Jtrix (Adaptive, scalable, distributed applications).

• GroupPac (An open source implementation of the Fault-Tolerant CORBA specification).

• Tomcat HTTP session replication.

• JOnAS clustering (Java Open Application Server) is an Open-Source / LGPL

implementation of J2EE [TM].

• GCT - Group Communication Toolkit in .NET.

3.4.3 JGroups Vs JXTA
Both thechnologies allow group communications but JXTA does not provide features such reliable

multicast, failure detection, ordering protocols, state transfert. The absence of these features in JXTA

does this technology not a desirable choice as middleware.

36

3.5 Aspect Oriented Software Development
Aspect-Oriented Programming (AOP) is a new programming paradigm developed at Xerox PARC

for modularizing complex software systems. As an extension to other software development

paradigms, such as object-oriented development, it allows to capture and modularize concerns that

crosscut a software system in so-called aspects. Aspects are constructs that can be identified and

manipulated throughout the development process.

The OOP paradigm can not address the localization of concerns that do not naturally fit into a single

component, such crosscutting concerns are usually spread through multiple components, with the

consequent code tangling and scattering.

[23]“An aspect is, by definition, modular units that cross-cut the structure of other

units. An aspect is similar to a class by having a type, it can extend classes and other

aspects, it can be abstract or concrete and have fields, methods, and types as

members. It encapsulates behaviours that affect multiple classes into reusable

modules”.

3.5.1 AspectJ
AspectJ is an aspect-oriented extension to Java. Its language specification defines various constructs and

their semantics in order to support aspect-oriented software development.

AspectJ adds a number of additional concepts to the Java language: (i) joinpoints, (ii) pointcuts, (iii)

advices and (iv) aspects.

3.5.1.1 Joinpoint Model
The joinpoint model makes it possible the definition of crosscutting concerns . Joinpoints are well-

defined points in the execution of the program such as method calls, method execution, a conditional

check or an assignment. They are predefined and also have a context associated with them, meaning

that it is necessary to specify what joinpoint is to take action when defining pointcuts.

• Pointcuts (or pointcut designators) are program structures that allow the definition of

joinpoints in the execution of a program. Pointcuts let as well “expose context at the joinpoint

to and advice implementation”

• Advice is the code that implements the additional behaviour. This code is executed when a

joinpoint is reached. AspectJ provides three different advices; before advice, after advice, and

around advice.

37

• Aspects are AspectJ’s units of modularisation and encapsulation. The purpose of an Aspect

is the definition and implementation of crosscutting concerns, Class definition. Aspects

provide as well all the features that classes have in the OOP paradigm (instantiation,

attributes definition, operations, inheritance). Aspects provide non-pervasive extension

mechanism for enhancing the features and behaviour of a Class definition. Aspects can be

considered an evolution/extension of Classes as they provide their same features plus the

weaving rules (a pointcut and an advice put together).

38

Chapter 4

Architecture Design

The architecture to be designed has to address a number of requirements that have been collected from

the KAREN specifications. Following the requirements the design falls into a very specific architecture

for collecting and disseminating car parking data with a consequent drawback, any other traffic data

types have diverse and different requirements and constraints and may not be handled correctly by the

system.

So thus, the architecture has been designed very carefully in order to fulfil the collected requirements

from KAREN (see below 4.1, page 41) and to provide the flexibility and extensibility required for future

collection and dissemination of any other traffic data types.

From a pure and a theoretical point of view, the architecture falls into the Distributed System area, these

systems claim for a number of functional requirements that have to be particularly addressed by our

solution. These are the followings:

• Availability: [24]Availability is the degree to which a system suffers degradation or

interruption in its service as a consequence of failures of one or more of its parts.

• Reliability: [24]Reliability of a system is the probability of not making mistakes.

• Fault-Tolerance: [24]It is a measure of the reliability and availability of the system. It is the

ability to continue providing its functionality even when a hardware failure occurs. A

fault-tolerant system is designed from the ground up for reliability by building multiples

of all critical components, such as CPUs, memories, disks and power supplies into the

same computer. In the event one component fails, another takes over without skipping a

beat. Many systems are designed to recover from a failure by detecting the failed

component and switching to another computer system. These systems, although

sometimes called fault tolerant, are more widely known as "high availability" systems,

requiring that the software resubmits the job when the second system is available.

• Scalability: [24]We define scalability as the ability of a system of how well it will work

when we increase the number of nodes to handle load increase. This definition can be used

to measure how well an algorithm works when the size of the problem increases.

• Performance:[24] We define performance as the ability to perform workload distribution.

39

There are some other terms we use in the description of the architecture:

• Object: [24]An object, in object-oriented programming “fashion”, as a unique instance of a

data structure defined according to the template provided by its class. Each object has its

own values for the variables belonging to its class and can respond to the messages

(methods) defined by its class. So an object has a state at any given time and provides a

specific behaviour. So far we can extrapolate this concept to the real world for every

particular thing.

• Server: [24]A program which provides some service to other (client) programs. The

connection between client and server is normally by means of message passing, often over

a network, and uses some protocol to encode the client's requests and the server's

responses. The server may run continuously, waiting for requests to arrive.

• Proxy-Server: [24]A proxy server is a process providing a cache of items available on other

servers which are presumably slower or more expensive to access. This term is used

particularly for a World-Wide Web server which accepts URLs with a special prefix. When

it receives a request for such a URL, it strips off the prefix and looks for the resulting URL

in its local cache. If found, it returns the object immediately, otherwise it fetches it from the

remote server, saves a copy in the cache and returns it to the requester. The cache will

usually have an expiration algorithm.

• Protocol: [24]A set of formal rules describing how to transmit data, especially across a

network. Low level protocols define the electrical and physical standards to be observed,

bit- and byte-ordering and the transmission and error detection and correction of the bit

stream. High level protocols deal with the data formatting, including the syntax of

messages, the terminal to computer dialogue, character sets, sequencing of messages etc.

• Client-Server: (see above 3.1.1, page 21)

• Distributed-System: (see above 3.1, page 21)

• Failover: [24]We define failover as the ability of the system to overcome the failure of

another system transparently. Providing the same service to the end-user, without its

perception that failure has occurred.

40

4.1 Collected Car Parking Requirements
The requirements for the car parking prototype have been collected from the actual specifications of

KAREN [25]. The scope of the car parking service is given by the following:

Functional Area 3 Manage Traffic [25]

“This Area shall provide functionality enabling the management of traffic in urban and inter-

urban environments. Functionality shall be included to detect and manage the impact of

incidents, produce and implement demand management strategies, monitor car park

occupancies and provide road transport planning. Links shall be provided to the Provide

Safety and Emergency Facilities and Manage Public Transport Areas so that their vehicles

are given priority through the road network and to enable assistance to be provided in the

implementation of incident and demand management strategies. The External Service

Provider terminator shall be sent data about traffic conditions and strategies.”

Low Level Function 3.1.1.2 Monitor Urban Car Park Occupation [25]

Overview

“This Low Level Function shall collect traffic data from the entrances and exits of car parks in

the urban road network, as well as from the spaces themselves. This data shall be provided as

raw input by sensors within the Function that are capable of detecting the passage and

presence of all types of road vehicle, from bicycles to heavy freight vehicles. The data from the

entrances and exits shall be processed to provide actual traffic count data, i.e. numbers of

vehicles, at the entrances and exits of each car park. The resulting data shall be passed to other

Functions for collation, use in urban traffic control and for providing traveller information.

The data from the spaces shall be used to determine whether a vehicle has exceeded the time

that it can occupy a space. When this occurs, the information shall be sent to the Provide

Support for Law Enforcement Area for further processing.”

Functional Requirements [25]

“The presence of both of the trigger input data flows shall be continuously monitored

The analogue data representing the raw traffic flow data obtained in (a) from the second

trigger input data flow shall be converted into digital data that separately shows the numbers

of vehicles entering and leaving the car park

The data for each car park in the urban road network obtained in (b) shall be kept separate and

split into vehicles entering and leaving

All the trigger output data flows except the last shall be used to send the data in (c) to the

urban road network traffic control and data management Functions and to the Provide

Traveller Journey Assistance Area

41

The analogue data representing the presence of a vehicle in a car park space obtained from the

first trigger input data flow shall be analysed to determine how long the vehicle has been

occupying the space and the identity of the vehicle

The length of stay obtained in (e) shall be compared with the maximum continuously allowed

time obtained from the third trigger input data flow

When the actual length of stay exceeds the permitted value, the identity of the vehicle and

details of the length of stay violation shall be sent to the Provide Support for Lay Enforcement

area using the fifth trigger output data flow.”

 User needs [25]

“7.1.11.1 The system shall be able to monitor the current usage of the parking facilities.”

“7.3.0.2 The system shall receive up-to-date information on those factors that will influence

the demand management strategy, e.g. traffic levels, car park usage, PT usage, fares, tolls,

etc.”

4.2 Layered Architecture Design
In order to commit all the requirements, a multi-tier architecture has being devised. The different

architectural components will be described by their roles, and do not mean to imply that they are

necessarily implemented by distinct processes or hardware. The model or the architecture to be

described involves:

• Presentation Tier

• Business Tier

• Proxy Tier

• Connector Tier

The architecture is based in the Model View Controller (MVC) pattern [26], where MVC states that the

core business process should not assume anything about the clients. Instead of a browser, PDA, WAP,

another application or any other back office system may well invoke it. The component that deals

between the business logic and view elements is to be assigned to a dedicated component called the

controller.

J2EE's architecture follows a MVC approach, and naturally demarcates business logic tier from

presentation logic tier. Controllers can be placed in either of these tiers or both. So thus, J2EE provides us

a place where to place reusable business logic components.

42

Figure 4.1Multi-tiered Architecture

4.2.1 Presentation Tier
Represents a single-point-of-entry to the application, it provides a transparent “service-invocation”

mechanism for end-users. Each end-user's request is firstly handled by the Front-Controller Component.

This component acts as single point of entry and communicates with the business logic by message

passing.

43

When the Business tier returns a response to the Presentation tier, for a particular end-user's request, it is

handled by the View component. The responsibility of this component is to provide the specific view for

that particular end-user's request.

So thus the Presentation tier provides a multimodal interface to end-users. The resulting information to

be returned is plain XML, thereby it can be adapted and formatted for different output channels in

different ways such as HTML, WML, VoiceXML, XML or any other format required.

4.2.2 Business Tier
The Business tier provides the business logic of the application. It provides a clear interface to the

Presentation tier, as this tier acts as a Facade [26]. Using a Facade pattern, the complexity of interactions

between the business objects (that participate in the workflow to provide the required end-user

functionality) is encapsulated. So the number of exposed Business objects to the Presentation tier is

reduced. This provides more flexibility, manageability, extensibility and ease maintainability of the

code.

The business logic components are responsible for dealing with the underlying tier. This interaction

requires the use of a third party middleware that provides transparent way for retrieving traffic

information.

This tier is as well responsible of translating / providing data to the upper tier in plain XML format.

The reasons of returning XML instead of Java Data Objects are: (i) XML is a system-independent

standard and (ii) mainly because separates content from presentation. This allows the architecture to

expose a neutral interface to any other components. Any other service can be added on top of the

business tier easily

4.2.3 Proxy Tier
The main function of this tier is to provide the to the Business tier “fresh”, or up-to-date traffic parking

data. For this purpose an algorithm for “disseminating dynamic data” (see below 4.3.2, page 46) has been

implemented.

In order to obtain a service that is scalable, fault tolerant, and high available, a clustered environment has

been devised by the use of a reliable group communications toolkit (JGroups). This toolkit encapsulates

the replication process of the cached information among the different proxy-serves that will constitute

the cluster. The toolkit provides a transparent mechanism for retrieving and updating data contents in

the cache.

44

There are some crucial concerns derived from the use of a clustered architecture such (i) the Data

Replication Protocol to be implemented, (ii) the Membership Service used, (iii) the Fail-over mechanism

addressed (see below 4.4, page 52).

4.2.4 Connector Tier
The Connector tier is responsible of gathering or receiving traffic parking data. As the link with the

traffic parking data source could not be set up on time, due bureaucratic issues with the Dublin City

Council; this tier will generate as well random parking data.

The generated data will be pushed to the upper tier based on the implemented algorithm (see below

4.3.2, page 46). For a better understanding of the implementation, it is important to clarify that the

algorithm is in two different components as it is a merge between two strategies.

4.3 Caching algorithms for updating data
Within the proposed system architecture there are two different caching systems with different

purposes that have been already described <reefer that section>. Data caching is a common strategy for

reducing the access time to remote sources or, improving the performance by putting into memory data

stored in any other location that requires more processing time to access.

