A Dynamic Proxy Based Architecture to
Support Distributed Java Objects in a Mobile
Environment

Gregory Biegel, Vinny Cahill and Mads Haahr

Distributed Systems Group
Department of Computer Science
University of Dublin, Trinity College
Dublin 2, Ireland
{Greg.Biegel, Vinny.Cahill, Mads.Haahr}@cs.tcd.ie

Abstract. Java Remote Method Invocation (RMI), as a distributed ob-
ject technology, has poor existing support for operation in wireless mo-
bile computing environments. The use of RMI in a mobile environment
poses a number of problems related to hardware mobility and the char-
acteristics of wireless networks. This paper describes an implementation
of an architecture supporting RMI client and server applications in a
wireless mobile environment. Mobility support is provided for in two
major components. Connectivity management manages wireless connec-
tions and hides the inherent unreliability of wireless media from higher
layers. Location management addresses the difficulty of correctly locating
and invoking RMI server objects hosted by mobile devices. The imple-
mentation is evaluated in terms of transparency and the associated cost
of introducing mobility support for RMI applications.

1 Introduction

Java Remote Method Invocation (RMI) [1] permits the invocation of methods
on Java objects residing in remote address spaces. As well as being an important
distributed object technology in its own right, other platforms such as Enterprise
Java Beans (EJB) [2] and JINT [3] use RMI for communication. The widespread
adoption of Java technology has led to an increasing number of small mobile
computing devices with built in Java capability. RMI was designed primarily
for use in static wired networks and in its present form, RMI does not support
operation in mobile computing environments well.

Mobile computing environments [4] have a number of constraints not present
in wired networks which need to be accounted for when providing support for
applications in such environments -

Device Constraints: Mobile devices, by definition, are smaller and lighter than
their static counterparts and have more limited display, processing, and power
capabilities.

Network Constraints: Mobile devices rely on wireless communications which are
presently characterised by low bandwidths, high latencies, and intermittent con-
nectivity. The Architecture for Location-Independent Computing Environments
(ALICE) [5] was designed to provide mobility support for a range of client/server
application protocols through the introduction of connectivity management ad-
dressing the characteristics of wireless networks such as high latency and low
bandwidth. ALICE is independent of application protocols and hence may be
maintained across different distributed object technologies.
Location Management: Mobile devices change their point of connection to the
network frequently, and this may invalidate references held to objects resident
on these devices. This invalidation of references poses a problem to clients at-
tempting to contact objects on such devices. In this paper, we present a solution
to the problem of location management of RMI servers in mobile environments
based on dynamic proxies. We demonstrate how dynamic proxies may be used
to redirect method invocations between fixed and mobile devices in a manner
that is largely transparent to the client, and does not dramatically impact on
the time taken per method invocation.

The resulting implementation permits the transparent operation of both RMI
clients and servers within a mobile environment.

2 Roadmap

The remainder of this paper describes our solution for supporting RMI appli-
cations in mobile environments. Section 3 provides some background. Section
4 examines the integration of the application protocol independent module of
ALICE into the RMI runtime in order to support mobile RMI clients. Section
5 presents our solution, based on dynamic proxies, to the problem of location
management for the operation of mobile RMI servers. Section 6 describes our
implementation, whilst Sect. 7 presents a performance evaluation. Section 8 in-
troduces related work and finally Sect. 9 presents our conclusions.

3 Background

This section provides some background on the the mobile environment and the
ALICE architecture, Java RMI, and dynamic proxies.

3.1 The ALICE Architecture

ALICE is an architectural framework that provides mobility support for a range
of application-level client/server protocols [5]. The ALICE architecture allows
such application-level protocols to provide their own mobility support through
location management, disconnected operation support, and connectivity man-
agement. ALICE permits the operation of mobile servers with no centralised
location register to keep track of the whereabouts of the servers. The physical

Mobi | e Host
/

Fi xed Host

Mobi | e Host

| NTERNET

Fi xed Host

Mobility Gateway

LEGEND :

Wred Connection

_ - - W rel ess Connection

............ A d Connection

Fig. 1. The mobile environment

environment for which the ALICE framework was developed is illustrated in Fig.
1. Mobile Hosts (MH) are mobile computing devices with wireless network in-
terfaces. These MHs are connected to stationary Mobility Gateways (MG) that
maintain both wireless and wired network interfaces and act as the entry point
from the wireless network into the wired network. Fixed Hosts (FH) are sta-
tionary computing devices that communicate with the MHs via the MGs. The
MHs are physically mobile and may change their point of connection from one
MG to another during a procedure known as handoff. ALICE provides mobility
support in the form of a layered architecture, with each ALICE layer solving
specific problems introduced by the mobile environment.

