
Consistency Maintenance Framework

For Collaborative Software Modelling Tools

Marta Lozano

A dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 15, 2003

1

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or any

other university.

Signed: _________________

Date: September 15, 2003

2

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed: _________________

Date: September 15, 2003

3

Acknowledgements

I would like to thank my supervisor Alexis Donelly for his faith, trust, support and

enthusiasm. Thanks to the M.Sc.NDS class, who made this year an interesting and

unforgettable experience. Thanks to my family for their support on the most difficult

moments, and thank to those who made financially possible this experience.

4

Abstract

The globalization of companies and business, and the improvements in communication and

computing have lead to the need of new models of collaborative work. Real-time

collaborative editing systems are included in the field of Computer Supported Collaborative

Work (CSCW) systems, which allow users to view and design the same document

simultaneously from geographically dispersed sites connected by networks.

Distributed Software Engineering (DSE) requires technical knowledge that spans

geographical and organizational boundaries. In a distributed environment, developers are

dispersed across different sites and even countries. Even thought major contributions have

been lately introduced to enable CSCW applications on the Internet to support global

collaboration, the area of DSE requires further research.

There are three inconsistency problems that arise in Collaborative Editing Systems:

divergence, causal ordering violation and user intentions violation. Divergence can be solved

serializing the operations at all sites, causality violation can be solved with a causal ordering

communication protocol. However user intention violation solution is dependent on

application semantics.

There are few group support framework specialized in DSE, and distributed software

modeling. However, we are not aware of any Collaborative Software Modeling Framework

using Consistency Maintenance mechanisms where the user intentions are preserved. Current

distributed software modeling frameworks address concurrency with traditional methods as

locking, turn taking, serialization, etc.

The algorithms and schemas presented in this work have been implemented in the

DArgoUML prototype system. DArgoUML is a Distributed version of ArgoUML, which

includes a Flexible Consistency Maintenance Framework based on Software Modeling

Knowledge. The Framework can be considered Flexible as it allows the system to maintain

temporal inconsistencies, as the shared document will merge to a consistent version. Some

algorithms have been devised to detect different types of conflicts based on the different level

of inconsistency they generate. Techniques have been presented to address each specific

conflict or level of Inconsistency. Besides a mechanism for conflict group awareness is

proposed, where users are aware of other user intentions when concurrent operations do

conflict.

5

Table of Contents

Chapter 1

 Introduction...11

1.1 BACKGROUND.. 11

1.2 MOTIVATIONS.. 12

1.3 ROADMAP..13

1.3.1 State of the Art..13

1.3.2 Architecture.. 14

1.3.3 Concurrency in Collaborative Editing Systems... 14

1.3.4 Consistency Maintenance Framework for Collaborative Software Modelling tools.............14

1.3.5 Implementation... 15

1.3.6 Conclusions...15

Chapter 2

 State of the Art..16

2.1 CSCW: COMPUTER SUPPORTED COLLABORATIVE WORK..16

2.1.1 Introduction.. 16

2.1.2 Classification of CSCW in Time and Place...17

2.1.3 Common CSCW Applications.. 17

2.1.3.1 Message Systems ..17

2.1.3.2 Computer Conferencing capabilities... 18

2.1.3.3 Shared diaries and Calendars... 18

2.1.3.4 Bulletin boards ... 18

2.1.3.5 Application Sharing Systems ... 18

2.1.3.6 Collaborative Editing Systems ...18

2.1.4 CSCW Keywords.. 19

2.1.4.1 Group Awareness... 19

2.1.4.2 Multi-User interfaces..19

2.1.4.3 Concurrency Control..19

2.2 COLLABORATIVE EDITING SYSTEMS.. 20

2.2.1 REDUCE PROJECTS (Real Time Distributed Unconstrained Cooperative Editing)........20

2.2.1.1 GRACE (Graphics Editing System)..21

2.2.1.2 RECIPE (A prototype for Internet-based real-time collaborative Programming).

21

2.3 CONSISTENCY MAINTENANCE FRAMEWORK.. 21

2.3.1 Achieving Convergence, Causality Preservation and Intention Preservation in Real-Time

Cooperative Editing Systems... 21

6

2.3.1.1 Definition 1.1. Causal ordering relation ‘’ .. 23

2.3.1.2 Definition 1.2. Dependent and Independent operations23

2.3.1.3 Definition 1.3. Intention of an Operation.. 23

2.3.1.4 Definition 1.4. A Consistency Model... 23

2.3.2 User Intentions Preservation in Collaborative Graphics Editing Systems.......................... 24

2.3.2.1 Notation... 24

2.3.2.2 Definition 2.1. Conflict Relation ..24

2.3.2.3 Definition 2.2. Compatible relation ☉..25

2.3.3 Accommodating all operation effects.. 25

2.4 COLLABORATION AND SHARING AMONG UML TOOLS..25

2.4.1 Introduction.. 25

2.4.2 XML Metadata Interchange: XMI... 26

2.4.3 Evolution of UML modeling tools: Collaboration and Sharing..27

2.4.4 ArgoUML: Starting point for a Synchronous Collaborative UML Tool Prototype.............29

2.4.4.1 ArgoUML supports standards extensively ...29

2.4.4.2 Usability of the UML CASE Tool... 29

2.4.4.3 Unique Generation of ID for networked systems ... 30

Chapter 3

 Architecture... 31

3.1 SINGLE-USER SOFTWARE MODELLING TOOL: ARGOUML... 31

3.2 DISTRIBUTING ARGOUML... 32

3.3 THE CONSISTENCY MAINTENANCE COMPONENT...34

3.3.1 Concurrency Detector ..36

3.3.2 Conflict Manager.. 36

3.3.3 Conflict Store.. 36

3.3.4 Conflict Awareness Presentation ...37

3.4 COMMUNICATION PLATFORM.. 37

3.4.1 The Sharing channel .. 37

3.4.2 The Collaboration channel ... 38

3.5 INTEGRATING APPLICATION LAYER WITH COMMUNICATION PLATFORM.. 38

3.6 THE TRANSLATION COMPONENT... 39

3.7 THE LATECOMER SUPPORT ... 39

3.8 INTEGRATION WITH JAVAGROUPS ..40

3.8.1 JavaGroups Support for CSCW.. 40

3.8.2 Architecture of JavaGroups...41

Chapter 4

 Concurrency in Collaborative Editing Systems... 44

7

4.1 INTRODUCTION... 44

4.2 CLASSIFICATION OF OPERATIONS BASED ON CONCURRENCY... 44

4.2.1 Causal ordering relation .. 44

4.2.2 Independent operations. ... 45

4.2.3 Conflict Relation... 45

4.2.4 Definition A.1. UML Semantic Conflict Relation..46

4.2.5 Definition A.2. UML Semantic Compatible Relation.. 46

4.2.6 Definition A.3. Equivalent Relation .. 46

4.2.7 Concurrent Cases.. 46

4.3 CONCURRENCY DETECTION... 47

Chapter 5

 Consistency Maintenance Framework for Collaborative Software Modelling tools............51

5.1 INTRODUCTION... 51

5.2 INCONSISTENCY PROBLEMS IN COLLABORATIVE EDITING SYSTEMS...52

5.3 APPLICATION SEMANTICS DEPENDENCY FOR CONFLICT MANAGEMENT ...53

5.4 OMG UML SPECIFICATION 1.3 FOUNDATION PACKAGE CORE: ABSTRACT SYNTAX AND WELL-

FORMEDNESS RULES..55

5.4.1Association:..55

5.4.2Aggregation... 55

5.4.3Classifier ...56

5.4.4 Feature.. 56

5.4.5 GeneralizableElement..57

5.4.6 Namespace...57

5.5 UML RESTRICTION RELATION.. 58

5.5.1 Definition B.1 Restriction Relation: OP1 ® OP2.. 58

5.5.2 Definition B.2 Restrictive Behavior of an operation OP1.. 58

5.6 TIME-LINE DEPENDENCY RELATION.. 59

5.6.1 Introduction.. 59

5.6.2 Definition C.1. Independent-Behavior Operation.. 60

5.6.3 Definition C.2. Dependent-Behavior Operation. ...60

5.6.4Definition C.3. Break Dependencies Behavior. ... 61

5.7 TYPES OF INFORMATION IN A UML DIAGRAM... 61

5.8 CLASSIFICATION OF CONFLICT OPERATIONS BASED ON APPLICATION DEPENDANT RELATIONS (UML

RELATIONS).. 62

5.9DESCRIPTION OF OPERATIONS CATEGORIES..64

5.9.1Create Independent ... 64

5.9.2 Create Dependent Non Restrictive:.. 64

8

5.9.3 Create Dependent Restrictive:.. 65

5.9.4 Modify Non Restrictive: .. 65

5.9.5 Modify Restrictive: ...65

5.9.6 Delete: .. 66

5.9.7 Graphical Local .. 66

5.9.8Graphical Distributed:... 67

5.10 CONFLICT DETECTION MATRIX..67

5.10.1 Conflicts Management..68

5.10.2 Conflict: Modify Non Restrictive Versus Modify Non Restrictive.................................... 70

5.10.3Conflict: Modify Restrictive Versus Modify Restrictive... 70

5.10.4Conflict: Create Restrictive Versus Modify Restrictive...70

5.10.5Conflict: (Create || Modify) Versus Delete..70

5.10.6 Conflict: Create Restrictive Versus Create Restrictive... 70

5.10.7 Conflict: Delete Versus Graphical.. 70

5.10.8 Conflict: Graphical Versus Graphical..71

5.11 CONCLUSION..71

Chapter 6

 Implementation.. 72

6.0.1 Introduction.. 72

6.1 NSUML: THE UML MODEL... 73

6.2 GEF MODEL... 75

6.3 REAL-TIME COLLABORATION CHANNEL...76

6.4LOCAL OPERATION DISPATCHER...77

6.5 REMOTE OPERATIONS DISPATCHER.. 78

6.6 CONFLICTS...79

6.6.1 ConflictManager... 79

6.6.2ConflictStore ... 80

6.6.3UMLConflictType..81

6.7 SHARING CHANNEL..81

6.8 CONFLICT AWARENESS... 82

6.9 COMMUNICATION PLATFORM WITH JAVAGROUPS..82

Chapter 7 Conclusions.. 84

7.1 INTRODUCTION... 84

7.2 EVALUATION..85

7.3 FUTURE WORK...87

7.3.1 Heterogeneous Collaboration in Software Modeling Tool.. 87

7.3.2 Group Awareness: Future User Intentions Preservation (Semantic Preservation)............. 91

9

7.3.3 Consistency Maintenance Mechanisms for other Software Modelling tools operations...... 91

10

Chapter 1

Introduction

1.1 Background

The globalization of companies and business, and the improvements in communication and

computing have lead to the need of new models of collaborative work. Real-time

collaborative editing systems are included in the field of Computer Supported Collaborative

Work (CSCW) systems, which allow users to view and design the same document

simultaneously from geographically dispersed sites connected by networks.

Distributed Software Engineering (DSE) requires technical knowledge that spans

geographical and organizational boundaries. It has become a need for many organizations.

New business models often result in distributed organizations that cannot be physically

centralized in one location requiring developers to be dispersed across different sites and

even countries.

If software development is viewed as a special case of collaborative editing systems then

synchronous collaborative tools are needed to support synchronous work of different

developers on the same artifact.

Even thought major contributions have been lately introduced to enable CSCW applications

on the Internet to support global collaboration, the area of DSE requires further research.

Distributed software modeling, distributed software development, distributed requirements

engineering, distributed project planning, distributed document management, distributed

change management, distributed workflow management, software agents for software

development… etc, can be included in the field of DSE.

There are three inconsistency problems that arise in Collaborative Editing Systems:

divergence, causal ordering violation and user intentions violation. Divergence can be solved

serializing the operations at all sites, causality violation can be solved with a causal ordering

communication protocol. However user intention violation solution is dependent on

application semantics.

11

There are few group support framework specialized in DSE, and distributed software

modeling. There are very few Collaborative Editing Systems supporting Consistency

Maintenance (convergence, causal ordering and user intentions). We are not aware of any

collaborative software modeling framework employing Consistency Maintenance

mechanisms where the user intentions are preserved. Current distributed software modeling

frameworks address concurrency with traditional methods not very appropriate for

collaborative work as locking, turn taking, serialization, etc.

The REDUCE (REal-time Distributed Unconstrained Cooperative Editing) project aims to

research, develop, and apply innovative technologies for consistency maintenance and

concurrency control in real-time Collaborative Editing systems. Under the REDUCE project

Collaborative Text, Graphics and Programming systems have been researched. REDUCE

project is actually running in Griffith University, Australia. This has been the main research

and ideas source for my thesis. The Consistency Maintenance Framework devised for the

Collaborative Graphic Editing System have been modified and extended for supporting

Collaborative Software Modeling.

The algorithms and schemas presented in this work have been implemented in the

DArgoUML prototype system. DArgoUML is a Distributed version of ArgoUML (a open

source Software Modeling tool). A Flexible Consistency Maintenance Framework based on

Software Modeling Knowledge has been included in DArgoUML. The Framework can be

considered Flexible as it allows the system to maintain temporal inconsistencies, as the shared

document versions will merge to a consistent version. Some algorithms have been devised to

detect different types of conflicts based on the different levels of inconsistencies they generate.

Techniques have been presented to address each specific conflict or level of Inconsistency.

Besides a mechanism for conflict group awareness is proposed, where users are aware of

other user intentions when concurrent operations do conflict.

1.2 Motivations

As introduced in the previous section, the area of Distributed Software Engineering requires

more research. Distributed Software Development is becoming a fact in many organizations

however there are few tools that support this collaborative work.

Collaborative editing systems are special distributed systems because of the human

interaction. Traditional concurrency control mechanisms as locking, turn taking or

12

serialization are not very appropriate for collaborative editing system. There are some new

techniques for concurrency control more appropriate as operational transformation or

multiple object creation. These techniques have been applied mainly to text and graphics

environment. One of the main motivations has been the analysis of how these new

concurrency control techniques could be applied to applications with richer semantic

information, as is software modelling tools. Just to see how the semantics are richer: in a UML

model there are two types of information: graphical information and UML information. For

the UML information the Abstract syntax and the Well-Formedness rules restrict the

behaviour of the possible operations that can be applied to the model.

There are very few collaborative software modelling tools and research projects. The existent

ones use traditional methods for concurrency control. DArgoUML extends open source

ArgoUML for supporting distribution.

1.3 Roadmap

This section describes briefly each of the remaining chapters contained in this dissertation.