The algorithms implemented are two:

• Push Algorithm

• Lazy Pull and Push Algorithm

4.3.1 Push Algorithm.
The algorithm implemented is a push-based approach. Every time data stored in the cache is accessed, a

check for update is done. If the data in memory has a timestamp that is earlier in time than the data in

the source, this means that the data has changed at the source and then has to be reloaded into the

cache.

Formally, if T ij is the time stamp of the data Di at time T j , and T ik is the time stamp of the

data Di at time T k , and T kT j that means T j earlier than T k . If T ijT ik means that

data has changed and then has to be updated from the source.

45

4.3.2 Lazy Pull and Push Algorithm
Often [27] large data collections have to be updated and network or computational resources can be

limited. Considering traffic sensor networks that often operate over low-bandwidth links, since

thousands of sensors may be involved, sensor readings may change very frequently due to rapidly

changing traffic conditions and the available bandwidth is low and expensive. In these cases is not

practical to propagate every new sensor measure to a central repository every time it has changed.

Although there are other solutions such as sensor fusion, where sensor readings are collected in a join

point and after a while transmitted to the central repository. In environments where it is not possible to

propagate rapid data changes due to insufficient network or computational resources, synchronizing

data between the source and the cache may be not possible. The solution is to allow stale caching, in

which the cache is permitted to store stale, or out-to-date, copies of source data. But traffic data can

have strong time constraints and have to be synchronized almost in real time. The proposed solution is

based in a best-effort synchronization strategy, where some policy or rules determine when cached data

has to be updated or refreshed. In most refresh scheduling policies [28] the cache plays the main role:

updates are implemented by pushing data to the clients or polling the sources. Best-effort

synchronization depends on how frequently source data objects change; in stale caching the state of an

object can be different from the source, this difference is called divergence and can be measured using

some metrics [27] such us Boolean freshness (up-to-date or not), number of changes since refresh, or

value deviation. Caching efforts in the World Wide Web [29] fall into two categories:

• Weak consistency mechanisms, where cached data can be out of-sync with servers

• Strong consistency mechanisms, where cached data is always up-to-date with servers.

Mostly of web-cache systems provide weak consistency of the data, so it might be possible to return to

the user a stale copy of the object. Weak consistency strategies are mostly associated with Time-To-Live

(TTL) [30] or Time-To-Refresh (TTR) [27], in which the client receives the cached object if the TTL or the

TTR has not expired. Weak consistency is not satisfactory in terms of large TTL, especially if we talk

about Traffic Information.

For the scope of the dissertation, parking information has not a big time constraint, but for other kind of

traffic information such as congestion information, emergency, accident rescue services information.

Then TTL of the cached data represents a strong constraint in the system.

46

Mechanisms such us replication, client validation, polling-every-time [31] and server invalidation,

where the server sends invalidation messages to all clients when an object is modified provide strong

consistency of the cached data. A polling-every-time strategy is based on sending an If-modified-since

request to the server at every scheduled cache hit. On the contrary an invalidation strategy is based on

sending invalidation messages to the cache every time an object has changed. Studies have

demonstrated that strong consistency strategies do not necessarily consume more network resources

than weak consistency mechanisms [30]. The following question arises

 - How can strong consistency be achieved for cached traffic data, minimizing the possible network overhead

(caused by sending messages across the network)? -

4.3.2.1 Lazy Pull and Push Algorithm Definition
The algorithm implemented tries to minimize the sum of the divergence values for each source data

object and its replica in the cache, and as well as reduce the traffic network. The proposed and

implemented solution is based on a modified push-pull approach, where pull is done in a lazy manner,

so thus, updates are done when a user requests an object in the cache and a condition is violated.

An important issue in the algorithm is the temporal coherency requirement (tcr) associated with time-

varying traffic data; this depends on the nature of the data and user tolerances. As the user will obtain

data from the cache rather than from the source, for this particular scenario, the cache must track

dynamically changing data so as to provide users with temporally coherent information. We will

assume that the user specifies a tcr for a data traffic type. Then tcr denotes the maximum permissible

deviation from the value at the source, and thus, constitutes the user-specified tolerance. The tcr for our

purposes is specified in units of time (e.g., the traffic data should never be out-of-sync by more than 2

minutes). To maintain coherence, each data object in the repository must be refreshed in such a way

that the specified user's coherency requirements are maintained.

Formally:

S t  Denotes the reception time of the data object at the source.

P t  Denotes the reception time of the propagated data object at the proxy server.

U t  Denotes the reception time of the cached data object at the user side.

47

Figure 4.2 Temporal Coherency Problem

Then, to maintain temporal coherence, we should have ∣U t −S t ∣tcr |. The effectiveness the

cache can be quantified using a metric referred to as fidelity.

"The fidelity of a data item is the degree to which a user's temporal coherence needs are met.

We define the fidelity, f, observed by a user to be the total length of time that the above

inequality holds (normalized by the total length of the observations)." [32] [33]

Traffic data can have different temporal coherency requirements due to their nature. Car parking data

do not have the same constraints as congestion data, emergency data, etc. For every particular traffic

data type we will have a tcr that in our case will be determined by the Dublin City Council. The value of

tcr means the maximum time an object can be desynchronized from the source, this constitutes the user

tolerance.

A Pull-based strategy does not offer high fidelity when data changes rapidly or when the coherency

requirements are strong. This strategy imposes a large communication overhead (in terms of the

number of messages exchanged).

A Push-based strategy offers on the contrary high fidelity for rapidly changing data and/or strong

coherency requirements. However, the overhead of the number of push-based connections it has to be

considered. This approach can be less flexible to failures due to its stateful nature.

Let’s assume the proxy-server pulls data from the source-server using an algorithm to decide an

adaptive TTR value. After initial synchronization, the source server runs the algorithm. Under this

circumstances our source server is aware when the end-user will be polling next, based on the

calculated TTR. With this, whenever the source server realizes that the end-user must be notified of a

new data value, the source server pushes data to the proxy-server if and only if determines it has to do

it.

48

The algorithm devised and implemented in [32] , will be adapted it to satisfy traffic data needs. Using a

Push-and-Pull algorithm we can take advantage of both approaches. The tuning of the various

parameters of the algorithm is going to determine the degree to which push and pull strategies are

used.

4.3.2.1.1 Lazy Pull
The Lazy Pull-based strategy is based on the calculation of an adaptive TTR. The proxy uses a lazy

approach, only when the TTR of the cached data has expired and a user requests that data from the

cache, a request for update is sent to the source server; with this we avoid aggressive polling of the

server. TTR is adaptive [32], and to achieve this it has to take in to account the following:

• Static range, so that TTR is bounded to a maximum and a minimum value and their values

are not set too high or too low.

• The most rapid changes occurred so far.

• The most recent changes to the polled data.

The value of TTR is calculated as:

MAX TTRmin , MIN TTRmax , a∗TTRmr1−a∗TTRdyn

Where:

[TTRmin ,TTRmax] is the bounded range of values for TTR.

TTRmin is bounded to 0 and TTRmax is bounded to tcr in the system.

TTRmr is the TTR value used so far.

TTRdyn is the learning TTR estimate based on the assumption that the dynamics of the last

few changes (the last 2 changes in the case of the formula) are likely to be reflective of changes

in the near future.

TTRdyn=w∗TTRestimate1−w ∗TTRlatest 

TTRestimate=TTRlatest /∣Dlatest−D penultimate∣∗tcr

49

If the recent rate of change persists, TTRestimate ensures that changes which are greater than or equal

to tcr are not missed.

0.5≤w1 Weights the preference given to recent and old changes, as closer w is from 0.5

we give more relevance to new data updates than older ones. The default value is 0.5.

0≤a1 It is a parameter of the algorithm and can be adjusted dynamically depending on

the fidelity desired. A higher fidelity requires a higher value of a .

4.3.2.1.2 Push
The Push-based strategy is based [32] in the assumption that the server is aware when the client might

be polling next. With this, the server pushes data to the proxy whenever he thinks the client must be

updated. The way the server decides when the data has to be pushed is based on T predict . The server

computes for every single data, the difference of the last two pulls (diff) and assumes that the next

pull will occur after a similar delay.

diff =T lastrequest−T penultimate

T predict=T lastrequestdiff

If the value of diff is less than tcr, T predict is calculated as T predict=T latestrequesttcr ; else it is

considered as T predict=T latestrequestdiff . So thus if the proxy requests some data and T predict has

not expired, the server does not have to push the data unless diff tcr and T latestrequesttcr has

expired. If the data object at the source differs from the previous pushed value, although T predict has

not expired, the data will be pushed if T latestrequesttcr has expired. The data will be pushed

anyway when T predict has expired and no request have been received or the data has not changed

within that time interval. The value initial value of T predict will be T predict=T actualtimetcr as the

server has no history of previous requests. The advantages of this are that we avoid pushing data when

is not required, so thus, we consume less bandwidth and less messages are sent across the network.

This approach makes the server to be stateful and it has to keep track of the latest requests; this can be a

drawback if the server crashes, but can be easily overcome considering that the server manages a

lightweight session only keeps a little state. When the server starts up again, reinitialises T predict time

for every data as T predict=T systemtimetcr

50

4.3.2.2 Targeting Traffic Data
After realizing how both strategies work, we have to consider that traffic data demand different

behaviour of the algorithm. Depending on the data we have to collect and disseminate, we will have to

consider different strategies in order to provide strong consistency of the data and meet the tcr. So thus

the algorithm has to enable us to balance between a Push and a Pull strategy.

We can handle this by modifying the formula that calculates T predict . If an end-user does not pull for

data when it is expected by the source-server, it will wait till pushes a small amount of time [32] by

adding diff  to T predict So if =0 , the algorithm goes to a push strategy; if the value of  is

large then the algorithm performs as a pull approach.

Tuning the value of  we can provide an algorithm that performs both push and pull capabilities in

order to meet the end-user's tcr; as well as the number of messages sent across the network.

4.3.2.3 Possible Overheads
Both push and pull strategies incur in some (i) computational and (ii) communication overheads [32].

4.3.2.3.1 Communication overheads
Using a push strategy, the number of messages sent over the network is equal to the number of times a

proxy-server receives data changes. So that tcr is maintained. Using multicast a single push message

will server a number of proxy-servers interested in the same data.

A pull strategy requires two messages, a request and a response, per poll. In this approach a proxy-

server polls the source server based on the estimated TTR (based on how frequently the data is

changing). If the traffic data changes at slow rate, the proxy-server might poll more frequently than

necessary. Hence a pull-based strategy might cause higher load on the network.

However, a push strategy might push data to the proxy-server, and this data is not required by the end-

user. Thus the push strategy might send unnecessary messages.

4.3.2.3.2 Computational overheads
A pull strategy obliges the source server to deal with every request sent by the proxy-server. The

source-server has responded with the latest value of the requested data object. On the other hand, using

a push strategy, the source-server will push changes to the proxy-servers; this means that the source-

51

server has to check if the tcr has been violated for every received / collected data. This is directly

proportional to the arrival of new data and the tcr assigned. Although the frequency of the changes can

vary in time, it is clear that a push strategy has a higher computational overload. This is under the

assumption that the generation of new traffic data is higher than the generation of end-user requests.

4.3.2.4 Performance Issues
It may be problems of synchronization between the server and the end-user that have to be faced. These

problems are a consequence of network delays and processing load imposed by running the algorithm

for every particular data.

When updating a cached data objects, the number of possible pull messages sent across the network can

be minimized. When several users request the same cached data, and the TTR value for that particular

cached object has expired. Only one request will be sent to the source server, so the computational

overhead is as well minimized (because the source server only has to compute one message per data

object per proxy-server).

Looking to the source server side, several requests of same data can be handled from different proxy

servers as only one. When those requests occur in closer instants of time, the solution in order to

minimize the number of responses is quite simple. The data source server keeps a little state for every

single data in the cache. The state is constituted by T latestrequest and diff . Such data is used to

calculate T predict in order to control when the traffic data has to be pushed to the replicated caches

via a multicast protocol. In conclusion, the data source server only serves a request from a proxy server

if T latestrequesttcr has expired.

4.4 Clustering of Proxy-Servers
[34]One of the characteristics of the implemented architecture is that, web/Servlet containers and both

caching subsystems can be fully distributed, thereby ensuring scalability, reliability, fault tolerance, and

the full use of multiple machines while avoiding bottlenecks. There several ways to provide scalability

at the Web tier. The first way to scale up the number of concurrent sessions handled by the service is to

add resources to the server. These resources usually are hardware components such us memory, disk

space (storage resources), and CPU (computing resource).