— The Mobility Layer manages connections between the MH and the MG,
hiding the complexity of the wireless network characteristics from higher
layers

— The Swizzling Layer supports server mobility by translating server references
to refer to a MG rather than directly to an MH

— The Disconnected Operation Layer allows clients to cache server functionality
during periods when an MH becomes disconnected

3.2 Java RMI

RMI is part of the Java Distributed Object Model [6] and provides the illusion
of invoking a method on a local object, whilst in fact the method may be in-
voked on an object in a different address space. RMI was designed specifically
to be language dependent and hence able to take advantage of the existing Java
Object Model. Java’s Garbage Collection mechanism has also been extended to
encompass remote objects.

RMI makes use of a proprietary protocol on the wire known as the Java
Remote Method Protocol (JRMP), which in turn operates on top of TCP/IP.
An important feature of RMI is the ability to replace standard TCP sockets
with programmer-defined socket types through the specification of custom socket
factories.

3.3 Dynamic Proxies

Dynamic proxies are a feature of the Java 2 Platform since version 1.3. A dynamic
proxy class is a class that implements a set of interfaces specified at runtime in
order to provide a type-safe proxy through which an invocation of an interface
method, on the proxy, is dispatched to another object. Invocations on the proxy
are dispatched to a single invoke() method in the proxy class. This method is
then free to do anything with the invocation, including dispatch it to another
object, before returning the result of the invocation to the client.

The fact that the proxy class is developed against an interface ensures the
proxy is totally transparent to the client and lends the dynamic proxy class to-
wards use within an RMI application since remote objects in RMI applications
are required to be coded against an interface. Consequently, a dynamic proxy
representation may be created for any remote object without requiring any ad-
ditional representation of the remote object. Importantly, no pre-generation of
the proxy class is required, further aiding the transparency of the process.

4 Mobile Host as Client

When the MH is acting as a client, connectivity management between the MH
and the MG is provided for in ALICE by the Mobility Layer (ML) which man-
ages the wireless connection and hides the inherent unreliability of the medium
from higher layers. Connectivity management takes the form of transparent re-
connection of broken transport layer connections, as well as tunneling of existing
connections after a MH has moved from one MG to another. The ML was de-
signed to operate independently of any application-level protocol issues, and thus
may be used across a range of distributed object technologies [5].

4.1 Mobility Layer

The ML, which is implemented in C, consists of a superset of standard BSD
sockets, known as sockets+ [5]. Replacements of the standard socket functions

are provided, as well as functions to manage callbacks from the ML to the
application. Such callbacks may be used to notify the application of changes
in state of connectivity. Their use requires that the application be aware of its
mobility, but application use of callbacks is optional.

4.2 Replacing the Java Socket Implementation

The Java Native Interface (JNI) is the native programming interface for Java,
allowing access to native code from Java code. There are two ways in which
the ML could be integrated into RMI using JNI in combination with custom
socket implementations, and although both ways alter the underlying socket
implementation used by RMI, there are differences in how the socket replacement
classes are integrated into RMIL.

The Java networking package provides the java.net.Socket and java.net.-
ServerSocket classes which provide client and server communication endpoint
functionality respectively. By default JRMP uses instances of these socket classes
to provide communication between remote objects, although it is possible to
specify extensions of these classes to be used by RMI.

Both the java.net.Socket and java.net.ServerSocket classes contain a refer-
ence to a java.net.SocketImpl, which is an abstract class representing the socket
implementation. The socket implementation defaults to the java.net.Plain-
SocketImpl class. This socket implementation class handles the dispatch of calls
to the socket functions implemented in native code. This is done through JNI
calls made by the java.net.PlainSocketImpl class and dispatched to a shared
library, (e.g., libnet.so on Linux, net.d11l on Windows).

Given the way in which sockets are implemented in Java, the two ways in
which the ML socket functions may be integrated into RMI at the native library
level are as follows.

Creating a Custom Socket Implementation. Firstly, it is possible to write a
custom socket implementation class other than the default java.net.PlainSocket-
Impl, say alice.rmi.ALICESocketImpl, which accesses a custom shared library, say
1ibALICEnet.so. The shared library would be constructed from the ML socket
functions with appropriate JNI method signatures, to present a similar interface
to the standard Java libnet.so library.