1.3.1 State of the Art

Computer Supported Collaborative Work, CSCW State of the Art is addressed in this

Chapter:

In the first section the CSCW concept is explained giving some popular definitions and then

the CSCW applications are categorized based on two dimensions, time and place. Some

CSCW concepts as Group Management, Concurrency Control mechanisms, etc are

introduced.

In the next section some Collaborative Editing Systems that address consistency maintenance

are presented.

Then a non traditional Concurrency Control system is presented: A Consistency Maintenance

Framework where all user Intentions are preserved. Many interesting ideas for my work have

been generated through the inspection of this set of techniques.

13

Finally the State of the art in Software Modelling tools is presented: The standards they use,

mechanisms for modelling, the sharing of the UML models and a recent tool and few research

projects for real-time cooperation!

1.3.2 Architecture

In this chapter the whole process of extending the single-user open source software modelling

tool into a version supporting distribution is presenting. Then the architecture of the

Consistency Maintenance component is presented. The next section describes the two

channels of communication among collaborating peers: The Sharing channel for transferring

the complete application state and the collaboration channel for real-time operations. In the

next section the component that translates the operations from/to the network is explained.

Latecomer support and the support of JavaGroups for CSCW systems are finally presented.

1.3.3 Concurrency in Collaborative Editing Systems

This chapter has two main sections, the first one is a classification of operations based on their

concurrent behaviour, and the second section addresses the issue of concurrency detection.

1.3.4 Consistency Maintenance Framework for Collaborative Software

Modelling tools.

This chapter presents a Flexible Consistency Maintenance framework for Collaborative

Software Modelling tools.

First the three inconsistency problems and their solutions are again presented. User Intention

violation can not be solved with a generic solution as the other two: divergence and causal

ordering violation. For preserving user intentions a solution based on application semantics is

devised. In the environment of Software Modelling tools, application semantics includes:

UML information, Graphical Information and Restriction Rules based on UML Specification

and Time-Line dependencies.

Finally a method for detecting different types of conflicts based on the level of inconsistency

produced and the category of the operations that generated it, is presented. The Matrix for

Conflict detection is the core of the framework. Then types of conflicts and their possible

resolutions are addressed.

14

1.3.5 Implementation

This chapter includes the description of the implementation process of the elements described

in the architecture chapter.

1.3.6 Conclusions

In the Conclusions chapter first I summarize what has be done in this thesis, followed for

what has been achieved and finally some future work suggestions.

15

Chapter 2

State of the Art

2.1 CSCW: Computer Supported Collaborative Work

2.1.1 Introduction.

The globalization of companies and business and the improvements in communication and

computing have lead to need of new models of collaborative work (software). In a distributed

environment, developers are dispersed across different sites and even countries. CSCW

systems enable geographically dispersed participants work together.

CSCW are special Distributed Systems because of the Human Computer Interaction. As result

of this Interaction some factors acquire special relevance as Group Awareness, Multi-User

interfaces, Concurrency Control and Group Communication and Coordination.

There are many definitions for CSCW and Groupware, some of the most popular are:

Ellis [1]defined Groupware as "Computer-based systems that support groups of people

engaged in a common task (or goal) and that provide an interface to a shared environment."

According to Brinck “CSCW is the study of how people work together using

computer technology. Typical topics include use of email, hypertext that includes

awareness of the activities of other users, videoconferencing, chat systems, and real-

time shared applications, such as collaborative writing or drawing." [2]

Groupware refers to the technology that people use to work together, the real computer-based

systems, the hardware and software which supports group work while CSCW refers to the

field that studies the use of that technology as well as their psychological, social and

organizational effects. CSCW is concerned with the study theory of how people work together

and how groupware affects the group behavior.

16

2.1.2 Classification of CSCW in Time and Place

There are four situations in which groups may work together. This distinction was made first

by Johansen [3]. The different types of cooperation arise from the combination of two

dimensions: time and place. Regarding with time dimension the communication can be

synchronous or asynchronous:

Synchronous Communication or Collaboration: Real- Time systems that allow participants

see each other changes immediately. Group of users can cooperate at the “same time”.

Asynchronous Communication or Sharing: Participants cooperate over “different periods of

time”. For example a user could edit a document and other user could make some annotations

over the document afterwards.

For instance in the field of Software Modelling tools a user could create a UML model. It

could be transmitted to another user in XMI format. Second user could update the UML

model and send it again to the first user. This would constitute Asynchronous Communication.

While in a Synchronous Collaborative Software Modelling tool, several users could model a

software system together, and the modifications on the UML elements would be seen

immediately by all the collaborators.

2.1.3 Common CSCW Applications

2.1.3.1 Message Systems

Message Systems are email-enabled software applications. These systems use textual

messages as interchange format for communicating with group of users. There are several

types of message systems:

• Email: Allows the transmission and reception of electronic messages, which consists

on various fields including the recipient, sender, subject matter and body of the mes-

sage. Email systems provide a framework with functionalities for the creation, view,

and management (storage, deletion) of messages, including additional functionalities

as attach/insert file to a message. Email is the most well known message system today.

• Newsgroups: are similar in concept to email systems except that they are intended for

messages among large groups of people instead of one-to-one communication. For

17

communicating, messages are left in a newsgroup. Any reader belonging to that group

can access the messages.

• Chat systems: A system that allows any number of logged-in users to have a typed,

real-time, on-line conversation, with other users logged via a network.

2.1.3.2 Computer Conferencing capabilities

Possible, thanks to the increase of communication bandwidth and video compression

techniques to allow real-time and sound links between remote sites. Meetings can be arranged

among geographically dispersed sites in which participants are able to see and hear each

other and thus work together.

2.1.3.3 Shared diaries and Calendars

Provide support for the arrangement and organization of meetings. Group members record

their individual appointments and schedules in the electronic diary/calendar. If somebody

wants to arrange a meeting all available dates may then be discerned.

2.1.3.4 Bulletin boards

Capabilities for storing messages and files. Discussions may be arranged around topics of

interest and anyone with access may read all messages on a particular topic left by others or

add messages to the topic. Forums and discussion groups allow users to post messages but

don't have the capacity for interactive messaging.

2.1.3.5 Application Sharing Systems

Allow participants to share an ordinary single-user application. (Word processor or

spreadsheet). The application run on a workstation.

2.1.3.6 Collaborative Editing Systems

Or CES are multi-user editors; allowing members of a team (that can be dispersed

geographically), work on the same document concurrently (real-time). There are synchronous

and asynchronous cooperation models. Examples of this type of systems are collaborative

word processors, graphic system (white boards), programming system (kind of text

18

processor), software modeling system. This thesis is about synchronous software modeling

system, that allows dispersed users work together in a UML model when designing a

software system.

2.1.4 CSCW Keywords

2.1.4.1 Group Awareness

Being aware of other users’ locations, activities, and intentions relative to the task enables

people to work together more effectively. There are different types of awareness, for many

kinds of systems is very useful to know who is collaborating at some stage in the session, who

has done what, what are the future intentions of the users, when there are concurrency

conflicts, who are the participants in a conflict and why the conflict has been generated. A

shortcoming of an over awareness information may be the violation of users privacy.

2.1.4.2 Multi-User interfaces

Multi-user interfaces are different than single-user interfaces. However that difference should

not be very high. In [9] the gap in terms of usability between single-user editor and multi-user

editor is presented: Users are forced to learn new Interfaces and new ways of working. The

ICT “collaboration Transparency” project aim to transform single-user applications into

multi-user applications without changing too much the application code. In a multi-user

interface information has to be added in the shape of group awareness so users can cooperate

effectively.

In this thesis a single-user application for software modeling has been transformed in a multi-

user application. The user interface has hardly changed so the level of usability is high.

Besides conflict awareness information has been added to reflect all user intentions.

2.1.4.3 Concurrency Control

In a collaborative system participants are generating operations concurrently. Some of these

operations can conflict with each other. A concurrency control mechanism is needed to

resolve inconsistency problems. Because of the “human interaction”, CSCW systems are special

distributed systems. Therefore, many concurrency control techniques which worked well in

traditional systems are not appropriate for CSCW systems. Thus, new concurrency control

techniques need to be developed.

19

2.2 Collaborative Editing Systems

As it has been introduced in 2.1.3.6 Collaborative Editing Systems CES are included in the

field of CSCW. CES allow members of a team (that can be dispersed geographically), work

on the same document concurrently (real-time).

This section describes an overview of some CES and the mechanisms employed to address

concurrency problems

2.2.1 REDUCE PROJECTS (Real Time Distributed Unconstrained

Cooperative Editing)

Variety of collaborative projects, initially REDUCE was focused on Collaborative Text

Editing. [17]

A brief overview of some REDUCE projects is presented as for these systems a Consistency

Maintenance Framework has been devised, where the three inconsistency problems in a CES

are addressed: divergence, causality preservation and user intention violation. Intention

preservation property can only be achieved by application dependent mechanisms. So a

different mechanism is proposed in text editing and graphics editing.

The work and research done for REDUCE projects have been deeply examined and used as

basis for important ideas for this thesis.

For the Text Editing environment an optimistic approach to concurrency control called

operational transformation is proposed. The novelty of this schema is that it allows

independent operations to be executed in any order but ensures that their final effects are

identical and the intentions are preserved. [4]. They show how Intention-Preservation

achieved by operational transformation is not achievable by any traditional serialization

protocol. User Intention Preservation depends on Application Semantics.

REDUCE collaborative technologies and systems have been applied to other areas as

Collaborative Graphic Editing, GRACE, or collaborative programming RECIPE.

Consistency maintenance mechanisms applied to REDUCE and GRACE are deeply addressed

in this chapter in section 2.3.

20

2.2.1.1 GRACE (Graphics Editing System)

GRACE is a prototype of a collaborative graphics editing system [18]. In GRACE, a novel

mechanism for preserving user intentions has been presented: [5] A Multiple Object Version

Scheme. In this scheme when a conflict is detected different versions of the targeted object are

created. This schema has the property of minimizing the number of versions created

combining properly compatible versions in the same version. GRACE Consistency

Maintenance mechanisms are addressed deeply in this chapter in section

2.2.1.2 RECIPE (A prototype for Internet-based real-time collaborative

Programming)

RECIPE [19] is an Internet-based real-time collaborative programming system that allows

physically dispersed programmers to concurrently and collaboratively design, code, test,

debug and document the same program. [7].

In RECIPE a Hierarchical collaboration schema is presented: The prototype can share the

compiling applications, debugging applications or even the entire Unix shell application for

collaboration. There are four types of sharable sessions in the RECIPE prototype system, that

is Unix shell session, Edition session, Compiling session and Debugging session. RECIPE

prototypes uses REDUCE techniques for supporting real time cooperative editing.

2.3 Consistency Maintenance Framework

2.3.1 Achieving Convergence, Causality Preservation and Intention

Preservation in Real-Time Cooperative Editing Systems

“Real-time cooperative editing systems allow multiple users to view and edit the same

text/graphic/image/multimedia document at the same time from multiple sites connected by

communication networks. Consistency Maintenance is one of the most significant challenges in

designing and implementing real-time cooperative systems…” [4].

In [4] a consistency model, with properties of convergence, causality preservation, and

intention preservation, is proposed as a framework for consistency maintenance in real-time

cooperative editing systems.

21

The cooperative editing systems subject to their research have the following properties:

• Real-time: “Local response is quick (almost as in a single-user application) and

independent from network latency, and the latency for reflecting remote actions should be

low (dependent on network latency)”

• Distributed: “Cooperating users may reside in different machines connected by different

communication networks with non deterministic latency”.

• Unconstrained: “Multiple users are allowed to concurrently and freely edit any part of

the document at any time”.

A replicated architecture is proposed as the only solution for accommodating the properties

mentioned above especially for good responsiveness and unconstrained behaviour. In a

replicated architecture there is no central server, the shared document is replicated at all sites.

“One of the most significant challenges in designing and implementing real-time cooperative editing

systems with a replicated architecture is consistency maintenance of replicated documents”

In [4] consistency maintenance model the three inconsistency problems that appear in real-

time collaborative editing systems, as well as the properties they violate and their solutions is

presented:

• Divergence: ”Operations may arrive and be executed at different sites in different orders,

resulting in different final result. Unless operations are commutative final editing results

would not be identical among cooperating sites”. The Divergence problem can be

solved by any serialization protocol.

• Causality Violation: “Due to the non deterministic communication latency, operations

may arrive and be executed out of their natural cause effect order” The causality

violation can be solved with a Causal Order Communication Protocol (Causal Order

Multicasting).

• User Intention: “Due to concurrent generation of operations, the actual effect of an

operation at the time of its execution may be different from the intended effect of this

operation at the time of its generation”. User intentions violation can be solved with

application dependant mechanisms.

For a formal description of the consistency model some definitions are presented:

22

2.3.1.1 Definition 1.1. Causal ordering relation ‘’

Given two operations OP1 and OP2, generated at sites I and J, then OP1 OP2 if:

1. I = J and the generation of OP1 happened before the generation of OP2 or

2. I ≠ J and the execution of OP1 happened before than the generation of OP2.

2.3.1.2 Definition 1.2. Dependent and Independent operations

Given two operations OP1 and OP2:

1. OP2 is said to be causally dependent on OP1 if only if OP1 OP2.

2. OP1 and OP2 are said to be causally independent if and only if neither

3. OP1 OP2, nor OP2 OP1. It is expressed as OP1 || OP2.

2.3.1.3 Definition 1.3. Intention of an Operation

The Intention of an operation OP1 is the Execution effect, which can be achieved by applying OP1 on the

document state from which OP1 was generated.

2.3.1.4 Definition 1.4. A Consistency Model

A collaborative editing system is said to be consistent if it always maintains the following

properties:

a) Convergence: When the same set of operations have been executed at all sites.

b) Causality Preservation: For any pair of operations OP1 and OP2, if OP1OP2

then OP1 is executed before OP2 at all sites.

c) Intention Preservation: For any operation OP1, the effects of executing OP1 at

all sites are the same as the intention of OP1, and the effect of executing OP1

does not change the effects of independent operations.

As it was said before convergence can be achieved with total ordering, causality preservation

with a causal ordering protocol, and intention preservation cannot be achieved with a generic

solution, the solution to user intentions violations is application dependent which means that

it will be solved differently depending on the application.

23

2.3.2 User Intentions Preservation in Collaborative Graphics Editing

Systems

User Intention Preservation mechanisms for Collaborative Graphics Editing systems has been

examined as these systems can be used for CAD and CASE tools to draw design diagrams, or

to draw illustrative figures within documents collaboratively.