The drawbacks to this approach are the hard limit imposed by the limits of the hardware expansion

(number of available CPU slots) and the cost of the CPUs. These constraints limit the number of end-

user sessions that we can handle on the Web tier with a single-server solution. In fact, the single-server

solution is often not a robust solution because of its single point of failure. If the server crashes, the

service will not be available while the server is down, so thus this solution is not suitable for high-

52

available services such ours. There are partial solutions to this problem such providing shadow servers

that takeover when the master server fails; but as well this solution can be quite costly.

There is a viable and suitable solution to the scalability problem that matches the requirements.

Clustering enables a group of (typically loosely coupled) servers to operate logically as a single server,

providing a single system image. The advantages of clustering include:

• High service availability if multiple servers in the cluster handle the same service.

• Load balancing by diverting requests to the least loaded server that provides the same

service.

• Single point of failure avoidance, as more than one server can takeover the failure of one of

the other servers that provide the same service.

Recently, clustering has "hit the mainstream" [34] due to a number of converging factors:

[34]“J2EE Web tier containers (application servers) technology is finally maturing, and their

state management and operational models are well specified and understood. By replicating

the state of Web tier containers across a cluster of servers, you can implement a scalable

service solution.”

[34]“The cost of PC-based servers is at low levels (with CPU power per server continuing to

increase), making clustering more affordable than ever.”

[34]“High-speed LAN-based interconnects are widely available and inexpensive.”

[34]“The adoption of the open source Linux operating system enables even custom clustering

solutions to be implemented, maintained, and sustained in a non-proprietary manner.”

But the hardware only is half of the solution [35]. A way to provide all this is to build a type of parallel

or distributed processing system, let say a collection of interconnected stand-alone application servers

working together as a single, integrated computing resource. Such architecture can then provide a cost-

effective way to gain in high performance, expandability and scalability, high throughput, high

availability.

With the proposed clustering architecture, we provide a system as a unified resource, so thus it posses a

Single System Image (SSI). This SSI is supported by using a communication middleware for creating

cluster solutions; in this case we are talking about JGroups (see above 3.4.2, page 35).

53

4.4.1 Load Balancing at the web layer
By the use of a cluster of servers the load can be distributed among them. This provides the flexibility of

building up distributed systems that support load balancing along with fault tolerance. With load

balancing the architecture obtains the ability of distributing end-user’s service requests over multiple

servers. This allows effective and efficient use of the servers within the cluster, avoiding scalability

bottlenecks.

4.4.1.1 Load Balancing Algorithms and Mechanisms
A load balancing algorithm [36] [37]is used to decide which server should handle a given 'unit of

work'. Such a unit of work will be a user request or a user session. Common algorithms include static

algorithms like:

• Round Robin.

• Random.

• Weight-based.

Dynamic algorithms like:

• Network response time.

• Server load-based.

• User-specific algorithms.

By using load balancing we can distribute service request over the group of servers that are part of the

cluster at runtime, and therefore handle more requests than using a single server. When applied these

strategies to the Internet, this principle usually means that a request can be processed by any one of

several mirrored web servers (thus any replica in a cluster of web servers). Including a high availability

algorithm to the cluster we can assure that the server to which it forwards the request is available.

Adding a failover mechanism allows the cluster to switch/forward the request to another server in the

cluster without a disruption in the service.

The Load Balancer used is the Resin server implementation. This server includes a balancer component

(implemented as a Servlet) which will balance end-user's requests to the proxy-server cluster. Because

the load balancer is implemented as a Servlet, this configuration represents the most flexible choice.

Load Balancing increases reliability in the system, the Resin server will automatically try another

server if one fails. As an illustration, if one web server has a 1% chance of failure, two web servers

balanced by Resin have a 0.01% chance of simultaneous failure.

54

Figure 4.3 Load Balancing Mechanism

4.4.1.2 Fault Tolerance
Another goal of the proposed architecture is to provide the ability to make services available in the

event of failure of individual servers or processes, that is, fault tolerance. At the level of the Web Layer,

requests in progress to a server/process that fail may be lost, but future requests are sent to another

server/process to prevent system failure, thereby ensuring high availability. In conclusion, what we are

trying to avoid is to have a single, any server, process or other component (for example, a network

component) that prevents the overall system from working if that server or process fails. The idea

behind fault tolerance is to use reasonable replicas (within clusters) to prevent single points of failure.

Failover is the algorithm or process used to keep the system operational when a failure of one replica

occurs. The load for a failed replica must be redirected to a working replica. Fault Tolerance usually

means "up to a certain degree", for example, session loss for a certain number of user connections or

similar. Fault tolerant systems avoid single points of failure.

4.4.2 Cache Replication
The objective of this architectural component is to achieve two important paradigms [38] membership

and multicast communication. These two paradigms exist under these two domains: fault-tolerant

applications (replicated services), and data dissemination applications.

Both domains are applicable to the architecture and determine the objective of providing replication of,

in this case, traffic data. Replication is maintaining copies of data at multiple computers. It is a key to

55

providing “high availability, fault tolerance and enhance performance” in the system architecture. As data

are replicated transparently among several failure-independent proxy servers, and their work-load is

shared due to the load balancing mechanism. A user can request traffic data in a transparent way and

he will be redirected to any alternative proxy server that is available within the cluster.

Network partitions militate against high availability, as high available data is not necessarily strictly

correct data. It might be out of date in one of the partitions. The correctness concerns the freshness of

data supplied to the users, this is the case of Intelligent Transportation Systems where correct data are

needed in short time scales. Our system has to manage the coordination of the proxy-serves precisely;

to maintain the correctness guaranties of the traffic data in case of failures, which may occur at any

time.

The front-end, using a load balancing mechanisms, has to communicate user's requests to one of the

clustered proxy-servers by message passing, rather than forcing the client to do this itself explicitly.

This is the way for making replication transparent.

4.4.2.1 Managing replicated data.
As a key to achieve fault-tolerance, the use of group communication is an important approach and

particularly useful. The source data in this case, car parking information, can be any other kind. Each

logical object is implemented by a collection of physical copies called replicas. The replicas are stored in

the distributed caches within the cluster. The replicas of a given data, might have not received updates.

In order to provide a solution that handles failures and help us to keep consistent data among the

several proxy servers we will use group communication.

The architecture introduces two level of caching subsystems. Both subsystems have different purposes

and constraints. In order to fit their requirements two different strategies have been designed. Before a

further explanation of these strategies, it is important to clarify the group communication basis which

both strategies are built onto.

4.4.2.1.1 Group communication for data replication
Group communication has to be handled within the group of servers; this is done by multicasting

messages to the group. The group, in this case, is the logical container for a number of proxy-servers

that are addressed as a single entity (the group). But in order to manage the dynamic membership of

the group, as servers can join, leave, fail; there is also needed a group membership service to manage the

dynamic membership of the group. Such a service has to [37]:

“Provide an interface for group membership changes.”

“Provide a failure detector.”

56

“Provide a notification mechanism to the group members of the changes.”

“Perform group address expansion, extend 1-1 to 1-n communications.”

Figure 4.4 Group Communication

 Reliable multicast communication

We will use IP multicast, [37] the use of a single multicast operation instead of multiple send operations

enables the implementation to be efficient and allows it to provide stronger delivery guarantees than

would otherwise be possible. [39] The advantage of multicast is manifested by combining together

overlap requests to a single transmission. This way the server load and bandwidth decreases

dramatically since all overlapped users appear almost as a single user. Studies have been done and

proved that [40] saves extra delay imposed by the TCP flow control mechanism, which adapts to a

57

congested network. One of the reasons for the degradation in performance seen by clients at peak times

is the congestion in core links. The closer the link is to the server, the more congested it can become.

Although the TCP congestion control mechanism tries to limit the effect of such peak times, by

exhibiting a social behaviour, the effect on both the site and the client is big. The site retransmits an

extensive amount of packets until the TCP slow start mechanism takes effect, while the client

experiences degradation in performance. The use of multicast mechanism for the delivery of hot data

reduces both the traffic on core links, and the load on the server.

By adding reliability to the multicast protocol [36] we assure that all the members of the group will

receive the message, but reliability affects the performance due to the possible retransmission of

messages that will increase the latency.

4.4.2.2 Replication of data at the Web Tier

4.4.2.2.1 Data Replication in the Presentation Tier
The use of XSL/Transformations for transforming the output XML into different representations has a

performance drawback. For every HTTP response that delivers XML, the correspondent

XSL/Transformation file has to be read, this obviously has a great impact in the performance of the

Web/Presentation tier. No doubt that the use of XSLT provides flexibility, but at the cost of higher

memory and CPU load. Caching then becomes vital within the architecture as numerous threads share

stylesheets. As the cache subsystem is going to be part of a clustered architecture, it is necessary to

provide the mechanism previously described, and replication.

58

Figure 4.5 Data Replication at the Presentation Tier

4.4.2.2.2 How the caching system works
The architecture uses a load-balancing at the presentation tier; this means that every request will be

forwarded to any member of the group. When a proxy server receives a request and generates a

response, an XML Stylesheet Transformation will be applied. The performance improved by replicating

the entry of the cache to the other proxy servers. As an efficient strategy, when a XSLT is loaded to the

cache, it does not really have to be replicated, as this XSLT is already stored in the other servers within

the cluster. Only the file descriptor of the file has to be multicasted and then add in the replica reading

it from disk.

This increases the overall performance of the system because when the load-balancing mechanism

sends a request to any other server, and the generated response requires the replica, this XSLT is

already in memory.

The designed algorithm checks for changes based on an if-modified strategy, comparing the date of the

XSLT in memory and in the source (hard disk drive); if the date of the file is “fresher” than the replica in

the cache, this means that the XSLT has changed and has to be reloaded in memory. Then the file has to

be replicated the other proxy servers within the group and saved in a persistent resource.

59

This cache subsystem is flexible in a way that XSLT files can be updated in one place and then they will

be replicated to the other proxy-servers. If a proxy-server fails and soon afterwards joins the group; or a

new proxy server has been added to the group. It will get the latest state of the cache and the latest

XSLT files used so far, so we solve so called problem of the late-comer. Where the latest server joined the

group has to fetch the state. Of course, if the state that needs to be transferred is very large, it may not

be practical or even possible to send it over the wire to every new machine joining the cluster. This is

especially true is machines are constantly joining and leaving the cluster. Fortunately, J2EE Servlet/JSP

container-level implementations often involve a low membership count and infrequent membership

changes (for instance, machines crashing or being taken out of the cluster for maintenance).

For the sake of simplicity, it is assumed that network partitions will not occur at this tier, as common

clustering implementations, servers are running in the same box or different boxes deployed in the

same network segment.

Figure 4.6 XSLT Caching System

4.4.2.3 Data Replication at the Proxy Tier
Sources of time-varying data can often become a bottleneck, especially when serving a large number of

clients. One technique to alleviate this bottleneck is to replicate data across multiple repositories or

proxy-servers and have clients access one of these repositories. Although such replication can reduce

load on the sources, it introduces new challenges-unless data are carefully disseminated.

60

Figure 4.7 Data Replication at the Proxy Tier

4.4.2.3.1 Parking Data Replication
As the cache subsystem will be part of the cluster architecture, a policy for disseminating the data,

among the proxy-servers that conform the group, has to be chosen. The way the data is updated into

the cache is being defined by the previously described algorithm (see above 4.3.2, page 46). The

algorithm defines the validity of the data in the cache.

As the proxy servers that are in the cluster, are members of the same group, there is one proxy-server

responsible to replicate/multicast the data to the other servers. The role of that server is given by the

group membership service. This proxy-server it will be called group coordinator or source-server. The

group membership service decides the proxy-server which will perform as well the role of group

coordinator.

The group coordinator will be responsible of collecting / receiving from the traffic data source and then

will replicate the data to the proxy-servers using the push-and-pull algorithm. If a new proxy-server

joins the cluster, it will receive an updated state of the cached data; solving the problem of the late-

comer. The new joined proxy-server will initialize all the TTR to tcr, as it has no recent history of

updated data and thus it can not calculate a value for TTR. As long as the server starts receiving traffic

data, it can then start calculating adaptive values for TTR.

61

When the coordinator decides to push-data, it multicasts the data to the group using a reliable ordered

multicast approach described in following sections. The proxy servers will receive the data and will

apply the push-and-pull algorithm, every proxy server will calculate the time values used by the

algorithm.

