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Summary

Existing ad-hoc routing protocols are based on a discrete, bimodal model for links between nodes: a link either

exists or is broken. This model usually considers only the most recent transmission as determining the state of the

link. Unfortunately, this model cannot distinguish transmissions which fail due to interference or congestion from

those which fail due to their target being out of transmission range.

This thesis presents a new ad-hoc routing protocol based on a continuous (rather than discrete) model for links

within the network. We use a statistical measure of link performance over time to represent the quality of the link.

We propose that such a model is required for efficient operation within real-world wireless networks.

In order to define optimal routes in a network with links of variable quality, we model ad-hoc routing as a

cooperative reinforcement-learning problem. Cooperative reinforcement-learning describes a class of problems

within machine learning in which agents attempt to optimize it’s interaction with a dynamic environment through

trial and error and information sharing. We assign a value to routes that is representative of the costs to the agents

using that route. The ad-hoc routing problem is thus expressed as the optimization of the value of routes.

Our model of link quality is a statistical one and requires data to be gathered over time. We devise a learning

strategy that gathers information about available routes and the quality of their links over time. This learning

strategy operates in an on-demand manner, gathering information only for the traffic flows which are in use, and

in proportion to the amount of traffic on those flows. This learning is done in an on-line manner: route discovery

operates simultaneously with packet delivery.

Our learning strategy is loosely based on work in swarm intelligence: those systems whose design is inspired

by models of social insect behaviour. In particular, we adapt the ant-colony optimisation meta-heuristic as a

learning strategy for the ad-hoc routing learning problem. In our protocol, each data packet routed by the protocol

causes incremental changes in the routing policy of the network.

We have found that a continuous model of link quality is very beneficial in congested multi-hop networks.

Whereas a bimodal link model will interpret any dropped packet as an indication of node mobility and trigger

route updates throughout the network, a routing protocol based on a continuous model can respond to dropped

packets by incrementally adapting it’s routing behaviour. In congested network scenarios simulated in NS-2, the

performance of our protocol in terms of packet delivery ratio and routing traffic is found to be superior to that of

AODV or DSR.
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Chapter 1

Background: Ad-hoc Routing

The material in this chapter has been published separately as a Technical Report by the Department of Computer

Science, Trinity College Dublin, May 2003.

1.1 What is Ad-hoc?

There are a number of characteristics that make a network inherently’ad-hoc’:

• Zero-configuration. A network may be made up of members from multiple administrative domains. Nodes

should be able to join the network and access it’s services easily.

• Peer-to-peer. A node both consumes and provides the services of the network.

• Dynamic Topology. Ad-hoc almost always means wireless. With widespread availability of 802.11 hard-

ware, ad-hoc almost always means radio. Nodes may be mobile, may only be temporarily available.

The terminologyad-hocis, unfortunately, used to mean different things in different contexts. In the context of

IEEE 802.11, ad-hoc simply means the lack of infrastructure, but not a multi-hop network:

“a network composed solely of stations within mutual communication range of each other via the

wireless media” ([IEE99, XS01]).

But in common usage, the term ad-hoc almost always means a multi-hop wireless network. For example, Perkins

writes ([PB94]):

“Ad-hoc networks differ significantly from existing networks: The topology of interconnections may

be quite dynamic. Users will not wish to perform any admin actions to set up such a network. We do

not assume that every computer is within communication range of every other.”

Some more specific characteristics of ad-hoc networks have been identified. The IETF has a working group for

mobile ad hoc networks, and there are commercial and community efforts inmesh networking.

1



1.1.1 MANET

In [CM99], the IETF identifies what they characterise as a Mobile Ad Hoc Network (MANET). It is a collection

of nodes, each of which is equipped with one or more wireless network interfaces. The system may operate

in isolation, or have gateways to and interface with a fixed network. When a MANET is connected to a fixed

internetwork, it is envisioned that it will operate as astub network,i.e. only carrying traffic originating at or

destined for internal nodes.

A number of characteristics of MANETs are identified:

• Dynamic Topologies: Nodes are free to move arbitrarily. The network topology may change rapidly and

randomly and contain both unidirectional and bidirectional links

• Bandwidth constrained, variable capacity links: After accounting for interference, noise, contention, the

realized throughput may be much lower than a radio’s maximum rate.

• Energy Constrained Operation.

• Limited physical security. Possibility of eavesdropping, spoofing, denial of service attacks.

• Networks may be large. This is described as tens or hundreds of nodes.

1.1.2 Mesh Networks

Mesh networks are multi-hop wireless networks at thefringe of the Internet. They exist almost exclusively to

provide Internet access. The mesh network scenario is discussed in more detail in section1.5.3.3.

1.1.3 Zeroconf

An ad-hoc network may contain nodes from multiple administrative domains. A successful ad-hoc network will

require as little configuration as possible for operation. The IETF has a Zeroconf working group who work to

enable Zero Configuration IP networking. [Wil03] defines requirements for zero-configuration of IP networks:

“A zeroconf protocol is able to operate correctly in the absence of configured information from either

a user or infrastructure services.... ...benefits of zeroconf protocols over existing configured protocols

are an increase in the ease-of-use for end-users and a simplification of the infrastructure necessary to

operate protocols”.

In particular, the Zeroconf working group defines standards for address auto-configuration, naming services, ser-

vice location and multicast operation in IP networks without any pre-existing infrastructure or administrative

effort.

2



1.2 IEEE 802.11 - Wireless Ethernet

IEEE 802.11 is the most widely available wireless networking system currently available. Since Intel’s new

chip-set for mobile computing(Centrino) includes an integrated 802.11b interface, access to 802.11 networking

will probably be widely available in the future. The IEEE 802.11 specification consists of both a physical-layer

specification and a medium-access-control (MAC) sublayer.

1.2.1 Physical Layer

The 802.11 physical-layer specification provides for radio (unlicensed band) and infra-red transmission. 802.11

originally (1997) specified radio transmission at 1Mb/s or 2Mb/s. In 1999, the physical-layer standards 802.11a

and 802.11b were released. 802.11b operates in the 2.4Ghz band at 5.5 or 11Mb/s, whereas 802.11a operates

in the 5Ghz band at up to 54Mb/s. 802.11b is easier to implement, and so has become widely available earlier

[Sta01].

1.2.2 Media Access Control Layer

802.11 provides two different modes of operation at the MAC layer. These are described in [CWKS97]. There is

a Distributed Coordination Function(DCF), that allows for an infrastructure-less network. No central control is

required for media access while using DCF. It is essentially a carrier sense multiple access with collision avoidance

(CSMA/CA). A radio interface cannot detect collisions itself while sending, so a positive acknowledgment scheme

is used.

The collision avoidance scheme with positive acknowledgments may suffer from thehidden node problem:

a hidden node is one that is close enough to the destination of a packet to interfere with it, but far enough from

the sender that it does not hear it being sent (and hence does not know to avoid transmitting). This problem can

be dealt with in 802.11 using avirtual carrier-sensemechanism: a node wishing to send a packet first sends a

Request-to-Send (RTS)packet. The recipient node then replies with aClear-to-Send (CTS)packet. Any node

hearing either of these packets will then update theirnetwork allocation vector (NAV)and will not transmit for the

duration specified in the RTS or CTS.

The virtual carrier sense mechanism can deal with the hidden node problem. But wireless packet networks

also face theexposed node problem([XS01]): nodes close enough to the sender to hear it’s packets and RTS,

but far away enough from the destination that they cannot interfere with the packet. Exposed nodes can lead to

underutilization of the available bandwidth. This is discussed more in Section1.2.3.

At the MAC layer, automatic retransmissions (up to seven) are used when a unicast packet is not acknowl-

edged. However, broadcast packets in 802.11 are unacknowledged. They use neither positive acknowledgment

nor virtual carrier-sense mechanisms. The error rate for broadcast packets that higher layers of the network stack

experience may be much higher than those for unicast packets.

3



1.2.3 802.11 in multi-hop networks

1.2.3.1 Interaction of MAC layer with TCP

[XS01] examines the behavior of 802.11 in a multi-hop network. The interaction between the MAC protocol and

the TCP (Reno) protocol is analysed. It is found that the 802.11 MAC protocol functions poorly in a multi-hop

environment.

The multi-hop network analysed is a simple string topology. Each node can only communicate with it’s

adjacent nodes. The DSR routing protocol is used for multi-hop route finding between nodes. The performance

of file transfers between pairs of nodes is analysed.

It is found that the performance of TCP in this scenario is very unstable. The throughput of a single TCP

socket will drop to almost zero very regularly. Reducing the maximum window size used by TCP can alleviate

this problem, and keep the throughput stable. The authors’ analysis suggests that this performance problem is due

to the interaction of the 802.11 MAC protocol and exposed nodes. The interfering and sensing range in 802.11

may be more than twice the size of the communication range (this is the case in the ns-2 simulation of WaveLAN).

If a node sends a number of packets sequentially, the re-transmission of the first packet is likely to be interfered

with by the subsequent packets. Reducing the window size means that packets transmissions are spaced out in

time, which avoids this problem.

It is also found that serious unfairness exists between multiple TCP streams within a multi-hop network.

A TCP connection between adjacent nodes can be completely blocked by another TCP connection involving

neighboring nodes. The binary exponential back-off scheme always favors the latest successful node.

1.2.3.2 Performance Measurements: Loss Rates

In [DACM02b] measurements from a real-world multi-hop wireless network are presented. It is found that multi-

ple routes with the shortest hop-count may exist, but that the reliability of these routes can vary widely. Therefore,

a choice of route based purely on hop-count is unlikely to choose the best route between two points. It is claimed

that most existing ad-hoc protocols assume a bi-modal distribution of link quality (links are either very good or

very bad), but that in reality the distribution is spread out.

In the network examined in [DACM02b], it is found that the best 40% of link pairs deliver at least 90% of

their packets. It is also found that although the quality of the link in either direction are often highly correlated, at

least 30% of the link pairs have a difference of more than 20% between the delivery rates in each direction. The

quality of a link may also be quite variable with time (even though the network tested was stationary).

The strength of signal measured by a receiving node does not have a good correlation with the delivery rate.

The authors suggest that signal to noise ratio might be useful as a fast predictor of delivery rates, but that it was

not available from the radio hardware they tested.

In [DACM02a], it is found that the delivery rates on many routes are high enough that existing ad-hoc protocols

will use them, but low enough that performance can be considerably sub-optimal. This reflects the assumption in

these protocols that the presence of a link is a bimodal property, which is not supported by real wireless packet
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networks.

[DACM02a] goes on to propose a possible path metric that could be used as an alternative to hop-count when

choosing multi-hop routes in a wireless network: the expected number of transmissions (including retransmis-

sions) along a path. Similarly to hop-count, this is an additive metric. It is proposed to calculate1 this from the

delivery rate. The delivery rate can be provided by measurement or predicted based on signal strength and quality.

1.2.3.3 Theoretical Capacity of Ad-Hoc Networks

[LBD+01] gives a simple analysis of the chain topology (as used in [XS01]). Labeling the nodes in a chain 1,2,3

etc., with nodes 200m apart, sending range of 250m and interference range of 550m. While 1 is transmitting to 2,

neither 3 nor 4 can transmit without interfering at 2. This gives a maximum achievable utilisation of1
4. In practice,

802.11 achieves a throughput corresponding to a utilisation of1
7. 802.11 schedules it’s packets using virtual

carrier-sense and exponential back-off, which fails to achieve near the ideal scheduling of packet transmission.

[LBD+01] analyses the performance of 802.11 scheduling in regular chain and lattice topologies with regular

data patterns, and in a random network with random traffic. These analysis are performed in simulation, but the

results for the chain topology were verified with a real radio network. It is found that the exponential back-off of

802.11 can result in nodes wasting as much as 5.4% of it’s time in long back-offs due to hidden nodes. Nodes

at the edge of the network tend to have more capacity than interior nodes, and hence send more packets than the

interior nodes can forward. This results in increased contention and packets being dropped.

The absolute limit on total one-hop capacity of an ad-hoc network is given by it’s geographical area and the

transmission and interference ranges of the network interfaces. Adding more nodes to a network while keeping

the area constant only increases the contention for media access. The total capacity available to a node when

multi-hop routing is in place decreases both with average path hop-count, and the number of nodes in the network.

In a random network, it is shown that the average path length varies with the square-root of the network area. If

the density of nodes in the network is constant, this implies that the capacity available to each node is proportional

to 1/
√

n, wheren is the node count. (A global scheduling achieving 1/
√

nlogn was demonstrated in [GK99]). If

traffic patterns are taken into account, it is shown that pure-local traffic gives a capacity independent of network

size, and will reduce to 1/ logn for a power-law distribution of correspondence with an exponent of−2.

1.3 Ad-hoc Routing Protocols

As outlined in [RT99], routing protocols may be broadly classified as table-driven (pro-active) and source-initiated

(on-demand). (It may be useful to add a third classification for routing protocols which utilise location - i.e. GPS

co-ordinates). This section outlines the main ad-hoc routing protocols that are used in the research on connectivity

for ad-hoc networks.
1If the forward and reverse delivery rates arer f andrr respectively (possibly being dependent on packet size), then the expected transmis-

sion count is 1/(r f × rr )
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1.3.1 Pro-active protocols

Destination-Sequenced Distance-Vector Routing DSDV ([PB94]) is some of the earliest work on ad-hoc rout-

ing protocols. The authors note that existing routing protocols for fixed networks exhibit some of their worst-case

performance in a highly dynamic interconnection topology: they have a heavy computational burden and poor

convergence characteristics. They also note that there are significant differences in a wireless medium to a wired

medium, i.e. mobile computers may have only one network interface but still be used to connect two separate

networks.

The authors propose to extend a classical Bellman-Ford algorithm with destination-assigned sequence numbers

to avoid formation of routing loops. A route table at each of the nodes lists all available destinations and the

number of hops to each. The route table also contains the next hop for packets to that destination as well as the

sequence number of the route advertisement. Each node periodically broadcasts it’s route table to it’s neighbors.

This broadcast contains that nodes current sequence number.

A node receiving routing table information will merge it with it’s own routing table. A route with a larger

sequence number will replace an older route, as will a route with a shorter hop-length (the hop-length of a route is

increased by one before storing in the route table). An exception to this is a hop-length of infinity, which signifies

a broken route. An entry may only be made in the route table for a neighbor that shows that it can receive packets

from the node. Hence, DSDV uses bidirectional links only.

Nodes broadcast routing table information periodically, and in response to changes. A node may either broad-

cast afull dump or an incremental update. Nodes keep track of the average settling time of routes (the time

between the first route with a new sequence number and the shortest route), and routing update broadcasts can be

delayed by the settling time to avoid sending unnecessary traffic.

DSDV allows for operation at either layer 2 or layer 3. It is proposed that if operating at layer 2, a node would

advertise which layer 3 protocols it supports and some information (i.e. IP address). This information would only

need to be propagated in routing updates when it changed, which would be infrequent. (Authors note that layer 3

operation violates the normal subnet model of operation, but is compatible with the model of operation offered by

the IETF Mobile IP Working Group)

1.3.2 On-demand protocols

Dynamic Source Routing Dynamic Source Routing (DSR - [JMB01, JM96] ) is an on-demand routing protocol

designed for multi-hop wireless networks. Nodes discoversource routes,a complete route from source to destina-

tion. The complete route is added to each packet being sent. Using source routes allows the loop-free property to

be trivially implemented. Nodes forwarding or overhearing packets can easily cache the routing information they

contain for future use.

