
 1

Dynamic Profiling & Comparison of Sun Microsystems’
JDK1.3.1 versus the Kaffe VM APIs

Author: Anthony Sartini

Computer Engineering, Trinity College, Dublin 2, Ireland
Supervisor: John Waldron

Department of Computer Science, Trinity College, Dublin 2, Ireland

1. Introduction
This research, which is part of my final year project, sets out to perform a dynamic
method execution analysis to investigate the implementation of Sun Microsystems’
JDK1.3.1 Virtual Machine and its APIs. The results obtained from this analysis are to be
compared with those previously measured in [1] & [2] on Kaffe, in order to determine if
useful results can be found, e.g. which JVM is more efficient, how do the APIs differ,
etc.? Kaffe [3] is an independent implementation of the Java Virtual Machine which was
written from scratch. It also comes equipped with its own class libraries; it should be
noted that these libraries are not 100% compatible with Sun’s JDK. It should also be
noted that Sun’s JDK1.3.1 was run using the Windows Operating System and Kaffe was
run using the Linux Operating System. In order to test this technique, the Java Grande
Forum Benchmark [4] and the SPEC JVM98 Benchmark [5] suites were used.

The remainder of this paper is organised as follows. Section 2 presents a method-level
view of the dynamic profiles. Section 3 concludes the paper, and Section 4 presents a list
of references used in this paper.

2. Dynamic Method Execution Frequencies
This section presents the dynamic profiles of the Java Grande Forum and SPEC JVM98
benchmarks based on methods, since these provide both a logical source of modularity at
source-code level, as well as a possible unit of granularity for hotspot analysis [6]. It
should be noted that since this analysis is carried out at the platform independent level,
the behaviour inside native methods is not studied. Also, since the benchmark suites are
written in Java, it’s possible to conclude that all native methods are in the APIs.

Tables 1 and 2 show the most frequently executed API methods for the Grande programs,
while Tables 3 and 4 show measurements of the total number of dynamic method calls,
including native method calls, made during the execution of the Grande benchmark suite
when running on both Sun and Kaffe. Tables 5 and 6 show the most frequently executed
API methods for the SPEC programs, while Tables 7 and 8 show measurements of the
total number of dynamic method calls, including native method calls, made during the
execution of the SPEC JVM98 benchmark suite on both Sun and Kaffe.

 2

 Sun’s JDK1.3.1 Kaffe
Method Name Frequency

 Euler
java.lang.Math.abs
java.lang.StrictMath.log*
java.lang.Math.log
java.lang.StrictMath.pow*
java.lang.Math.pow*

86.0
1.1
1.1
1.1
1.1

Moldyn
java.lang.StrictMath.log*
java.lang.Math.log*
java.lang.String.charAt
java.lang.StringBuffer.append
java.lang.String.indexOf*

19.8
19.8
11.1
5.3
3.6

Montecarlo
java.util.Random.next
java.lang.StrictMath.log*
java.lang.Math.log*
java.util.Random.nextDouble
java.util.Random.nextGaussian

25.6
15.1
15.1
12.8
10.1

Raytracer
java.lang.Math.abs
java.lang.StrictMath.pow*
java.lang.Math.pow*
java.lang.String.charAt
java.lang.System.arraycopy*

87.4
5.7
5.7
0.2
0.1

Search
java.lang.String.charAt
java.lang.StringBuffer.append
java.lang.String.indexOf*
java.lang.System.arraycopy*
java.lang.String.<init>

19.7
9.8
6.9
5.8
3.8

Method Name Frequency
 Euler

java/lang/Math.abs
java/lang/Object.<init>
java/lang/Math.sqrt*
java/lang/Math.pow*
java/lang/Math.log

42.3
33.8
19.8
0.5
0.5

Moldyn
java/lang/Math.sqrt*
java/lang/Math.log*
java/lang/Object.<init>
java/lang/String.indexOf
java/lang/System.arraycopy*

84.5
4.3
2.5
2.4
0.6

Montecarlo
java/util/Random.next
java/lang/Math.log*
java/util/Random.nextDouble
java/util/Random.nextGaussian
java/lang/Math.exp*