Proxy servers receive end-user requests that basically are data request over cached objects. When a data

is requested by a user we must assure that it is not being updated by the server, the request will be

blocked in case of an update occurs, until the updating process finishes. This approach solves the

problem of active readers/writers, where multiple reads are enables unless are write operation is on

going, which block future reads until the write operation is done.

If the algorithm determines that the replicated copy of the data is stale, or in other words, the cached

data is out of date, it will send an update message to the source-server in order to receive a fresh copy of

that particular object. As the proxy server is part of a group, the source-server will send the update

directly to the group.

Although data replication can reduce load on the sources, it introduces new challenges unless data are

carefully disseminated from sources to repositories, because either (a) data in the repositories will

violate user coherency requirements, or (b) the overheads involved in such dissemination will be

substantially larger than is necessary to optimally meet user coherency requirements.

As the first one has been already addressed within the algorithm (see above 4.3.2, page 46), the second

one arises new issues such as the communication protocol to use. The solution claims the use of

probabilistic multicast (pbcast – probabilistic broadcast), [38] although asynchronous protocols can not

guarantee real-time behaviour with probability 1.0, fall short; this can be done by using UDP (IP

multicast). To guarantee consistency and correctness of the data we have to provide more mechanisms,

this is achieved by using reliable ordered multicast. The ordering protocol can be perfectly a FIFO

strategy, as only one server is responsible of serving data of a kind.

The benefit of using reliable multicast for keeping data consistency across all the servers that compose

the cluster outweighs the overhead of reliable multicast [31]. We have as well to consider that sources of

time-varying data can often become a bottle neck, especially when they are serving a large number of

clients, but this is not the case as the source-server will serve only the proxy servers members and only

one message per data instead of per proxy-server.

62

Figure 4.8 Parking Data Replication

4.4.2.3.2 Failover
Errors can occur; enough mechanisms have to be provided to recover from such errors. The following

error scenarios can occur within the cluster.

Server fails / crashes

If a proxy-server crashes or fails, the rest of the members with in the group will receive a new view and

will know which server has dead. If the crashed server is the group coordinator, a new group

coordinator is elected from the group and will connect to the traffic data source in order to keep the

service available. As the light state kept by the source server has been lost. The new coordinator will

initialize its state with the system default properties (see below 5.3.1.4, page78). Once the crashed server

joins again the group, it will have the role of a proxy-server and it will receive an updated state of the

cached data. The proxy server will have then to reinitialize the TTR time values of every replica object.

Network partitions

Network partitions can occur as the servers can be situated in different places; this is easily solved

taking advantage of the Group Membership Service. Supposing that when a partition occurs, divides

the group in two; both partitions will create two groups and each group will have a coordinator. As one

of the coordinator's responsibilities is to serve data to the group, it is assured that both partitions will

have updated data as both source-servers will connect to the traffic data source. Once the network

heals, only one of both coordinators will survive and the other will become a proxy-server. As both

63

partitions have updated data, we do not have to deal with the problem of merging the data between

both with the consequent communication and computational overhead.

A drawback of this strategy is that, when a network partition occurs, we can have a possible

computational and communication overhead and a probably bottleneck at the traffic data source (each

partition we will have a group coordinator connected to the traffic data source). The probability of a

network partition occurs is directly influenced by the topology of the network used and its deployment

[37]. Considering this, we can avoid such a case deploying all the servers that belong to a particular

group, in the same network segment.

Figure 4.9 Network Partition

4.5 Group Communication Middleware
The architecture needs a middleware layer that provides the mechanisms and infrastructures in order

to support the proposed architecture. As the architecture design is based in Java technology, it has sense

to decline the decision for a Java compliant middleware, in order to minimize the risk and consequently

the possible impact might cause in the development. As the middleware chosen is JGroups, it may

require a deeper explanation of the underlying protocols that will help the understanding of the

dissertation.

64

4.5.1 JGroups Protocol Stack
Before describing the underlying set of layers, it has to be pointed for a better understanding, that

decisions based on member ordering are possible because ordering is always deterministic [41] [42].

This means that no distributed election algorithm needs to be run. Then the group coordinator is

commonly the first member of the group view.

4.5.1.1 FD Failure Detection
The Failure Detection layer [41] [42] periodically tries to reach its nearest neighbour, the nearest

neighbour is always computed based on the local view. Since all the views in all the stacks have the

same member ordering, every member can always determine its next neighbour to the right. When a

new view is received, the neighbour is recomputed. The FD layer periodically pings its neighbour,

when no response has being received after a maximum number of tries, a SUSPECT message is

multicasted and processed by the GMS, which is the current coordinator. The coordinator will decide if

the neighbour has fail and compute a new view.

4.5.1.2 GMS - Group Membership service
The group membership service [41] [42] is probably the most important protocol layer, and the most

complex. This layer handles join/leave/crashes (suspicious) of member within the group and emits

new views accordingly. When a new member joins the group if no members can be found determines

that it is the first member and assumes it is the manager. Otherwise determines the group coordinator,

the coordinator joins the new member and multicasts the view to the members. When a member

disconnects the group is caught by the coordinator, removes the member from the view and multicasts

the result to the members. The election of the coordinator is based on a deterministic approach; the

group view is managed as a sorted list of members. In case the group coordinator crashes/leaves the

group, the new coordinator will be the next member in the list.

4.5.1.3 State Transfer
The STATE_TRANSFER layer [43] is responsible to handle state requests from the group and then reply

to the member, when a new member joins the group sends a GET_STATE request and a state transfer

process is started. The new member of the group will receive the state. As during the process in which

the state is transferred, new messages can arrive, these messages are managed by the state coordinator

that is the group coordinator.

As the state transfer is often very application specific, it is useless to provide the functionality that

satisfies all needs. Instead JGroups provide a the simple functionality and a framework that allows to

replace the implemented STATE TRANSFER protocol to suit their needs.

65

4.5.1.4 MERGE2 protocol
The MERGE2 protocol [41] [42] periodically fetches the initial membership. When the protocol realizes

that there is more than one coordinator within the group, a merge process starts. A merge leader is

determined in a deterministic way, sorting the addresses and taking the first one. The leader receives

the views and merges them into one view/digest. This data is sent to each coordinator who in turn

rebroadcast the new view to the sub members of its group, agreeing on the view and selecting a new

coordinator (the first one). Messages sent during the merge process are handled by the merge leader.

4.6 Data Model Definition
The data model designed for the actual implementation of the architecture is based on a XML Schema.

Traffic parking info is categorized by geographical areas under a common root service. These

geographical areas are based on the actual web service provided by the Dublin City Council, where the

car parking are located under the following:

• North East

• North West

• South East

• South West

The actual service only contemplates Car Parking data, a deeper study of the information suggests that

it is needed two more categories of parking data. The result is the categorization of parking information

under the following categories:

• Car Parking

• Disabled Parking

• Coach Parking

Although both Disabled and Coach Parking information is actually static content, this reason does not

mean that in a incoming future, the ITS deployed in Dublin, it will be able to collect and disseminate

these parking data. Then the architecture has to be able to handle it and disseminate this content.

By categorizing the information under geographical locations, eases the management of the information

under a distributed hierarchy approach. This will enable to design collaborative strategies [27] for an

evolved version of the caching system.

66

4.6.1 Schema Definition for Parking Data
Based on all these reasons the proposed schema has been devised:

Figure 4.10 Parking Schema

67

Chapter 5

Architecture Implementation

This chapter provider further details of the implementation of the designed architecture. Any

problematic issue encountered during the implementation phase is also presented as well as the

solution proposed. Any code displayed or diagrams presented are mainly to provide easier

understanding of the architecture implementation. This will help futures reviews of the architecture

and any person that wants to continue the work performed.

5.1 Presentation Tier

5.1.1 XSLT Filter
A XSLT Filter component [21] is responsible of modifying the server's response. Performs XSL/T

transformations of XML data by catching the server response and depending on the content type

parameter of the HTTP header, transforms the XML to end user-oriented formats (XHTML). This

enables the web application to respond to different types of clients such us WML phones, cHTML

phones, VoiceXML, or another XML format.

The Filter is responsible of saving a precompiled version of the XSL file used in the transformation. This

provides better time responses as we do not have to reload and compile de XSL file for every user

request that uses a given XSL/T transformation; this increases substantially the performance of the

application.

Filters are controlled using a standard mechanism based in a declarative way using a deployment

descriptor, as described in the Servlet specification version 2.3. The standard filter strategy enables

building filter chains and unobtrusively adds and removes filters from this chain. The order execution

is defined in the deployment descriptor following the order declaration.

The web.xml descriptor file (see below 7.3.4, page 101) eases a better understanding of this standard

mechanism. This Filter works in collaboration with the Front Controller implemented (see below 5.1.2

pg 71). Both components are loosely coupled as the binding is done using the deployment descriptor of

the application we only have to take care not to overlap responsibilities.

68

Figure 5.1 XSLT Filter

5.1.1.1 XSLT Caching System
Using XSL/Transformations for transforming the output XML into different representations has a

performance drawback. For every HTTP response that delivers XML we have to read from a file the

correspondent XSL/Transformation, this obviously has a great impact in the performance of the

Web/Presentation layer. No doubt that the use of XSLT provides flexibility, but at the cost of higher

memory and CPU load. Caching then becomes vital within the architecture as numerous threads share

stylesheets. [44] [45]A usual approach when using the Java API for XML Processing (JAXP) is to load

transformations into a Template object, and reuse this object to produce a set of Transformers, that later

will save time on stylesheet parsing and compilation.

Although this boosts the performance of the application, the date of the last stylesheet modification has

to be checked, reloading outdated transformations. The access to the cache has to be thread safe and

efficient (multithread access). As long as many concurrent threads share the cache, certain precautions

have to be taken to make read (retrieving cache entries from the cache) and write (saving newly loaded

stylesheets into the cache) operations thread-safe. So thus, these operations must no cause conflicts

while running multiple threads in parallel.

Although Java offers advanced synchronization services, the problem here is not the synchronization as

is. The problem is balancing between synchronization and performance. The simplest solution is to use

full synchronization, but this solution is inefficient. As long as a limited number of stylesheets exists

and they do not change often, the transformations cache will be more frequently read than written into.

Using a full synchronization strategy, it will block concurrent readers, although this is not always

necessary. Secondly, this strategy may lead to a bottleneck in the cache, with the consequent

69

performance degradation. On the other hand, using unsynchronized containers to store cache entries is

dangerous. If no measures are taken, simultaneous reading and writing will (with a certain probability)

cause a conflict leading to system instability and possible errors.

Again the classic readers/writers problem has to be faced: for a given cached parking data object, there

might be only one writer or several readers at any moment in time. This classic problem has a classic

pattern solution [46][47]. The idea is to track execution state by counting active or waiting reading and

writing threads, and allow reading only when no active writers exist and writing only when neither

active readers nor writers exist.

There are, however, some disadvantages to using this implementation. First, this factory caches only

those stylesheets loaded from files. The reason is because, while the timestamp (of the file's last

modification) can be easily checked, this is not always possible for other sources. A second problem

remains with stylesheets that import or include other stylesheets. Modification of the imported or

included stylesheet will not let the main stylesheet reload.

Figure 5.2 XSLT Transformer Cache

5.1.1.1.1 XSLT Cache Replication
Finally, the cache has been implemented using by using a DistributedHashtable [42]. This component

allows us to replicate the cache through the different servers we have in the cluster. When a user's

response requires a XSL file that it is not loaded into the cache, this is controlled by the algorithm

implemented. When an XSL is compiled and loaded into a Transformer, this object is replicated through

the different instances of the Distributed Hashtable in the other server. When the new entry is received,

70

each cache recompiles the file that is pointed by the new entry. The Transformer can not be replicated

due to its memory allocation and some transient values that make impossible the replication operation.

The solution implemented uses a defined user class that acts as container for the Transformer and its File

descriptor. As the Transformer object is transient within the definition class, it can now be replicated

safely under the use of this user defined class. When this object is received by the other servers, they

only have to instantiate the Transformer for that File descriptor. The algorithm checks before for a

possible update, in order to be sure we are using the latest version of the file.

The use of a distributed hashtable will boost the overall performance in the cluster, because when the

load balancing mechanism sends a request to another server, and for that particular request, it is

required to use the same XSL file. This file is already in memory and compiled.

The DistributedHashtable is a class provided by JGroups. The implementation of this block uses a

Hashmap; the Hashmap class is not synchronized in Java. By usage of an aspect class we have used an

aspect to control the concurrent access to the elements. This solves this problem with an elegant

approach, as no modifications have to be done to the actual implementation of the

DistributedHashtable class.