Routes are discovered by flooding a route request. Replies to this request also require a route back to the

originator, which may require a further flooding of route request. Although DSR is designed to work with

uni-directional links, for MAC protocols which limit unicast packet transmission to bi-directional links (such

as MACAW or 802.11), DSR can eliminate the second route discovery by reversing routes.
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Using promiscuous receive, DSR supports quite aggressive caching of routes and automatic shortening of

routes. There is also scope for caching negative information about intermittent links.

As described in section1.4.2, DSR is designed for use with multiple network interfaces, and also supports

advertisement of Internet Gateways and Mobile IP through the routing protocol.

A route reply stormis the situation where many neighbors of a node sending a route request have a cached

route, and their simultaneous replies cause heavy media contention. To avoid this situation, nodes replying to

a route request pause before replying. The length of the pause is related to the hop-length of the route being

returned. While pausing, the node enters promiscuous receive and cancels it’s reply if it hears another reply.

Ad Hoc On-Demand Distance Vector Routing AODV ([Per97]) is one of the best-studied ad hoc routing

protocols in the literature. Like DSDV, it is a distance-vector routing protocol. However, AODV operates purely

on-demand.

AODV’s route discovery is a broadcast-based method. Destinations maintain a sequence number, similar to

that used in DSDV. Broadcast packets also have a unique identity to avoid duplicates. AODV operates only on

bidirectional links and the reverse path to a node is set up automatically during the propagation of route request

(RREQ) by including the source’s sequence number. If the route request reaches the destination, or an intermediate

node with a route to the destination, a route reply (RREP) is unicast back to the source, and the appropriate routing

table entries are made at the intermediate nodes. The route request may also contain a destination sequence number

to specify how fresh a cached route must be to be accepted.

Each node maintains a routing table, which contains a subset of nodes in the network. Each entry contains the

next hop on the route, a hop count to destination, and the destination sequence number. The route table also tracks

how many of it’s neighbors are using the route, so that it may expire route entries after a period of inactivity.

Broken links can be detected using information from the link-layer, and also using periodichellomessages. A

broken link will result in a RREP with a hop count of∞. Nodes which have not sent any packets to all of it’s active

downstream neighbors for ahello intervalwill broadcast ahello message with it’s current sequence number. A

node missing ahello message from an active neighbor for a number of consecutivehello intervalswill consider

the link broken.

Further work on AODV has demonstrated how to implement multicast routing within a multi-hop wireless

environment.

1.4 Ad-hoc Connectivity

This section presents an overview of research in the area of providing Internet connectivity to ad-hoc networks.

1.4.1 Lei/Perkins - DSDV and Mobile IP

In [LP97] a scheme is proposed to integrate a Mobile IP implementation with a modified RIP routing protocol.

This paper presents a mechanism that extends foreign agent coverage to a whole ad-hoc network instead of only
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being available to nodes in direct contact with the foreign agent. The modified RIP protocol being used is very

similar to DSDV - [PB94].

The Foreign Agent in this scheme participates in the routing protocol of the ad-hoc network. This enables

unicast routing between the Foreign Agent and every mobile node on the ad-hoc network. A mechanism is

also required by which nodes may effect agent discovery. This may happen by agent advertisements or agent

solicitations. Agent advertisements are piggy-backed onto the routing entry for the foreign agent, which causes

them to be delivered to each node.

Most of the details of the paper involve the co-ordination of updates to the routing table by the separate Mobile-

IP and RIP daemons. This is achieved by introducing a third,route-manager daemonto co-ordinate routing table

updates.

1.4.2 Broch/Maltz/Johnson - DSR

In [JMB99, JMB01], the authors describe their efforts on integrating Dynamic Source Routing (DSR - [JM96])

with heterogeneous networks. The authors propose a number of mechanisms to achieve this.

Firstly, the situation where nodes may have multiple network interfaces, or where the network as a whole may

have heterogeneity among it’s network interfaces is examined. The authors propose alogical addressing model.

Under this model, each node has a unique identity, and it’s various interfaces are assigned an index which is locally

unique. This scheme has been adopted by the IETF ([CM99]).

The interface index values are arbitrary except for two special cases. Special interface indices are reserved to

act as logical identifiers for services which a node may provide. Two services are specified: a node that may act

as a gateway to the Internet, and a node may act as a Mobile IP home or foreign agent (termed amobility agent).

This allows these services to be effectively advertised to the whole network via DSR.

When a DSR node acts as a gateway, it will respond to route requests for addresses on the Internet listing itself

as the second-to-last hop. When it receives packets with these routes, it will then act as a proxy for the ad-hoc

node.

The history of DSR is interesting. The design grew from an elaboration of the Address Resolution Protocol

([Plu82]) to a multi-hop environment. In [JMB01] the authors discuss the siting of the protocol within the ISO

stack. They consider whether such a protocol should be placed at the link-layer (ISO layer 2) or the network layer

(ISO layer 3). The authors had originally intended to do routing at the link layer for a number of reasons:

• Running at the link layer would allow IPv4, IPv6, IPX and other network protocols to take advantage of

DSR, and maximise the potential number of nodes that can participate.

• DSR’s design grew from that of ARP, which is based at link-layer level.

• DSR was designed to be implementable within the firmware of a wireless network interface, and hence

operate below the operating system’s network layer software.

Although the authors decided to implement DSR at layer 3 so that the routing protocol could support nodes with
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multiple network interfaces, the FreeBSD implementation makes the DSR available as a virtual interface so that

higher layers may essentially treat it as if it were implemented at Layer 2.

1.4.3 MIPMANET

MIPMANET ([JAL+00, JA99]) presents an integration of AODV ([Per97]) with Mobile IP ([PM94]).

Some assumptions are made:

• “nodes within an ad-hoc network should not have to make any assumptions about their network ID’s”. This

means that a node cannot decide whether a destination is within the ad-hoc network simply by looking at

it’s address. This point is made to support a zero-configuration setup.

• related to the previous point, the authors assume that nodes must use IP layer routing to reach a gateway to

the fixed Internet.

Mobile IP must be adapted for use within an ad-hoc environment. The nature of the ad-hoc environment impacts

on mobile IP:

• Mobile Nodes and Mobility Agents need to use multi-hop communication.

• Broadcasts are expensive and should be minimized

• Link-layer information about connectivity to mobility agent must be replaced with routing protocol infor-

mation to enable movement detection and cell switching

In response to these requirements, agent advertisements are reduced from 1 second to 5 second intervals. The

MIPMANET Cell Switching (MMCS) algorithm is proposed, whereby a node switches to a new Mobility Agent

if it is at least 2 hops closer than it’s current agent for two consecutive agent advertisements. MIPMANET uses

reverse tunneling in it’s Mobile IP setup, although this is not mandatory.

Integration of Mobile IP and the ad-hoc routing protocol is done using a MIPMANET Inter-working Unit

(MIWU). The MIWU looks to the Mobile IP Agent like“a visiting node that is registering different IP addresses,

but with the same link-layer address... All ad hoc routing functionality can be put in the MIWU”.

MIPMANET is evaluated using ns2 ([Fal00, Mon98]). 15 mobile nodes are simulated plus two foreign agents,

one on each side of the flat area (1000m x 500m). The random way-point model is used for mobility and the

traffic pattern is constant bit rate (CBR) between a wired and a wireless node. The simulation results suggest that

periodic agent advertisements are worth the overhead since they improve performance by causing shorter routes

between mobile nodes and foreign agents (without advertisements, a node will stay with a foreign agent until it’s

link breaks).

The MIPMANET Paper ([JAL+00]) makes a number of criticisms of the work outlined in sections1.4.1and

1.4.2. Their main criticism of [LP97] is that it uses a pro-active routing protocol, and cannot be easily adapted

to use an on-demand protocol. Some issues that are not dealt with by the work on DSR ([JMB99, JMB01]) are

suggested:
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• movement detection

• handoff

• choosing between FA’s

• agent advertisements

A number of areas for future work are also identified:

• Dynamic address allocation

• co-operation between Internet access points

• Should the mobility agent discovery be integrated with the routing protocol, rather than layered as in this

work

• Use of multicast for agent advertisements

• Some pro-activeness may be beneficial (i.e. broadcast agent advertisements are pro-active)

1.4.4 Perkins/Sun/Belding-Royer

[PBRS02] proposes a scheme similar to that of [JAL+00]. However, in this scheme, more changes are made to the

routing protocol in order to efficiently support Mobile IP. A well-known multicast group address, theAll Mobility

Agentsaddress ([Per96]) is used in an AODV Route Request when a mobile node wishes to use agent solicitation.

Foreign Agents may also respond to Route Requests for addresses on the Internet with a specialFA-RREP. The

scheme uses MIPMANET Cell Switching to decide when to switch Foreign Agents.

The evaluation is very similar to that of MIPMANET. Again, the number of nodes is modest (10, 20 and

50), a random way-point mobility model is used, and the traffic is constant bit rate between wireless and wired

nodes. The parameters of agent advertisement interval, node mobility and the number of foreign agents are varied

and some performance characteristics measured (packet delivery fraction, average latency, routing and Mobile IP

overhead).

It is shown that adding extra foreign agents in this scheme improves packet delivery latency and shortens the

average path length. The shorter path lengths cause a slight improvement in delivery fraction and reduces the

AODV overhead.

1.4.5 MEWLANA

Mobile IP Enriched Wireless Local Area Network Architecture (MEWLANA - [EP02]) presents two different

routing protocols that are designed around Mobile-IP based internet connectivity for ad-hoc networks. MEWLANA-

TD is a table driven routing protocol, and MEWLANA-RD is a tree-based ad-hoc routing protocol.

It is proposed that the routing protocol for an ad-hoc network be chosen based on the size of the ad-hoc network

and the fraction of traffic that is purely internal to the ad-hoc network. It is claimed that MEWLANA-RD is more
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suitable when a network is mostly used for access to fixed services. MEWLANA-TD and MIPMANET would be

more suitable for networks with mainly internal traffic, with MIPMANET being better for larger networks.

The table driven approach uses DSDV, so every node maintains routing information for the whole network.

This routing information is used to limit the spread of foreign agent beacons (beacon only needs to be sent when

a new node joins the network).

The MEWLANA-RD scheme uses an ad hoc protocol calledTable Based Bidirectional Routing(TBBR).

Routing table formation is done only with MIP entities and no additional ad-hoc protocol is used. The protocol

aims to serve mainly outside traffic. The routing table is formed from agent advertisements and registration

messages, and is repeated after each registration renewal interval.

TBBR uses aDepth Level Number(DLN), acquired from the hop-count of agent advertisements. A node only

processes advertisements with hop-count smaller than their DLN. Registration requests travel from the leaves of

the tree to the root (foreign agent), and establish routes from the FA to each of the mobile nodes.

The two MEWLANA schemes are evaluated against the MIPMANET proposal. A Performance metric is

defined as the sum of the reciprocals of Mobile IP Overhead, Ad Hoc Routing Overhead, and the Number of Hops

to route inside traffic. The scenarios examined are for between 4 and 128 nodes with up to 10 nodes participating

in inside traffic. The results with this metric support the assertions above about the suitability of the three protocols

to various situations. The evaluation seems a little strange: there does not seem to be any external traffic involved,

and the metric chosen is not justified.

1.4.6 LUNAR

Lightweight Underlay Network Ad-Hoc Routing (LUNAR - [TG02]) presents a somewhat different approach to

ad-hoc routing. With simplicity in mind, the protocol is designed for the“small common case”: 10-15 nodes and

network diameters of not more than 3 hops. The code size should be small, without many subtleties. Operation

should be simple, i.e. LUNAR should have a default profile which will work without special configuration.

The LUNAR approach is that of anunderlay network. Ad-hoc path establishment is linked to the usual address

resolution activities going on between the network layer and the link-layer. This is similar to the approach of DSR,

which developed from multi-hop ARP. A virtual logical subnet is created on top of the underlying multi-hop, ad-

hoc network. This allows IP to treat the ad-hoc network as if it were a physical subnet.

LUNAR opts for a decentralized approach for IP address configuration, as an alternative to DHCP. Nodes

choose a random address and probe for conflicts in a manner similar to that proposed by the IETF’s zeroconf

working group in [CAG02].

A node with a connection to the internet can share it’s connection with other nodes by responding to resolution

requests for internet addresses, and employing Network Address Translation (NAT).

The routing protocol used by LUNAR is on-demand, with routing paths the responsibility of the sender. The

current implementation relies on bidirectional links. Paths are established in response to ARP or broadcast-send

requests, and are torn down after 3 seconds. This means that paths are completely rebuilt every 3 seconds. Any

packet losses are left to the transport layer to deal with.
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Due to lack of availability of stable Linux implementations of AODV, DSR and TORA, LUNAR was only

compared with Optimized Link State Routing (OLSR - [CJ03]). It was found to behave only slightly worse

than OLSR even though it’s code is less than one-third the size of OLSR and includes address configuration and

internet connectivity. The scheme was evaluate using the Ad Hoc Performance Evaluation Testbed ([LLN+02]), a

real-world testbed.

1.4.7 Hybrid Proactive and Reactive Mobile IP

[RK03] proposes a hybrid scheme for agent advertisement and solicitation based on the work of [PBRS02]. Agent

advertisements (pro-active) are scoped with a small time-to-live (TTL) which allows them to be broadcast to

nodes within a small distance of the foreign agent. Nodes outside this distance use anexpanding ring searchto try

and locate a foreign agent. After a successful ring search, an agent advertisement is unicast to the mobile node.

The scheme also employs caching and eavesdropping of agent advertisement and registration methods in order to

reduce overhead.

The evaluation of this scheme shows that a hybrid approach to agent advertisements may reduce both Mobile-

IP and AODV overhead overhead. The optimal TTL for advertisements varies with network size and density.

1.4.8 LocustWorld MeshAP

LocustWorld ([Loc03]) produce software and hardware formesh networking. Their software allows people to

cooperatively share internet access. Nodes in the mesh provide a service to their users.

A node is a dedicated computer with a wireless network interface. It may also have a connection to the internet,

via DSL for example. A node is designed to provide internet connectivity to local users via a wireless or wired

network. If a node has wired internet access, it will share this access with other nodes in the mesh over multiple

hops.

Initially, a node allocates itself a random address in the class A 10.0.0.0 private address range. It attempts to

find an internet gateway over it’s Ethernet gateway. If no gateway is found, the node considers itself a repeater-cell.

The node then starts an internal DNS and transparent web proxy. The node also picks a random class C private

address range (192.168.128.0-192.168.254.0). The node allocates itself an address in this range and runs a DHCP

server advertising itself as default gateway and DNS server.

AODV is used to find routes to gateway nodes within the mesh. A bogus address is used to indicate internet

access. A node sends a route request for this bogus address, and gateway nodes will reply to this request. Once a

repeater cell has a route to a gateway node, it sets up an encrypted IP-tunnel and uses this to forward IP traffic.

Once a repeater node has a tunnel set up, it will serve the gateway node’s address as default gateway and

DNS server. It will transparently proxy web and DNS requests to itself to the gateway node. Network Address

Translation is used by the nodes to supply connectivity to clients. HTTP and FTP traffic is transparently proxied

also.
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1.5 Evaluation of Ad-hoc Routing Protocols

1.5.1 Mobility Model

In [MMPS00] the random way-point model commonly used with the Monarch extensions to ns-2 is examined.