Chen and Sun ideas for maintaining consistency in real-time collaborative graphics editing

system, [5], have been examined deeply, and considered the starting point for the designing

of Consistency Maintenance Framework for Collaborative Software Modelling tools.

As it was stated in the previous section, “the inconsistency problem which needs to be solved is

intention violation caused by the execution of conflicting operations”

Chen presents a new mechanism for preserve all users intentions in the Graphics

Environment: A Multiple Object Version Scheme. In this scheme when a conflict is detected

different versions of the targeted object are created. This schema has the property of

minimizing the number of versions created combining properly compatible versions in the

same version.

2.3.2.1 Notation

First a notation is introduced to give a precise definition of operation conflict, and following

the formal definitions of conflict and compatible relation among operations: [5]

Target (OP1): Object being targeted by the operation OP1.

Property.Type (OP1): Attribute of the object that is targeted by OP1.

Property.Value (OP1): The new value for the attribute to be updated.

2.3.2.2 Definition 2.1. Conflict Relation

Given two operations OP1 and OP2 they conflict with each other OP1 OP2 if:

1. OP1 || OP2.

2. Target (OP1) = Target (OP2)

3. Property.Type (OP1) = Property.Type (OP2).

4. Property.Value (OP1) ≠ Property.Value (OP2).

24

2.3.2.3 Definition 2.2. Compatible relation ☉

Given two Operations OP1 and OP2, if they do not conflict with each other, they are

compatible, expressed as OP1 ☉ OP2.

2.3.3 Accommodating all operation effects

When a conflict is detected how do actual systems accommodate all user intentions:

• Null effect: Neither of the conflictive operations has a final effect on the target

object. This can be achieved by rejecting/undoing an operation when it is found to

be conflicting with another operation. This Null effect does not preserve any user

Intention. The consequence of this intention violation is that, whenever there is a

conflict, the work concurrently done by involved users will be destroyed, which is

highly undesirable in the collaborative working environment. When a conflict

occurs, the involved users are provided with no explicit information about what

the other users actions were or intentions might be.

• Single operation effect: Retain the effect of only one operation. This can be

achieved by enforcing a serialized effect among all operations. The final results at

both users sites are identical. The user Intentions are not preserved and only one

user work can be preserved.

• All operations effect, based on multiple versions strategy [17, 102, 100] two

versions of the object will be created. In this way the effects of both operations are

accommodated in two separate versions. The side effect of this approach is that

the single version object may be converted to multiple versions if a conflict occurs.

2.4 Collaboration and Sharing among UML Tools

2.4.1 Introduction

Collaborative Software Modeling tools are included in the category of Collaborative Editing

Systems where participants in the collaborative group update a shared document. In a

Synchronous system users can see immediately the changes introduced by other users. The

shared document is a UML model, usually stored in XMI format.

25

The Unified Modeling Language (UML) [21] is a general-purpose notational language for

designing software systems. UML has become the industry standard language for modeling

software systems and communication.

Communication is the main benefit about using a standardized language. With UML precise

definitions can be constructed, understood, and interchanged among Software Modeling tools

and Professionals.

UML CASE tools provide a framework to help designers specify, construct and visualize

complex systems using UML. There are many UML tools, to mention a few:

Rational are market leaders in the UML CASE tools .UML was devised by Grady

Booch, James Rumbaugh, and Ivar Jacobson within Rational. Rational offers as well a

Unified Process (RUP) used throughout the software lifecycle.

TogetherSoft developed one of the first UML CASE tool to be totally integrated with the

code. The tool can do reverse engineering obtaining a model from the code.

Cittera supports real-time collaboration so that multiple parties across various

geographic locations are able to work together, simultaneously, on the same model.

ArgoUML is an Open Source Development Project and a free UML modeling tool. It

has a commercialized extension widely used called Poseidon for UML. (ArgoUML is

the starting point for the construction of the Multi-User Synchronous Collaborative

Software Modeling Tool, in other words Real-Time Group UML Tool).

2.4.2 XML Metadata Interchange: XMI

When UML first appeared, there was no standard format for interchange of UML models;

most individual tools had their own proprietary format.

XMI, the OMG’s XML Metadata Interchange format [20], is a vendor independent format for

saving, loading UML models, as well as import/export information from/to other UML tools.

The interchange format enables heterogeneous and homogeneous UML tools to share model

information: So, a UML model created with Rational UML tool should be understood by other

case tools as Together Soft tools.

26

However XMI is a relatively recent standard that is co-evolving and settling down with UML.

Different combinations of UML versions and XMI versions exist: only an exact match will

enable tool-to-tool interchange. (XMI 1.0, 1.1, UML 1.1, 1.3, 1.4).

A big advantage of XMI being based on XML is that the whole range of generic XML tools is

available. In [14] a new perspective for managing UML models is presented using the fact that

they are saved into and loaded from XMI format. The main idea is that some tasks are easier

to carry over the XMI file instead of over the UML Case tool. For example with the use of an

XML parser, the “visibility” of all the “public” attributes of the classes belonging to a package

could be changed into “private”. This task could also be performed using UML case tool

functionality but it will be slower as it has to be done element by element.

XMI includes only UML information the diagram layout it is lost. In current specifications of

UML 1.x, the metamodel definition does not include sufficient details to include graphical

and diagram information necessary to represent and interchange the diagrammatic aspects

UML models in an interoperable manner. This has resulted in a number of proprietary

extensions to UML and by implication proprietary XML/XMI DTDs causing information loss

when UML models are exchanged between tools.

2.4.3 Evolution of UML modeling tools: Collaboration and Sharing.

UML Case tool have evolved from Standalone applications where there were no exchange of

information, to Real Time Sharing and Collaboration where tools can not only interchange

UML information asynchronously but also they can interact in a Real Time manner.

Standalone tools: No Sharing Information.

Repository-based Model Sharing: The Information can be shared among clients. If the

repository is not proprietary the information could be shared among heterogeneous

Clients. The Information on the repository is not Real-Time.

Web-based Model Sharing: The proprietary repository can be accessed on the

Internet.

27

Real-Time Model Sharing & Collaboration: The different clients can access not only

to the repository Information but they can see as well Real Time operations of the

others participants.

Few tools and projects for working in a Real-time Collaborative manner have appeared

recently (Cittera [22], Dmeeting [12], The knight Project [13]) however consistency

maintenance is achieved with traditional methods that reduce or even avoid concurrency

(floor control mechanism, serialization). In these concurrency control mechanisms not more

that one user can manipulate the same object at the same time, or with serialization only one-

user intentions would be preserved and the operation to be preserved is decided by the

system, usually this decision is taken without application dependant information.

A new stage on the evolution of UML CASE tools is needed with Consistency Maintenance

mechanisms where all users intentions can be preserved:

28

1. Figure 2.1Collaboration and Sharing among UML Tools

Real-Time Collaborative tools will generate conflicts when different participants generate

conflictive operations. A consistent application dependant mechanism should be used in

order to detect, and manage the conflicts generated as result of concurrency.

2.4.4 ArgoUML: Starting point for a Synchronous Collaborative UML Tool

Prototype

These are the reasons for Choosing ArgoUML[23] as starting point for constructing a multi-

user UML Case tool:

2.4.4.1 ArgoUML supports standards extensively

Standards: UML 1.3 Specification, XMI, SVG, OCL and others, in this respect, ArgoUML is

still ahead of many commercial tools [24]:

• Open Source Project originally developed by a small group of people as a research project

• UML is itself an open standard. ArgoUML use open standards for all its interfaces: The

key advantage of open standards is that it permits easy inter-working (in order to avoid

fascist systems) between applications, and the ability to move from one application to

another as necessary.

• Instead of using a self-implemented UML meta-model, ArgoUML uses a meta-model

implementation provided by NovoSoft.

• XML Metadata Interchange (XMI): Is the standard for saving meta-data that make up a

particular UML model. In theory this will allow you to take the model you have created in

ArgoUML and import it into another tool.

• Graphic Vector Standards: ArgoUML saves diagram layouts using PGML (Portable

Graphics Markup Language) an earlier proposed standard than SVG, however the tool has

as well functionality for exporting the diagrams in this format. SVG format is to be

included in the next versions as format for saving/loading diagram layouts.

2.4.4.2 Usability of the UML CASE Tool

Group tools do not always success in terms of usability. Users familiarized with their single-

user editors are forced to learn new interfaces. As is presented in [9], there is a gap in terms of

usability between group editors and familiar single-user editors. One solution to mitigate this

29

problem is called application sharing or collaboration transparency, in which existing single-

user applications are converted into groupware applications.

ArgoUML is a single-user UML CASE tool quite extended. It is a familiar tool, so participants

in the new collaborative prototype do not need to employ effort learning new interfaces. The

aim is to transform the well-known existing single-user tool into a group tool.

2.4.4.3 Unique Generation of ID for networked systems

The elements of the UML model have associated an identifier, which has to be unique all

along the sites participants in the session. Two sites will generate a different set of Unique Ids.

ArgoUML achieve this property generating Ids using the network address of the site.

30

Chapter 3

Architecture

3.1 Single-user Software Modelling Tool: ArgoUML

ArgoUML, a single-user software modeling tool is the starting point of the Collaborative

Software Modeling prototype. In this section a basic explanation about the architecture of

ArgoUML is presented before addressing in following sections the architecture of the

collaborative prototype. Figure 3.1 is a basic description of ArgoUML components:

Until now UML Specification does not include graphical information to represent diagram

layout. As result of this lack, every UML tool has specific (proprietary) methods for storing

graphical Info.

UML tools manage two types of information regarding with UML diagrams: UML model and

graphical model. The UML model includes all the data related with UML elements, as Class

definitions (attributes, operations, modifiers), Interface definitions, Relations definitions

(cardinality, aggregation mode). The graphical information necessary to represent those

elements in the Graphical User Interface (localization, size..) is included into the graphical

model.

31

Figure 3.1ArgoUML Components

UML GUI

NSUML GEF

GUI LAYER

MODEL LAYER

ArgoUML Application

ArgoUML uses for both UML model and graphical model external implementations:

NSUML: A Complete Implementation of the UML Specification 1.3, NSUML, has

been implemented by Novosoft. The implementation is being used by other projects

as well. The implementation includes de definition of the UML elements (Classifiers,

GeneralizableElements), and the abstract syntax and Well-Formedness rules of the UML

Specification.

GEF: Graphical model for representing the UML model. It constitutes the diagram

layout. A UML Class Diagram is interpreted as a graph, where the classes and

interfaces are nodes, and the relations (associations, generalizations, realizations and

dependencies) are edges. It has been implemented by Tigris. OJO references

User interface events update both models:

OP1: CREATE CLASS AT (X, Y): Updates UML model and graph model.

OP2: MOVE CLASS TO (A, B): Updates only graph model.

ArgoUML Application: ArgoUML Graphical User Interface enable users manipulate both

UML model and graphical model. ArgoUML stores the UML model in XMI format and

graphical model in PGML. However ArgoUML can export the graphical model into SVG

format. ArgoUML has functionality added to the User Interface as the Cognitive Support, a

mechanism for advising designers about specific solutions based on patterns design.

3.2 Distributing ArgoUML

There is a gap in terms of usability between single-user editors and multiple-user ones. This

gap comes from the fact that in multiple-user applications, users are forced to learn new user

interfaces. Collaboration Transparency Project [9] aim, is to translate existing single user

application into multiple user application without changing the application code.

The idea of the “gap in terms of usability” has been taken into account for the design of the

collaborative prototype. Users that were familiarized with ArgoUML can use the prototype

with the same easiness. The only change in the user interface is the addition of conflict

awareness information.

32

Figure 3.2 shows the components added to transform the single-user application into the

multiple-user application.

Figure 3.2Distributing ArgoUML

The architecture is fully distributed, “Replicated Architecture”, there is no central server. The

shared data is replicated at all sites.

Replicated Architecture + Optimistic Execution = Fast Response Time

Combining a replicated architecture with an optimistic execution the application will have a

fast response time independent of network latency. Optimistic execution means that the events

generated locally are executed immediately in the UML and Graphic model, and afterwards

the events are sent to the network. The response time is a very important factor in systems

with Human Interaction, as the response time has a high influence on the users perception

about the quality of the tool.

With a central server and a pessimistic execution the response time is not as fast, and it

depends on the latency of the network: from the moment a user generates an event until it

appears on the screen some operations occur involving transmission through the network.

33

J A V A G R O U P S

TRANSLATOR TRANSLATOR

UML GUIUML GUI

NSUMLNSUML GEFGEF

TRANSLATOR TRANSLATOR

UML GUIUML GUI

NSUMLNSUML GEFGEF

CONSISTENCY
MANAGER

CONSISTENCY

MANAGER
CONSISTENCY

MANAGER

CONSISTENCY
MANAGER

Undo Generation.

Operation Selection.

Conflict Awareness.

Optimistic Execution

First the event has to be sent to the server, the server takes a decision, and the server multicast

the event to all the collaborators. The user could think the tool is not working very well

instead of realizing all the communication process that lies behind.

The only shortcoming of optimistic execution is that the Consistency Maintenance mechanisms are

more complicated, as some of the local operations executed immediately may conflict with other

concurrent operations generated at other sites concurrently. In some cases some undo or

transformation mechanisms will be applied.

The main components that have been added to obtain the distributed architecture are:

Translator: Translate local events into a serializable format to be sent through the

network and transforms the remote operations into changes in both local UML and

Graphical models.

Consistency Maintenance component: assures the UML model is consistent among all

sites.

Communication Platform: Responsible for transmitting all the Real-Time operations, as

well as the whole application state for “Latecomer support”.

3.3 The Consistency Maintenance Component

The Consistency Maintenance component assures that the UML model is consistent among all

sites these means the consistency maintenance properties are maintained (convergence, divergence and

User Intentions). However the consistency model has been designed to be flexible and allow

the system to maintain temporal inconsistencies that at some point in time will merge into a

unique and consistent version. Always final results will be Consistent.

The Consistency Maintenance component has the following properties:

Uniqueness of the Conflict Resolution: Conflicts should have the same resolution at all sites.

In the face of a conflict, all sites should perform the same conflict resolution. With a

central server, the events would be serialized, or the server would choose following

some priority schema one of the possible solutions. In a Peer-to-Peer architecture,

conflicts should be resolved locally, and the result has to be Unique among all sites.