31.9
18.8
16.0
12.5
12.5

Raytracer
java/lang/Math.sqrt*
java/lang/Object.<init>
java/lang/Math.abs
java/lang/Math.pow*
java/lang/String.indexOf

52.1
41.4
6.0
0.4
0.0

Search
java/lang/String.indexOf
java/lang/Object.<init>()
java/lang/StringBuffer.append
java/lang/String.<init>
java/util/HashMap.bucket

40.3
6.4
5.8
3.2
1.8

Tables 1 & 2: Dynamic method execution frequencies for the most heavily used API methods for the
Grande applications, including native methods. Native methods are indicated by *.

Tables 1 and 2 above illustrate the most heavily invoked API methods for each of the
Grande programs. It can be seen from the tables that some of the methods that are
invoked for the Grande programs on Sun, differ from those invoked on Kaffe. This is to
be expected since the APIs have been implemented differently for both Sun and Kaffe.
The figures in the tables indicate that Kaffe concentrates the majority of its API method
calls to the top five methods invoked, whereas Sun appears to distribute its method calls
across all of the API methods invoked.

 3

 Sun’s JDK1.3.1 Kaffe
Program Methods API % API nat %

Eul 2.35e + 07 40.4 2.6

Mol 4.40e + 05 3.5 1.7

Mon 1.00e + 08 99.1 50.0

Ray 4.44e + 08 0.2 0.0

Sea 7.12e + 07 0.0 0.0

Average 1.28e + 08 28.6 10.9

Program Methods API % API nat %

Eul 3.34e + 07 58.0 12.6

Mol 5.49e + 05 22.7 19.9

Mon 8.07e + 07 98.7 37.4

Ray 4.58e + 08 3.1 1.6

Sea 7.12e + 07 0.0 0.0

Average 1.29e + 08 36.5 14.3

Tables 3 & 4: Measurements of the total number of method calls, including native calls, by Grande
applications. Also shown is the percentage of the total which are in the API, and percentage of total
which are native methods.

It can be seen from Tables 3 and 4 that, for virtually every Grande program, Sun invokes
fewer methods overall and a smaller percentage of API methods than Kaffe. Due to the
fact that calls to non-API methods (i.e. method calls local to each of the Grande
programs) on both Sun and Kaffe were identical, it should be clear that the reduction in
overall method invocations on Sun’s VM is due to a smaller number of API method
invocations being made by Sun. Since the Search program invoked a negligible amount
of API methods, the method call frequencies are identical.

The reasons as to why Sun invokes fewer methods overall for each of the benchmark
programs are as follows:

• The method java.lang.Math.sqrt is invoked heavily on Kaffe but not on Sun; it is

either being inlined by Sun’s HotSpot™ VM or it’s being repla ced by an efficient
piece of native code

• The method java.lang.Object.<init> is also invoked heavily on Kaffe but not on
Sun; perhaps Sun have realised that due to the fact that this method actually does
nothing, time is wasted fetching this method and thus, has been removed from
Sun’s VM

Although the total method invocations, on average, for both Sun and Kaffe are very
close, Sun uses approximately 8% fewer API methods than Kaffe. This is a reasonable
hypothesis that suggests Sun’s VM is performing more efficiently than Kaffe.

 4

 Sun’s JDK1.3.1 Kaffe
Method Name Frequency

compress
java.lang.String.charAt
java.lang.StringBuffer.append
java.lang.System.arraycopy*
java.lang.String.hashCode
java.lang.String.indexOf*

14.0
4.8
4.6
4.1
3.9

db
java.util.Vector.elementAt
java.lang.String.compareTo
java.util.Vector$1.nextElement
java.util.Vector$1.hasMoreElements
java.util.Vector$1.<init>

50.0
25.0
9.1
7.4
3.2

mtrt
java.io.BufferedInputStream.ensureOpen
java.io.BufferedInputStream.read
java.lang.String.charAt
java.lang.String.substring
java.lang.String.<init>