The authors analysis concludes that in this model you are more likely to travel to a distant point than to a nearby

point. However, it has been observed ([Kle00]) that interpersonal associations are localised - nodes commonly

travel short distances more frequently than they do large distances. This assumption is one that ad-hoc routing

protocols should exploit.

[MMPS00] goes on to propose aKleinbergian modelfor mobility: a node chooses an angleθ and a distance

d to travel to it’s next point. This provides increased locality. By choosingd not uniformly, but using some

distribution that favours shorter distances, further locality can be provided.

These mobility models are used to evaluate DSDV, AODV and DSR. The original mobility model is compared

to the Kleinbergian and the localised Kleinbergian. Interestingly, it is found that the performance of the protocols

is almost identical across these mobility models. This suggests that the routing protocols do not exploit the locality

of interpersonal associations (although the analysis here is quite short, and uses node speeds up to 200m/s!)

[CBD02] makes an analysis of the random way-point model, measuring theaverage neighbor percentageof

all nodes in the network over time. It is found that if the nodes are initially randomly distributed and subsequently

perform random way-point model that the average neighbor percentage varies a lot for the first 600 seconds of

the simulation. After this initial period, the average neighbor percentage remains fairly constant (this is because

nodes are more likely to be around the centre of the simulation to travel between two random points). [BMJ+98]

for example uses a 900 second simulation, so this phenomenon may affect the results.

1.5.2 Network Scenario

The scenario in which a network will be used will determine which routing, mobility, and internet-connectivity

solutions are most appropriate. We identify here some of the parameters of a network scenario that are most im-

portant when considering Internet connectivity for ad-hoc networks. Section1.5.2.1describes IETF’s approach to

network scenarios in mobile wireless networks. Section1.5.2.2describes some additional parameters of network

scenarios where internet connectivity is required.

1.5.2.1 MANET networking contexts

In [CM99], the IETF present the idea of anetworking context,and identify a number of parameters of the net-

working context which can be varied:

• Network size

• Network connectivity - the average degree of a node

• Topological rate of change
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• Link capacity

• Fraction of unidirectional links

• Traffic patterns - non-uniform or bursty traffic to be considered

• Mobility - how does temporal and spatial correlation affect a routing protocol?

• Fraction, frequency of sleeping nodes.

1.5.2.2 Additional Parameters for Internet Connectivity

In the scenario of a mobile wireless network with internet connectivity, there are a some other parameters which

may be relevant:

• Amount of internal traffic: what fraction of traffic is purely internal to the network, and what fraction is

between the fixed network and the wireless network?

• Static/Semi-static nodes: At least some nodes (the internet gateways) will be static. Some fraction of other

nodes in the network may be static or semi-static.

1.5.3 Example Network Scenarios

1.5.3.1 Random Scenario

Much of the literature evaluating ad-hoc routing protocols operates using a very simple scenario (because it is

easily implementable in ns-2):

• 2-d, rectangular area

• No obstacles

• Bi-directional links

• Fixed number of nodes

• Nodes operational for whole simulation

• Random-waypoint mobility model. Nodes pause for a random amount of time before picking a point uni-

formly from the simulation area. Node then moves to new point at a random speed up to 20 m/s (72 km/h).

Some evaluations use a fixed rather than a random speed.

This (or simple variations) are used for evaluation in [BMJ+98], part of the Monarch2 project at CMU. [BMJ+98]

is one of the main performance evaluations of ad-hoc routing protocols in the research. CMU implemented the

Wireless and Mobility Extensions to ns-2 ([Mon98]), which are widely used for performance analysis.

2MObile Networking Architectures
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1.5.3.2 Scenario-Based Performance Analysis

In [JLH+99], parameters are given for simulations of three example scenarios:

• Conference Auditorium: network access so speaker may share data with the audience

• Event Coverage: Reporters at a political or sports event, or stock-brokers at a stock exchange.

• Disaster area: Rescue operation at a natural disaster site.

They present parameters for each scenario: transmitter range, environment size, node mobility, traffic type and

patterns. For instance, the conference auditorium is divided into three zones: the stage (with the speaker walking

back and forth), the audience (who are fairly static), and the entrance (where people come and go). In the event

coverage, the speed of node movement is fairly small (1 m/s), and clusters of around 10 nodes are formed sponta-

neously. In the disaster area, there are three groups of nodes that are connected only by vehicles (helicopters, cars)

which are moving around quite quickly (20 m/s). There are multiple network partition events in the disaster area.

In each of the scenarios, there are a number of constant-bit-rate (CBR) sources and a number of receivers,

giving a number of concurrent CBR flows. Each flow sends 512 byte packets 4 times a second.

The choice of some of the parameters are a bit strange (e.g. conference has transmitter range of 25m, some-

where between bluetooth and 802.11), but provide some results that are more meaningful than the random model.

1.5.3.3 (Sub)Urban Mesh Network

The sub-urban mesh network is one of the type envisaged by LocustWorld’s MeshAP (see section1.4.8). Many

people - who don’t necessarily know each other (multiple administrative domains) - co-operate to provide internet

access to a suburban area. Nodes are typically very static. Some nodes will have internet connectivity that they

are willing to share with others over the mesh network.

Mesh networkingis a popular term ([Eco02]) for multi-hop wireless networks used to solve thelast-mile

problem: how to provide broadband connections to homes without running cables directly to each subscriber. At

the moment, the main option is to reuse the telephone or cable-TV networks. Mesh networking is an approach

being proposed by both commercial and ’open-source’/community movements.

In the commercial model, aneighborhood access point(NAP) is installed, which is a radio base station with

a high-speed internet connection. Subscribers to the service install their own wireless node to gain access to the

NAP. Once this node is installed, it can also act as a relay to extend the effective coverage of the NAP.

1.5.3.4 WAND

The Wireless Ad-hoc Network for Dublin (WAND), is“a collaboration between the Dynamic Interactions Group

at Media Lab Europe (MLE) and the Distributed Systems Group at Trinity College Dublin (TCD) and aims to

realise a wireless network research testbed for new types of wireless applications running on ad hoc networks”.

The initial deployment of WAND will be a string of nodes, mounted on traffic lights between TCD and MLE.

These nodes will be equipped with 802.11 network interfaces, and close enough to each other to communicate.

15



In the future, the nodes may have dedicated high-speed internet access, or high-speed wireless communication

among themselves.

The backbone of the WAND network is intended to act as a starting point for the network to grow. There will

probably be two types of users of the network:

• Fixed nodes. Businesses and residents within range of WAND may choose to join the network. They will

be able to access the services of the network, but also extend the coverage and improve the infrastructure of

WAND.

• Mobile Users. People using PDAs, mobile phones or laptops equipped with 802.11 may temporarily join the

network and access it’s services. These users may be mobile while they are in the network. These mobile

nodes will also form part of the network infrastructure while they are present.

It is anticipated that much of the traffic will initially be the use of WAND for internet access. Nodes on the network

will act as HTTP, FTP, email clients (POP/IMAP/SMTP), and possibly to access computing systems (ssh). There

may also be usage of software such as instant messenger (which, interestingly provides an application-layer macro

mobility protocol). These usages have in common that they can all work with client-initiated TCP connections (so

nodes should not have a need to act as servers) and they all use WAND as a stub network(see section1.1.1).

With such a network in place, however, other usages may evolve around the network. Obvious examples would

be networked computer games between people on the network, or peer-to-peer file sharing. Less obvious might

be facilities such as printing, scanning, or file backup provided over the network. These services might require

nodes on the network to act as servers and use more intra-WAND traffic.

1.5.4 Performance Evaluation

Performance evaluation of a routing, mobility or ad-hoc connectivity solution can be broken down into two main

approaches: simulation and empirical study. By far the most popular method of evaluation in the literature is

simulation.

1.5.4.1 Network Simulation

As described in Section1.5.3.1, ns-2 ([Inf03]) is usually used for simulation of wireless networks and evaluation

of ad-hoc routing protocols. There are alternatives available, such as OPNET Modeler (commercial) and Glo-

MoSim ([ZBG98]). However, as noted in ([CSS02]), the results of simulations in these three environments may

vary widely (possibly due to the level of detail used in physical layer simulations) and should not be trusted to

correspond with real-world results.

1.5.4.2 Real-world evaluation

APE3 ([LLN+02]) is a testbed for performing real-world protocol evaluations. It is essentially a small (~8Mb)

Linux distribution (which can be installed easily under windows). It provides for scripting and choreography
3Ad-hoc Protocol Evaluation testbed
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for individual nodes, with data gathering performed at IP and physical layer. Using choreography can provide

instructions to operators of the nodes on where to move physically. Support is also provided for simulating

physical conditions by dropping packets at the MAC layer.

1.5.4.3 Performance criteria

[CM99] outlines some performance criteria for evaluation of ad-hoc routing protocols.

• End-to-end throughput and latency. Include statistical measures (means, variances, distributions)

• Route acquisition time.

• Percentage Out-of-Order Delivery.

• Ratio of data bytes(packets4) transmitted / data bytes(packets) delivered

• Ratio of control bytes(packets) transmitted / data bytes(packets) delivered

1.5.5 Miscellaneous

1.5.5.1 Implementation

The Ad-hoc Support Library (ASL - [LLN+02, KZ02]) is a user-space library which provides an API to facilitate

implementation of routing protocols for wireless ad-hoc networks in Linux. The authors argue that is preferable

for on-demand route discovery to be performed outside the kernel, keeping computations that may be memory or

CPU intensive out of kernel space.

The ASL library allows typical on-demand routing functions to be implemented on a standard Linux 2.4 kernel

with no kernel modifications necessary. The LinuxUniversal TUN/TAPinterface is used to pass packets requiring

routes to a user-space daemon, and the packet filtering facility,Netfilter5 is used to monitor packet routing events.

Using ASL, the University of California at Santa Barbara implementation of AODV, AODV-UCSB was easily

ported to run completely in user-space, with fewer packets needing to cross between kernel- and user-space.

1.6 Other Research

1.6.1 Artificial Intelligence / Mobile Agents for Routing

1.6.1.1 Swarm Intelligence for Routing

“Swarm Intelligence (SI) is the property of a system whereby the collective behaviours of (unsophis-

ticated) agents interacting locally with their environment cause coherent functional global patterns to

emerge. SI provides a basis with which it is possible to explore collective (or distributed) problem

solving without centralized control or the provision of a global model.” [Ara02].

4measuring packets (as opposed to bytes) gives some idea of channel access efficiency
5http://www.netfilter.org/
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The termSwarm Intelligenceis used to refer to systems whose design is inspired by models of social insect

behaviour. Key characteristics of these models are:

• Large numbers of simple agents

• Agents may communicate with each other directly

• Agents may communicate indirectly by affecting their environment, a process known asstigmergy

• Intelligence contained in the networks and communications between agents

• Local behaviour of agents causes someemergent global behavior

Some research has focused on the use of swarm-intelligence type systems for routing within communications

networks. Both [KESI+01] and [AGK+01] provide an overview of the main work in swarm intelligence as it

applies to routing: AntNet and Ant-based Control.

AntNet AntNet ([CD98]) is an adaptive, mobile-agents-based algorithm inspired by work on the ant colony

metaphor. It has been found to out-perform the best-known routing algorithms on several packet-switched com-

munications network.

In AntNet, each node keeps a routing table, which for each destination gives the probability of choosing each

neighbouring node as the next hop. In actual network operation, the next hop with the highest probability is always

chosen. Periodically each node will launch network exploration agents, calledforward antsto every destination.

At each node, the ants will choose their next hop probabilistically using that nodes routing table. As the ants visit

a node, they record their arrival time and the node identity in a stack.

An ant reaching it’s destination is converted to abackward ant. The backward ant pops the entries off it’s stack

and visits each of the nodes that the forward ant did. At each node along the return trip, the arrival time of the

backward ant is compared to the arrival time of the forward ant. This gives a round-trip time to the destination

over the route chosen by the forward ant. This round-trip time is compared to the average round-trip time to that

destination. If the new round-trip time is smaller, the probability of choosing that route is increased. If the new

time is larger, that route’s probability is decreased.

Ant-based Control Ant-based Control ([SHBR96]) uses a very similar approach to AntNet, but designed

specifically for telephone networks. Ants travel only in one direction and may be delayed at congested nodes.

The effect of an ant’s arrival at a node is decreased with the age of the ant. The use of a route for telephone calls

may result in it’s congestion, which will in turn cause the strength of routing entries involving congested nodes to

decrease. The use of noise or jitter in the ant’s movement decision is suggested to promote random exploration.

The ant-based control strategy was found to out-perform another (much more complex) mobile agents ap-

proach to load balancing from British Telecom’s research labs. The ant-based strategy was better able to adapt to

changing call patterns, both by reacting to them, and by choosing more robust routing strategies6.

6One experiment allowed both approaches to run for a period of time. The routing tables were then frozen and their performance tested
against changing call patterns for the remainder of the simulation.
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1.6.1.2 Agent-based DVR

Agent-based Distance Vector Routing (ADVR - [AMM01]) alters a DVR routing protocol so that the routing

messages exchanged become agents, which determine their own movement through the network: rather than being

broadcast to all neighbors of a node, routing updates get transferred between nodes as a part of agent migration.

A certain number of agents is active in the network at any particular time. The migration strategy of the agents in

an ADVR approach needs to be chosen carefully to avoid looping and other negative side-effects.

A Random Walkis an agent migration strategy where agents simply select a node randomly from the neighbors

of it’s current node. It has been shown that, due to it’s probabilistic nature, a Random Walk will visit all nodes and

edges in a network (in infinite time).

A Structured Walkis a migration strategy that chooses an agent’s destination based on some criteria (conges-

tion, topological information, historical information). Three structured walk strategies are proposed: node-least-

visited, edge-least-visited andleast-first walk7.

Using a structured walk, ADVR can achieve convergence properties approaching that of a DVR protocol, but

with significantly fewer messages. The messages that are sent in ADVR are much more efficient at distributing

routing information.

1.6.2 Message Flooding and Broadcast Storms

Many of the approaches to ad-hoc routing and internet connectivity mentioned above utilise some form of flooding

in order to disseminate messages throughout the network. However, the plain flooding algorithm may entail a

large number of unnecessary packet rebroadcasts, which in turn increase media contention and packet collisions

and hence use up bandwidth. There has been some research into alternative flooding algorithms that may reduce

unnecessary broadcasts.

1.6.2.1 The Flooding Problem

The flooding problem in the context of mobile wireless networks may be stated: a node wishes a message to be

delivered to all nodes in the network. A node maybroadcasta message, which will deliver it to all nodes within

transmission range in the absence of message collisions at a receiving node. (In terms of 802.11, broadcasts are

unacknowledged, and a RTS/CTS handshake does not apply).

The plain flooding algorithm is that the initial node broadcasts the message, which has a unique identifier. A

node receiving a broadcast will in turn rebroadcast the message if it is the first time the node has received the

message. Since receiving hosts are close to each other and the timing of rebroadcasts highly correlated there is a

high probability of media contention. Also, the closer re-broadcasting hosts are to each other, the more redundancy

exists in the rebroadcasts.
7the agent chooses the destination node to minimise the combined visit-count of the edge and node
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1.6.2.2 Broadcast Storms

[TNCS02] describes these problems with the plain flooding algorithm as thebroadcast stormproblem. Some

simple analysis is made of coverage and contention for broadcasting and re-broadcasting in a 2-dimensional space

with omni-directional antennas.