Figure 5.3 Concurrency Access Control

5.1.2 Front Controller
The architecture requires a centralized access point for presentation-tier user's request handling to

support the integration of other future ITS system services, traffic information retrieval, view

management and navigation. This has been achieved by the implementation of this component by

usage the FrontController pattern [48] [19]. As in the system will be different user services, we may use

multiple Front controllers, each mapping to a set of distinct services.

71

For the purposes of the architecture two FronControllers have been implemented. The first one is

responsible of handling the end-user's request for the Car Parking service, the second one manages the

actions related with the start-up process of the running servers.

The FrontController for the Car Parking Service transforms end-user's request into commands that will

executed by the business logic. These commands return the output of the business logic and the

controller sends a response to the user. The Controller does not have to manipulate this content as it is

done by the view.

5.1.2.1 Helper Classes
The FrontController uses some Helper Classes [48] [19] in order to perform the user's requests. These

Helper Classes have been designed and implemented by using a Command Patter [26]. By usage this

pattern the coupling between the controller and the business logic is minimized by delegating

responsibilities to the particular commands.

This provides a flexible way to extend the functionality of the service, as the pattern defines a generic

interface that is implemented by every concrete command. It gives the client (the FrontController class)

the ability to make requests without knowing anything about the actual action that will be performed,

and allows you to change that action without affecting the client program in any way. Because the

command is not coupled with the command invocation, the command processing mechanism may be

reused with different types of clients not only with web browsers. This strategy facilitates the creation

of possible Composite Commands [26].

An elegant way to invoke the correct command is the use of a Factory [49] [26]. A Factory pattern [26]

will return an instance of one of several possible commands depending on the data provided to it. So

thus the use of a factory pattern provides the benefits of a transparent way of commands creation since

the command creation is externalize into the factory, hiding it from the controller. We have less code

into the controller, well separated components with different responsibilities, so we our code is easier to

maintain.

Using a using a Factory [26] has a small drawback here; the Controller will be coupled with the Factory

and the way of the creation of the different Commands. A refactoring [50] the Factory [26] can be done

in a way which the Controller does not have to know anything about the command instantiation. This

is achieved by usage an aspect class. An aspect can catch the join point where the command is going to

be used and depending on the context, in this case the context will be the command invoked by the

user. Then the aspect will create the correct command for the Controller and the controller will only

have to call the command interface. This provides a transparent way of command creation by

encapsulating the Factory within an Aspect, keeping decoupled the Factory from the controller.

72

Figure 5.4 Front Controller - Aspect - Command Factory

5.2 Business Tier

5.2.1 Data Manager
The Data Manager component is the target component of the commands for the actual implementation.

As there is only one end-user service implemented, there is no need to decouple this component into

several ones. The Data Manager retrieves car parking data from the replicated cache and creates the

XML representation of the data.

As the class definitions of the data stored in the cache has been generated by the JAXB framework. The

persistent Parking classes have been generated by using the JAXB compiler; the compiler basically

binds the Car Parking Schema definitions into Java classes (see above 3.2.2.4.1, page 26). Java classes

can be marshalled easily into XML documents. The JAXB framework provides a transparent

functionality to achieve these transformations, so there is no need to implement an XML parser for the

Schema definition (see above 4.6.1 page 67).

73

Figure 5.5 Parking Data Manager

Figure 5.6 Parking Data Model

74

5.3 Proxy Tier
This tier represents the core of the architecture; the overlying tiers are sustained by the correct

functionality of this layer. It provides the infrastructure for the clustering of servers and the

management of the traffic cached data.

5.3.1 Proxy Server Component
This component has been modelled by usage as a Proxy Pattern [26] in order to hide the distributed

container used for storing cached data (DistributedTree) from the business tier; and to perform the

required distribution logic we have to implement to handle the messages multicasted through the

network. The most significant interfaces are the MessageListener and the ViewListener. The

MessageListener is used to handle the call-backs related with message passing and the ViewListener is

used to handle group view changes within the multicast group.

Two communication channels have been implemented to manage the message passing: (i) The

Command Channel and the (ii) Data Channel.

Figure 5.7 Proxy Tier

75

5.3.1.1 The Command Channel
This channel is used for two purposes:

• Command Messages Passing.

• Monitoring Group View changes.

5.3.1.1.1 Command Messages Passing
The proxy-server will send command messages to the source-server. These requests for updating

cached parking data are generated as a result of an expiration of the TTR value of the particular cached

object. The source-server listens for proxy-servers requests. When the source-server receives a request,

it determines if has to be served by running the algorithm (seebelow 5.3.1.4, page 78).

5.3.1.1.2 Monitoring Group View Changes
All the members in the cluster monitor the channel for view changes, if a view change occurs this can be

as a result of (i) a server has joined the group, (ii) a server has left the group, (iii) a server has crashed. If

a server crash occurs the failover mechanism will start-up and a new source-server will be elected.

The new source-server will be elected by a deterministic strategy based on the GMS (see above 4.5.1.2,

page 65).

5.3.1.2 The Data Channel
This channel is used by the source-server for two purposes:

Updating new traffic data: The source-server will push data by multicasting to the proxy-servers based

of the push strategy of the algorithm (seebelow 5.3.1.4, page 78).

Responding a proxy-server's request for update: After processing a proxy-server's request, the source-

server will push and update of the requested data by multicasting the content to all the proxy-servers

(seebelow 5.3.1.4, page 78).

5.3.1.3 Cache Data Container
The container implemented for storing parking data objects is a DistributedTree [42]. This container

allows the storage of the traffic information following a tree structure. The information can be

categorized easily as the inner nodes of the tree represent the categories of the leaves. For the scope of

the application there are only tree levels. The first one represents the root of the tree and it is the

76

Parking Service itself. The second level represents the different location zones (see above 4.6.1, page 67).

The third level represents the leaves of the tree and is the parking data objects.

As the class definition of these objects has been created by the use of the JAXB compiler, the code has

been re-factored in order to (i) apply the algorithm to the car parking data objects, (ii) send these objects

across the network. The problem here is that these class definitions are created following the Parking

Schema (see above 4.6.1, page 67), changing the schema definition, it will oblige to recompile the

Schema in order to create a new version of the code. This will rewrite all the changes done in the code.

For these reasons the code to add to these classes has been placed in an aspect class. By usage an aspect,

the class definition can be extended with a non-pervasive approach, solving the problem.

Another aspect to comment related with the DistributedTree [42] is that it seems obvious the use of a

locking mechanism for accessing parking objects. The solution for the concurrent access here is the

same as the used for the XSLT cache (see above 5.1.1.1, page 69). As well it seems obvious that this

locking mechanism should be distributed by the implementation of distributed locks or distributed

transactions [36] when cached objects have to be updated, but this is not necessary as the group

coordinator is the unique responsible for updating car parking data. The introduction of this

mechanism would cause an increment in the number of messages sent across the network; incurring in

an increment of the network and processing overhead

Figure 5.8 Concurrency Access Control

77

5.3.1.4 Lazy Pull and Push Algorithm Implementation
This algorithm requires performing several checks in order to validate all the temporal constrains that

actually affect the update process of an element in the cache. These controls have to be done by different

classes of the implementation.

The initial approach was to encapsulate all these controls into a user defined class, but further analysis

devised a different approach. Implementing the object based in an Object Oriented approach would

cause code tangling and code scattering, this would lead into a code difficult to evolve, maintain and

debug. So the solution came through the use of aspects again. Encapsulating all the conditional checks

into an aspect class avoids modifying the code.

The actual implementation uses two Aspects, (i) AspectPullAdapter, and (ii) AspectPushAdapter

5.3.1.4.1 Push Aspect
This aspect encapsulates the logic related with the push strategy based on the requests-for-update sent by

the proxy-servers, and when new data has been generated.

5.3.1.4.2 Lazy Pull Aspect
This aspect encapsulates the logic related with the pull strategy, the aspect manages:

The TTR of a cached data at the proxy-server; this involves the calculation of new TTR values for

updates received from the source-server, as well as the control of the TTR expiration for a cached data

object.

The management of the queue of end-user's requests.

There are three possible scenarios that have been addressed related with the dissemination of traffic

data, their description might be done in this section, but as they are also related with the Connector

Tier, these scenarios will be explained in a following section (see below 5.5, page 79).

78

Figure 5.9 Lazy Pull Push algorithm

5.3.1.4.3 DistributedTree protocol stack definition
The actual replicated cache uses a DistributedTree [42]. This component needs the configuration of a

protocol stack xml file. That will determine the behaviour of the stack of micro-protocols used by the

cluster (see below 7.3.4, page 103).

5.4 Connector Tier
The actual implementation of this tier is based on a component that simulates the creation of car

parking data. This simulation is performed by a thread that generates data at random hits. When new

data is created, this is passed to the source-server that decides if the new data have to be multicasted to

the proxy-servers.

5.5 Lazy Pull and Push Algorithm Scenarios
Within the implemented algorithm there are three possible scenarios. The description of these scenarios

will explain the way the algorithm has been applied in order to update and replicate contents in the

cache. These scenarios are (i) Lazy Pull Scenario, (ii) Push Scenario I, and (iii) Push Scenario II

79

5.5.1 Lazy Pull Scenario
The scenario starts with the reception in the system of several end-users. If the TTR has not expired

then the proxy-server will return the cached information. But if the TTR has expired, then the server has

to request the source-server for an update. If we assume that all the requests are received by the same

proxy-server and they ask for the same cached data, the system will perform the following way.

When the proxy server component determines that the cached data has to be refreshed, it will send only

one message to the source-server per cached data instead of per user request. All these end-user's

requests will be blocked till we receive a response from the server. As the communication protocol used

is reliable (see above 4.4.2.1.1, page 57)

In the mean time the end-user's request are waiting, it might happened that the source-server crashes,

in such case we will return stale data during the time a new source-server is elected (see above 4.4.2.3.2,

page 63). When the new view of the cluster is received, it can be determined the new group coordinator

and consequently new request for updates can be sent to this new coordinator.

Figure 5.10 Lazy Pull Scenario

80

5.5.2 Push Scenario I
When the source server receives new car parking data, it will check the value of T predict and will

run the Push strategy (see above 5.3.1.4, page 78) to determine if it has to multicast the new data.

Figure 5.11 Push Scenario I

5.5.3 Push Scenario II
When the source-server determines that the value of T predict (see above 4.3.2, page 46) for a particular

parking data object has expired, will multicast the latest value of that object to the cluster.

81

Figure 5.12 Push Scenario II

82

Chapter 6

Evaluation

The purpose of this chapter is to provide an objective evaluation of the actual implementation of the

architecture, as well as the different design and architectural decisions that have been taken and

consequently influenced the final result. The evaluation will help to contrast the initial objectives and

the achieved goals; and will provide useful information for future researchers.

6.1 Architecture Evaluation
Several aspects of the architecture have been evaluated. Here we describe and summarize the result of

such evaluation.

For the implemented architecture a suite of tests have been done in order to measure the availability

and the performance of the system. These tests have been designed under two different scenarios based

on different traffic information with different constraints: (i) Car parking data and (ii) Traffic congestion

data.

For the execution of these tests the following environment has been set up:

Cluster environment: 2 desktop computers
OS: Windows 2000
RAM: 256 MB
HDD: 19GB
Servlet Engine: Resin 2.1.1.0
Middleware: JGroups 2.0
JDK: j2sdk1.3.1
AOSD: AspectJ 1.1

• Car parking data: Car parking data is generated every 5 minutes (information collected

from the Dublin City Council). The information suggests a Push approach, where the

temporal coherency requirement for this kind of information is not very restrictive. The

parameters of the algorithm are configured with the following:

TTRmax=6 minutes

=0

Data creation rate=5 minutes

83

• Traffic congestion data: Traffic congestion data is generated every 1 sec (information

collected from the Dublin City Council). The information suggests as well a Push approach,

where the temporal coherency requirement for this kind of information is this case is

restrictive. The parameters of the algorithm are configured scaling down 300 times the

values for the previous scenario:

TTRmax=1600 milliseconds

=0

Data creation rate=1000 milliseconds 1 sec

Two different characteristics have been measured, the availability of the system and the performance.

6.1.1 Availability of the system
The availability of the system is measured by the number of updates the clustered environment looses

when the source-server / group coordinator crashes. Measuring the time a new coordinator starts up

and connects to the source of traffic data, it provides an approximate number of messages lost.

By running several source server-crashes, the average of the fail-over process is 2685ms.