34

Fairness of the Resolution: One solution in order to obtain Uniqueness on Conflict

resolution could be giving priority to the users based on their network address. (For

example: Highest network address highest priority). The resolution is unique but is

not fair, in this case the events launched by some user having the highest network

address will always prevail over the other users actions. The fairness of the resolution

is achieved with application semantics information. There are some solutions:

Rules Engine: deciding which operation/operations will prevail.

Randomly: (For example in some games)

App dependent Priority Levels: In the application the users have assigned a

priority level. This priority mechanism is based on application semantics, not

like prioritizing based on some non-application semantic information as the

network address example mentioned before.

The Consistency Maintenance Component for the collaborative prototype has a rule engine to

take resolutions in the face of a conflict. The resolution will be unique among all sites.

Figure 3.3Architecture of a Collaborative Peer

35

J A V A G R O U P S

UML
PRESENTATION

UML
PRESENTATION

CONFLICT
AWARENESS

PRESENTATION

CONFLICT
AWARENESS

PRESENTATION

UML
MODEL

UML
MODEL

GRAPH
MODEL

GRAPH
MODEL

CONFLICTS
STORE

CONFLICTS
STORE

TRANSLATOR TRANSLATOR

CONCURRENCY
DETECTOR

CONCURRENCY
DETECTOR

CONFLICT
MANAGER

CONFLICT
MANAGER

LATECOMER
SUPPORT

LATECOMER
SUPPORT

GUI LAYER

MODEL LAYER

APP LAYER

COMM LAYER

Single User Application

There are four main subcomponents:

• Concurrency Detector.

• Conflict Manager.

• Conflict Store.

• Conflict Awareness Presentation.

3.3.1 Concurrency Detector

Conflicts can occur only among concurrent operations 4.2.2 Independent operations.. For

every operation received the component will detect the set of operations that have a

concurrent relation, among the operations received and the local ones (optimistically

executed). There are different mechanisms for detecting concurrency. In 4.3 , a concurrency

detection mechanism when using total ordering or causal ordering protocols have been

proposed.

The set of concurrent operations and possible conflicting ones is examined by the Conflict

Manager.

3.3.2 Conflict Manager

The conflict manager consists on a rule engine that detects different types of conflicts and for

each conflict type performs a specific resolution. The conflict Manager maintains the Conflict

Store Information. Conflict manager rules and resolutions are deeply addressed in 5.

Consistency Maintenance Framework.

3.3.3 Conflict Store

Data store for each element in the UML model with at least a conflict associated. For each

conflictive element there is a list of properties that caused the conflict, and for each property

the participants on the conflict are specified, as well as the values and/or operations the

participants were trying to perform.

36

3.3.4 Conflict Awareness Presentation

There is conflict awareness information associated with the graphical model and with the

UML model. When an element has at least a conflict, its appearance is modified so the

collaborators are aware that a conflict has occurred over that element. (In the prototype

conflictive elements are marked with a red shadow (the nodes and edges of the graph). If an

element is conflictive (red shadow) the conflict information can be consulted (mouse right

button). The information appears categorized by property.

3.4 Communication Platform

Peers in the collaborative prototype can communicate with each other over two channels:

3.4.1 The Sharing channel

Enables the transmission of the application state. The transmission of the whole current UML

project occurs at the beginning of each collaborator session: When a newcomer joins the

group, it sends a request to one of the members of the group that responds sending the

complete UML Project. This newcomer support is known as Latecomer support. [11]

Figure 3.4Communication Architecture

37

SHARING CHANNELSHARING CHANNEL

RT COLLABORATION CHANNELRT COLLABORATION CHANNEL

SYNC
MANAGER

SYNC
MANAGER

DATA
OPERATIONS
MANAGER

DATA
OPERATIONS

MANAGER

NETWORK UNIT

TRANSLATORTRANSLATOR

CONSISTENCY
MANAGER

CONSISTENCY
MANAGER SYNC

MANAGER

SYNC
MANAGER

DATA
OPERATIONS

MANAGER

DATA
OPERATIONS

MANAGER

NETWORK UNIT

TRANSLATORTRANSLATOR

CONSISTENCY
MANAGER

CONSISTENCY
MANAGER

SY
N
C

M
AN

AG
ER

SY
N

C
M

AN
AG

ER

D
AT

A
O

PE
R

AT
IO

N
S

M
AN

AG
ER

D
AT

A
O

PE
R

AT
IO

N
S

M
AN

AG
ER

N
ET

W
O
R

K
 U

N
IT

TR
AN

SL
AT

O
R

TR
AN

SL
AT

O
R

C
O

N
S

IS
TE

N
C

Y
M

AN
AG

ER

C
O

N
S
IS

TE
N

C
Y

M
AN

AG
ER

LATECOMER SUPPORT (XMI files)
Unicast Newcomer to Coordinator

Multicast to all Participants

The application state is represented in XMI format for the UML model information, and

PGML for the diagram layout.

The communication on this channel is unicast and synchronous: unicast meaning that the

transmission is between a pair of collaborators (The coordinator of the group, and the

newcomer). And synchronous as the newcomer keeps waiting until the reception of the

application state.

3.4.2 The Collaboration channel

Used for the transmission/reception of all the real time operations generated by the

collaborators during the active Session. So the Translator on each collaborator peer receives

the remote events from all other users and propagates them into the local model, and in the

same fashion it distributes remotely the local operations.

Users can collaborate working over the same UML Document. The communication in this

channel is multicast and asynchronous. All the peers will receive all the events.

3.5 Integrating Application Layer with Communication Platform

The application layer is integrated with the communication platform through networks units

on each peer. Each network unit has a DataOperationManager component and a

SynchronizationManager component.

The DataOperationManager is responsible for sending/receiving the Real-Time operations in a

asynchronously fashion. The SynchronizationManager is responsible for sending/receiving the

complete application state.

The DataOperationManager and the SynchronizationManager use JavaGroups utility classes.

Some of the utility classes are PullPushAdapter and MessageDispatcher, these classes

characterizes the communication as being synchronous and asynchronous, and implement

network listener. This is addressed deeply in chapter 6 Implementation.

38

Figure 3.5 Integration of Application Layer and Communication Platform

3.6 The Translation Component

The Translation component consists on two main subcomponents: The

LocalOperationsDispatcher and the RemoteOperationsDispatcher.

The LocalOperationsDispatcher translates all the local operations (after optimistic execution)

into a serializable format in order to be sent through the network. The DataOperationManager

receives the translated data from the LocalOperationsDispatcher and multicast it to the group.

When the DataOperationManager receives data from the network, the data is passed to the

ConcurrencyDetector, if concurrence is not detected then the RemoteOperationsDispatcher

translates the network data into operations to both models (UML and graphical).

3.7 The Latecomer Support

39

CONFLICT
MANAGER
CONFLICT
MANAGER

TRANSLATOR

DATA
OPERATION
MANAGER

DATA
OPERATION
MANAGER

LATECOMER
SUPPORT

LATECOMER
SUPPORT

SYNCHRONIZATION
MANAGER

PULL PUSH ADAPTERPULL PUSH ADAPTER MESSAGE DISPATCHERMESSAGE DISPATCHER

NETWORK UNIT

JAVAGROUPS

SYNC SHARING CHANNELRT COLLABORATION CHANNEL

CORE
FACTORY

CORE
FACTORY

REMOTE
OPERATIONS
DISPATCHER

REMOTE
OPERATIONS
DISPATCHER

LOCAL
OPERATIONS
DISPATCHER

LOCAL
OPERATIONS
DISPATCHER

CONSISTENCY MANAGER

CONCURRENCY
DETECTOR

CONCURRENCY
DETECTOR

Latecomer support allows latecomers to join a collaboration session already in progress.

When the newcomer joins the session the whole application state is transmitted to its site.

Most existed prototypes in synchronous collaboration environment do not support

latecomers. All the clients have to start the session at the same time. Otherwise, they may see

different stages of the ongoing session. In the real world, the number of users in a

collaboration session changes dynamically. This challenge is addressed in [11].

Existing latecomer support mechanisms can be divided in two categories:

Transportation Protocols: “Such as Scalable Reliable Multicast Protocol. All the data

packets from the beginning of the session are stored. The late coming application can

reconstruct the current state according to the start state and these stored packets. However

protocol level algorithms have some disadvantages. First, it is not efficient to transfer all the

transport packets because most of the transmission information may be not relevant to the

application. Second, some states cannot be reconstructed by using the transport packets”.

Application Level: Latecomer support is implemented with application dependent

mechanisms. Most existing solutions are focusing on the application level approach.

Latecomer support for Software Modeling tools can be implemented easily simply

transferring the application state in XMI format. In DArgoUML a decentralized approach has

been implemented. The newcomer requests the application state to the coordinator of the

group. The coordinator of the group is a simple peer.

However with the Consistency Maintenance Framework this simple operation has to be

completed sending as well Consistency Maintenance related information as “conflict

information” and “undo tables”.

3.8 Integration with JavaGroups

JavaGroups has been used as platform for reliable group communication. It has been selected

over other technologies like JXTA as communication platform.

3.8.1 JavaGroups Support for CSCW

JavaGroups offers high support for developing collaborative systems as:

40

Reliability: So that the operations/messages sent by all the users receive the users in

a collaborative session. Reliability is necessary to maintain the consistency on the

shared document.

Selection of Multicasting Protocol: JavaGroups provides different Multicasting

Protocols implementations. So, FIFO, causal ordering, total ordering… can be

selected. Thus, two of the three consistency problems (divergence and causal ordering

violation) that arise in this types or systems can be easily solved.

The Consistency Maintenance problem left to solve is user intention violation that

depends on application semantics and cannot be solved with a generic solution. For

solving this problem a Flexible Consistency Framework has been devised based on

Software Modeling Knowledge.

Simplicity: It is simple, easy to use and smart. With some basic knowledge about

multicasting and sockets, the learning period is very small.

JavaGroups has made easier the process of developing the communication layer. With other

technology, external mechanisms for reliability and multicasting ordering should have to be

included, and the process likely would not have been so easy. Thanks to JavaGroups!

3.8.2 Architecture of JavaGroups

The participants can join the group, send messages to all members and receive messages from

members in the group. The system keeps track of the members in every group, and notifies

group members when a new member joins, or an existing member leaves or crashes. A group

is identified by its name. Groups do not have to be created explicitly; when a participant joins

a non-existing group, that group will be created automatically. The participants of a group

can be located on the same host, within the same LAN, or across a WAN. A member can be

part of multiple groups.

 The architecture of JavaGroups consists on 3 parts:

• The Channel used by application programmers to build reliable group

communication applications.

• The Building Blocks, which are layered on top of the channel and provide a higher

abstraction level.

41

• The Protocol Stack, which implements the properties specified for a given

channel.

Channel: To join a group and send messages, a participant on the session has to create a

channel and connect to it using the group name. The channel is the handle to the group. While

connected, a member may send and receive messages to/from all other participants in the

group.

The properties for a channel are specified in a colon-delimited string format. When creating a

channel a protocol stack will be created according to these properties. All messages will pass

through this stack, ensuring the quality of service specified by the properties.

Building Blocks: Channels are simple and primitive. They provide asynchronous

message sending/reception, somewhat similar to UDP. A message sent is essentially

put on the network and the send method will return immediately. Conceptual

requests, or responses to previous requests, are received in undefined order and the

application has to take care of matching responses with requests. Besides the

application actively retrieves messages from a channel (pull-style). Building Blocks

provide more sophisticated mechanisms on top of a Channel. Applications

communicate directly with the building block rather than the channel. The aim of

Building Blocks is to save the application programmer from having to write tedious

and recurring code, e.g. request-response correlation.

• MessageDispatcher: Provides synchronous (as well as asynchronous) message

sending with request-response correlation, e.g. matching responses with the

original request. It also offers push-style message reception (by internally using a

Push Pull Adapter). The MessageDispatcher can be used in both client and server

role: a client sends request and receives responses and a server receives requests

and send responses. MessageDispatcher allows a application to be both at the

same time.

• PushPullAdapter: This class is a converter between the pull-style of actively

receiving messages from the channel and the push-style where clients register a

callback, which is invoked whenever a message has been received. Clients of a

channel do not have to allocate a separate thread for message reception.

• Other Blocks: RpcDispatcher, DistributedHashTable, ReplicatedHashTable,

DistributedTree, NotificationBus.

42

The Protocol Stack: All messages sent and received over the channel have to pass through the

protocol stack. Every layer may modify, reorder, pass or drop a message. The composition of

the protocol stack for a channel is determined by the creator of the channel: a property string

defines the layers to be used (and the parameters for each layer). When creating a channel, the

properties of the underlying protocol stack can be specified as argument. A null argument

means, use the default composition of layers in the protocol stack. A possible property

specification may instruct JavaGroups to create an unreliable, UDP-based channel, another

one may specify a loss-less, FIFO channel, and yet a third one may create a loss-less, FIFO,

virtually synchronous, total order channel.

• The Sharing Channel has been implemented using a MessageDispatcher

component. (See chapter 7. Implementation)

• The Collaboration Channel has been implemented using a PullPushAdapter

component.

43

Chapter 4

 Concurrency in Collaborative Editing Systems

4.1 Introduction

In this chapter a classification of operations based on causal dependencies is presented.

Operations can be concurrent (independent) or causally dependent. Concurrent operations

are examined to detect conflicts. Only concurrent operations can conflict.

In the second section a mechanism for detecting concurrent operations is presented.

4.2 Classification of operations based on concurrency

In Synchronous Collaborative Editing Systems several users can generate operations to

manage the same shared document. Some of these operations are generated in response to the

execution of previous operations; in this case a “Causal Ordering” relation exists among the

operation executed previously and the operations generated in response. Some other

operations are generated concurrently by users at different sites. Concurrent operations can

generate conflicts if they try to modify the same attribute of the same object with different

values. In 2.3.1.1Definition 1.1. Causal ordering relation a formal definition of “causal

ordering” and “independent” 2.3.1.2Definition 1.2. Dependent and Independent operations

relations is presented.

Conflict management mean accommodation of all user intentions. Conflict management and

conflict definition are dependant on application semantics. Conflict definition, detection and

management for software modeling systems are addressed deeply in 5.Consistency

Maintenance Framework.

4.2.1 Causal ordering relation

Given two operations OP1 and OP2 they are causally dependent, OP2 OP1 (OP2 depends on

OP1), if OP2 was generated with knowledge of OP1. This dependency occurs among all the

44

operations generated by one user at the same site, or if operations are generated at different

sites, OP2 was generated after the reception and execution of OP1.