31.4
31.4
9.7
3.4
3.3

jack
java.lang.Object.equals
java.lang.System.arraycopy*
sun.io.CharToByteSingleByte.getNative
java.lang.String.charAt
java.lang.String.hashCode

6.1
4.6
3.9
3.9
3.6

javac
java.io.BufferedInputStream.ensureOpen
java.io.BufferedInputStream.read
java.util.Hashtable.get
java.lang.System.arraycopy*
java.lang.Object.hashCode*

17.3
17.3
 5.3
 4.1
3.6

mpegaudio
java.lang.System.arraycopy*
java.lang.Math.min
java.io.FilterInputStream.available
java.lang.Math.max
java.lang.String.charAt

92.6
4.8
1.2
0.9
0.3

jess
java.lang.String.equals
java.lang.System.arraycopy*
java.lang.String.hashCode
java.lang.Number.<init>
java.lang.Integer.equals

15.2
14.1
11.5
 7.6
7.6

Tables 5 & 6: Dynamic method execution frequencies for the most heavily used API methods for the
SPEC JVM98 applications, including native methods. Native methods are indicated by *.

Method Name Frequency
compress

java/lang/String.indexOf
java/util/HashMap.bucket
java/util/HashMap$Entry.access$1
java/util/HashMap$Entry.access$0
java/lang/StringBuffer.append

6.2
5.1
3.7
3.3
2.4

db
java/util/Vector.elementAt
java/lang/String.compareTo
java/lang/Math.min
java/util/Vector$1.nextElement
java/util/Vector$1.hasMoreElements

36.9
18.4
18.4
 6.7
5.5

mtrt
java/lang/Object.<init>
java/io/FilterInputStream.read
java/io/DataInputStream.read
java/lang/StringBuffer.append
java/lang/Float.isNaN

58.2
7.6
7.1
2.0
0.3

jack
java/lang/Object.equals
java/util/HashMap.access$1
java/util/Vector.size
java/util/Vector.<init>
java/util/HashMap.find

9.0
5.3
3.9
3.8
3.3

javac
java/io/BufferedInputStream.read
java/util/HashMap.find
java/lang/Object.equals
java/lang/Object.<init>
java/util/HashMap.get

17.2
5.8
4.7
4.2
3.4

mpegaudio
java/lang/Math.min
java/io/FilterInputStream.available
java/lang/Math.max
java/lang/System.currentTimeMillis*
java/lang/String.hashCode

4.5
1.1
0.9
0.6
0.3

jess
java/util/HashMap.find
java/lang/Object.<init>
java/lang/String.equals
java/util/HashMap.get
java/util/HashMap.bucket

16.0
12.1
11.6
 8.1
8.0

 5

On inspection of Tables 5 and 6, on the previous page, it can be seen that the majority of
the most frequently executed API methods for each program, appear to be different for
both Sun and Kaffe. Again, this is no surprise as Kaffe’s APIs are implemented
independently of Sun’s APIs. Since the calls to non -API methods (i.e. method calls local
to each of the SPEC programs) on both Sun and Kaffe were identical, with the exceptions
of ‘mtrt’ and ‘db’, it sho uld be clear that the total API method calls will again be the
governing factor in determining the overall method invocations for each program.

Perhaps the rationale behind the ‘mtrt’ and ‘db’ programs’ non -API method frequencies
differing between Sun and Kaffe is:

• ‘mtrt’ uses threads during its execution and these threads may be handled
differently on Linux and Windows

• The methods that differ between Sun and Kaffe, for ‘db’, originate from the

Harness and IO classes (responsible for file handling); perhaps the methods in
these classes execute diversely on Linux and Windows.