It is shown that a node receiving a broadcast can cover a maximum additional area 61% of the original area.

The average additional coverage from rebroadcast is 41% of the original coverage area.The average additional

coverage a rebroadcast may provide drops off sharply with each additional broadcast that a node receives. A

node that has heard a broadcast twice will only provide 19% extra coverage on average. The expected additional

coverage drops below 5% for a node that has received the broadcast 4 or more times.

A similar analysis may also be made for contention between rebroadcasts. For two nodes that receive a

broadcast and decide to rebroadcast it, there is a 59% that their transmission areas overlap, and hence a 59%

chance of contention between these two rebroadcasts. The probability of contention clearly rises with the number

of receiving hosts.

[TNCS02] goes on to present a number of schemes whereby rebroadcast is inhibited in some nodes. These

schemes aim to reduce broadcast redundancy, and hence contention and collision. Most of the schemes operate by

attempting to maximise the utility of the rebroadcast, i.e. the additional coverage area or chance of non-collision.

All of these schemes use random delays between reception of a broadcast and rebroadcast to allow reception of

duplicate messages and decide whether to rebroadcast.

Counter-based Scheme If a host attempts to rebroadcast a message, it may be temporarily delayed from doing

so due to busy medium, back-off, or other queued messages. In this case, it is possible that the host will receive

the broadcast one or more times before it gets the chance to start transmitting it’s own broadcast.

A counter-based scheme sets a threshold,C, for the number of times a message may be received and still

re-broadcast. If a message is received more thanC times, it is not rebroadcast. The initial rebroadcast is delayed

by a random number of slots (the amount of time it takes to send a message). Messages received during this delay

may cause the rebroadcast to be cancelled.

Distance-based schemeRelated to the analysis of additional coverage of rebroadcasts given in1.6.2.2above, the

greater the distance between the sender and receiver of the broadcast, the greater the additional coverage achievable

by the receiver re-broadcasting. The signal strength of reception may be used to correspond to the distance. During

the random delay before rebroadcast, if the node receives the message from another node which has it’s distance

within a certain radius (corresponding to signal strength above some threshold), then the rebroadcast is cancelled.

Location-based scheme As an extension of the distance-based scheme, if nodes are equipped with GPS re-

ceivers they could attach their location to broadcasts. A receiving node could then calculate more accurately the

additional coverage that it may provide by rebroadcast. (This is algorithmically hard, but acceptable approxima-

tions may be made).
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Cluster-based scheme This scheme uses a clustered topology, such as one formed by thecluster formation

algorithmof [JTT99]. Nodes which are not cluster heads or gateway nodes never re-broadcast messages. Cluster

heads and gateway nodes may use some other scheme to decide whether to rebroadcast or not.

Evaluation The evaluation of the various flooding schemes show that a significant number of rebroadcasts may

be eliminated without seriously affecting the reachability of the flooding. The location based scheme is the most

effective, offering the best combination of reachability and rebroadcast savings. The balance between reachability

and rebroadcast savings may be adjusted by choice of scheme and parameters.

1.6.2.3 Probabilistic Broadcast and Phase transitions

In [SCS02] a simple probabilistic broadcast scheme is examined. Each node has a probabilityp of re-broadcasting

a message. The authors present some elementary results from the theory of random graphs and percolation theory.

For these simple models, there is a phase transition phenomenon where a critical value ofp exists. Below this

critical value the flooding is non-global, but above this value there is a high probability of the flooding to reach

the whole network.

However, the simple models do not apply directly to the situation of a mobile wireless network. The bimodal

behaviour of percolation theory and random graphs is not found. The results for wireless networks do tend towards

this situation with higher densities of nodes, however. For lower node densities, the success of broadcast is roughly

linear with rebroadcast probability. Success rates of 90% can be achieved for rebroadcast probability as low as

0.65 in small/dense networks.

The authors note that there is scope for further work in this area. Varying the rebroadcast probability based on

local graph topology information could improve performance. There is also scope to vary the nodes’ transmission

power in relation top.

1.6.2.4 Gossip based Ad Hoc Routing

Gossip-Based Ad Hoc Routing ([LHH02]) applies probabilistic broadcast (Section1.6.2.3) to route finding within

AODV (see1.3.2). Route requests are flooded using an alternative probabilistic scheme. A number of extensions

to simple probabilistic broadcast are proposed:

• Simple probabilistic broadcast is called GOSSIP1(p). p is called thegossiping probability.

• Setp = 1 for the firstk hops. Call this GOSSIP1(p,k)

• Set an increased gossiping probability for nodes with few neighbors. Specifically, GOSSIP2(p1,k, p2,n)

uses gossip probabilityp2 if a node has fewer thann neighbors.

• Listen for neighbors re-broadcasting a message. If a node hasn neighbors, and overhears less thanm= pn

rebroadcasts, then it should retry it’s broadcast.
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These variations are found to be able to reduce control traffic by up to 35%. The routes found by gossiping may be

10-15% longer than those found by flooding. (However, in dense networks a higher incidence of collisions often

causes flooding to find longer routes also.)

1.6.3 Service-based Routing

Service-based routing is a relatively new area of research in ad-hoc routing. It is based on the principle that

request packets are addressed to anonymous services rather than IP addresses. A service-based routing protocol

can be built on top of an AODV layer [WZ01], but the more interesting approach is to replace the IP routing layer

with a service-based routing layer. Similar to AODV, some kind of flooding operation is required (section1.3.2)

but the possibilities for limiting the scope of the flooding are much increased as services can be replicated and

distributed throughout the network, thus limiting the potential spread of a request. In theory, this should allow

such networks to scale as routing request messages should be limited in their broadcast scope to the distance of the

nearest replicated service. However, service request messages can include quality of service (QoS) criteria which

would increase flooding in the network, so a trade-off between support for QoS and overall network efficiency

must be managed. Services can be identified by a name and a set of service criteria, with examples including port

numbers and service descriptors [VGPK97].

The service-based routing paradigm is particularly suitable to stigmergic routing approaches as service re-

quests are anonymous and thus all requests for the same type of service will lay down identical pheromone trails.

Stigmergic routing can be used to solve the optimisation problem of finding the shortest path to a service from any

particular node. Service requests and replies are cached by intermediate nodes in routing tables with accompa-

nying "pheromones", and based on pheromone trails the shortest path to a particular service (service request), as

well as the shortest return path to a particular node (service reply), should emerge after a critical level of service

request packets has been routed through the node.

Another problem of distributing replicated services throughout the ad-hoc network can be tackled either by

having some static notion of the network topology or by employing a distributed algorithm that where nodes take

independent decisions on which replicated service to provide. The independent decisions by nodes should produce

the global effect of distributing the copies of the service such that no node is more a maximum number of hops

from a replicated copy of a service. Issues such as the ability of nodes to provide a replicated copy of a service

(given their location in the topology, available resources and their mobility) must also be addressed.
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Chapter 2

Reinforcement Learning and Swarm

Intelligence

2.1 Overview

Supervised Learningis a general method in machine learning whereby a system is presented with sample input-

output pairs, and attempts to learn the function from input to output. After a period of learning, the system can

then be presented with input data, for which it will attempt to determine the output.

Supervised learning requires an amount of learning data in order totrain the system. However, there are a

class of problems where the correct output that a supervised learning system would require are unavailable. For

instance, in problems of dynamic control (air traffic control for example) there may be many possible ’correct’

answers, or the correct answers may be unavailable. These types of problems are less amenable to supervised

learning.

In Reinforcement Learning (RL),the system attempts to optimize it’s interaction with a dynamic environment

through trial and error. Reinforcement learning provides a model to express problems of these type. There are nu-

merous methods used to approach problems expressed as reinforcement-learning problems. Section2.2describes

how optimisation problems are represented in reinforcement-learning. Section2.3presents some strategies for the

solution of reinforcement-learning problems.

Section1.6.1.1introduced Swarm Intelligence and past work on the use of Swarm Intelligence for routing

in communications networks. The termSwarm Intelligenceis used to refer to systems whose design is inspired

by models of social insect behaviour. In Section2.4 we discuss theAnt Colony Optimisation Meta-Heuristic

([DD99]) and how it can be considered as a learning strategy for a subset of reinforcement-learning problems.

This approach will form the basis of our ad-hoc routing protocol, which is described in Chapter3.
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Figure 2.1: Agent Interaction with the Reinforcement-Learning Model

2.2 Reinforcement-Learning

The material on RL in this chapter is adapted from [KLM96, Sut88, Har96, KR95, tHK97].

We will first describe the general form of reinforcement-learning problems before considering strategies for

their solution.

Figure2.1 illustrates the form of the agent’s interaction with the system. In a standard reinforcement model,

an agent interacts with the system by:

• perceiving the currentsystem state

• choosing and performing oneactionfrom those available in that state

• observing the outcome of the action: the new state of the system

• receiving somereinforcement: a scalar value indicating the value of the action’s outcome

The action changes the state of the system, and the value of this state transition is represented by a scalar re-

inforcement. The reinforcement learning problem is to maximize some long-run optimality of reinforcements

received.

Reinforcement-Learning problems are usually modeled asMarkov decision processes(MDPs). An MDP

consists of:

• a set of states,S

• a set of actions,A

• a reinforcement functionR : S ×A → R. The reinforcement is determined stochastically.R(s,a) is the

expected instantaneous reinforcement from actiona in states.
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• a state transition distribution function:T : S ×A →Π(S), whereΠ(S) is the set of probability distributions

over the setS . We writeT(s,a,s′) for the probability of making a transition from states to states′ using

actiona.

The system may contain terminal states. A terminal stateT may be expressed in an MDP as a state where every

action transitions to stateT with reinforcement 0. An absorbing MDP is one where from every non-terminal state

it is possible to eventually enter a terminal state

The model isMarkov if the state transitions are independent of the history of the system (i.e. previous system

states or agent actions).

2.2.1 Definition of Optimal Policy

The immediate reinforcement of an action does not incorporate the future consequences of that action, even though

that action may have a large influence on the overall performance of the system. The problem of evaluating actions

in the context of delayed rewards is referred to as thetemporal credit assignment problem.The optimal policy

needs to consider the future consequences of each action, as well as their immediate outcome.

2.2.1.1 Long-term Reward Model

It is necessary to define the optimal behaviour of an agent. Defining optimal behaviour consists of making some

valuation of the long-term performance of an agent. There are a number of standard models used to define this

performance. These models determine how far into the future should be considered, and whether reinforcements

received sooner should be considered more valuable than those received further into the future.

Thefinite horizonmodel simply values the performance of an agent as the sum of the expected reinforcement

over the nexth steps:

E

(
h

∑
t=0

rt

)
where rt represents the reinforcement receivedt steps into the future. The finite horizon model does not

consider what will happen in theh+1th step and beyond.

The infinite-horizon discounted modeltakes the long-term reinforcements of the agent into account, but rein-

forcements received in the future are geometrically discounted according to discount factor 0< γ ≤ 1:

E

(
∞

∑
t=0

γt rt

)
this model allows a convergent sum with consideration of infinite reinforcements into the future, while favour-

ing reinforcements received near in the future.

2.2.1.2 Optimal Value Function and Optimal Policy

With a model for optimal performance defined, we proceed by defining theoptimal valueof a state as the expected

performance of the agent if it starts in that state and executes an optimal policy. For instance, using the discounted

model and representing a complete decision policy byπ:
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V∗(s) = max
π

E

(
∞

∑
t=0

γt rt

)

V∗(s) is the optimal value ofs. This function is unique, and is the solution to theBellman Equations:

V∗(s) = max
a

(
R(s,a)+ γ ∑

s′∈S
T(s,a,s′)V∗(s′)

)
(2.1)

whereT(s,a,s′) andR(s,a) are thesystem model(see section2.3.1). TheQ-value of a state-action pair is used

to represent the value of executing a certain action and following the optimal policy thereafter:

Q∗(s,a) = R(s,a)+ γ ∑
s′∈S

T(s,a,s′)V∗(s′) (2.2)

With this notation,V∗(s) = maxaQ∗(s,a). Theoptimal policyπ∗(s) can therefore be expressed:

π∗(s) = argmax
a

Q∗(s,a)

2.3 Learning Strategies for Reinforcement Learning Problems

As shown in section2.2.1, the optimal policy for an agent can be found by solving the Bellman equations (2.1).

Although the complete solution of these equations will guarantee optimal policy, there are estimation methods that

can provide near-optimal behaviour without completely calculating the optimal value function. These methods can

provide useful levels of performance quite cheaply.

We will refer to these estimation methods aslearning strategies.They determine which experiments are

carried out in the system while the agent is learning, and how the information gathered from these experiments is

used to guide learning and performance.

2.3.1 Model-based versus Model-free

Reinforcement learning algorithms may be broadly divided into two classes: those which attempt to learn amodel

of the system, and those which do not. Both model-free and model-based methods are capable of finding optimal

policies. Model-free methods generally require less computation time per iteration of the algorithm, but more

iterations to reach a (near) optimal policy.

In a model-based approach, the system attempts to learn the state transition probabilities and rewards. We

label the probability of actiona while in states resulting in states′ asT(s,a,s′). The reinforcement when actiona

in states results in states′ is labelledR(s,a,s′). We refer to the pair of functionsT andRas theestimated model.

In a model-free approach, no attempt is made to learn the state transition and reinforcement probabilities.

Each individual reinforcement (which is selected stochastically) is used to feed information back to the actions

that caused it. For a non-deterministic process, a model-free method gathers information about state transitions

and reinforcements implicitly.
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As noted in [KLM96], many model-free methods are guaranteed to find optimal policies eventually and use

very little computation time per experience, but make extremely inefficient use of the data they gather. Model-

based methods are more appropriate for applications where real-world experience is considered to be much more

expensive than computation.

Model-free methods can beexperimentation-sensitive:which actions are attempted (and how often they are

chosen) can affect the results of the method or it’s speed of convergence. There may also be feed-back effects in a

model-free method, similar to auto-catalysis in ant colony optimisation (see section2.4) that may be undesirable

or difficult to control.

2.3.2 Q-Learning. Model-Based and Model-Free

As an example of the difference between model-free and model-based learning methods, we considerQ-Learning

([PW94]). In Q-Learning, we attempt to estimate the functionQ∗. We represent our current estimate asQ(s,a).

When an actiona is taken from states, resulting in new states′ and reinforcementr, we use theQ-learning rule:

Q(s,a) := (1−α)Q(s,a)+α
(

r + γmax
a′

Q(s′,a′)
)

The parameterα represents arate of learning.It can be proven that theseQ(s,a) values will converge to the

optimal valuesQ∗(s,a) if each action is executed sufficiently often in each state, and theα parameter is gradually

reduced.

Using a model withQ-learning involves using equation2.2 directly, with the estimated system model being

updated throughout the execution of the algorithm. Each update uses the equations:

Q(s,a) := R(s,a)+ γ ∑
s′∈S

T(s,a,s′)V(s′) V(s) := maxQ(s,a)

With a naive implementation, the outcome of one action can require complete recalculation of the estimatedQ

values. A naive method therefore requires much more computation time per experience than a model-free method.

However, much more use can be made of each experience, with the result that a model based approach can learn

with fewer experiences than a model-free method. Improvements can be made to model-basedQ-learning by

updating only a subset of theQ-values at each iteration of the algorithm.