A Formal definition can be found on 2.3.1.1Definition 1.1. Causal ordering relation

4.2.2 Independent operations.

Two operations are said to be independent or concurrent if they both were generated without

knowledge of each other. Independent operations do no have “causal ordering relationships”

so operations generated on the same site can never be concurrent.

A Formal definition can be found on 2.3.1.2Definition 1.2. Dependent and Independent

operations

4.2.3 Conflict Relation

Two concurrent operations can have a conflict relation. A conflict relation appears when all

user intentions cannot be accommodated on the same object. For example several users trying

to modify the same attribute of the same object with different values. The definition of conflict

is dependant on application semantics. In [5] a formal definition was presented for the

Collaborative Graphical Environment. This definition has been extended for the Collaborative

45

Software Modeling Environment. For a deeply understanding of conflicts examine

5.Consistency Maintenance Framework.

4.2.4 Definition A.1. UML Semantic Conflict Relation

Two operations have a conflict relation if both cannot be executed for one of the following

reasons:

1. They try to modify the same attribute of the same object with different values. Only

one user intention can be preserved. 2.3.2.2Definition 2.1. Conflict Relation

2. They both cannot succeed because of some restrictions imposed by application

dependant rules. UML Restriction Relations, and Time Line Dependency Relations are

addressed in 5.Consistency Maintenance Framework

4.2.5 Definition A.2. UML Semantic Compatible Relation

Two operations are compatible if they do not have a conflict relation regarding with

Definition A.1. If two operations are compatible all user intentions can be accommodated into

the same object.

Compatible operations can be classified into Equivalent and Non-Equivalent operations.

4.2.6 Definition A.3. Equivalent Relation

Two operations are said to be equivalent if their intended effects are the same. So all users

intentions could be preserved executing only one of them.

4.2.7 Concurrent Cases

For instance if two users are trying to generate a generalization from class parent to class

child, it will only be needed to generate a single generalization, to perform a single operation.

NOTE: Two equivalent operations have the same parameters:

OP1: MODIFY ATTRIBUTE CLASS IS FINAL (Class Id = 1525, “true”).

OP2: MODIFY ATTRIBUTE CLASS IS FINAL (Class Id = 1525, “true”)

46

But if the operations are CREATE operations, the Identifier of the object to be created will be

different, as the Identifier is created locally in the site where the operation was generated:

OP1: CREATE ASSOCIATION (Association Id = 15, Client Id = 16, Supplier Id = 17)

OP2: CREATE ASSOCIATION (Association Id = 25, Client Id = 16, Supplier Id = 17)

In the first case any of the two operations can be selected and executed at any site. In the

second case the same operation to be executed has to be selected at all sites, otherwise the

new created generalization would have different identifiers in different sites and future

operations would succeed in some sites whether it would fail in others leading to

inconsistencies in the model.

4.3 Concurrency Detection

Several tasks should be performed in order to manage Conflictive User Intentions in a

Collaborative System:

• Detecting concurrency: Among the set of operations received, detect which of them

are causally dependent and which are concurrent.

• Detecting conflict relations among concurrent operations addressed in 5.Consistency

Maintenance Framework.

• Mechanisms for resolving/managing each type of detected conflict addressed in

5.Consistency Maintenance Framework

As it has been said before in this chapter, two operations are concurrent if they were

generated without the knowledge of each other. Operations generated by the same user are

never concurrent. So, concurrent operations can only be generated in different machines.

Two operations are concurrent if they were generated on different machines, before the

reception of each other:

47

Figure 4.1Concurrent Operations

In the figure operations Q1 and P1 are concurrent; Q2 is concurrent with P2 and P3. Q2

depends on the execution of P1 and Q1. This can be expressed in a formal way according with

2.3.1.1Definition 1.1. Causal ordering relation and 4.2.2Independent operations.

a) Q1 || P1

b) Q2 || P2, Q2 || P3, P3 P2

c) Q2 Q1, Q2 P1.

d) P2 Q1, P2 P1

The communication platform employed for constructing the systems is JavaGroups. With

JavaGroups the protocol stack that will be used in the communications can be configured, in

this way, the multicasting algorithm, reliability mode… etc can be selected.

For the Collaborative Editing system, at least a causal ordering multicasting algorithm is

needed. JavaGroups provides even a total ordering multicast channel that includes causal

ordering. Total ordering indicates that the same causal ordering will be received at all sites

[16]. With total ordering concurrency could be detected:

ID (OP1): Each operation has a Unique Identifier along all sites.

DependsOn (OP1): Each operation knows which was the last operation received in the

site where it was generated. (last operation received in the site or executed locally in

the site).

48

P Q

Q1 P1

Q2

P2

P3

With this information the state in which an operation was generated can be known. As there

is a total ordering among all sites, the set of concurrent operations for OP1 are those

operations received at sites between the reception of DependsOn (OP1), and the reception of

OP1.

Figure 4.2Concurrent Operations

In the figure 4.2 a possible total ordering could be (P1, P2, P3, P4, P5, Q1):

DependsOn (Q1) = P1;

Concurrent operations with Q1 are all those received between P1 and Q1 = (P2, P3, P4, P5).

A Concurrence detector at each site will detect the set of operations concurrent with each

received operations. And the possible conflict relations would be studied among those

concurrent operations.

If instead of total ordering the multicasting algorithm selected for the communication channel

is causal ordering, the detecting procedure is similar, the value DependsOn instead of being

an identifier for a unique operation a vector with the last operation received from each site

should be maintained.

Once that the possible set of concurrent operations for each received operation is obtaining,

conflicts relation among those operations are examined, and when a conflict is detected a

49

P Q

P1

Q1

P2

P3

P4

P5

specific management is performed. Chapter 4 is dedicated to Consistency Maintenance: Types

of Conflicts, detection, management and resolution of conflicts.

Detecting conflict relations among concurrent operations addressed in 5.Consistency

Maintenance Framework

50

Chapter 5

 Consistency Maintenance Framework for

Collaborative Software Modelling tools.

5.1 Introduction

In this chapter a framework for achieving Consistency Maintenance in a Collaborative

Synchronous Software Modelling tool is presented:

First the concurrency problems regarding with consistency maintenance that arise in a

Collaborative Editing System are presented, as well as the solution to each of them. There is

one concurrency problem that has to be solved with application dependant mechanisms: User

Intention Violations. This chapter and this Thesis are all about User Intention Preservation!

Second, an explanation of how Conflict definition is dependant on application semantics is

presented. In other words in different environment conflicts are generated by different causes

so the definition of conflict, the premises to detect a conflict, depend on the nature of the

application.

Third, an extract of the OMG UML Specification 1.3 is presented, specifically the Abstract

Syntax and Well-Formedness rules. The aim of this section is to show the fact that UML

Specification rules characterizes the behavior of the operations. Some operations will have a

restrictive behavior as they modify values affected by some UML restrictions. So, an

understanding of UML Specification is required to understand the Definition of Conflict.

Based on the above, the formal definitions that characterize operations based on UML

Restrictive behavior are presented in the fourth section.

In the fifth section Time Line dependencies among operations are presented as well as the formal

definitions.

With the definitions in section fourth and fifth sections, the Conflict definition for Software

Modeling Environments is finally completed.

51

In the next Section the different types of information and its importance for consistency

maintenance that a UML Diagram consists on are presented, UML information and

Graphical Information.

From all this information - definitions, operation behavior, etc, a hierarchy of operations

classified by category is presented. Each category of operations has a different behavior and

associated conflict resolution mechanisms.

Finally the Conflicts: a Matrix with the possible types of conflict is presented. The different

categories of operations are placed on each axis of the Matrix. This matrix shows the types of

conflicts generated by the combination of two operations belonging to any category. With this

conflict matrix the types of conflict can be detected based on the categories of the operations.

Then an explanation of how each conflict can be managed. Very few conflicts are resolved by the

system and others will be solved by the participants.

There are some cases where the inconsistencies are not permitted: Strict Consistency. In some

other cases conflicts will generate a temporary inconsistency: Flexible Consistency Model.

Finally the recording of user intentions is described. This information is preserved in a conflict

object presented not only to the users participants in the conflict. The knowledge of user

intentions improves group awareness in the application.

5.2 Inconsistency Problems in Collaborative Editing Systems

The three inconsistency problems that arise in a replicated architecture for a collaborative

editing system have been presented in 2.3Consistency Maintenance Framework. The

following table is an schema of the Consistency Maintenance problems, properties that are

violated when the problems appears and the solutions to solve the problems.

Maintenance Problem Property Violated Solution

Divergence Convergence Serialization

Causality Violation Causality Preservation Causal Ordering

Intention Violation Intention Preservation. App Dependent Mechanisms

52

Divergence: “Operations may arrive and be executed at different sites in different order resulting in

different final results”. The effects of executing a set of operations OP1, OP2, OP3 and OP4 at

different sites in different orders will cause divergent results. The consistency property that is

not achieved is Convergence. Convergence ensures same final results on the copies of the

shared document at all sites at the end of a session. The divergence problem can be solved

with any Serialization Protocol that ensures the same total order at all sites.

Causality Violation: “Operations may arrive and be executed out of their natural cause-effect

order”. The property that is violated is Causality Preservation. It ensures the execution order of

dependant operations to be the same as their natural cause-effect order during a session.

Causality Preservation can be achieved with ordering on dependant operations (Causal

Ordering).

Intention Violation: “As result of conflicting operations (for example operations to change the

same attribute of the same object to different values), the effect of some operations is not

preserved.” Intention Preservation can only be achieved with application dependant

mechanisms, as the conflicts of concurrent operations (independent operations) would be

generated and solved differently depending on the application semantics.

The consistency model imposes execution order only on dependant operations, but not on

independent operations as long as the convergence and intention preservation properties are

always preserved.

5.3 Application Semantics dependency for Conflict Management

As it was presented in Table 5.1, “Consistency Maintenance Problems and Solutions”, user

intention preservation is only possible with application dependant mechanisms.

The definition of Conflict and its management is also dependant on application semantics.

In Chapter 3, the definition for Conflictive operations in the Software Modeling environment

is presented for the first time:

Definition A.1. Conflict Operations: Two operations have a conflict relation if both cannot be

executed for one of the following reasons:

1. They try to modify the same attribute of the same object with different values. Only

one user intention can be preserved. [Definition 2.1. Conflict Relation]

53

2. They both cannot succeed because of some restrictions imposed by Application

dependant rules.

The first part of this definition has been obtained from the Consistency Framework presented

in [5] for Graphical Collaborative Environments. However the Conflict definition has been

extended in order to include other relationships among operations that occur in the UML

Modeling Environment.

We now show how some of Chen affirmations appropriate for the Graphical Environment are

no longer appropriate for other environments:

“Create Operations will always be compatible with each other because each create operation create a

different object, Create operations do not conflict with other types of operations because operations

targeting the same object as create operation must be causally after this create”

In the Graphical environment operations usually refer to one object (except grouping and

ungrouping), like “DRAW A CIRCLE”, “FILL CIRCLE”, “MOVE CIRCLE”. While in Software

Modeling environments operations can refer to more than one item/object as for example:

OP1: CREATE GENERALIZATION (from parent-class to child-class): Involves three

elements: generalization object to be created, parent-class item and child-class item.

OP2: CREATE ATTRIBUTE (on class): Involves two elements: The attribute to be created

and the class to be created.

OP1 is depends on the existence of the “parent-class” and “child-class”. Operation CREATE

GENERALIZATION (from parent-class to child-class) conflicts with operation DELETE CLASS

(parent-class), as both effects cannot be maintained. These “Time Line Dependency Relations”

originate conflicts.

There are some rules in the UML Specification that give rise to new conflict relations “Conflict

Restriction Relations”. For example the following two operations will conflict:

a) OP1: CREATE GENERALIZATION (from a-class to b-class);

b) OP2: MODIFY CLASS ATTRIBUTE (a-class):

b.1) ATTRIBUTE TYPE (IS_LEAF);

b.2) ATTRIBUTE VALUE (true);

54

The effect of operation OP2 is that a-class set its attribute “is-Leaf” to true. This means that a-

class cannot participate in a generalization as parent class, while operation OP1 is trying to

such a generalization with a-class having a parent role.

In the UML Environment the ABSTRACT SYNTAX AND WELL FORMEDNESS RULES (OMG UML

Specification 1.3) generates these two new categories of conflict relations:

1. UML Restriction Relation.

2. Time-Line Dependency Relation.

5.4 OMG UML Specification 1.3 Foundation package Core:

Abstract Syntax and Well-Formedness Rules

The Abstract Syntax and Well-Formedness rules of the OMG UML Specification characterizes

the behavior of some operations. The specification must be examined in order to know which

operations have a restrictive behavior.

The Core package is the most fundamental of the sub-packages that compose the UML

Foundation package. It defines the basic abstract and concrete metamodel constructs needed

for the development of object models. Abstract constructs are not instantiable and are

commonly used to reify key constructs, share structure, and organize the UML metamodel.

Concrete metamodel constructs are instantiable and reflect the modeling constructs used by

object modelers (cf. metamodelers). Abstract constructs defined in the Core include

ModelElement, GeneralizableElement, and Classifier. Concrete constructs specified in the

Core include Class, Attribute, Operation, and Association.

5.4.1Association:

Name: The name of the association that has in combination with its associated

Classifiers must be unique within the enclosing namespace (usually a Package).

Operation affected: Modify Association Name.

5.4.2Aggregation

55

When placed on one end (the “target” end), specifies whether the class on the target end is an

aggregation with respect to the class on the other end (the “source” end). Only one end can be

an aggregation.

At most one Association End may be an aggregation or composition.

[Well-Formedness Rule. Association. 2]

Operations affected:

Modify Association Aggregation.

Modify Association Aggregation.

5.4.3Classifier

A classifier is an element that describes behavioral and structural features; it comes in several

specific forms, including class, data type, interface, component, artifact, and others that are

defined in other metamodel packages….

Name: It has a name, which is unique in the Namespace enclosing the Classifier.

Operations affected:

Modify Class Name.

Modify Interface Name.

5.4.4 Feature

 A feature is a property, like operation or attribute, which is encapsulated within a Classifier.

Name: The name used to identify the Feature within the Classifier or Instance. It must be

unique across inheritance of names from ancestors including names of outgoing

AssociationEnd.

Operations Affected:

Modify Attribute Name.

56

5.4.5 GeneralizableElement

A GeneralizableElement is a model element that may participate in a generalization

relationship.

[Well-Formedness Rule. GeneralizableElements.1]

A root cannot have any Generalizations.

Operation affected:

Modify Class is Root.