For the first scenario (Car parking data) where new data is generated every 5minutes, the availability of

the service can be 100%, unless the failure occurs close to the time stamp of the generation of a new data

update, then a single update would be lost.

For the second scenario (Traffic Congestion Information) where new data is generated every second,

the service would loose messages at an approximated rate of 2.685 (2 or 3) data updates per source-

server crash.

The response time of the fail-over mechanism can be minimised (see above 4.4.2.3.2, page 63). A shadow

source-server can be used as a substitute of the source-server. The failover mechanism uses the group

view provided by the GMS (see above 4.5.1.2, page 65) to elect a new source-server, the election is always

deterministic and is executed for every server within the group, so thus every server will come up with

the same result (see above 4.5.1.2, page 65). The same deterministic rule can be used for electing the

shadow source server; thereby the second server in the group view will become the shadow source-server.

The shadow source server could keep up a connection to the traffic data source, so thus in case a source

server crashes this server would become the new group coordinator.

This solution would minimize the failover mechanism response time to the time that takes to process

the new group view, while avoiding the time that takes to start up a new connection to traffic data

84

source. This strategy would introduce a new computational overhead at the proxy-server as it acts as

well as shadow source-server.

6.1.2 Performance
The performance of the system has been measured by running a set of concurrent threads that will send

request messages to the system; several tests have been run scaling up the number of concurrent

running threads. For this particular test, the load balancing mechanism has been removed. This is

because the cluster is configured with two machines only, thus requests will be sent to the proxy-server

while the group coordinator will act only as source-server (group coordinators can act both source-server

and proxy-servers if they are configured in the load balancing mechanism).

Four set of tests have been run, (1) 100 Threads, (2) 200 Threads, (3) 500 Threads, (4) 1000 Threads.

Response time average

1
2

3 4

1
2

3 4

0

20

40

60

80

Test

Ti
m

e
(m

s)

Parking Data
Congestion Data

Parking Data 31.1 40.675 10.28 11.969

Congestion
Data

62.33 47.325 13.15 13.555

1 2 3 4

Figure 6.1 Response time average (milliseconds - ms)

Congestion Data has less performance than parking data, this is due to the frequency of the updates

that are pushed to the proxy servers, this updates require locking the data for writing at the proxy-

server’s replicated cache. This locking mechanism introduces a minimum computational overhead that

militate against performance.

The first test scenario, that runs 100 threads, has a significant difference compared with the other tests.

The reason of such difference is due to the fact that the test are executed after a clean start up of the

servers, this means that neither of the proxy servers has in the XSLT caches (see above 5.1.1.1, page 69)

the Transformer object for the XML transformations. As well as the fact that the Resin server has to

initialize in the Servlet Container the pool of Servlet objects (instances) associated with the same Servlet

class name. Each of the instances is ready (initialized) to be dispatched to a request thread by the

container.

85

The following graphics show the initial peak due to this initialization process.

The initial peak corresponds to the XSL Transformer object instantiation, then we the pool of Servlets is

created. The peaks scattered throughout the graph are due to the computational overheads while

updating cached objects.

Figure 6.2 Response time per thread request (milliseconds – ms)

Figure 6.3 Response time per thread request (milliseconds - ms)

These graphics demonstrate as well the performance benefits by usage of a XSLT cache at the

Presentation Tier.

.

Response times are acceptable, but the must be run in a deployment environment with dedicated

computers and a significant increment of data.

86

Congestion Information

0
100
200
300
400
500
600
700

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Request Identifier

R
es

po
ns

e
Ti

m
e

(m
s)

Congestion Information

Car parking data

0
100
200
300
400
500
600
700

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Request Identifier

R
es

po
ns

e
Ti

m
e

(m
s)

Car parking data

6.1.3 Communication Protocol
The communication protocol used for replicating cached data is based on probabilistic multicast

(pbcast). The evaluation of this protocol [36] is framed in the context ability of the algorithm to scale;

pbcast scales as the number of processes increases, according to several metrics [36] :

• Reliability: The reliability of the protocol grows with the system size. As the number of

members grows, the protocol is more reliable.

• Message Cost: The cost per group member is measured by the number of messages sent or

received. This cost remains constant as the system grows.

6.1.4 Lazy Pull and Push Algorithm
The purpose of the algorithm is to keep up-to-date information and use network resources in an

intelligent way minimizing the overhead of sending unnecessary messages across the network. For this

purpose a slightly modified version of the Push-and-Pull algorithm [32] was chosen and adapted to the

needs of ITS services. The algorithm achieves the following [35]:

• Adaptability: The algorithm must response quickly to changes in the system state and

adapts its operations to new evolving conditions.

• Generality: The algorithm should be general enough to serve a wide range of traffic data

types.

• Minimum Overhead: The algorithm should respond to requests quickly, incurring

minimal overhead on the system (processing, memory usage, network I/O).

• Flexibility: The algorithm should be tuneable from a push to a pull strategy, as it can be

needed to adapt its behaviour at run time.

It is difficult to determine whether a push or a pull strategy should be employed for a particular traffic

data type. The technique used, Lazy Pull and Push, adaptively determines which strategy is best suited

for a particular instant. Tuning the behaviour of the algorithm, from a pull approach to a push

approach, must be done based on the following:

• The end-user temporal coherency requirement.

• Characteristics of the traffic data.

87

The tuning is has to be done taking in consideration [32] the values of  and TTRmax , that will enable

the system to perform from a Push to a Pull approach. Larger values of TTRmax will make the system

acts as Push, while on the contrary smaller values will make the system acts as Pull.

There are some scenarios described in [32] that will help the choice of the best strategy for the system.

From the performance study done in [32] some conclusions can be extrapolated, which they will help to

address the values to use for tuning the algorithm for Traffic Data.

6.1.4.1 Tuning the algorithm for Traffic Data
Parking traffic data do not have strict time constraints, and they are changing at slow rate. A Pull-based

approach will make the proxy-servers poll more frequently than necessary. Hence a Pull-based

approach is liable to impose a larger load on the network, as this requires two messages, a request and

a response.

Then a Push-based approach is desirable for parking data. As the data changes at slow rate, and the tcr

is not required to be very low; the source server will not incur much network overhead sending

frequent updates.

On the other hand, although a Push strategy has a computational overhead proportional to the rate at

new data is generated, this is not the case for parking data, as is has been said before, this data changes

only slowly.

If the traffic data to be disseminated do not requires a low tcr, and data is generated at a high rate. A

Push-based strategy that will incur overheads sending unnecessary updates is not necessary. A Pull-

based approach can be configured by setting TTRmax to a low/moderate value (it will increase pulls)

and/or  to a moderate/high value (it will decrease pushes).

For traffic data that changes at a high rate and the tcr is low, a Push-based approach is more appropriate

as the network overhead is less than a Pull-based approach.

The tuning of the algorithm is not trivial, there are some scenarios that will help us configure the

different parameters (see above 5.3.1.4, page 78). Some of the typical scenarios are [32]:

“If the bandwidth available is low and yet, high fidelity is desired, then we choose a moderate TTRmax

and  low.

88

If the bandwidth available is low, and fidelity desired is also not high, then we can set TTRmax and 
both to a moderate value.

If the bandwidth available is high and fidelity desired is also high, then we can set TTRmax low and 

equal to TTRmin , thus having less pushes (and more pulls) but still good fidelity.

If the bandwidth available is high and fidelity desired is not stringent, then a lower value can be set for

TTRmax , thereby making the system resort to pulls”.

6.2 Technology Evaluation

6.2.1 JGroups
JGroups usage has provided potential benefits (see above 3.4.2, page 35) for the architecture

implementation. These benefits and the short time for the implementation would not have been

achieved without the use of JGroups. However JGroups has a series of drawbacks.

6.2.1.1 JGroups drawbacks

6.2.1.1.1 GMS Group Management Service
The basic set of JGroups micro protocols, included with the JChannel implementation, provides [34]

some very strong guarantees in terms of quality of service for the protocol stack. The group

management service GMS, is based on the virtual synchrony model [36]. Each member installs a

sequence of views (membership lists) through time and is guaranteed to receive the same set of

messages between views. Any message sent in one view is also guaranteed to be received in that view.

While this is stable for small memberships, the implementation is not stable for a very large

membership. In fact, the virtual synchrony implementation in JGroups can be quite problematic with

large group memberships.

In order to support very large memberships JGroups provides a set of multicast protocols based on

probabilistic broadcast. Probabilistic multicast protocols are scalable in two senses:

• Reliability

[36]The reliability of the protocol is expressed in terms of the probability to fail. This

probability approaches to 0 at an exponential rate as the number of processes increase. This

89

is achieved by usage of a gossip protocol; these protocols typically flood the network

within a logarithmic number of rounds.

• Message Cost

[36]The latency of the protocol and the message cost at slow rate with the system size.

6.2.1.1.2 State Transfer Protocol
A deep-copy (a member-by-member copy of every referenced object) of the state has to be made

because it is possible that the STATE_TRANSFER [43] protocol may hold on to the state for a while,

before it is transmitted over the wire. If any object referenced by the state is modified at this time, the

state transmitted can become inconsistent. In fact, because a deep copy of the state can take too much

time, the state must be protected from concurrent access during the copy through synchronization of

state operations, in other words, by a locking mechanism.

6.2.1.1.3 JGroups building blocks
Two building blocks have been used for the actual implementation, DistributedTree [42] and

DistributedHashtable [42]. These high-level abstractions are usually placed between the communication

channel and the application. But they have a communication overhead for a particular scenario. A

proxy-server acts as well as a source-server when the cluster has only one member. For such case there

is no needed to send messages to the multicast group when an operation (add, remove, update) is

performed on the data structures they manage, but this is not controlled by these two building blocks.

Since JGroups is an open source project, the require modifications, that fixed this overhead, were made

and submitted to the JGroups project. This involved the modification of several building blocks

(DistributedTree, DistributedHashtable, ReplicatedTree, and ReplicatedHashtable [42]). It has been added the

logic required to control when messages have to be multicast to the group or not, the solution uses the

GMS protocol. As these building blocks receive group view changes, when a new group view is

received, the number of members of the group is computed. When the number of members is bigger

than one, the messages will be multicast to the group; but when the number of members is only one

there is no need to send messages across the network.

This change in the code increases the performance by reducing the response time of the application, as

the changes in the elements stored in these containers are performed when the message is received by

all the members of the group. The architecture economises on bandwidth resources due to a more

efficient use of the multicast channel.

90

6.2.2 The use of Aspects
The use of Aspects has been crucial for the actual implementation of the architecture. Aspects have been

applied for the following purposes:

The implementation of several Factories [26] and Abstract Factories [26], of which the most significant

has been the Abstract Factory [26], for the Command pattern [26] used for sending commands from the

presentation tier to the business tier.

• Code extension using inter-type declarations.

• Concurrency Control.

• The implementation of the two algorithms used for updating data in the two caches used.

• The implementation of a monitoring tool for purposes of the demo.

With the use of AOP the architecture has gained in the following aspects:

• Flexibility: Aspects allow adding functionality in a non-pervasive way, enabling the

architecture to evolve with a minimum impact over the code. As we can add the aspects in

a pluggable way.

• Modularity: Aspects has enabled the design of modularized component in a way that we

have avoided the drawbacks of code scattering and code tangling derived from of the use

of a rigid object oriented approach.

• Maintainability: The code is much easier to maintain as the crosscutting concerns are

localized in one place instead of being dispersed through our code.

It is important to comment that AOP has been crucial for the implementation of the Lazy Pull and Push

algorithm (see above 5.3.1.4, page 78). The algorithm has bee designed as a combination of two

modularized and decoupled components. This will give us the flexibility required to re-use the

algorithm for other traffic data rather than Parking data. The only thing to perform is a minimal tuning

of the parameters used by the algorithm in order to perform the most efficient way.

6.2.2.1 AspectJ
AspectJ provides a set of constructs to use in order to define crosscutting concerns. These constructs

have a clear syntax. The Joinpoints allow us to define pointcuts in the execution of the application. By

implementing Advices we are able to perform additional functionality when the joinpoint is reached.

The definition of these constructs in an Aspect can do the developer’s job harder when the aspect class

definition increases in size, by the addition of more Joinpoints and their associated advices.

The AspectJ compiler uses a pay-as-you-go implementation strategy. Any parts of the program that are

unaffected by advice are compiled just as they would be by a standard Java compiler. The compiler has

three main limitations:

91

• It uses javac as a back-end rather than generating class files directly.

• It requires access to all the source code for the system.