2.3.3 Prioritized Sweeping

Doing complete propagation of information in model-basedQ-learning in response to each experience is very

expensive. It also devotes a lot of resources making small updates to values, and updating states that are unlikely

to be useful.

Prioritized Sweeping ([MA93]) attempts to concentrate computation effort on ’interesting’ information: A

state is considered interesting when it’s value estimation changes, with larger changes considered more interesting.

Prioritized sweeping’s update strategy is to:

• maintain a list of ’predecessor’ states for each state. These are states which have some non-zero transition

probability to it under some action

27



• maintain a priority for each state. This is the expected change to it’s value the next time it is calculated.

• each time a state’s value is updated, the change in it’s value is added to the priority of it’s predecessors1

• at each iteration, update thek states with the highest priority, setting their priority back to 0 afterwards.

Comparison of this strategy (see [KLM96]) with naive model-basedQ-Learning and with Dyna ([PW93] - which

updatesk values at random each iteration) shows that prioritized sweeping requires a lot less data and processing

time to learn optimal policies.

2.3.4 Advantage of Model-based Methods

The use of a model can be seen as allowing ’virtual experiments’. For example, if the value ofV(s) changes, a

model-free method may require many experiences of actions resulting in statesbefore this change can be incorpo-

rated into neighbouring states. However, a method that uses a model can use the statistical informationT(s,a,s′)

that it has about which actions resulted in states in the past to propagate this change inV(s) to neighbouring states

without the need for actually executing actions which result in states. In systems where real-world experience is

expensive, this can be a large advantage over model-free methods.

2.3.5 Exploration versus Exploitation

A learning strategy must include some element of exploration in order to learn an accurate model of the sys-

tem. The trade-off between exploration and exploitation must be considered. As noted in [Thr92], pure random

exploration maximizes knowledge gain, but may waste much time exploring task-irrelevant parts of the environ-

ment. Also, if exploration is concentrated on relevant parts of the environment, then it makes sense to exploit

simultaneously.

A standard technique for exploration is to useBoltzmann-distributed exploration:in a given state,s, a utility

is assigned to each available action. Letu(a) be the utility of actiona. Then, actions are chosen according to the

probabilities:

P(a) =
eu(a)/T

∑a′ eu(a′)/T
(2.3)

The parameterT is called thetemperature,and determines the likelihood of choosing sub-optimal actions.

The higher the temperature, the more likely a sub-optimal action is likely to be chosen. Varying the temperature

controls the amount of exploration that will be taken.

2.4 Swarm Intelligence and Ant-colony Optimisation

We discussed the use of Swarm Intelligence for routing in telecommunications networks in section1.6.1.1. In

[DD99] the Ant Colony Optimisation Meta-Heuristic (ACO)is introduced. ACO defines a class of swarm intelli-

gence algorithms for solving discrete optimization problems.
1If V(s) changes by∆V, then the expected change in value of states′ is calculated asT(s′,a,s)∆V
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The optimization problems that ACO algorithms attempt to solve bear a strong resemblance to those of rein-

forcement learning problems. ACO algorithms can be applied to discrete optimization problems with the following

structure:

• a set ofcomponents C= {c1,c2, . . . ,cN}, which correspond to states in RL

• a setL of possibleconnectionsamongC. L ∈C×C. These correspond to those pairs of states(s,s′) for

whichs′ is a possible outcome of some action while in states.

• a connection costfunction, J : L×R → R, defined over the connections, and possibly parameterized by

time. J(l , t) corresponds loosely2 to the expected reinforcementR(s,a).

• ACO uses the termstateto describe what are in fact sequences inC. To avoid confusion, we will call these

ACO-pathsor paths.Paths must befeasiblewith respect to the connections inL. There may also be arbitrary

constraintsimposed which reduce the number of feasible paths.

• A solutionis some feasible path which satisfies a set of problem requirements (such as having visited every

component in travelling salesman).

• The connection cost function is extended to asolution costfunction, for instance by summation of the

connection cost over the connections that the solution contains.

From these properties, we can see that ACO problems actually describe a subset of RL problems. In particular,

ACO is applicable to problems where:

• states are discrete

• all paths eventually terminate. In RL, this corresponds to absorbing Markov Decision Processes.

• the connection costs may be time-varying.

• the computational architecture may be spatially distributed.

• there arestart states, which are those where optimisation is initiated, and whose value must be optimised.

The start states restrict the set of solutions which must be searched, and hence reduce the search space of

the algorithm.

2.4.1 ACO Learning Strategy

ACO algorithms solve optimisation problems through the collective action of a population (colony) of agents

(ants). These agents attempt to find minimum cost solutions in the problem domain.

The information gathered by ants is represented in theenvironmentof each componentci aspheromone trails

τi j associated with the connection between componentci and c j . These pheromone trails record some long-

term memory about the whole ant search process. The ACO meta-heuristic also admits the possibility ofheuristic

2whereas the expected reinforcement is defined for an action, the connection cost is defined for an outcome.
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valuesηi j to represent some a priori information about the problem. In RL, these heuristic values can be compared

to performingdirected exploration, as some heuristic rule is used to direct the exploration of the system.

The ants are simple agents with limited capabilities. An ant begins in some start state, and has one or more

termination conditions. From the start state, ants move to feasible neighbour states, building a solution in an

incremental way. At each state, the next state is chosen using a probabilistic decision rule.

An ant has a memory in which it can store information about the path it has followed so far. This memory

can be used to choose feasible solutions, evaluate the solution found, and to retrace the path in order to update

pheromone trails. The probabilistic decision rule employed by the ants is some function of their current envi-

ronment, the problem constraints, and the ant’s private memory. This decision rule favours paths with stronger

pheromone trails and heuristic values. As in RL, the decision rule is crucial in determining the behaviour of

the algorithm. The same trade-offs between exploration and exploitation must be examined in determining an

appropriate decision rule.

At each step, the ant may update the pheromone trails for the connections that it traverses. Once an ant has

reached it’s termination conditions, the ant may use it’s memory to retrace it’s path and update the pheromone

trails to reflect the cost of the solution found. This process of sending backward ants is very similar to multi-step

backups in RL. TheMethod of Temporal Differences ([Sut88]), for instance, is a model-free learning method

which propagates information about the value function of a state back to the actions which caused that state to be

reached.

The manner in which pheromone trail updates are performed determines how the ant-colony learns about the

problem domain. Pheromone trail updates are often made in proportion to the quality of the solution found, so

that good solutions are chosen more often. Another property often exploited is that ofdifferential path lengths.

This property is actually exploited by some species of ants in finding trails to food sources, and refers simply to

the fact that shorter paths are traversed more quickly, and hence more often.

The goal of ACO algorithms is for the local actions of it’s simple agents to result in someemergent global

behaviour: through the local actions of the agents, some global property of the system (e.g. solution cost) is

optimised. One mechanism whereby this can happen isauto-catalysis(positive feedback): one ant choosing an

option increases the chance of other ants choosing that option in the future. However, ACO algorithms can easily

converge to sub-optimal solutions if the auto-catalytic effect is not carefully controlled.

An ACO algorithm can also include apheromone trail evaporationprocedure, in which the intensity of the

pheromone trailsτi j decreases automatically over time. This procedure is used for two reasons. Firstly, to avoid a

too rapid convergence of the algorithm towards a sub-optimal region, the pheromone trail evaporation can cause

increased exploration of new areas of the search space. Secondly, in a time-varying system, it is important to be

able to ’forget’ old information as the system changes.

The problem of convergence to sub-optimal solutions occurs in both ACO and RL. The ACO algorithms

presented in [DD99] are equivalent to model-free methods in RL. The pheromone tables (the equivalent of a RL

decision policy) are updated incrementally in response to single actions taken in the system. There is typically

some adjustablelearning rateparameter which controls how much each experiment affects the pheromone tables.
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As mentioned in section2.3.1, model-free methods, although simpler than model-based methods, do not make

good use of their experiences, and can be veryexperimentation sensitive.This sensitivity to experiment is closely

related to the early convergence problem in ACO algorithms.

2.4.2 TheAgentMetaphor in ACO and RL

The terminologies of both Reinforcement-learning and Ant Colony Optimisation use the termagentto denote that

which interacts with the system and attempts to optimise that interaction. However, the agent metaphor refers to

different elements of the system in ACO and RL. For clarity it is important to be aware of the different usage of

the term.

The termagentin RL refers to an entity that observes the system and makes decisions on how to act in a given

state of the system. Depending on the particular problem domain and implementation, there may be one agent

or many agents. For example, dynamic control problems such as the commonly-studied pole-balancing problem

are best expressed for a single agent. Distributed optimization problems are better expressed, we believe, as a

collection of agents. In a network routing problem, for example, there is an agent for each state in the system,

which cooperates with other agents to share information.

A further usage of the termagentin RL is that ofMulti-agent Systems (e.g. [CB98]). However, this refers to

the use of RL to find optimal equilibria in games. These agents act simultaneously and their reinforcement is a

function of both their action and that of the other agents. Through repeated play the agents attempt to discover

optimal payoff, either for themselves or for the group as a whole.

In ACO, the termagentrefers to something quite different than in RL. The life-time of an ACO-agent cor-

responds to a sequence of actions taken in a RL problem. An ACO-agent is created at some starting state, and

proceeds to choose actions, moving from state to state until some termination condition is met. The ACO-agents

have access to read and write to theenvironmentat each component that they visit. They use information from the

environment to make their routing decisions and update the environment in order to influence the future decisions

of other ACO-agents.

The difference in usage of the termagentbetween ACO and RL is not overly important. It is important to

realise that these terms are metaphors used for describing problem domains and solution methods, and that using

different terminology allows the same problem to be described in different ways.

2.4.3 ACO as a learning strategy for RL

Prioritised Sweeping (Section2.3.3) is a model-based learning strategy based on Q-learning. In Prioritised Sweep-

ing, computation effort is concentrated on updating those states whose values are expected to change the most.

Similarly to prioritized sweeping, ant-colony optimisation algorithms only attempt to update some subset of

the states of the system with each iteration. These states are those which are reached by following some decision

policy from a start state. We can interpret ant-colony optimisation algorithms as prioritising updates that are

expected to be most relevant to the value of the start states.
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For problems where we are interested in optimising some subset of the system states rather than the entire

system, we propose that a learning strategy similar to that employed by ACO could be useful. This is the strategy

that we will employ for our ad-hoc routing protocol SWARM, which is described in Chapter3.
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Chapter 3

The SWARM Ad-hoc Routing protocol

We first describe the ad-hoc routing protocol as a reinforcement learning problem by enumerating the states,

actions, transitions and reinforcements of the system. We then proceed to design a learning strategy within the

constraints of the ad-hoc network.

We use the notation introduced in Chapter2 to describe ad-hoc routing as a reinforcement learning problem.

We will restrict the discussion to the problem of routing between a given pair of nodes. We label these nodes

S andD, the source and destination. We will define a reinforcement function based on thecostof an action in

terms of the it’s usage of network resources. The goal of the system is to deliver each packet with as low a cost as

possible.

A packet is introduced at the source node,S. This begins the packet routing process. The process ends when

the packet has been dropped or delivered by every node that received it. Each packet is assigned aTime to Live

(TTL), which is decreased every time the packet is transmitted. A packet with a TTL of 0 is dropped. If the packet

is received atD, then it isdelivered.

3.1 Model of Reinforcements in Wireless Network

The reinforcement function should reflect the cost to the network of a given state transition. The state transition is

dependent on the action performed and the state of the system. The choice of action in our model is the choice of

which node to forward the packet to1.

A unicast from nodeN to nodeP may succeed or fail. We are designing this protocol for the 802.11 MAC

protocol, which has acknowledged unicasts. NodeN will therefore know whether the unicast was successful. We

will label the action of unicasting a packet fromN to P asU(N,P).

If the unicast is successful, the transitionN→ P occurs. We label the reinforcement for a successful unicast as

rS . If the unicast fails, the packet remains in stateN (or N → N). We label the reinforcement for a failed unicast

1In the implementation of the protocol we also allow packet broadcasts, but this is for neighbour discovery, and is not calculated as part of
the reinforcement learning model. As discussed in section3.3, we are attempting to learn the optimal routing policy, but to do so we cannot
use our estimated optimal policy exclusively, but must also make sub-optimal actions. The broadcast, orexploration action, is never part of
the optimal policy, and hence not part of the reinforcement model.
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asrF .

When a packet is received at a node, the packet may either by dropped or forwarded. We do not model the

dropping of the packet as an action within the reinforcement learning model. The decision to drop a packet is

made if the packet’s TTL has reached 0, and according to a number of rules designed to limit flooding of packets

in the network. These rules are discussed in section3.8.4. In the packet reaches nodeD it will be delivered, with

a reinforcement of 0.

The transmission of a packet in a packet radio network requires usage of network resources whether it succeeds

or not. As described in Section1.2.2, the 802.11 MAC protocol must make radio transmissions to reserve the radio

channel as well as for data transmission. The receiving node must also make transmissions to acknowledge packet

reception. These transmissions must all contend for the radio channel with other nodes in the network. Transmis-

sions which fail can potentially consume the most radio air-time, since the 802.11 retransmission mechanism will

be invoked the maximum number of times possible.

We attempt to make the units of our reinforcement function representative of the amount of radio air-time

required to transmit a packet. These reinforcements will be negative to represent a cost. For our purposes, we

will assign fixed reinforcements for the success and failure outcomes. The incorporation of these fixed costs into

the reinforcement-learning model, and what relationship they may have to actual radio air-time usage is discussed

further in Section3.4. We can arbitrarily assign a value ofrS = −1 since the units of our reinforcement function

are undefined.

As illustrated in Figure3.1, we cannot distinguish between failures due to the target being out of range, and

those due to radio interference. In 802.11, data packets can be retransmitted up to 7 times before the transmission

is considered a failure. We will relaterF to the maximum number of retries of the 802.11 protocol, and set it at

−7.

3.1.1 Model of long-term reward

The system as defined is an absorbing MDP (see section2.2): the initial TTL of packets sets an absolute limit on

the number of state transitions that a packet may undergo. For these reasons, we can use as our long-term reward

the expected sum of future reinforcements from a given state, without a discount factor:

V(s) = E

( ∞

∑
t

rt

)
The optimization problem then becomes to maximize this value for all nodes which are sending traffic towards

the destination. This value is directly determined by each agent’s behaviour, i.e. their routing policy. Therefore the

optimization problem is to optimize the behaviour of each agent along useful paths for those traffic flows which

are active.
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Figure 3.1: Reinforcement Learning Model for Ad-hoc Routing

3.2 Link Delivery Ratios

We have opted for a model-based reinforcement-learning method, as discussed in sections2.3.1. We therefore

need to estimate the state transition probabilities and reinforcement functionsT(s,a,s′) andR(s,a)2.

In an ad-hoc network, the state transition probabilitiesT(s,a,s′) are simply the delivery success and failure

ratios for each link3 in the network. For nodes which are out of transmission range of each other, this value is 0.

For nodes within range of each other, this may be affected by interference and congestion in the network.

It is a difficult learning problem in itself to model delivery ratios in a wireless network. Empirical measure-

ments ([DACM02b]) have shown that these values have shown that link quality may vary significantly in time,

and that there is not a good correlation between signal strength and link quality. See section1.2.3.2for further

details.