[Well-Formedness Rule. GeneralizableElements.2]

No GeneralizableElement can have a parent Generalization to an element that

is a leaf.

Operation affected:

Modify Class is Leaf (final).

[Well-Formedness Rule .GeneralizableElements.3]

Circular inheritance is not allowed.

Operation affected:

Create Generalization.

5.4.6 Namespace

A namespace is a part of a model that contains a set of ModelElements each of whose names

designates a unique element within the namespace. In the metamodel, a Namespace is a

Model Element that can own other Model Elements, like Associations and Classifiers. The

name of each owned Model Element must be unique within the Namespace.

Operation Affected:

Modify Class Name, Modify Generalization Name.

Modify Attribute Name, Modify Association Name.

Modify Interface Name, Modify Realization Name.

Modify Dependency Name.

57

5.5 UML Restriction Relation

As explained in the previous section “Abstract Syntax and Well-Formedness of core package

UML” there is a set of Rules-Restrictions that must be taken into account. These restrictions

make some operations to conflict among them. As explained earlier, for example a

Generalization between two classes, parent-class and child-class, can only be created if

parent-class is not “leaf” and child-class is not “root”. A class has a set of modifiers (public,

abstract, root, leaf) that describes the behaviour of the class. So, some operations are

dependant on these values. On the other hand “is-leaf” modifier cannot be set to true if the

generalization already exists for the parent class.

Thus,

5.5.1 Definition B.1 Restriction Relation: OP1 ® OP2

Given two Operations OP1 and OP2 they have a restriction relation OP1 ® OP2 if:

1. If executed sequentially in any order (OP1, OP2) or (OP2, OP1), the execution of the second

operation can‘t be executed because of the restrictions imposed by the first one.

For Example: In this first case, OP1 and OP2 have a Restriction Relation.

OP1. CREATE GENERALIZATION (parent-class, child-class),

OP2. MODIFY CLASS ATTRIBUTE IS-LEAF (“true”).

In the second case they don’t:

OP1. CREATE GENERALIZATION (parent-class, child-class),

OP2. MODIFY CLASS ATTRIBUTE IS-LEAF (“false”).

5.5.2 Definition B.2 Restrictive Behavior of an operation OP1.

An operation OP1 is said to have Restrictive Behavior if it is affected by the rules defined in

the Abstract Syntax or Well-formed ness rules of UML Specification. The operations with

restrictive behavior can cause future operations to fail due to the restrictions they imposed

when they were executed.

58

For example OP1: MODIFY CLASS ATTRIBUTE IS-LEAF (“true”) could cause future OP: CREATE

GENERALIZATION operations to fail.

5.6 Time-Line Dependency Relation

5.6.1 Introduction

As has been said before in the Software Modeling environment operations can refer to more

than one item/object as for example:

OP1: CREATE GENERALIZATION (from parent-class to child-class): Involves three items:

generalization object to be created, parent-class item and child-class item.

OP1 is dependant on the existence of the “parent-class” and “child-class”. Operation CREATE

GENERALIZATION (from parent-class to child-class) conflicts with operation DELETE CLASS

(parent-class) as both effects cannot be maintained.

In paper [8] a hierarchy of temporal dependencies among operations is presented. The

Temporal set represents all types of conflicts that cause inconsistencies across a timeline.

Temporal Roles:

1) Depends-On: Indicates that the action depends on some other action being earlier in

the timeline.

2) Dependable: Indicates that the action may be used as a target of a Depends-On

relation.

3) Server-Depends-On: Indicate that the action may break some depends-On relations.

For example, the following UML operations have the following temporal relations:

CREATE CLASS:

Dependable: Other operations depend on this one.

CREATE GENERALIZATION (parent-class, child-class):

59

Depends-On: CREATE CLASS.

Dependable: Yes. (Modify and Delete Generalization).

DELETE CLASS:

Depends-On: CREATE CLASS.

Server-Depends-On: Yes. The execution of this operation could create conflicts with

other operations that Depends-On CREATE CLASS as MODIFY CLASS, CREATE

GENERALIZATION…. etc.

From the Idea of time-line dependencies the following definitions would be needed in the

software modeling environment for classifying the operations.

5.6.2 Definition C.1. Independent-Behavior Operation

An operation OP1 is said to have Independent-Behavior if it doesn’t depends on the execution of

some other action being executed earlier in time.

Examples:

CREATE CLASS

CREATE INTERFACE

5.6.3 Definition C.2. Dependent-Behavior Operation.

An Operation OP1 is said to have Dependent-Behavior if in order to be executed it needs some

other operation to have been executed earlier in time.

Examples:

CREATE ASSOCIATION

CREATE ATTRIBUTE

CREATE OPERATION

NOTE: The Causally Dependency explained in The Definition 1.2 explains when two

Operations have a Causally Dependant or Causally independent relationships. This

dependency comes from the Causal Ordering Property. While In Definition C.1 and C.2

Dependency refers to the nature of the Operations. Definition 1.2 is only about Concurrency.

60

5.6.4Definition C.3. Break Dependencies Behavior.

An Operation OP1 is said to have Break Dependencies Behavior if its execution could cause some

dependant operations to fail.

Examples:

DELETE CLASS

DELETE INTERFACE

DELETE ATTRIBUTE

5.7 Types of Information in a UML Diagram

A UML Diagram consists of UML Information and Graphical Information for the diagram

Layout.

As explained in 2.4.2XML Metadata Interchange: XMI in the UML and XMI Specifications no

graphical information is included. When a UML model is exported in XMI format only the

UML information is included. UML tools save graphical Information in graphical vector

formats such as SVG or PGML. Software modeling tools and the user are responsible for

managing the graphical appearance.

It can be said that the following two diagrams contain the same UML Information and can be

said to be UML Consistent.

Figure 5.1Equivalency of UML Diagrams

61

Graphical Information Consistency Maintenance is considered of less importance, as it does

not affect to the UML Information Consistency. In the face of a conflict the graphical

operations are considered the least important.

Graphical Operations have been classified in two categories:

Graphical Distributed: These operations are distributed to all sites. They give

information about the current localization of the UML elements. There are very few

Graphical operations that are distributed, only the modification of the localization of

the edges (classes and interfaces) of the graph:

MOVE CLASS TO (x, y).

MOVE INTERFACE TO (x, y)

Graphical Local: These operations are not distributed among all sites, as they will only

confuse the other participants and will waste network bandwidth:

RESIZE CLASS (x,y, height, width)

TRANSLATE CLASS (dx, dy): drag event with the mouse.

GRAPHICAL OPERATIONS of the Edges (Associations, Generalizations,

Dependencies, Realizations)

While the first set of operations “Graphical Distributed” can be considered to clarify the UML

model, the second set of operations will only confuse the other users.

If one user drags a class on the screen, the other users should not see how the class is being moved

during the movement, only the final position is needed and revealed. Otherwise the participants would

see all the movements, clicks, drags and drops of their collaborators.

Even if a few operations are transmitted in the face of a conflict they are considered the least

important and are ignored as they do not contribute to the UML consistency maintenance.

5.8 Classification of Conflict Operations based on Application

Dependant relations (UML relations)

In the UML Collaborative Prototype a subset of the possible operations managing UML

elements have been implemented. This subset consists of operations for managing Class

Diagrams.

62

The Operations Implemented are CREATE, MODIFY and DELETE, applied to Classes,

Attributes, Interfaces, Associations, Generalizations, Realizations and Dependencies.

CREATE: Creates the Objects.

MODIFY: Modifies the Properties of the Objects.

DELETE: Erases the object.

Based on the operations’ behavior (restrictive non restrictive, dependent non dependent,

break dependency behavior, graphical information operations) , the types of conflicts that can

be generated, and the management of the generated conflicts a hierarchy of operations has

been constructed classified by category.

Figure 5.2Operation Categories for Conflict Management

63

5.9Description of Operations Categories

5.9.1Create Independent

Create Independent: Operations included in this category are those with an “Independent-

Behaviour” as per Definition C.1. These create operations are always compatible with other

create Independent operations as each create operation creates a different object, and they

cannot conflict with other create dependant, modify or delete operations, as operations

targeting the same object as the create operation must be causally after this create.

Examples are the creation of the nodes in a UML Diagram:

CREATE CLASS.

CREATE INTERFACE.

The creation of classes or Interfaces does not depend on the existence of other elements. These

operations will never conflict with any other operation: MODIFY CLASS ATTRIBUTE operations

will never be concurrent with CREATE CLASS, as it is generated after the execution of CREATE

CLASS.

5.9.2 Create Dependent Non Restrictive:

Operations included in this category are those CREATE operations with a “Dependent

Behaviour” according with definition C.2 and at the same time do not have a “Restrictive

Behaviour” according with definition B.2.

Create Operations that do depend on the execution of other operations earlier in the time line.

The Objects created are not under restrictions that could make the Creation operation fail.

Operations of this type are: (for example)

CREATE ATTRIBUTE on Class X

CREATE OPERATION on Class X

CREATE ASSOCIATION from Class X to Class Y

CREATE REALIZATION from Class X to Interface Y

CREATE DEPENDENCY from Class X to Class Y

64

5.9.3 Create Dependent Restrictive:

Operations included in this category are those CREATE operations with a “Restrictive

Behavior” according to Definition B.2 and with a “Dependent Behavior” according to definition

C.2.

Explanation by Example:

CREATE GENERALIZATION from Child Class to Parent Class.

In order to be successfully executed, Child Class and Parent Class must have been created

earlier and Child Class must have its “is-root” attribute set to false, and Parent Class must

have its “is-leaf” attribute set to false, otherwise the operation will fail.

Another example would be, trying to execute the following two concurrent operations:

CREATE GENERALIZATION from Child Class to Parent Class.

CREATE GENERALIZATION from Parent Class to Child Class.

The UML model specifies that a Class can be the Parent of the Child in a relationship, but it

does not allow it to be the parent of one class and the chill of the same class.

5.9.4 Modify Non Restrictive:

Modify operations always have “Dependent Behaviour” since in order to modify a value it

has to be created previously. To this category belong Modify operations that do not restrict

operations to fail in the future. In other words operations that do not modify any value that

could restrict other operations in the future. Some examples are:

MOD_ATTRIBUTE_INITIAL_VALUE, MOD_ASSOCIATION_NAVEGABILITY.

MOD_ASSOCIATION_MULTIPLICITY, MOD_ATTRIBUTE_VISIBILITY.

MOD_ATTRIBUTE_IS_STATIC, MOD_ATTRIBUTE_IS_TRANSIENT.

MOD_ATTRIBUTE_IS_VOLATILE.

5.9.5 Modify Restrictive:

65

Modify operations that have “Restrictive Behavior”. Examples:

MOD_CLASS_NAME. MOD_DEPENDENCY_NAME.

MOD_ASSOCIATION_NAME. MOD_GENERALIZATION_NAME.

MOD_ATTRIBUTE_NAME. MOD_CLASS_IS_FINAL.

MOD_CLASS_IS_ROOT. MOD_ATTRIBUTE_TYPE.

MOD_ASSOCIATION_AGGREGATION. MOD_INTERFACE_NAME.

MOD_REALIZATION_NAME.

5.9.6 Delete:

Delete operations have a “Break dependencies” behaviour so its execution could cause conflicts

with operations that depend on the object that is targeted to be deleted.

DELETE_CLASS, DELETE_GENERALIZATION.

DELETE_ATTRIBUTE, DELETE_OPERATION.

DELETE_ASSOCIATION.

Delete operation can perform deletes in cascade. Deleting a class means deleting all its

attributes, associations, generalizations…

5.9.7 Graphical Local

As explained before in this chapter a UML Diagram has some Graphical Information

(Diagram Layout) and UML Information. Graphical Inconsistency does not lead to UML

Consistency. In a UML Diagram the important information is the UML Information not the

graphical one.

However two levels of Importance have been given to Graphical Information.

To the Category of GRAPHICAL_LOCAL belong all the graphical operations that have been

considered of no importance and not only does not give any information but also confuses or

distracts the user. For example:

 ELEMENTS_TRANSLATION: Dragging elements on the screen. It would be

very confusing to see in the screen how all the users are moving the elements

of fixing the layout.

66

 ELEMENTS_RESIZING.

 EDGES LOCATION: Edges are Associations, Generalizations, Dependency and

Realizations.

 EDGES SHAPE MODIFICATION.

In this case is the tool responsible for assigning some appropriated values.

5.9.8Graphical Distributed:

Even If Graphical Information does not give any UML information the Localization of the

Nodes (Classes and Interfaces) is distributed. An analyst/designer could arrange the layout of

the diagram so it is more clear and understandable. For this purpose it it is only necessary to

distribute the localization of the Nodes (Classes and Interfaces Only the localization will be

distributed not the translation. If a user is moving a class from position A until position B, The

others users are not aware that a class is being moving, until the destination position has been

chosen.

5.10 Conflict Detection Matrix

The Following Matrix presents the kind of conflicts generated between any two categories.

Each kind of conflict has a different Resolution.

67

Figure 5.3Conflict Detection Matrix

5.10.1 Conflicts Management

In this section a description of the conflicts and its management is presented.

There are different types of conflicts. A few conflicts will be resolved by the system but most

of them need to be resolved by the users. A conflict is resolved by the system only in special

cases such as some Deletes and Graphical Information Updates.

In the face of a conflict: all user intentions are preserved in the shape of Conflicts objects that

are associated with the UML Elements targeted by the conflictive operations. This information

is accessible to all the participants of a session.

This model combines flexible consistency maintenance allowing temporary inconsistency for

conflicts of type “Modify Non Restrictive Versus Modify Non Restrictive” and “Graphical Versus

Graphical”. In the Graphical-Graphical conflict the inconsistency refers to Graphical

Information not to UML Information. Whereas in other cases the management of conflicts is

based on a Strict consistency maintenance model.

Why in some cases a temporary inconsistency is permitted and in other cases it is not?

68

GRAPH
CONFLICT

GRAPH
DISTRIB

DELETE

GRAPH
CONFLICT

DELETE.

DELETE

CONFLICT

MODIFY

RESTRICT

CONFLICT

MODIFY

REST.

DELETE

CONFLICT

MODIFY

CONFLICT

MODIFY

NR

DELETE

CONFLICT

MODIFY

CREATE
RESTRICT

CREATE

RESTRICT
CONFLICT

CREATE

DEPEND
RESTRICT

DELETE

CONFLICT

CREATE

DEPEND
NR

CREATE

INDEPEND

GRAPH.
DISTRIB

DELETEMODIFY
REST.