• It performs a full recompilation whenever any part of the user program changes.

The AspectJ compiler supplies a small (< 100K) runtime library that performs a minimum compilation

overhead. AspectJ team works on building incremental compiler. Fast incremental compilation for

AspectJ is an area for future research.

The generated compiled code does not introduce any performance overhead [51]. At present there is no

benchmark suite for AOP languages no for AspectJ in particular. The language has to mature.

“Coding styles really drive the development of the benchmark suites since they suggest what

is important to measure. In the absence of a benchmark suite, AspectJ probably has an

acceptable performance for everything except non-static advice. Introductions and static

advice should have extremely small performance overheads compared to the same

functionality implemented by hand”.

“The ajc compiler will use static typing information to only insert those checks that are

absolutely necessary. Unless you use 'thisJoinPoint' or 'if', then the only dynamic checks

that will be inserted by ajc will be 'instanceof' checks which are generally quite fast. These

checks will only be inserted when they can not be inferred from the static type information”.

The way to measure the performance the code with code fragments in AspectJ has to be compared with

the corresponding code written without AspectJ.

92

Chapter 7

Conclusions

This chapter summarizes the work that has been carried out and the goals and objectives achieved

during the duration of this challenging project. It also refers some architectural and design

considerations and decisions, that have been taken during this dissertation. These decisions have

influenced drastically the final result. Different types of users can benefit from the use of this project.

The knowledge obtained during this dissertation, will help the many possibilities described for

improving the proposed architecture as future work.

7.1 Achievements
As a result of the research carried out during this project, a multi-tiered architecture has been designed

implemented and evaluated. This architecture satisfies the main objectives and requirements specified

and the start of the project. Finally, some of the different possibilities for future work, that could be

performed upon the knowledge obtained and the work done, are summarized.

The achievements are described under the scope of an ITS, this will provide further understanding of

the work done and it will provide a helpful reference for future work.

7.1.1 Multimodality
The architecture designed and developed provides neutral and device independent information

dissemination. This independence has been achieved by the definition of a data model based on an

XML standard (see above 3.2.1.1, page 22). Since the architecture delivers plain XML; this provides ease

extension and evolution of the actual implementation of the Presentation tier. New presentation view

components can be added easily in order to serve a new device with minimum code maintenance, since

the view logic management is performed by a reusable component (see above 5.1.1, page 68).

Developing new XSL components for each required view we can transform he presentation to any

presentation we require, under the consideration of the technological limitations of the XSL standard.

7.1.2 Scalability
Scalability is one of the most successful goals. The implemented architecture provides different kinds of

scalability at different levels (tier).

93

7.1.2.1 Multimodal Presentation
The presentation tier has the ability to transform the system output to any kind of device presentation

7.1.2.2 Scalability at the Presentation Tier
The presentation or web tier has the ability to scale by increasing the number of web-servers to handle

increased load. The deployment of new servers can be easily done by setting them up in the resin config

file (see above 4.4.1.1, page 54)

7.1.2.3 Scalability at the Proxy Tier
The proxy tier represents the core of the cached traffic data dissemination. By adding new proxy-servers

to the cluster, we can handle an increase of load at the web/presentation tier (increment of end-user's

requests).

Parking information does not represent a bottleneck at the source-server, but it can be possible that

providing another kind of traffic information can represent a computational overload due to the

amount of data to be handled. The architecture handles this overload by scaling up the number of

multicast groups. Different alternatives can be considered (see below 7.3, page 97)

Figure 7.1 Scalability at the Proxy Tier I

94

Figure 7.2 Scalability at the Proxy Tier II

Scalability of the Data

The proposed XML schema (see above 4.6.1, page 67) has been devised for traffic parking data. By

using schema definitions it can be composed a higher level of abstraction, with a hierarchical

composition of traffic data schema definitions. This flexibility provided by the efficient use of schemas,

gives the actual architecture the potential ability of scaling up the different data types to handle (see

below 7.3, page 97).

7.1.3 Fault Tolerant
Another benefit provided is that the overall system does not have to recover from a server failure,

because of to two reasons: (i) the failover mechanism implemented provides a new server that will

connect to the data source and will continue delivering data (see above 4.4.2.3.2, page 63), and (ii) the

lightweight state kept in the server does not requires a failure recovery mechanism to copy its previous

state (see above 5.3.1.4, page 78).

95

7.1.4 Flexible caching algorithm
The algorithm implemented can be tuned based on some system conditions. So thus, changing some

tuneable parameters we can achieve Push or Pull strategies or a hybrid approach. This provides the

architecture width great flexibility. Depending on the traffic data to be stored in the cache, and the

specified user's temporal coherency requirement, the cache can behave in a way that satisfies our needs

or requirements.

Proxy-servers are responsible for pulling for changes when the data is required by the user, as the

strategy used is lazy in a way that only when the user requests a particular data, the calculated TTR, is

validated. This lazy approach can be easily changed to an active one. Parking traffic data do not have a

strong time constraint, but of course, other traffic data type (congestion, emergency) can require an

active pull strategy, where the proxy server actively checks for time expirations of the cached data and

pulls the server for updates.

7.1.5 Extensibility
The architecture devised is layered in several tiers (see above 4.2, page 42); each one has a concrete role

within the whole system that scopes its responsibilities. These responsibilities have been addressed by

the development of several aspects, and components. Tiers are decoupled due to the design patterns

used for the implementation (see above 5, page 68) and they provide well defined interfaces that allow

add new functionality easily. For example it can be added a Congestion Service or an Emergency

Service for disseminating congestion information and emergency information respectively. The core of

both services would be allocated at the Business Tier (see above 4.2.2, page 44); the Presentation Tier (see

above 4.2.1, page 43) would only have to add new Command [26], these commands decouple the

business logic form the presentation logic exposing a common interface that every new command has to

implement. The Proxy Tier (see above 4.2.3,page 44) can handle the traffic data associated with both

services transparently. The data stored in the cache is defined by an interface (java.io.Serializable).

Since the new services should follow the standard defined in the architecture, the new traffic data to

handle will be defined by a Schema definition (see above 4.6.1,page 67) . This Schema will be compiled

into one or more Java classes (see above 3.2.2.4.1, page 26). These classes will be re-factored the same

way it has been done for parking data in order to (i) apply the algorithm to the car parking data

objects, (ii) send these objects across the network. The Connector Tier (see above 4.2.4,page 45) would

contain new connectors that will provide both congestion and emergency traffic data respectively.

Following this process, new traffic related end-user services can be added to the system (e.g. a

Congestion Service to disseminate congestion information).

96

7.2 Potential users and Applications

The resulting architecture will enable the development of future ITS end-user services. Dublin City

Council in collaboration with the iTranIT; iTranIT is a project under the Distributed Systems Group in

Trinity College Dublin. iTranIT investigates in cooperation wit Dublin City Council an ITS architecture

for Dublin City [52]

Future applications to be considered can be:

• Journey planner

• Real-time and pre-trip information through the internet

• Public transport information over the internet

• Public transport planner

• Real-time Bus information

• Parking guidance

• Tourism information

• Weather information

• Airline schedule information

• Measured congestion information integration with the actual running system, and

prediction congestion information

• Real-time on incidents, accidents, road construction, alternate routes, traffic regulations

and tolls.

7.3 Future work
Due to the heterogeneity of the system, this project offers countless possible ways of research and future

work. The most relevant are described and summarized in order to provide useful and helpful

information for future researchers based on the knowledge obtained during the realization of this

challenging project.

7.3.1 Quality Of Service (QoS)
Future end-users of traffic services, might determine the value of the tcr for a data type. This means that

the user might say the latest time he expects to receive congestion data in his mobile phone (e.g. if the

system cannot meet the tcr then the age of the data should be transmitted with it: 546 spaces free, 7

minutes old, valid at 17.34 on 9-Sep-03). So tcr would help us to manage custom care policies for end-

users, providing a range of Quality of Service (QoS) classes.

97

The actual service might evolve in a way that could allow end-users a higher interaction with the

system. Users might demand spaces at car parking places at a date time and the system could make

estimations of future car occupations. This valuable information might be used for end-users to decide

which car parking to go, based on the actual car occupation status and the prediction of the system.

Traffic Data Services can be devised in order to enable future users configure and personalize these

services to their needs, providing a customer care service. ITS can benefit of these end-user information

to provide high quality traffic related services (e.g. Car parking and Public Transportation demand,

Public transport planner).

7.3.2 Multimodal Interaction
Multi channel delivery technology simply adapts contents. The usability of the same document on

"poor" channels is very different from the usability on "rich" channels like the web. It could probably be

better if the user could use the different channels in the same moment to visit the same service.

Multimodal interfaces are interfaces where the interaction between the service and the user is kept on

using different channel simultaneously. For example a user can choose to complete a form speaking,

but can navigate to the next page using the pen given with its PDA. Future work could explore the

possible multimodal strategies for enabling the use of different channels simultaneously.

7.3.3 Extending the Traffic Data Schema Definition
A possible future work is to carry out a further study of the traffic data in order to design a whole traffic

data model. The actual schema was designed for parking data, but can evolve easily in order to address

a future traffic data model. It is important to realize that changes in the actual schema will incur

changes in the actual implementation. Then we will have to generate the Java classes for the updated

schema again.

7.3.4 Collaborative Caches
Based on the actual implementation and on the previous section, the architecture could evolve to a set

of collaborative caches that would collaborate with one another by pushing data of interest to improve

the efficiency of dissemination and maintaining the user's tcr [33].

98

Figure 7.3 Collaborative Caches

Evolution to a Distributed Architecture of Specialized Clusters

A feasible evolution of the actual architecture is to create different cluster of servers, each one will be

dedicated to retrieve and disseminate a particular traffic data type or several ones. This strategy would

scale to the number of groups we need, and each cluster would be composed by a countless number of

proxy servers. The final outcome would be the creation of a kind of distributed computational system.

The creation of specialized clusters can be easily achieved by a simple modification of the JGroups

protocol stack configuration file. It only has to change the name of the multicast group. All the proxy

servers that are members of the same group will have to use the same configuration file.

We would place the end-user services and applications on top of this distributed system; a redirection

mechanism should be implemented to redirect the requests to the specialized group that manages the

type of the service required. Services might be devised by the composition of others. For every group or

cluster, we would use a load balancing mechanism that would handle and balance the group load

among the different proxy-servers.

99

Figure 7-7.4 Distributed System - Specialized Clusters

The algorithm used (see above 4.3.2, page46) to refresh data in the replicated caches can be tuned then

to accommodate the tcr and based on the data type to refresh and the rate of creation.

A step beyond, towards Grid Computing Architecture

A clear further evolution would come up by the junction of the two previously pointed areas of

research, (i) Specialised Clusters and (ii) Collaborative Caches. The architecture could evolve to a grid

computing system where multiple ITS services might be deployed, providing a virtual system of

distributed computing and data under a single system image. This grid architecture would enable

communication across heterogeneous, geographically dispersed environments. The possibilities of such

system would provide are countless, ITS services would interact and cooperate providing a flexible

mixture of end-user services. ITS services would be added in the system a pluggable fashion.

Weather information services and Emergency information services (information on incidents, accidents,

road construction, and alternative routes) would collaborate with Real-time and pre-trip information

providing weather data. Journey Planners services would cooperate with Congestion Information

Services providing useful end-user’s information for congestion prediction. Airline schedule

information services, Journey Planners and Congestion Information Services would collaborate

providing complete information for end users’ trip planning. All these services would be viewed as

collaborative peers within a ubiquitous single system image, such system would conform an ITS.