For our evaluation, we useNS, which has quite a simplistic radio error model. We do not propose to examine

the problem of predicting delivery ratios in any great detail. For this reason we propose a simple moving average

of measured delivery ratio.

The following events are available for each node to count:

• Attempted Unicast Transmissions,NA

• Failed Unicast Transmissions,NF

• Received Unicast Transmissions,NR

• Received Broadcast Transmissions,NB

2since we have setrS andrF as fixed values,R(s,a) = rST(s,a,S)+ rF T(s,a,F) is a simple function ofT(s,a,s′)
3corresponding to an ordered pair (source, destination)
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• Promiscuously Received Unicasts,NP

Since the network is mobile, we will only use counts from a (configurable) amount of time into the past. Infor-

mation about succeeded transmissions from other nodes is available, but information about failed transmissions is

not. We need to be careful about how we interpret packet reception events. The attempted and failed transmission

counts should contribute to our calculations more strongly than the reception counts.

In order to combine the transmission statistics with the reception statistics, we will use two parameters. One,

σ determines how much we weight reception events compared to send events. The other,ρ, corresponds to our

estimated delivery ratio if we have never attempted to send any packets. Incorporating this in our probability

calculation results in:

p(success| {Ni}) =
NA−NF +ρσ(NR+NB +NP)

NA +σ(NR+NB +NP)

This formulation of our probability estimate can be described using Bayesian analysis4 . If we consider that

we are sampling and estimating the outcome of a transmission, the values are discrete: success and failure. This is

a multinomial sampling problem. TheDirichlet Distribution is a standard prior distribution used for multinomial

sampling. This distribution requires a parameter,αE corresponding to each possible outcomeE. The estimated

probability for outcomeE is then given by:

p(E | {Ni}) =
NE +αE

N+α

whereN = ∑Ni , andα = ∑αi . Theα’s are calledfictional counts,and capture prior information about the

system’s dynamics. In our model, we use received packets to generate our fictional counts.σ controls how big a

contribution received packets make to our prior belief in the presence of the neighbouring node.ρ represents our

believed transmission success probability in the case that we have received a packet, but not attempted to send.

The countNi should include only events occurring during the pastτ amount of time. We implement this by

dividing τ into m small increments. We store our sample ofNi for each of these intervals. After each interval of

time τ
m, we discard our oldest sample ofNi and subtract it fromNi . In this way, we calculate the value ofNi for a

period of timeτ± τ
m. Figure3.2 illustrates this counting method.

This model weights our newest samples equally with our oldest samples. Thus, ifτ is large, our estimate will

change slowly. However, ifτ is too small, our estimates will change very quickly. Again, we are not attempting

to construct an accurate predictor of delivery ratios in a wireless network. Our goal is to design a routing protocol

that allows best use to be made of the model of delivery ratio that is available.

3.3 Optimal Exploitative Policy

Given our estimated modelT(s,a,s′), R(s,a) we can calculate the optimal value function by solving the set of

Bellman equations ([Bel57]):

4see [Hec95] for an overview.
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Figure 3.2: Counting Events within a window

V(s) = max
a

[
∑
s′

T(s,a,s′).
(
R(s,a,s′)+V(s′)

)]
= max

a
Q(s,a)

Note that since each action has only 2 possible outcomes the calculation of theQ-values are quite simple. For

given next-hopP, theQ-value is:

Q(N,P) = pS[rS+V(P)]+ pF [rF +V(N)] (3.1)

wherepS is the probability of transmission toP succeeding, andpF of it failing. SinceV(N) = maxaQ(N,a),

we are seeking the solution of:

V(N) = max
a

[ps(rS+V(P))+ pF rF + pFV(N)]

This is given by:

V(N) = max
a

[
ps(rS+V(P))+ pF rF

1− pF

]
= max

a

[
V(P)+ rS+

pF

pS
rF

]
(3.2)

Once the optimal value function has been calculated, the optimal policy is simply5 to choose the action with

the largestQ-value in each state. This optimal policy will be called theexploitative policy.

The exploitative policy calculated from the estimated model is that which we should follow if the model is

correct. However, the estimated model is constructed through exploration of the system. The estimated model

5A mixed strategy could also be followed, choosing actions based on theirQ-value in some probabilistic way. Our model only considers
the delivery of a single packet to a single destination at a time. However, in reality multiple packets, potentially to different destinations, may
be present in the network at a given time. A mixed strategy would allow for the possibility of distributing load across the network.
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will vary with time as it becomes more accurate. Also, since the ad-hoc network is not static, the model (and

our estimate of it) will vary with time. Therefore, in order to find an accurate exploitative policy, we will need to

perform sufficient exploration of the system.

Section3.6discusses how our actual routing policy operates continuous exploration of the system in order to

estimate the exploitative policy.

3.4 Cost of Transmission, Physical Interpretation

In Section3.1, we proposed to model reinforcements in the wireless networks to reflect the amount of radio air-

time used. This was represented by fixed costs of−1 and−7 representing successful and unsuccessful unicast

transmissions respectively. These costs are reflected in the value function for the ad-hoc network through the

estimated model of the system. In effect, we performvirtual experimentsusing the estimated model to estimate

the average reinforcement and outcome of unicasting to each given neighbour.

The quantityrS+ pF
pS

rF in Equation3.2 represents the cost of transmitting the packet to neighbouring node

P. We will label this cost asC(N,P). This quantity does not necessarily lie betweenrS and rF : it represents

the expected cost if we retry the unicast until it succeeds. The quantityC(N,P) is similar to theconnection cost

function in ACO (see section2.4), with the difference thatC(N,P) is amodelof the system, rather than a single

reinforcement received.

The physical meaning ofC(N,P) is best explained by example: if we are certain of success, then we estimate

C(N,P) asrS exactly. Guaranteed success corresponds to a perfect radio link and no other nodes contending for

the radio channel. The costrS should thus be interpreted as representing the air-time used to make a perfect unicast

at the MAC layer. In a perfect unicast, all transmitted packets (RTS, CTS, DATA, ACK) are received without error.

This is the absolute minimum cost for transmitting a packet.

Similarly, if we have a 50% confidence of a transmission succeeding, we estimateC(N,P) asrS+ rF . This

corresponds to the cost of one perfect transmission and one failed transmission, which is the expected cost of

eventually transmitting the packet toP.

A successful 802.11 transmission on an imperfect link may require the data to be retransmitted one or more

times. The number of retransmissions required on average will increase as a link becomes less reliable. Infor-

mation about the number of transmissions required to unicast a packet would be a useful indication of network

congestion6. Unfortunately, the information on how many transmissions were required to unicast a packet at the

MAC layer are often not easily accessible by other elements of the network stack. However, we may assume that

if some fraction of unicasts fail that those which succeeded required more than one transmission.

These points demonstrate that the cost function we model is indicative of the air-time required to transfer a

packet from one node to the next. Since theV-values in the network are calculated as sums of these connection

costs, the value function we attempt to optimise also represents the air-time required to transfer a packet from a

node to another, possibly multiple hops away.

6in fact, [DACM02a] proposednumber-of-transmissionsas a metric for routes in multi-hop networks, as discussed in section1.2.3.2
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However, the relationship between the estimated costs in our model and the actual physical usage of radio air-

time that they correspond to is only a qualitative one. The actual physical cost of transmitting a packet between

two nodes in the wireless network is a complex function of the network conditions. We attempt only to estimate a

value that is indicative of the average cost of using a link in the wireless network.

3.5 The SWARM Learning Strategy for Ad-hoc Routing

We have defined our reinforcement learning model for ad-hoc routing and defined our optimization problem.

Given the estimated model, a daemon agent with global information and influence could solve the routing prob-

lem optimally provided the estimated model was accurate enough. However, a practical ad-hoc routing protocol

operates in a distributed nature, with neither global information or influence. Calculating the value function ex-

actly would be prohibitively expensive. Instead we opt to approximate the value function.

We also note that we need not calculate the value function for the entire network, but only for those nodes

along useful paths. In effect we wish to focus our learning effort along paths between traffic flows that are in

use. Another way of describing this is that learning is performed in an on-demand manner. We can do this in a

natural way by using data packets to transfer value function estimations between neighbouring nodes. This has

some useful properties:

• Learning effort is expended only for traffic flows which are in use

• Learning effort is proportional to the number of packets being sent on that flow

• In 802.11, the cost of adding a few bytes to a packet is much lower than sending a separate packet

• In a service-oriented network, routing information for popular services will be widely distributed and up-

dated regularly throughout the network

This learning strategy may be usefully described by analogy with ant-colony optimisation algorithms. The colony

of co-operating agents as a learning strategy in a discrete optimisation problem was discussed in Section2.4.

There are a number of useful properties of ACO algorithms that are applicable to the problem of ad-hoc routing:

• They are amenable to a distributed implementation.

• The use ofstart statesprioritizes those states whose values we are interested in optimising. Whereas learn-

ing strategies such asPrioritized Sweeping(Section2.3.3) prioritises those states whose value function

changes by a large amount, an ant-colony based approach can be interpreted as prioritising states based on

their relevance to the start states in the system.

• The algorithms for solution operate by repeated runs of the optimisation problem, each of which begins in

a start state.

• There are termination conditions for paths in the system. In ad-hoc routing the termination condition is the

destination node. We attempt to find optimal paths which achieve these termination conditions.

39



• The use ofpheromone evaporationto allow operation in dynamic systems

However, ant-colony optimisation algorithms typically operate with the equivalent of a model-free reinforcement

learning strategy, and hence suffer from experimentation sensitivity, early convergence, and learn inefficiently. We

propose to use a learning strategy based on ant-colony optimisation, but which operates with a model of the state

transitions and reinforcements in the system. The main points of this strategy are as follows:

• Packets are created at start states, i.e. traffic sources.

• A modelof the system is continually estimated. Each node records statistical information about the transi-

tion probabilities with it’s neighbouring states.

• Each nodeN maintains a current estimate of it’s optimalV-value, and that of it’s neighbouring nodes.N’s

estimatedV-value of a neighbouring nodeP will decay from the time it was last advertised. A node’s value

will be advertised when that node forwards a packet. In this way, nodes which do not forward packets are

assumed to be less valuable.The decision of other routing agentsnot to use a path throughP can be used to

infer a lower value forP.

• At each node, theV-value is calculated using the estimated model and theV-values of it’s neighbouring

nodes.

• At each node, the agent decides how to act based only on the information available at that node: the esti-

mated model and the estimated values for the neighbouring node. This decision will include some explo-

ration policy and some heuristic to guide the search.

• The destination node will have a fixedV-value, typically 0. An agent reaching the destination node will

cause that node’s value to be advertised to it’s neighbouring nodes.

Many classes of network traffic (e.g. TCP) include communication in both directions. For this reason, we will use

a packet from sourceS to destinationD to update routing information in the network for bothS andD. Having

routing information move in both directions through the network is very valuable: packets travelling fromSare

best suited to update routing tables that will be used by packets travelling towardsS.

As discussed in Section2.4.2, we could provide multiple, equivalent descriptions of our system and learning

strategy through the use of different metaphors. We have opted to describe arouting agent, corresponding to each

node or state. For a routing protocol, this is the more literal metaphor, as it corresponds to how a routing protocol

will be implemented in practice. So, although our learning strategy has many properties of those used in ACO,

we will not attribute any behaviour to packets other than as a unit of information to be exchanged between routing

agents.

3.6 Exploration in the ad-hoc network

The optimal policy can only be determined by adequate exploration of the system. The quality of our policy

is directly limited by the quality of the model that it is calculated from. We must sample the state transitions
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sufficiently often to establish a good model.

We never operate the exploitative policy exclusively, as our exploitative policy is always an estimate that must

be improved by exploring states and actions which are currently estimated to be sub-optimal. However, we wish

to exploit reasonable performance from the routing protocol while we are performing exploration.

As discussed in section2.3.5, good exploration will concentrate on relevant parts of the system, and it therefore

makes sense to exploit simultaneously. Exploration should be directed towards those parts of the system which

are likely to be useful and relevant.

In order to allow exploration within the system, while simultaneously exploiting our current knowledge, we

will use a number of strategies. Firstly, we will use the Boltzmann action selection technique in order to perform

a configurable amount of exploration of theknown actions.Secondly, since we must discover the existence of

neighbouring nodes in order to consider them as next-hops, we will introduce anexploration action, designed to

discover neighbouring nodes. Thirdly, in order to restrict exploration to relevant parts of the system and prioritize

packet delivery we will use agreedy heuristicto restrict the system from exploring areas of the system that are

considered less useful.

3.6.1 Exploration Action

In 802.11 wireless networks, a unicast requires a destination address. To allow the entire space of MAC addresses

as possible actions in each state is infeasible. Since the network is mobile, a node’s set of neighbours will change

with time. We need to have some way of discovering possible neighbour-nodes.

We allow an extra optional action in each state, theexploration action. This is implemented by means of

a network broadcast. This action isnot included in our calculations of the value function. This is because the

exploration action should never be part of the pure exploitative strategy which theQ values represent.

We will choose the exploration action probabilistically using Boltzmann action selection. We assign a utility

to the exploration action by adding a fixed cost parameter to theV value of the current node. For the action of

unicasting to a neighbouring node, we will use theQ value as the utility of that action.

In the case that a routing agent has no candidate actions other than exploration, the exploration action will

always be taken. This causes a flooding behaviour similar to that of the route request in AODV. The routing agent

will overhear neighbouring nodes propagating this packet flood, and thus discover it’s neighbouring nodes. If any

of those neighbours happens to have a route to the destination of the packet, they will (most likely) forward the

packet along their route7.

3.6.2 Greedy Heuristic

We intend to explore the system and transfer routing information through the network by using the actual data

packets that are being routed. In order that we deliver as many packets as possible, we want to weight the routing

policy heavily towards exploitation. For this reason, we operate a greedy heuristic: at each node we only consider

as next hops those nodes withV-values which are greater than that of the current node by some minimum amount.

7which also advertises that node’sV-value, which the original node can receive and use to update it’s routing tables.
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Figure 3.3: Greedy Heuristic: Permitted actions

So, a node will be considered as a target for exploration only if it contributes to the delivery of the packet in

question. The greedy heuristic attempts to deliver each individual packet reasonably quickly by avoiding back-

tracking in the network. This point is illustrated in Figure3.3. TheV-values for each node are displayed, along

with the unicast actions which are permitted by the greedy heuristic in each state. The state withV-value -3 can

be explored, but only from the state with value -4. (The state with value -3 can also be explored by an exploration

action from the state with value -2).

3.7 Feedback in the ad-hoc network

The cost of transmitting a packet in a radio network (including carrier sensing, acknowledgements, retransmis-

sions) is high compared with the incremental cost of increasing the packet size. It is cheaper to increase the size

of each packet by a small amount than to make extra transmissions to transfer routing information.

We propose to transfer routing information through the network opportunistically. We attempt to make max-

imum use of each transmission made on the network. We also propose to transfer the routing information in an

on-demand manner. Each time a node transmits a data packet it also transmits the estimated optimal value function

V for both the source and destination of the data being sent.

3.7.1 Promiscuous Receive

Whenever a node unicasts or broadcasts a packet, it may attach it’s expected optimal value,V associated with

bothSandD. Any of it’s neighbouring nodes receiving that packet can then use these values to update it’s ownQ

values andV value forSandD. This approach ensures that we make maximum use of every transmission.
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3.7.2 Silent Feedback

We can treat thelackof feedback for a given action as a negative feedback in the ad-hoc network. Since our routing

protocol is designed to be used on-demand and throughout the lifetime of a network connection, we assume that

any nodes along good routes will be visited often. For this reason, we can interpret the absence of feedback for a

given action as negative feedback.