MODIFY
NR

CREATE
DEP. REST

CREATE
DEP. NR

CREATE
INDEP.

Temporary inconsistency is permitted when the level of inconsistency can be recovered. The

inconsistency is allowed for non restrictive values. So the level of inconsistency will not grow.

If the inconsistency were permitted for restrictive values these values will be different in all

the sites. And some future operations would fail in some sites and in some others will not.

The level of inconsistency would grow as some operations would be executed only in some

sites. And this inconsistency state could never reach a consistency state as the system hasn’t

enough information.

Whenever is possible the flexible consistency model is selected, letting the user resolve the

conflict at the moment he chooses.

The participants know at any moment, the level of consistency of the document, and which

operations and participants have generated a conflict and which were the intentions of all the

users participant in the conflict.

For most of the conflicts the state of the shared document is the same in all the sites.

A priority level is assigned to the operations thus:

1. CREATE operations.

2. MODIFY value.

3. DELETE operations.

4. GRAPHICAL Operations.

If a CREATE operation (create generalization) conflicts with a MODIFY operation, the create is

executed and the MODIFY operation is stored as conflict.

This level of prioritization is based on the amount of information created/lost by any

operation. So DELETE Operations have less priority than MODIFY or CREATE as Delete

removes information whereas CREATE adds information to the model.

If a graphical Operation conflicts with a delete, the graphical Operation is ignored.

Below there is an Schema for the management of the different types of conflicts.

69

5.10.2 Conflict: Modify Non Restrictive Versus Modify Non Restrictive.

 Temporary UML Inconsistency.

 Maintain Local values (Optimistic execution) until conflict resolved.

 Create Conflict Information Objects with User Intentions.

5.10.3Conflict: Modify Restrictive Versus Modify Restrictive.

 Not permitted Inconsistency. Consistency Maintained at all sites.

 At all sites assign the default non restrictive value until conflict is resolved.

 Create Conflict Objects with User Intentions.

5.10.4Conflict: Create Restrictive Versus Modify Restrictive.

 Not permitted Inconsistency. Consistency Maintained at all sites.

 Perform Create.

 Create Conflict Objects with User Intentions.

5.10.5Conflict: (Create || Modify) Versus Delete

 Not permitted Inconsistency. Consistency Maintained at all sites.

 Perform Create or Modify.

 Create Conflict Objects with User Intentions.

5.10.6 Conflict: Create Restrictive Versus Create Restrictive

 Not permitted Inconsistency. Consistency Maintained at all sites.

 Not perform any Operation.

 Create Conflict Objects with User Intentions.

5.10.7 Conflict: Delete Versus Graphical

 Not permitted Inconsistency. Consistency Maintained at all sites.

70

 Perform Delete.

 Ignore Graphical Operation.

 Not Create Conflicts.

5.10.8 Conflict: Graphical Versus Graphical

 Graphical Inconsistency allowed.

 Not Create Conflicts.

5.11 Conclusion

In this chapter a Consistency Maintenance Framework for Collaborative Software Modeling

tools have been proposed. The framework preserves all user intentions. For achieving user

intention preservation application semantics are used.

In Software Modeling there are two types of information: UML model information and

Graphical Information. Graphical Information has a lower priority level than UML

information.

The detection and management of conflicts is based on the Abstract Syntax and Well

Formedness rules of UML Specification 1.3 and in Time-Line dependencies.

At the end of the chapter a matrix for detecting conflicts is presented with an explanation of

how each conflict can be treated.

The next chapter addresses Implementation issues. Basically describes how each component

presented earlier in the architecture chapter has been implemented.

71

Chapter 6

Implementation

6.0.1 Introduction

The algorithms and schemas presented in previous chapters have been implemented in the

DArgoUML prototype system. ArgoUML is fully implemented in Java. DArgoUML is the

Distributed version of ArgoUML, which includes a Consistency Maintenance Framework

based on Software Modeling Knowledge.

The effort for devising DArgoUML has been distributed in two phases:

 Phase I: To extend a single-user tool, ArgoUML, in order to obtain a

distributed version. A Real-Time Software Modeling tool where multiple

users can collaborate concurrently.

 Phase II: To devise a Consistency framework for the collaborative tool where

the three consistency properties (convergence, causal order preservation and

intention preservation) are maintained. The Consistency Framework is based

on application dependant information.

The starting point for the phase I, was single-user modeling tool ArgoUML, version 0.10.1.

This version had initially more that 800 classes for the User Interface Application. Besides

ArgoUML manages two information models, the UML model implemented in the library

NSUML by Novosoft and the graphical information library GEF implemented by Tigris.

These three components: ArgoUML, NSUML and GEF have been modified for distributing

the tool. It has been a must during the development not to modify too much source code.

However, the phase I, has been long and hard because of the amount of source code involved.

For the phase II, the hardest task was not the implementation but the theoretical design of the

Flexible Consistency Maintenance Framework.

This chapter addresses the implementation of phase I and phase II.

72

6.1 NSUML: The UML Model

ArgoUML is compliant with the OMG Standard for UML version 1.3. The code for the

internal representation of an UML model is completely generated from the specification. To

achieve this, a special metamodel library NSUML was developed by Novosoft.

Novosoft UML library provides an implementation of complete UML 1.3 physical

metamodel, event notification, undo/redo support, reflective API, XMI loading/saving.

For the purpose of distributing ArgoUML a set of NSUML classes have been modified. The

set includes all classes representing elements belonging to Class Diagrams: classes, interfaces,

attributes, generalizations, dependencies, associations, … etc. They belong to the

uml.foundation.core package:

Figure 6.1UML model Elements in Class Diagrams

Some methods of these elements have been modified. The creation, deletion and modification

of some attributes have been captured. In some cases when a change is applied to the model,

the change has to be distributed to the rest of the participants. In other cases the change is not

73

distributed. If the change was generated locally it will be distributed. But, if the change was

generated remotely or the change is the result of a conflict resolution it will not be distributed.

Otherwise an infinite loop would be generated. In figure 6.2 a schematic definition of the

element MclassImpl is presented. MclassImpl is the implementation of a “class” element in a

class diagram.

Figure 6.2 MClassImpl definition

Each element has been modified with the addition of “distribute methods”. Besides each class

setter and delete methods have been updated, so that they can check if the operation is local

or not and launch or not the distribution. During the loading of ArgoUML several elements

are created and accessed. During the loading of the application distribution is not enabled.

In figure 6.3 the classes involved in the process of distribution are presented: Elements of

packages ru.novosoft (NSUML) and org.tigris (GEF) use class NetworkContext and

ApplicationStatus to know if it is necessary to distribute. NetworkContext and

ApplicationStatus classes are implemented with ThreadLocal mechanisms. ThreadLocal

control management mechanisms are addressed further in this chapter.

 The LocalOperationsDispatcher is responsible for launching all the changes to the network.

74

Figure 6.3Distribution of Local Operations

6.2 GEF Model

GEF is a library used to construct graph editing applications using a Node-Port-Edge model. It Model-

View-Controller design based on the Swing Java UI library makes GEF able to act as a UI to existing

data structures. It supports XML-based file formats based on the PGML standard.

As it has been explained earlier, graphical operations have a low level of priority. Only

operations modifying the localization of some UML elements are distributed. The UML

elements corresponding with the nodes of a graph are those whose localization will be

distributed: Classes and Interfaces. Localization and resizing of edges (realization,

dependencies, inheritance, association) are not distributed.

The modifications done in the graphical model are very similar to those done in NSUML

model. Only the class Fig from the package org.tigris has been affected.

75

6.3 Real-Time Collaboration Channel

The Collaboration Channel is used for the transmission/reception of all the real time

operations generated by all the participants in the session.

Figure 6.4 Real-Time Collaboration Channel

DataOperationManager: Responsible for sending/receiving the Real-Time operations

to/from the channel:

a) Local Operations: It receives local operations from the LocalOperationsDispatcher in

a serializable format (NetOperationData). The DataOperationManager encapsulates

the data into a message and sends it to the network.

b) Remote Operations: It receives remote operations encapsulated in messages from the

channel. It passes the data to the ConflictManager.

76

The DataOperationManager is implemented using a PullPushAdapter. It allows clients of a

channel to be notified when messages have been received instead of having to actively poll

the channel for new messages. This eliminates any need for the clients to allocate a separate

thread for receiving messages.

Upon creation, an instance of PullPushAdapter creates a thread which constantly calls the

Receive method of the underlying Transportable instance (e.g. a channel), blocking until a

message is available. When a message is received, if there is a registered message listener, its

Receive method will be called.

DataOperationManager implements MessageListener JavaGroups Interface, and in its receive

method is implemented the actions to be done when a message is received.

Conflict, Remote and Local packages use MessageUnit data Classes for transferring the

information.

MessageUnit: Contains all the class definitions necessary to transfer all types of operations.

6.4Local Operation Dispatcher

In figure 6.3 the process for distribution of Local Operations is presented. When any of the

models are updated if the operation was generated locally specific data is send to the Local

Operation Dispatcher, that encapsulates the data into a serializable format and send it to the

DataOperationManager.

77

Figure 6.5 Local Operations Dispatcher

The LocalOperationsDispatcher uses the NetDataGenerator to generate serializable data

with a specific format to be sent through the network. NetDataGenerator generates

NetOperationData objects indicating the type of operation and the parameters. The data to be

sent are queued until they are sent to the DataOperationManager.

6.5 Remote Operations Dispatcher
The RemoteOperationsDispatcher is module called to execute remote operations into the local

module. It uses some utility classes as NetCoreFactory, and NetCoreHelper to manipulate

UML elements and NetGraphHelper for manipulating the graph model.

78

Figure 6.6Remote Operations Dispatcher Working method

The RemoteOperationDispatcher updates the NetworkContext object to indicate that the

current execution thread comes from the network, so, the operation should not be distributed.

When the model (UML or graph) is updated, the NetworkContext value is checked. As result

the operation is executed locally but not transmitted to the network.

6.6 Conflicts

6.6.1 ConflictManager

Acts as a “conflict detector”: With a set of rules it can detect if two operations have a conflict

relation and the conflict type. There are seven different types of conflicts. Every type has a set

of actions associated (some conflicts are resolved by the system, others need to be resolved by

the users, in some conflicts there is a temporarily inconsistency while in others the

inconsistency is not permitted). The ConflictManager is the Implementation of the

Consistency Maintenance Framework addressed deeply in 5.Consistency Maintenance

Framework.

79

In a face of a conflict detected the ConflictManager decides if an operation is to be performed.

To perform an operation the RemoteOperationsDispatcher will be called. The

ConflictManager uses

the ConflictStore to maintain the information associated with the conflicts.

Figure 6.7Conflict Management

6.6.2ConflictStore

Maintains all the conflict data relative to the UML elements in the system. The ConflictStore is

always consistent among all participants in a session. The information is the same in every

peer.

When a new element is added to the store, the UML element is graphically marked (red

shadow) so the user is aware of conflicts associated with the element. In the same fashion if all

the conflicts are deleted from an element the now “non-conflictive” element has to be

unmarked.

It is implemented with a Hashtable: an entry for every UML element with a conflict

associated. The key entries of the Hashtable are the unique Identifiers of the elements. The

ConflictStore has methods for adding, removing conflict data to a UML element. Each UML

80

element can have many conflicts associated. For each UML element, its associated conflict

data is maintained in an object of type UMLConflictType.

6.6.3UMLConflictType

A UML element can have many conflicts associated. UMLConflictType is a Hashtable that

maintains all the information related with the conflicts associated with one UML elements.

The conflicts are categorized by the conflictive operation that generated the conflict. Then, the

key of the Hashtable is of type ConflictOperation. For every ConflictOperation there can be

many participants. UMLConflictType object has methods for adding/removing participants

to the different types of conflicts, adding/removing new types of conflicts, and serving all this

information to present to the user conflict awareness information.

A participant in a conflict is a user that has generated an operation that do conflict with other

operation generated concurrently by other user. The information maintained in the table is the

messages received. A message has information about the generator and the type of the

operation, and the user intentions of the participant.

6.7 Sharing Channel

The sharing channel enables the transmission of the application state. That is the basis for the

latecomer support. The main class in the Sharing Channel is the Synchronization Manager. It

is implemented with a MessageDispatcher, a JavaGroups utility Class.

The MessageDispatcher provides in this case synchronous message sending with request-

response correlation, matching the response with the original request. An instance of

MessageDispatcher is created with a channel as an argument. It can be used in both client and

server role: a client sends requests and receives responses and a server receives requests and

send responses. MessageDispatcher allows an application to be both at the same time. To be

able to serve requests, the RequestHandler.handle method has to be implemented.

In the case of the sharing channel, the first collaborator that joins the group (creates the group) is the

coordinator. The coordinator will act as a server when the newcomers request the state of the applica-

tion.

81

6.8 Conflict Awareness

The User Interface Application ArgoUML has been modified to provide Conflict Awareness

to the collaborators on a session. For each element in the graph, Nodes (Classes and

Interfaces) and Edges (Associations, Generalizations, Dependencies, Realizations) two

modifications have been done:

a) Marking the element as Conflictive: All those elements that have at least a conflict

associated are marked with a red Shadow.

b) Pop-Up Menus modified for consulting Conflict Info. The menu consists on

submenus. There will be a submenu for every type of conflict associated with a

element.

6.9 Communication Platform with JavaGroups

82

The architecture of JavaGroups is briefly introduced in 3.Architecture In Figure 5.X the

structure of the communication platform for a participant is presented: There are two

instances of the class Channel:

 Sharing Channel: That communicates different collaborators through the

SynchronizationManager. The Synchronization Manager is implemented

using a MessageDispatcher internally so a synchronous communication can

be established where the requests are mapped with the responses. From all

the participants the one that connected the first to the group is the

coordinator and will act as a Server in this channel.

 Collaboration Channel: Communicates different participants through the

DataOperationManager. This channel is used for sending Real-Time data.

The DataOperation Manager is implemented using a Pull-Push-Adapter.

83

Chapter 7 Conclusions

7.1 Introduction

Real-time collaborative editing systems are included in the field of Computer Supported

Collaborative Work (CSCW) systems, which allow users to view and design the same

document simultaneously from geographically dispersed sites connected by networks.

In order to achieve high responsiveness, a replicated architecture combined with optimistic

execution is adopted. With this schema local operations are executed immediately,

independently of network latency, and the latency for reflecting other sites operations should

be low.

This Thesis has focused on maintaining consistency in real-time collaborative software

modeling tools. There are three inconsistency problems that appear in this type of systems:

divergence, causality violation and user intention violation.