100

Appendix

Parking Web Application
 Load Balancing

 front.conf

<http-server>

<http port='80'/>

<srun id='back1' srun-group='a' srun-index='1' host='192.168.0.1' port='6802'/>

<srun id='back2' srun-group='a' srun-index='2' host='192.168.0.2' port='6802'/>

<servlet>

<servlet-name>balance-a</servlet-name>

<servlet-class>com.caucho.http.servlet.LoadBalanceServlet</servlet-class>

<init-param srun-group='a'/>

</servlet>

<servlet-mapping url-pattern='/parking/*' servlet-name='balance-a'/>

</http-server>

 back.conf

<http-server>

<srun id='a' host='192.168.0.1' port='6802' srun-index='1'/>

<session-config>

<tcp-store>

</session-config>

</http-server>

 web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<!-- ITS - KAREN - Parking WebApp Deployment Descriptor-->

<!-- This file contains the definitions needed in order to deploy the Parking WebApp on any J2EE-

compliant application server-->

<web-app>

<!-- NOTE: Wheter a url pattern is described, bear in mind that has to be relative to

 http://host:port/mywebapp/-->

101

<description/>

<!-- #################################### -->

<!-- Define the filters within the WebApp -->

<!-- #################################### -->

<!-- XSL Transformation Filter-->

<filter>

<filter-name>XSLT_Filter</filter-name>

<description>

 This filter applies XSL transformation to the XML output sent by the Servlet to the user

</description>

<filter-class>

 com.its.karen.userservices.parking.presentation.interceptorfilters.xslt.XSLTransformationFilter

</filter-class>

<init-param>

 <param-name>xsltFile</param-name>

 <param-value>/WEB-INF/Parking.xslt</param-value>

</init-param>

<init-param>

 <param-name>cacheType</param-name>

 <param-value>DISTRIBUTED</param-value>

</init-param>

</filter>

<!-- [END] XSL Transformation Filter -->

<!-- ## -->

<!-- Map the filters to a Servlet or to a URL-->

<!-- ## -->

<!-- XSL Transformation Filter-->

<filter-mapping>

 <filter-name>XSLT_Filter</filter-name>

 <url-pattern>/parking</url-pattern>

</filter-mapping>

<!-- [END] XSL Transformation Filter -->

<!-- ## -->

<!-- Define the Servlets within the Web Application -->

<!-- ## -->

<servlet>

 <servlet-name>FrontController</servlet-name>

 <description/>

 <servlet-class>

 com.its.karen.userservices.parking.presentation.frontcontroller.FrontControllerServlet

 </servlet-class>

</servlet>

102

<servlet>

 <servlet-name>TransferDataManagerController</servlet-name>

 <description/>

 <servlet-class>

 com.its.karen.userservices.parking.presentation.frontcontroller.TransferDataServlet

 </servlet-class>

</servlet>

<!-- ############################### -->

<!-- Define Servlet mappings to URLS -->

<!-- ############################### -->

<servlet-mapping>

 <servlet-name>FrontController</servlet-name>

 <url-pattern>/Parking</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>TransferDataManagerController</servlet-name>

 <url-pattern>/transferDataManager</url-pattern>

</servlet-mapping>

</web-app>

JGroups

JGroups Protocol Stack XML Configuration

<!-- $Id: DistributedParkingData.xml,v 1.2 2003/08/07 13:37:32 oliassaa Exp $ -->

<protocol-stack name="Protocol stack to be used for testing

transferring of state" version="1.0.0">

<description>javagroups State Transfer Protocol Stack</description>

<protocol>

<protocol-name>UDP Protocol</protocol-name>

<description>Sends and receives messages on UDP sockets</description>

<class-name>org.javagroups.protocols.UDP</class-name>

<protocol-params>

<protocol-param name="mcast_addr" value="228.8.8.8"/>

<protocol-param name="mcast_port" value="45566"/>

<protocol-param name="ucast_send_buf_size" value="16000"/>

<protocol-param name="ucast_recv_buf_size" value="16000"/>

<protocol-param name="mcast_send_buf_size" value="32000"/>

<protocol-param name="mcast_recv_buf_size" value="64000"/>

103

<protocol-param name="loopback" value="true"/>

<protocol-param name="ip_ttl" value="32"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Auto Configuration</protocol-name>

<description>Senses the network properties and

allows other protocols to configure themselves

automatically</description>

<class-name>org.javagroups.protocols.AUTOCONF</class-name>

<protocol-params>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Ping Protocol</protocol-name>

<description>Find the initial membership</description>

<class-name>org.javagroups.protocols.PING</class-name>

<protocol-params>

<protocol-param name="timeout" value="2000"/>

<protocol-param name="num_initial_members" value="3"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Merge Protocol</protocol-name>

<description>Periodically tries to detect subgroups and emits MERGE events in

that case</description>

<class-name>org.javagroups.protocols.MERGE2</class-name>

<protocol-params>

<protocol-param name="min_interval" value="5000"/>

<protocol-param name="max_interval" value="10000"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Failure Detection Socket</protocol-name>

<description>Failure detection based on sockets</description>

<class-name>org.javagroups.protocols.FD_SOCK</class-name>

</protocol>

<protocol>

<protocol-name>Verify Suspect</protocol-name>

<description>Double-checks that a suspected member is really dead</description>

<class-name>org.javagroups.protocols.VERIFY_SUSPECT</class-name>

<protocol-params>

104

<protocol-param name="timeout" value="1500"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Reliable mcast message transission</protocol-name>

<description>Uses a negative acknowledgement protocol for

retransmissions</description>

<class-name>org.javagroups.protocols.pbcast.NAKACK</class-name>

<protocol-params>

<protocol-param name="gc_lag" value="50"/>

<protocol-param name="retransmit_timeout"

value="300,600,1200,2400,4800"/>

<protocol-param name="max_xmit_size" value="8192"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>Unicast Protocol</protocol-name>

<description>Provides lossless transmission of unicast message (similar to TCP)

</description>

<class-name>org.javagroups.protocols.UNICAST</class-name>

<protocol-params>

<protocol-param name="timeout" value="2000"/>

</protocol-params>

</protocol>

<protocol>

 <protocol-name>Stable protocol</protocol-name>

 <description>Distributed message garbage collection protocol. Deletes messages

 seen by all group members</description>

 <class-name>org.javagroups.protocols.pbcast.STABLE</class-name>

 <protocol-params>

 <!-- Periodically sends STABLE messages around. 0 disables this -->

 <protocol-param name="desired_avg_gossip" value="20000"/>

 <!--

 Max number of bytes received from anyone until a STABLE message is sent. Use either this or

 desired_avg_gossip, but not both ! 0 disables it.

 -->

 <protocol-param name="max_bytes" value="0"/>

 <!--

 Range (number of milliseconds) that we wait until sending a STABILITY message. This

prevents

 STABILITY multicast storms. If max_bytes is used, this should be set to a low value (> 0

though !).

105

 -->

 <protocol-param name="stability_delay" value="1000"/>

 </protocol-params>

 </protocol>

<protocol>

<protocol-name>Fragmentation Protocol</protocol-name>

<description>Divides up larger message into smaller pieces</description>

<class-name>org.javagroups.protocols.FRAG</class-name>

<protocol-params>

<protocol-param name="frag_size" value="8192"/>

<protocol-param name="down_thread" value="false"/>

<protocol-param name="up_thread" value="false"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>PB Cast Group Membership Protocol</protocol-name>

<description>Maintains the member ship view</description>

<class-name>org.javagroups.protocols.pbcast.GMS</class-name>

<protocol-params>

<protocol-param name="join_timeout" value="5000"/>

<protocol-param name="join_retry_timeout" value="2000"/>

<protocol-param name="shun" value="false"/>

<protocol-param name="print_local_addr" value="true"/>

</protocol-params>

</protocol>

<protocol>

<protocol-name>State transfer</protocol-name>

<description>Transfers the state to a joining member</description>

<class-name>org.javagroups.protocols.pbcast.STATE_TRANSFER</class-name>

</protocol>

</protocol-stack>

106

Bibliography
1: ITS Europe (ERTICO), http://www.ertico.com/

2: ITS Japan, www.iijnet.or.jp/vertis/

3: ITS America, www.itsa.org

4: ITS Australia, , http://www.its-australia.com.au/

5: L. Nigay and J. Coutaz., A design space for multimodal systems - concurrent processing and data fu-
sion, 1993

6: Scott W. Ambler, Advanced XML? No, Just Realistic XML. Bringing data professionals and applica-
tion developers together, 2003

7: XSL Transformations (XSLT) Version 1.0, Sun Microsystems http://java.sun.com/xml

8: W3C, W3C Schema, http://www.w3.org/XML/Schema

9: W3C, XSL Transformations (XSLT), http://www.w3.org/TR/xslt

10: W3C, Extensible Markup Language (XML) Standards, http://www.w3.org/XML/

11: W3C, Document Object Model (DOM), http://www.w3.org/DOM/

12: SAX, Simple API for XML, http://www.saxproject.org/

13: Sun Microsystems, Java Architecture for XML Binding (JAXB), http://java.sun.com/xml/jaxb/

14: Sun Microsystems, JAXP documentation, http://java.sun.com/xml/jaxp/index.html

15: WAP / WML Tutorial, http://www.w3schools.com/wap/default.asp

16: W3C, HTML/XHTML , http://www.w3.org/MarkUp

17:VoiceXML, http://www.voicexml.org,

18: SALT, http://www.saltforum.org/,

19: Stephanie Bodoff and Dale Green and Kim Haase and Eric Jendrock and Monica Pawlan and Beth
Stearns, The J2EE Tutorial, , Sun Microsystems http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

20: Sun Microsystems, The Essentials of Filters, http://java.sun.com/products/servlet/Filters.html

21: Filter code with Servlet 2.3 model, http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-fil-
ters.html

22: D. Brookshier, D. Govoni, N. Krishnan, JXTA: Java P2P Programming, SAMS

23: Niklas Påhlsson, An Introduction to Aspect-Oriented Programming and AspectJ

24: http://dictionary.reference.com,

107

25: KAREN, EUROPEAN ITS ARCHITECTURE, http://www.frame-online.net/eitsfa.htm

26: E. Gamma and R. Helm and R. Johnson and J.Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 2000

27: C. Olston and J. Widom, Best-Effort Cache Synchronization with Source Cooperation, {SIGMOD}
Conference, 2002

28: S.Brin and L.Page, The anatomy of a large-scale hypertextual {Web} search engine, Computer
Networks and ISDN Systems, 1998

29: G. Barish and K. Obraczka, World Wide Web Caching: Trends and Techniques, IEEE Communi-
cations Magazine Internet Technology Series,2000

30: P. Cao and C. Liu, Maintaining Strong Cache Consistency in the World Wide Web, IEEE Transac-
tions on Computers, 1998

31: Dan Li and David R. Cheriton, Scalable Web Caching of Frequently Updated Objects Using Reli-
able Multicast, 1999

32: P. Deolasee and A. Katkar and A. Panchbudhe and K. Ramamritham and P.J. Shenoy, Adaptive
push-pull: disseminating dynamic web data, World Wide Web

33: P.Cao and C. Liu, Maintaining Statistics Counters in Router Line Cards, IEEE Transactions on
Computers,1998

34: Sing Li, High-impact Web tier clustering: Scaling Web services and applications with, 2003,
www-106.ibm.com/developerworks/java/library/j-cluster1

35: Buyya Rajkumar , High Performance Cluster Computing, 1999

36: Kenneth P. Birman, BuildingSecure and ReliableNetwork Applications, Manning Publications
Co.,1996

37: G.Coulouris and J.Dollimore and T.Kindberg, Distributed Systems Concepts and Design (3rd
Edition), Addison-Wesley,2001

38: Mark Hayden and Kenneth Birman, Probabilistic Broadcast, Cornell University Technical Re-
port, 1996

39: Y. Azar and M.Feder and E.Lubetzky and D.Rajwan and N. Shulman, The Multicast Bandwidth
Advantage in Serving Web Site.

40: D. Dolev and O. Mokryn and Y. Shavitt and I. Sukhov, An integrated architecture for the scalable
delivery of semi-dynamic web content, Hebrew University, Tech. report 2001.

41: B Ban, JGroups User Guide 1.0, http://www.javagroups.com/javagroupsnew/docs/ug.html

42: B Ban, JGroupsUserGuide2_0, http://www.javagroups.com/javagroupsnew/docs/ug.html

43: B. Ban, A Flexible API for State Transfer in the JavaGroups Toolkit

44: Sun Microsystems, JAXP documentation, http://java.sun.com/xml/jaxp/index.html

45: A Valikov, Transparently cache XSL transformations with JAXP,

46: D.Lea, Concurrent Programming in Java(TM): Design Principles and Pattern (2nd Edition), Addi-
son Wesley Pub Co,1999.

47: D.Lea, Concurrent Programming in Java tm Design principles and patterns, supplement to the
book Concurrent Programming in Java: Design Principles and Patterns by Doug Lea, http://gee.cs.os-
wego.edu/dl/cpj/

108

48: D.Alur and J.Crupi and D.Malks, J2EEPatterns, Prentice Hall,2001

49: J.W Cooper, Design Patterns Java Companion, Addison Wesley,1998

50: Martin Fowler, Refactoring, Proceedings of the 24th International Conference on Software En-
gineering ({ICSE}-02)

51: AspectJ Frequently Asked Questions, http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/as-
pectj-home/doc/faq.html

52: iTranIT, http://www.dsg.cs.tcd.ie/?category_id=-40,

109