Also, since the network is not static, the system is changing all the time. We need to provide a mechanism

whereby stale information is discarded. For this purpose, we use an exponential decay8. Each node judges theV

values of it’s neighbours to decay at this rate, starting at the last time they transmitted a packet. Nodes need not

make a transmission to inform their neighbours of the decayed values, as their neighbours will assume this decay

unless they hear otherwise.

The optimal value,V(s) of nodes will be interpreted as:

V(s) = Vadv(s).λ∆T(s)

where∆T(s) is the elapsed time since nodes advertised it’sV value, andVadv(s) is the value that it last

advertised.λ is the decay rate of information in the system.

3.7.3 Notes

3.7.3.1 Bi-directionality

Each node estimates theQ-value for unicasting to it’s neighbouring nodes. ThisQ-value is calculated from equa-

tion 3.1, which is dependent on theV-value of neighbouring nodes. When calculating theQ-value, the node uses

the last advertisedV-value from each neighbouring node.

This approach does not allow the use of unidirectional links (i.e. one node with a high-powered transmitter), in

the way which DSR allows9. However, since we are focusing on 802.11 based networks (which use acknowledged

unicasts) this limitation is not severe.

3.7.3.2 Pro-active responses

Our routing protocol takes advantage of two-way communications along traffic flows to transfer routing updates

more quickly to where they are useful. If traffic flows are uni-directional, we allow extra routing packets to be

generated in the opposite direction. How often these packets are generated is a configurable parameter.

3.8 Implementation Details

We implement the protocol as a routing agent, placed between the IP layer and the network interface. The routing

agent effectively replaces the ARP table in operation, as it accepts packets without MAC addresses on them and

processes them before handing them to the network interface.

8This mechanism is equivalent to pheromone evaporation in ACO.
9routing information about a neighbouring node can be received from a third-party, enabling the use of unidirectional links
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Field Name Field Type Field Contents

ORIGIN IP Address The original source of the packet

DESTINATION IP Address The final destination of the packet

SEQUENCENUMBER Integer Identifier generated from a counter at the source node

SOURCEVALUE Floating-Point Vsrc(N)

DESTINATIONVALUE Floating-Point Vdest(N)

HADERROR Boolean True if the packet’s previous transmission failed

IPPACKET Data Packet IP Packet, or empty

Table 3.1: SWARM Packet Format (N is the node transmitting the packet)

Figure 3.4: Routing Tables

The routing protocol has a number of parameters, which can be used to adjust the behaviour and performance

of routing. In the following, these parameters will be represented using the typeface: ROUTINGPROTOCOL-

PARAMETER. These parameters are summarized in Section3.8.3on the following page, and the effect of the

parameters on performance in some different network scenarios are examined in Chapter4 on page52.

3.8.1 Packet Format

Each packet sent to the network interface by the routing agent is of the form presented in Table3.1. The routing

agent may also send packets without data content. These are routing packets, and are used if traffic between two

nodes is unidirectional (see below).

3.8.2 Routing Tables

Figure3.4 illustrates the structure of the routing tables:
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RoutingAgent Each routing agent has a unique id (corresponding to the network interface IP address) and a

counter used to generate unique identifiers for packets. The routing agent also maintains routing tables for each

destination of interest, and each neighbouring node.

NeighbourNode For each neighbour node, the routing agent maintains counts of network events. These counts

are for anevent window, as explained in Section3.2. From these counts, the estimated probability of successfully

unicasting a packet can be estimated.

RoutingEntry For each routing end-point10, a routing table entry is maintained. This entry contains the current

estimatedV-value for that destination. For each neighbouring node which has advertised routing information for

the destination, a next hop entry is maintained. Information is also retained about packets forwardedfrom that

routing end-point.

TheV-value for a routing end-point is calculated as the maximumQ-value across the available next-hops. A

Q-value less than the parameter MINVALUE is treated as an infinite cost and represents a broken route.

For each end-point, the number of packets received from that end-point since the last time a packet was sent is

recorded. This is used for making pro-active responses (see section3.7.3.2).

RouteNextHop For each end-point and neighbouring node which has advertised a route to that end-point, the

last advertisedV-value and the age of that advertisement are recorded.

ForwardedPacket For packets which are receivedfrom a particular routing end-point, the sequence number

and theV-value which was advertised when that packet was forwarded are recorded. The use of broadcast for the

exploration action allows the possibility of a packet being duplicated in the network. We use a source-assigned

sequence number to uniquely identify packets. We use this information for duplicate suppression: If a node

receives a packet for a second time it will discard it. This duplicate suppression can be disabled for packets which

have encountered unicast failure, allowing them to ’backtrack’ in the network.

3.8.3 Routing Protocol Parameters

The adjustable parameters of the routing protocol are detailed in Table3.2. The effect of these parameters on the

performance of the routing protocol are examined in Chapter4.

10source or destination of packets
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Parameter Name Units Purpose

UNICASTSUCCESSREWARD Reward
The Reinforcement received for successfully transmitting a

packet. Fixed at -1.

UNICASTFAILUREREWARD Reward
The Reinforcement received for a failed packet transmission.

Fixed at -7.

EXPLORATIONUTILITY Reward The utility assigned to the exploration action

M INVALUE Reward TheV-value of a broken route.

M INIMUM REWARD Reward Used to heuristically guide exploration

EVENTWINDOWSIZE Time The size of the window used to count events

EVENTWINDOWSAMPLES Integer
Number of buckets to split event window into. Determines ac-

curacy

PROBABILITY FROMRECEIVE Float Unicast Success Probability when have not attempted to transmit

RECEIVEWEIGHT Float
How much Received Packets are weighted compared to Sent

Packets

DECAYRATE Float
How much theV-values grow every second that they are not

advertised.

TEMPERATURE Unitless The temperature used in boltzmann action-selection

SEQUENCENUMBERMEMORY Integer Number of sequence numbers to record forwarded values for

MAX RECEIVESWITHOUTSEND Integer
The number of packets that can be received on a flow without

sending a response packet

Table 3.2: Routing Protocol Parameters
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Algorithm 1 Sending and receiving packets from the IP stack
deliverPacket(Packet p) {

if (deliveredSinceLastSend> MAX RECEIVESWITHOUTSEND) {

generateResponsePacket (p.origin);

}

deliveredSinceLastSend += 1;

IP_Stack.receive(p.ipPacket);

}

sendPacket(IPPacket ip_packet) {

p := newPacket;

p.origin := this;

p.destination:= ip_packet.dst;

p.sequenceNumber:= generateSequenceNumber ();

p.ipPacket:= ip_packet;

deliveredSinceLastSend := 0;

forwardPacket (p);

}

3.8.4 Routing Algorithm

This section presents the algorithm used for routing decisions. These algorithms utilise the data structures identi-

fied in Section3.8.2, and the parameters identified in Section3.8.3.

Algorithm 1 describes how packets are received from the IP stack for routing, and how packets are delivered

to the IP stack when they reach their destination. This also includes the procedure for pro-active route responses.

Algorithm 2 details the behaviour of the routing agent when it receives a packet from the MAC layer. Infor-

mation from the received packet is used to update the routing tables, and if the packet meets certain criteria it is

forwarded. The next hop that the packet is forwarded to is chosen probabilistically from the available options.

Some criteria are used to limit the duplication of flooded packets. Packets which are received as a result of a

broadcast are forwarded according to the greedy heuristic: they are only forwarded if the current node has a value

function better than the previous hop by at least MINIMUM REWARD, or if either of the nodes’ route is broken.

Algorithm 3 shows the response of the routing agent to failed unicasts and promiscuously received packets.

Packets which fail their unicast will be resend according to the updated routing tables. Packets which are resent in

response to a failed unicast will have the field HADERRORset. This field allows the packet to be re-sent to another

node without duplicate suppression taking place. This allows the packet to try alternative routes in response to

broken links: without such a mechanism, a packet sent fromN to P which failed to unicast toSand was sent back

to N would be discarded byN as a duplicate.

Algorithm 4 implements the probabilistic routing decision. Actions are chosen from those allowable by the
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Algorithm 2 Packet Forwarding
onReceivePacket(Packet p) {

recordPacketReceiveEvent (p.previous_hop);

sourceRouteEntry:= getRouteEntry (p.origin);

destRouteEntry:= getRouteEntry (p.destination);

vvalue:= destRouteEntry.calculateV ();

sourceRouteEntry.recordAdvertisedValue (p.previous_hop, p.sourceValue);

if (not isDuplicatePacket(p) or p.hadError) {

if (p.destination ==this) {

deliverPacket (p);

}

else{

p.hadError := false;

if (not p.isBroadcastPacket)

forwardPacket (p);

else if(p.destValue== MINVALUE or

vvalue == M INVALUE or

(vvalue− p.destValue) > M INIMUM REWARD

)

forwardPacket (p);

}

}

}

forwardPacket (Packet p) {

if (p.TTL == 0)

dropPacket (p);

sourceRouteEntry:= getRouteEntry (p.origin);

destRouteEntry:= getRouteEntry (p.destination);

sourceRouteEntry.recordPacketSent (p);

p.next_hop := destRouteEntry.chooseNextHop ();

p.previous_hop:= this;

p.sourceValue:= sourceRouteEntry.calculateV ();

p.destValue:= destRouteEntry.calculateV ();

MAC_Queue.pushPacket (p);

}
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Algorithm 3 Response to unicast failures and promiscuously received packets
onUnicastFailure (Packet p) {

recordPacketFailureEvent (p.next_hop);

p.hadError := true;

forwardPacket (p);

}

onReceivePromiscuously(Packet p) {

recordPacketReceiveEvent (p.previous_hop);

sourceRouteEntry:= getRouteEntry (p.origin);

sourceRouteEntry.recordAdvertisedValue (p.previous_hop, p.sourceValue);

destRouteEntry:= getRouteEntry (p.destination);

destRouteEntry.recordAdvertisedValue (p.previous_hop, p.destValue);

}

greedy heuristic according to boltzmann action selection. The broadcast, or exploration action is included as an

available action in this selection and is thus chosen probabilistically along with the other actions.

Algorithm 5 details how theQ andV values are calculated by the routing agent, and Algorithm6 shows how

the link success probabilities are calculated.
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Algorithm 4 Choosing Next Hop
RouteEntry::chooseNextHop() {

vvalue:= calculateV ();

available_actions := {};

foreach (NextHopnext_hop) {

estimatedValue:= applyDecay (next_hop.lastAdvertised, next_hop.lastAdvertisedTime);

if ( (estimatedValue− vvalue) > M INIMUM REWARD) {

action_utility:= calculateQValue (next_hop);

availableActions.add (next_hop, action_utility);

}

}

availableActions.add (BROADCASTADDRESS, vvalue+ EXPLORATIONUTILITY );

action:= choose_from( (action, utility) in availableActions) with {

weight:= exp ( utility / TEMPERATURE);

}

return action;

}
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Algorithm 5 Calculation ofV andQ values
RouteEntry::calculateV() {

vvalue :=max qvaluein (NextHopnext_hop) where {

qvalue:= calculateQValue (next_hop);

}

return vvalue;

}

RouteEntry::calculateQValue(NextHopnext_hop) {

estimatedValue:= applyDecay (next_hop.lastAdvertised, next_hop.lastAdvertisedTime);

successProbability:= getSuccessProbability (next_hop);

qvalue:= estimatedValue+ UNICASTSUCCESSREWARD +

UNICASTFAILUREREWARD × (1−successProbability) / successProbability;

if (qvalue< M INVALUE)

qvalue:= M INVALUE ;

return qvalue;

}

applyDecay(value, time_of_value) {

elapsedTime:= getCurrentTime () − time_of_value;

return value× power (DECAYRATE, elapsedTime);

}

Algorithm 6 Link Success Probabilities
NextHop::getSuccessProbability() {

attempted:= unicastAttemptCounter.getCurrentValue ();

failed := unicastFailureCounter.getCurrentValue ();

received:= packetReceiveCounter.getCurrentValue ();

top_fraction:= (attempted− failed) + received× PROBABILITY FROMRECEIVE× RECEIVEWEIGHT;

bottom_fraction:= attempted+ received× RECEIVEWEIGHT;

return top_fraction/ bottom_fraction;

}
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Chapter 4

Protocol Evaluation

We have defined the routing protocol, and identified a number of parameters which will effect the behaviour and

performance of the protocol in Section3.8.3. We will examine the effects of these parameters on the performance

of the routing protocol.

We examine the effect of 4 main parameters of the routing protocol:

• the TEMPERATUREparameter used to control boltzmann action selection

• the fixed EXPLORATIONUTILITY used to evaluate the probability of choosing the exploration action

• the DECAYRATE parameter used to gradually reduce theV-values of states which are not visited

• the MINIMUM REWARD parameter used by the greedy heuristic

We do not examine the effect of the other parameters of the routing protocol. In particular, the parameters used

to calculate the model for the system are fixed throughout this section. EVENTWINDOWSIZE is set at 10, with

40 samples. PROBABILITY FROMRECEIVE is 0.5 and RECEIVEWEIGHT is 0.2. The parameters UNICASTSUC-

CESSREWARD and UNICASTFAILUREREWARD define the scale of our reward units, and are fixed throughout.

We will analyse the routing protocol in a particular network scenario: that of an ad-hoc network used for

internet access (see Section1.4 for some examples of this type of network). We base our network scenario, in

particular, on that of WAND, theWireless Ad-hoc Network for Dublin(see Section1.5.3.4).

Where error bars are shown, they are the 95% confidence interval.

4.1 WAND Network Scenario

In Section1.5.3.4we identified some properties of the mobility and traffic patterns in the WAND network. We

hypothesized that some proportion of the nodes in the network would be stable. We also hypothesized that traffic

would most likely be service-oriented, involving the mobile nodes of the network accessing services hosted on the

fixed nodes in the network.
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In order to evaluate the performance of our protocol in this scenario, we have implemented a class of simula-

tions in the NS-2 simulator ([Inf03]). These simulations have the following properties:

• 802.11 MAC layer

– two-ray-ground radio propagation model

– transmission power set for 100m radius (at height of 1.5m in two-ray-ground model)

• Arena size of 1000m x 400m

• Fixed nodes

– Up to 33 nodes were fixed at positions chosen to cover the arena. Figure4.1 shows the position of

these nodes. In scenarios where less than 33 fixed nodes were used, those used are those with higher

numbers in the figure.

– Server nodes were chosen from these fixed nodes, and were near the centre of the arena (chosen

starting from those numbered highest in Figure4.1)

• Mobile Nodes

– Random-walk mobility model. Maximum pause-time and node speed were varied.

– Client nodes for traffic were chosen from the mobile nodes.

• Traffic is constant bit rate UDP traffic from client to server1. Unless stated otherwise, this is set at 512 byte

packets, with an average of 5 per second per client.

We measure performance according to a number of metrics:

• Packet Delivery Ratio. This is the fraction of packets created by the traffic sources which are successfully

received at the traffic destination.

• Packet Delivery Cost. This is the ratio of the number of packet transmissions2 made to the number of

packets delivered. This includes data packets and routing packets (if present).