 Sun’s JDK1.3.1 Kaffe

Program Methods API % API nat %

cmprs 2.25e + 08 0.0 0.0

db 9.20e + 07 98.3 0.0

mtrt 2.29e + 07 1.0 0.0

jack 4.94e + 07 85.1 5.1

javac 9.57e + 07 50.7 4.5

mpeg 9.94e + 07 1.3 1.2

jess 9.61e + 07 19.2 2.8

Average 9.72e +07 36.5 1.9

Program Methods API % API nat %

cmprs 2.26e + 08 0.0 0.0

db 1.24e + 08 98.7 0.1

mtrt 2.88e + 08 3.2 0.1

jack 1.16e + 08 92.3 4.2

javac 1.53e + 08 62.0 2.8

mpeg 1.10e + 08 1.3 1.1

jess 1.35e + 08 32.5 1.9

Average 1.65e + 08 41.4 1.5

Tables 7 & 8: Measurements of the total number of method calls, including native calls, by SPEC
applications. Also shown is the percentage of the total which are in the API, and percentage of total
which are native methods.

On comparison of Tables 7 and 8 above, the first noticeable difference between them is
the total number of method invocations made during the execution of each of the SPEC
programs. The total number of method invocations has considerably reduced for each
program when executed on Sun. The major difference can be seen in ‘jack’; Sun
executes approximately 66.6 million fewer methods than Kaffe in this program. Again,
since all non-API method invocation frequencies were identical for the programs, on both
Sun and Kaffe, this reduction in total method calls is due to the number of API method
invocations made by Sun. Again, the decrease in API percentages is partially due to the
same reasons as mentioned above for the Grande suite.

 6

Although Sun invokes a slightly higher number of native-API methods than Kaffe, on
average it uses approximately 5% fewer API methods overall, which indicates that the
former virtual machine reduces the number of methods invoked and hence reduces the
time spent fetching methods. Again, this is a plausible postulation which leans towards
Sun’s VM as the more efficient virtual machine.

However, it should be noted that although Sun invokes fewer methods dynamically than
Kaffe, for each of the two benchmark suites’ programs, it is not entirely correct to
conclude that Sun is more efficient than Kaffe just because it invokes fewer methods.
Some of the methods invoked by Sun may execute more bytecodes than those invoked on
Kaffe. In order to provide a more concrete foundation as to if and why Sun is more
efficient than Kaffe, a dynamic bytecode analysis needs to be performed for the Grande
and SPEC benchmark suites’ programs.

3. Conclusion
This paper set out to perform a dynamic API analysis and comparison of two diverse
implementations of the Java Virtual Machine, namely Sun’s JDK1.3.1 and Kaffe. It has
been shown that useful information can be found by performing a dynamic method
profile of the two benchmark suites. Sun’s VM executes fewer methods overall than
Kaffe for the Grande and SPEC suites, which is due to fewer API method invocations
being made by Sun. This is a key indication that Sun Microsystems have put a good deal
of effort into optimising their VM by reducing the amount of API methods being fetched,
and therefore, reducing the execution time of the programs. In conclusion, the results
presented in this paper indicate Sun Microsystems’s VM to be more efficient then the
Kaffe VM.

My research, with regards Sun versus Kaffe, is still in progress and further analysis of the
two VMs has included a dynamic bytecode analysis. The results from this analysis have
shown that Sun executes fewer bytecodes dynamically than Kaffe for the benchmark
suites’ programs. This is a more v alid reason as to why Sun is more efficient than Kaffe.

 7

4. References

1. Daly C, Horgan J, Power J, Waldron J, “Platform Independent Dynamic Java
Virtual Machine Analysis: the Java Grande Forum Benchmark Suite”. In Joint
ACM Java Grande – ISCOPE 2001 Conference, pages 106-115, Stanford, CA,
USA.

2. Gregg D, Power J, Waldron J, “Benchmarking the Java Virtual Architecture In

Java Microarchitectures”, edited by Vijaykrishnan Narayanan and Mario L.
Wolczko Kluwer Academic Publishers, Boston. April 2002 (ISBN 1-4020-7034-
9), pages 1-19

3. T. J. Wilkinson, “KAFFE, A Virtual Machine to run Java Code”, www.kaffe.org.

4. Java Grande Forum Benchmark Suite, http://www.epcc.ed.ac.uk/javagrande

5. SPEC JVM98 Benchmark Suite, http://ww.specbench.org/osg/jvm98

6. Sun Microsystems (2001), “The Java HotSpot™ Virtual Machine: Technical

Whitepaper”.