Divergence can be solved serializing the operations at all sites, and causality violation can be

solved with a causal ordering communication protocol. However user intention violation is

dependent on application semantics.

Work to date accommodate user intentions in the following ways:

• Null effect: In the face of a conflict all of the operations are rejected/undone. This Null

effect does not preserve any user Intention. The work concurrently done by involved users

is destroyed

• Single operation effect: Only the effect of one operation is preserved. This can be achieved by

enforcing a serialized effect among all operations. The user Intentions are not preserved

and only one user work can be preserved.

• All operations effect, based on multiple versions strategy two versions of the object will be

created. In this way the effects of both operations are accommodated in two separate

versions.

A Consistency Maintenance Framework for Collaborative Graphic Editing systems is

addressed deeply in [5], where a novel multiple object version approach to conflict resolution

84

is proposed. The proposed approach is able to preserve the work produced by multiple users

in the face of a conflict and to minimize the number of object versions for accommodating

combined effects of conflicting and compatible operations. This work has been an important

source of Ideas for my thesis.

7.2 Evaluation

This Thesis makes several contributions in the area of Real-Time Collaborative Editing

Systems:

Taking advantage of the richer UML semantics for Devising a Flexible Consistency

Maintenance Framework where:

• There are different levels of inconsistencies.

• The operations are categorized based on the possible conflicts they can generate.

• The Conflicts are categorized based the possible resolution and the level of inconsistency

they can generate.

Most of the work to date has focussed on the area of text and graphics where the application

semantics are poorer than in the case of UML diagrams. UML diagrams have two types of

information: UML and graphical Information. The UML information can be maintained

consistent even if the graphical information is not consistent. The UML information is

independent of the diagram layout. Besides no graphical Information can be modelled with

the UML specification 1.3.

In this work different levels of Inconsistencies for the Software Modelling environment have

been identified:

• Graphical Inconsistency.

• UML Inconsistency:

• Temporal recoverable inconsistency.

• Not recoverable inconsistency.

Each level of inconsistency is treated in a different way. Not recoverable inconsistency is

prohibited while temporal recoverable inconsistency is allowed as the documents will merge

to a consistent version when the users decide to resolve the conflicts.

85

The operations for manipulating UML diagrams have been categorized and prioritised based

on the possible conflicts they can generate. Different types of conflicts have been identified,

each conflict with a specific resolution.

Most work to date have a simpler mechanisms for detecting conflicts, where there are no

different types of conflicts and the resolution of the conflict is always performed in the same

way no matter the semantic of the operations that do conflict.

UML semantics have also been exploited to advice distributed collaborators of the

conflicting intentions of other users, thus improving group awareness. In a face of a conflict,

the user intentions are preserved (recording them in conflict data associated with the targeted

object).

In the face of a conflict, the system detects the type of conflict, then perform the actions

associated with the conflict, in some cases temporal inconsistencies would be maintained, in

other cases undo/reject operations will be performed, and in the case of graphical

information the conflicts are ignored. But in all the cases the system is records all conflictive

user intentions. The UML elements in the diagram that have conflict associated appeared

marked on the interface, so the users are aware of other user intentions.

Although the work as been prototyped for the UML semantics, the framework, conflict

matrix and approach of richer, application dependent conflict resolution may well be

appropriate in different semantics of greater or equal semantic wealth.

A matrix for the detection of conflicts have been devised where the axis are the different

categories of operations. The matrix shows the type of conflict that is generated when two

operations belonging to two specific categories are generated concurrently.

DArgoUML: A single-user application, open source UML editing tool (ArgoUML) has been

extended for distributed operation, using XML based standards.

Some Interesting properties of DArgoUML are:

Support for Real-Time Cooperation.

Flexible Consistency Maintenance Framework.

Latecomer Support.

86

Research revealed that there are very few distributed UML Case tool. As far as I know a

commercial tool called Cittera and a few research projects. None of them address the User

Intention Preservation problem and in the face of a conflict the user intentions are not

preserved. They use traditional methods (locking, floor control, turn taking) for obtaining

convergent results.

7.3 Future Work

7.3.1 Heterogeneous Collaboration in Software Modeling Tool

Many Collaborative Group Editors have had little acceptance, one of the main reasons is that

those systems force all users to work with the same application often unknown for the users.

Researchers in collaborative work have traditionally been more interested in consistency

maintenance and undo/transformation algorithms. Little attention has been paid to the

usability of those interfaces.

In [9] this concern about User Interfaces is addressed: “Intellectual work, however, often

emphasizes individualism so that individual preferences and priorities are respected. Being

forced to use unfamiliar applications for the well being of the entire group, participants

whose favourite applications are not chosen for sharing may feel frustrated or less productive

because learning new interfaces is often not the focus of the group editing task itself.”

The Project ICT (Intelligent Collaboration Transparency) [9] is being developed to integrate

the benefits of group editors and application sharing while avoiding the above problems. The

single-user editors in question are allowed to be heterogeneous so that collaborators can use

familiar tools for group work.

There are many extended UML CASE Tools, like Rational, TogetherJ, Poseidon… etc.

With a Heterogeneous Collaborative Software Modelling Tool users could collaborate on the

same Software model using their favourite application.

The heterogeneous architecture could be as presented in Figure 6.x.

87

Figure 7.1 Heterogeneous Architecture

The Collaborative users generate local events that modify the local UML model and are

distributed afterwards to the network. The fact that events are executed locally immediately

after their creation is called optimistic execution and it is chosen over pessimistic execution to

give good time response.

As this optimistic execution method is used, some undo operations could be generated by the

Consistency Maintenance system to achieve consistency.

Usually the implementation of the UML Specification is proprietary of the UML CASE tool.

For this incompatibility among implementations of the UML model the translator component

is application specific. The Translator component translates abstract operations as

“MODIFY_ATTRIBUTE_TYPE” into UML model changes and vice versa.

Actually UML Case tools can share information. Using XMI the Tools can export/import

UML models generated by other UML CASE tool. Software Modelling Tools actually can Share

Information but cannot Collaborate (Real-Time) on Projects.

Sharing is achieved sending the whole project information. Collaboration is achieved sending

at Real-Time the operations generated by all the Collaborators in the Group.

88

J A V A G R O U P S

TRANSLATOR
TOGETHER/NETWORK

TRANSLATOR
TOGETHER/NETWORK

TOGETHERJTOGETHERJ

TOGETHER
UML

TOGETHER
UML

TOGETHER
GRAPH MODEL

TOGETHER
GRAPH MODEL

TRANSLATOR
ARGOUML/NETWORK

TRANSLATOR
ARGOUML/NETWORK

ARGO UMLARGO UML

NSUMLNSUML GEFGEF

CONSISTENCY
MANAGER

CONSISTENCY

MANAGER
CONSISTENCY

MANAGER

CONSISTENCY
MANAGER

Undo Generation.

Operation Selection.

Conflict Awareness.

Optimistic Execution

One problem of XMI format is that there are many versions and often applications are not

compatible. And another problem is that XMI does not include graphical information so that

the graphic rendering is lost. Often the XMI information is extended with SVG or PGML.

In DArgoUML prototype on the Sharing channel an XMI file representing the whole UML

project state is sent. This file is extended with graphical information in the form of PGML.

For the Collaboration Channel could work with a XMI extension for the transmission of Real

Time Operations.

In Order to explain how XMI could be extended we will work only with the generation of

Class Diagrams. The following is a subset of the most important operations that can be done

over a class Diagram:

UML Element UML Operation

Classes OP_CREATE_CLASS

OP_MODIFYIFY_CLASS_NAME

OP_MODIFY_CLASS_IS_ABSTRACT

OP_MODIFY_CLASS_IS_FINAL

OP_MODIFY_CLASS_NAMESPACE

OP_DELETE_CLASS

Generalization OP_CREATE_GENERALIZATION

OP_MODIFY_GEN_NAME

OP_DELETE_GENERALIZACION

Basically there are three operations (CREATE, MODIFY and DELETE) over the UML model

elements (classes, associations, attributes, generalizations, associations…. etc).

XMI could be extended for transmitting operations, including a tag like Operation type.

89

CREATE <OPERATION Type =“CREATE”>

<MODEL_ELEMENT>

Foundation.Core.Class

</MODEL_ELEMENT>

<UUID>

"127-0-0-1-4977e2:f6290c1cfe "

</UUID>

</OPERATION>

DELETE <OPERATION Type =“DELETE”>

<MODEL_ELEMENT>

Foundation.Core.Class

</MODEL_ELEMENT>

<UUID>

"127-0-0-1-4977e2:f6290c1cfe

</UUID>

</OPERATION>

MODIFY <OPERATION Type = “MODIFY”>

<MODEL_ELEMENT>

Foundation.Core.Class

</MODEL_ELEMENT>

<UUID>

"127-0-0-1-4977e2:f6290c1cfe"

</UUID>

<PROPERTY value=”ABSTRACT”>

true

</PROPERTY>

</OPERATION>

This abstracts operations would be translated by the Translator on each group member into

an operation to the model, in the same way the operations generated locally by the users

could be translated into XMI.

A Future work over this thesis could be research on, design and prototype a Heterogeneous

architecture for Collaborative Software Modelling tools.

90

7.3.2 Group Awareness: Future User Intentions Preservation (Semantic

Preservation)

Collaborative work may be less efficient if user’s meanings cannot be clearly understood by

other users. “ Syntactic preservation aims at promising the same operation execution order

and the same result of all users’ operations at all sites. But user’s meanings may not be clearly

understood by other users only through viewing the execution of operations”. This problem is

addressed in [26] and called Semantic Preservation Problem.

In [26] a semantic model to resolve this problem on the graphic editing environment is

proposed including definition of semantic expressions, usage of semantic expressions, and

semantic conflict resolution approach.

A Future work over this thesis could be the definition of a Semantic model for Software

Modelling Environments where users could define their user intentions and make them

known to the rest of the collaborators in the group. The semantic model should be application

semantics dependent.

7.3.3 Consistency Maintenance Mechanisms for other Software Modelling

tools operations

The work done in DArgoUML has been restricted to a set of operations for Class Diagrams.

However in UML Specification there are 9 different types of diagrams. Only a few

functionality have been examined.

91

Bibliography

[1] C. A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some Issues and Experiences.

Communications of ACM 34, 1:39-58, January 1991

[2] T. Brinck, L. M. Gomez. The Design of the Conversation Board.

Proceedings of ACM CHI’92 Conference on Human Factors in Computing Systems – Posters

and Short Talks, Posters: Improving Team Performance, p.42, 1992

[3] R. Johansen. Groupware: Computer Support for Business Teams

The Free Press, a division of Macmillan, Inc., New York, Published: 1988, ISBN:

 [4] C. Sun, X. Jia, Y. Zhang, Y. Yang, D. Chen. Achieving convergence, causality preservation,

and intention preservation in real-time cooperative editing systems. ACM Transactions on

Computer-Human Interaction (TOCHI) 5, 1: 63-108, 1998

[5] C. Sun, D. Chen. Consistency maintenance in real-time collaborative graphics editing

systems. ACM Transactions on Computer-Human Interaction (TOCHI) 9, 1:1-41, 2002.

 [6] D. Chen: Consistency Maintenance in Collaborative Graphics Editing Systems. PhD

Thesis. Griffith University Australia, 2001.

 [7] H. Shen, C. Sun. RECIPE: a prototype for Internet-based real-time collaborative

programming. Proceedings of the 2nd Annual International Workshop on Collaborative

Editing Systems in conjunction with ACM CSCW Conference, December 2 -6, 2000,

Philadelphia, Pennsylvania, USA.

 [8] W. Keith Edwards: Flexible Conflict Detection and Management in Collaborative

Applications. ACM Symposium on User Interface Software and Technology 1997: 139-148

[9] D. Li, R. Li. Bridging the Gap Between Single-User and Multi-User Editors: Challenges,

Solutions, and Open Issues. Department of Computer Science. Texas A&M University.

College Station, Texas 77843-3112 USA

92

[10] D. Li, R. Li. Transparent sharing and interoperation of heterogeneous single-user

applications. Proceedings of the 2002 ACM conference on Computer Supported Cooperative

Work (CSCW-02), pp. 246-255, ACM Press, November 16-20 2002.

[11] D. Yang, A. E. Saddik, N. D. Georganas. Latecomer Support and Client Synchronization

for Synchronous Multimedia Collaborative Environments. Precedings of the 4th International

Workshop on Collaborative Editing, Adjunct to the ACM Conference on Computer

Supported Cooperative Work, New Orleans, Louisiana, USA, Nov. 2002.

[12] N.Boulila, A.H.Dutoit, B.Bruegge. D-Meeting: an Object-Oriented Framework for

Supporting Distributed Modelling Software.International Workshop on Global Software

Development, International Conference on Software Engineering. Portland, Oregon, May 9,

2003.

[13] K.M.Hansen. The Knight Project: Supporting Collaboration in Object-Oriented Analysis

and Design. University of Aarhus, Åbogade 34, DK-8200 Aarhus N, Denmark

[14] P. Stevens. Small-scale xmi programming: A revolution in uml tool use? Automated

Software Engineering, 10:7–21, 2003.

[15] B.Ban. JavaGroups Userguide 2_0.

http://www.javagroups.com/javagroupsnew/docs/ug.html

[16] G. Coulouris, J.Dollimore, T.Kindberg. Distributed Systems Concepts and Design

(3rd Edition), Addison-Wesley, 2001

[17] Real-time, Distributed, Unconstrained Collaborative Editing

 http://www.cit.gu.edu.au/~scz/projects/reduce/

[18] GRAphics Collaborative Editing

http://www.cit.gu.edu.au/~scz/projects/grace/

[19] REal-time Collaborative Interactive Programming Environment

http://reduce.qpsf.edu.au/~hfshen/recipe/

[20] XML Metadata Interchange (XMI)

http://www.omg.org/technology/documents/formal/xmi.htm

93

[21] Unified Modelling Language

http://www.omg.org/uml/

[22] Cittera

http://www.canyonblue.com/

[23] ArgoUML Project Home

http://argouml.tigris.org/

[24] A. Ramirez, P. Vanpeperstraete, A. Rueckert, K. Odutola, J.Bennett, L.Tolke

A tutorial and reference description

[25] Novosoft UML library

http://nsuml.sourceforge.net/

[26] X.Wang, J. Bu, C.Chen. Semantic Preservation in Real-Time Collaborative Graphics

Designing Systems. ACM CSCW 2002

94