• Packet Attempted Delivery Cost. This is the ratio of the number of packet transmissions made to the

number of packets created by the traffic sources. This is equivalent to the Packet Delivery Cost multiplied

by the Packet Delivery Ratio.

We aim to determine how these performance metrics are affected by the values chosen for the routing protocol

parameters identified in Section3.8.3.

1we do not use TCP for tuning of parameters as it’s performance in multi-hop networks is very sensitive and difficult to quantify
2i.e. packets which are sent down to the MAC layer by the routing agent
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Figure 4.1: Simulation Arena, showing fixed node positions (transmission range is 100m)

4.1.1 Relationship between Temperature and Exploration Action

The effect of varying the utility of the exploration action and of varying the temperature used for Boltzmann action

selection (Equation2.3) are closely related. More negative values of exploration utility will cause the exploration

action to be taken less often. Larger values for temperature will cause the exploration action to be taken more

often. However, increasing values of temperature will also increase how often other sub-optimal actions will be

taken.

To illustrate the relationship between these two parameter, a series of experiments was conducted, varying the

values of these parameters. The experiments all had 26 fixed nodes and 100 mobile nodes, with 8 traffic flows.

Maximum speed of mobile nodes was 6m/s, and the simulations ran for 500s.

As can be seen in figure4.2, the effect of temperature on delivery ratio varies with the exploration utility.

However, as figure4.3shows, the variation of performance against−T
ue

is nearly uniform for different values ofue.

This shows that there is a strong correlation between the effects of the temperature and exploration utility

parameters on performance. We therefore propose that−T
ue

is a more useful parameter to work with than eitherT

or ue separately.

To examine the interaction of eitherT or ue with other parameters of the protocol, it is important to be able to

’factor out’ the effect of the other. Plotting different values of−T
ue

againstT results in the graph shown in figure

4.4. Each line on the graph represents the effect of varying temperature while keeping−T
ue

constant. It can be seen

that in these simulations, changing temperature while keeping−T
ue

constant has little effect on performance. For

these simulations, the amount of exploration actions performed is more crucial to performance than the amount of

exploration in action selection.

The effect on performance of varying−T
ue

is plotted in figure4.3. We can see that low values of−T
ue

perform
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Figure 4.2: Delivery Ratio versus Temperature, varying exploration utility
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Figure 4.4: Effect of Temperature with−T
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’factored out’

badly, as they do not perform enough exploration in the environment. Without exploration, agents do not discover

new or better routes until their old ones break. Conversely, with high values of−T
ue

the routing agents do not

sufficiently exploit their routing information as they spend too much effort on exploration.

Figure4.5 shows how often (compared to unicast actions) the exploration action occurs as we vary−T
ue

. We

see that above a certain threshold, the number of exploration actions taken seems to increase linearly and be well

correlated across different values ofue. Below this threshold, however, the relationship diverges from a linear one

and is more random across different values ofue. To understand this behaviour, we note that exploration actions

are used in response to broken routes as well as during continuous exploration of the network. The behaviour

below the threshold value indicates that routes break more often.

This threshold represents a transition point, or a minimal amount of exploration that must be performed in order

for the agents to adapt to the dynamic nature of the ad-hoc network. For this set of simulations, this threshold

appears to be around 0.4, but this value is dependent on the characteristics of these simulations (node mobility,

average node degree). Although increasing exploration above this threshold increases the cost of operating the

routing protocol slightly, it is important not to operate below this threshold.

Intuitively, the optimal frequency of exploration action is related closely to the mobility of the network, and

not the packet-rate along traffic flows. Since these scenarios use a constant packet rate, we are actually controlling

the frequency of exploration action by varying the−T
ue

parameter. We would expect that the packet rate of traffic

(in addition to node mobility) will affect the optimal value of−T
ue

.
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Figure 4.5: Ratio of exploration actions

4.1.2 Number of Actions Considered: Greedy Heuristic

As explained in Section3.3, we use agreedy heuristicto guide exploration and exploitation in the routing proto-

col. This heuristic uses the parameter MINIMUM REWARD to control which actions are available for each action

selection which is made. We see in Figure4.6that the value of MINIMUM REWARD can influence the performance

of the routing protocol significantly.

The experiments in Section4.1.1all used a value of 0.5 for MINIMUM REWARD. Based on the results of that

section, we set our Temperature to 3, and our Exploration Utility to -7. Again with 26 fixed nodes and varying the

number of mobile nodes, we use 15 flows with 4 256-byte packets per second.

Values of MINIMUM REWARD between 0 and 1 show the best performance for these scenarios. Excluding

from consideration those nodes with value functions less than that of the current node is shown to be a valuable

heuristic in terms of both delivery ratio and cost. Increasing MINIMUM REWARD above 1 shows a large decrease

in performance, which can be explained by reasoning that it could exclude optimal actions from consideration.

4.1.3 Silent Feedback: route decay, event window

As discussed in Section3.7.2, we use an exponential decay in order to discard old routing information. Figure

4.7shows the effect of the decay rate parameter in the WAND scenario with differing mobility speed. This figure

shows that a decay rate greater than 1 improves performance in a mobile network.

These graphs do not show any great decrease in performance as the decay rate increases past 1.1s−1. However,

in these simulations we are using constant bit rate traffic, which means that routes are continuously refreshed

throughout the simulation. In scenarios where traffic is occasional rather than constant, we would expect to see a
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Figure 4.6: Effect of MINIMUM REWARD heuristic
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decrease in performance with large decay rates. We also expect that varying the packet rate in these simulations

would alter the optimal decay rate.

4.1.4 One-way Traffic: Pro-active responses

As noted in Section3.5, we have designed our protocol to exploit two-way traffic along flows. However, in

the simulation scenarios used in this chapter, we have used CBR traffic. For one-way traffic flows, the SWARM

protocol is able to create route response packets whenever we receive a certain number of packets on a flow without

sending traffic on that flow. This allows routing information to be propagated more quickly in the network.

The routing protocol enforces a minimum ratio between the number of packets sent on a flow and the number

of packets received. Figure4.8 shows how the routing protocol performance varies with this minimum ratio. It

can be seen that allowing this ratio to drop below 0.02 (1 packet in 50) results in reduced performance, presumably

due to reduced quality of routing information. However, sending too many routing packets (a higher value of this

ratio), has the effect of creating congestion in the network and reducing the performance.

The optimal value of this ratio may also be affected by the rate of the CBR traffic. It should also be noted that,

since the routing protocol utilises promiscuous reception of packets, routing information can gradually propagate

in the opposite direction to traffic flow (each packet transmitted along the forward route allows routing information

to propagate one step along the reverse route).

4.1.5 Conclusion

We have identified how the parameters of the routing protocol affect performance in the WAND network scenario.

However, the relationships we have identified in the routing protocol parameters are dependent on some key

properties of this network scenario:

• this scenario has a small number of servers, and every traffic flow has a server as an end-point.

• Constant bit-rate traffic was throughout this analysis, which has a constant average packet rate. The simula-

tions used to generate the data for this section all used either 4 or 5 packet per second traffic sources.

The analysis of the performance of the SWARM routing protocol presented here is incomplete. The simulation of

the large number of scenarios required to analyse the behaviour of the protocol more fully would require a large

amount of computation.

A more complete analysis would require data to be gathered with different traffic patterns and different network

scenarios. We expect that the relationships shown between the protocol parameters and performance in this section

will hold for a wider range of simulations, but that the values of optima will in general be functions of the network

scenario. As suggested in sections4.1.1, 4.1.3and4.1.4, the optimal value of parameters of the routing protocol

may be closely related to both mobility rates and traffic rates.

We expect that an analysis of a wider range of network scenarios will show that:
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Figure 4.7: Effect of decay rate / silent feedback
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• SWARM will have different behaviour in different network scenarios (see section1.5.3for some examples).

We suggest that there may be differentparameter profilesthat will be optimal for different scenarios. An

implementation of SWARM could be pre-configured with a number of parameter profiles, whose perfor-

mance had been optimised for different scenarios. Nodes joining an ad-hoc network could then select the

parameter profile set appropriate to that network3.

• The optimal behaviour will be dependent on dynamic properties of traffic flows. Adapting the behaviour of

the routing protocol to these properties4 should allow for improved performance.

4.2 Comparison to AODV and DSR

We analyse the performance of the SWARM protocol by comparison with AODV and DSR. These experiments

are carried out using NS version 2.26 ([Inf03]). The versions of AODV and DSR used were those supplied with

NS.

One of the benefits of a continuous model for the quality of links should be the ability to operate effectively

within congested networks5. To test this hypothesis, we set up a network scenario and measure the performance as

the offered load increases. We vary the offered load by changing the packet size and number of constant-bit-rate

traffic sources in the network.

The network scenario used is the WAND scenario, with 26 fixed nodes, 50 mobile nodes. There are 3 server

nodes, and the number of clients is varied. Each client sends constant-bit-rate traffic at a rate of 4 packets per

second. The size of packets is varied to increase the congestion in the network.

The following metrics are used from each simulation:

• Offered Load. The rate of data being sent totalled over all clients. This is calculated by:(PacketSize)×

(PacketsPerSecond)× (NumberClients)

• Delivery Ratio. Fraction of packets sent by clients which are received at the server

• Throughput. The rate of data being received at the servers. This can be calculated (since packet size is

constant) as(Offered Load)× (Delivery Ratio).

• Transmissions per Packet Received.This is the cost (in radio transmissions) of delivering a packet to the

server.

• Transmissions per Packet Sent.This is the number of transmissions made for every packet sent by a client,

whether that packet is eventually delivered or not.

• End-to-end Latency.Of those packets which were delivered, the average time elapsed between the packet

being created at the traffic source and being received at the traffic destination

3For example, the 802.11 network id could identify the parameter profile in usage
4e.g. the exploration utility could be increased with time since the last exploration action rather than being fixed.
5by allowing comparison between the relative quality of links and the ability to use links which are sub-optimal
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Note that the metrics involving the number of transmissions include routing packets in the case of AODV and

DSR. We do not count routing packets separately from data packets.

In Figure4.9, we show the performance of the three routing protocols for 64 byte packets as the number of

clients is varied. Figure4.10shows the same set of experiments with 512 byte packets.

In each set of experiments, as the number of clients increases, so does the contention for access to the radio

channel. Figure4.11shows the delivery cost for the SWARM protocol as the offered load to the network increases.

As the contention in the network increases, the delivery of each packet requires a larger number of transmissions

to be delivered. Since SWARM retransmits packets after they fail to unicast, this increased cost represents the

increased congestion in the network.

The advantage of SWARM over AODV and DSR is demonstrated as network congestion increases. Whereas

the performance of AODV and DSR are reduced significantly as load in the network increases, the SWARM

protocol manages to maintain a good level of performance.

This decrease in performance of AODV and DSR with increasing load is explained by the fact that these

protocols interpret a unicast failure as a broken link, triggering route update mechanisms which require a large

number of packets to be sent throughout the network. These routing packets in turn contribute to congestion in

the network, worsening the situation further.

Theoretical Performance There are 3 servers in this scenario, all of which are within transmission range of

each other. These servers effectively share the same region of the radio channel. As discussed in Section1.2.3.3,

the interference range in radio networks can be more than twice the effective transmission range. Because of

this, there is an absolute limit on the throughput that is achievable with 802.11. [LBD+01] demonstrated that in

multi-hop 802.11 networks, the achievable throughput is significantly less than the transmission rate of the radio

interfaces. For simple chain topologies, they demonstrated that there is a theoretical maximum throughput of1
4 of

the maximum single-hop throughput, but that 802.11 only achieves about1
7 in practice. For a 2Mbps transmission

rate, the single-hop throughput for data when packet headers and inter-frame timing is taken into account is

around 1.7Mbps. Thus, the maximum achievable data throughput in an 802.11 ad-hoc network is 1.7Mbps×1
7, or

approximately 0.25Mbps (which [LBD+01] achieved using 1500 byte packets).

With 512 byte packets, figure4.10 shows that SWARM delivers a data throughput of up to 200Kbps, or

0.2Mbps. This throughput approaches the theoretical limit of the throughput achievable in the network scenario.

End-to-end delay Figure4.12shows how the end-to-end latency increases with network load. The SWARM

performance, in particular, degrades quite sharply after the offered load increases beyond 150Kbps.

This decrease in performance at 150Kbps coincides with an increase in the packet delivery cost as shown in

figure4.11. At around 150Kbps, the number of transmissions made per packet received starts to increase.

This increase in end-to-end latency is caused in part by a detail of the implementation of the protocol in NS-2.

There is a packet queue between the routing protocol and the network interface in the NS simulation. When a

unicast fails and a packet is resent, it must go to the back of the interface queue. The interface queue may contain

up to 50 packets, so a packet which is resent could be delayed significantly before being finally delivered.There is
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Figure 4.9: Performance with Varying Load. 64 byte packets

some scope for improving the performance of the protocol implementation by replacing this interface queue with

a queue designed specifically for SWARM. This would allow routing decisions to be made immediately before

packets were sent on to the network, thus improving performance. It would also allow packets which were resent

to be prioritized in order to achieve better end-to-end latency.

4.3 Conclusions

We have examined the effect of the main parameters of the routing protocol in Section4.1, and compared the

performance of SWARM to that of two standard ad-hoc routing protocols in Section4.2. We have seen that the

value of the routing protocol parameters can affect the performance significantly, and that tuning of the protocol

to the network scenario in use is very important.
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Figure 4.10: Performance with Varying Load. 512 byte packets
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Figure 4.11: SWARM Delivery Cost performance under load. 512 byte packets.

Whereas AODV and DSR perform badly in congested network scenarios, SWARM’s continuous model of

network link quality allows for routing behaviour to adapt incrementally to network congestion. In the WAND

scenario examined, SWARM was capable of delivering at near the theoretical bandwidth limit for a multi-hop

802.11 network.
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Conclusion

We have attempted to design an ad-hoc routing protocol which operates with a continuous, rather than discrete

model for the quality of links in the network. Using our continuous model of link quality, we have used rein-

forcement learning to define a model of optimal routing behaviour in an ad-hoc network. In this model, optimal

behaviour is not merely shortest-hop paths, but also considers the quality of the links which make up those paths.

We have devised a learning strategy for continuous monitoring of the links in the network and movement of

routing information throughout the network. This strategy aims to work in a completely on-demand manner: the

system only attempts to learn routes which are actually in use, and by associating routing information with each

data packet delivered, the amount of routing effort is simply and naturally related to how often a route is used.

The learning strategy we have designed is loosely based on work in swarm intelligence. We adapt some of

the unique features of ant-colony optimisation algorithms which are applicable to the ad-hoc routing problem. In

particular, each packet routed by the protocol is equivalent to an ant in ant-colony optimisation techniques: the

progress of the packet through the network incrementally changes the routing policy and the paths which are used

by future packets.

We have implemented this routing protocol, SWARM in the NS-2 network simulation software, and compared

it’s performance to that of AODV and DSR in a network scenario based on the use of an ad-hoc network for internet

connectivity. We have found that our continuous model of links in the network is extremely valuable in scenarios

with heavy traffic and network congestion. In these scenarios, SWARM is able to react gracefully to packets which

are dropped due to network congestion. It is an area for future research to examine the SWARM protocol in more

detail and to tune it for optimal performance in differing network scenarios.

Our comparison with AODV and DSR shows clearly the advantage of a continuous model for link quality in

wireless networks, and of a routing protocol which allows multiple routes to be monitored over time in order to

gather an accurate model of those links.
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