The major difference between the java.net.PlainSocketImpl class and the
alice.rmi.ALICESocketImpl class is the additional functions for the management
of callbacks to the application layer that are part of the alice.rmi.ALICESocket-
Impl class. Another difference between the implementations occurs in the loading
of the shared library. The call to load the native shared library containing the
platform-specific socket functions is altered to rather load the ML socket func-
tions, thus providing these to the RMI runtime in place of standard system
sockets.

Replacing the Shared Library at Runtime. Another approach to replacing
the standard native socket calls is to create a shared library with the same
exposed external interface as the default 1ibnet.so library, but which delegates
calls to the ML socket functions rather than the standard native socket functions.
It is possible to specify, to the Java runtime library loader, the path from which
to load libraries. By altering this path to load the altered libnet.so library at
runtime, the standard socket functions may effectively be replaced by the ALICE
socket replacement functions.

The advantage of this approach is that the standard socket functions could
be replaced with the ALICE ML socket functions transparently to the applica-
tion, without the need to alter legacy code. This approach does however have
significant disadvantages in that the ALICE ML does permit for mobile aware
operation and provides an extended API (sockets+) for mobile-aware operation.
The sockets+ API would not be exposed by simply replacing the libnet.so
library.

4.3 Chosen Approach

The method used to integrate the ALICE ML into the RMI runtime system is
the creation of a custom socket implementation. This approach is considered
the most closely aligned with the goals of the Java language, where new socket
implementations are expected to be developed to fulfill certain requirements. Fol-
lowing this approach, the custom Socket and ServerSocket classes will maintain
a socket implementation attribute of the type alice.rmi.ALICESocketImpl.

The connectivity management support offered to the RMI runtime system
by the ML is sufficient when the MH is acting as a client of a remote server
object.

5 Mobile Host as Server

Addressing problems arise when an RMI object resident on a MH acts as a server.
Servers traditionally export references to themselves so that clients know where
they may be contacted. RMI servers export references of type java.rmi.server.-
RemoteRef. These references contain an IP address and port number combination
referring to the machine on which the server object is hosted. In the mobile en-
vironment assumed by ALICE, a MH is not directly contactable and all commu-
nication to and from it must pass through a MG. Thus, if a server is hosted on a
MH and exports a reference based on the MH’s address, the reference is invalid
(since the host is not directly contactable at this address) and any attempts to
invoke the server using this reference will fail. ALICE introduced the Swizzling
Layer to overcome the problem of location management for CORBA, through the
changing of the endpoint of a server reference to point to the MG rather than
the MH. Swizzling object references was not considered appropriate for RMI
due to differences in the way RMI implements remote object referencing, and
we rather adopt an invocation redirection mechanism for location management
which relays invocations between the MG and MH.

5.1 Remote Object Referencing in Java

The way in which an RMI server object (ServerImpl) is related to the address
space in which it is resident is illustrated in Fig. 2. The rmiregistry is a simple,
non-persistent, bootstrap name server from which a reference to a remote object
on a given host may be obtained by a client.

Endpoint
-host: String
-port: int
1 1
LiveRef
e 1
ObjID
RemoteObject UnicastRef Renot eRef

RemoteServer | |
: :

] == !—E
; = 1 1

[UnicastRemoteObject |

1 LEGEND :
JAN
ZF Ext ends
—0 Interface

Serverimpl — Association

Fig. 2. Class hierarchy for remote objects in RMI

The reference that a client receives from the registry is in most cases actu-
ally to a stub and not the object itself . As illustrated in Fig. 2, the stub con-
tains a sun.rmi.server.UnicastRef attribute, which in turn contains a sun.rmi.-
transport.LiveRef attribute, that contains a sun.rmi.transport.Endpoint, giv-
ing the hostname and port number at which the object resides, and a unique
identifier in the form of an object ID.

In addition to the retrieval of a remote object reference by way of lookup on
an rmiregistry, there are two further ways by which an RMI client may obtain
a reference to a remote object :

— As the return value from a method invocation
A method invoked by a client on a remote object may return, as a result of
the method invocation, a reference to a remote object. The client may then

L If the server resides in the same virtual machine as the client, a reference to the
actual object will be returned rather than a stub

invoke methods on this object as if it resided locally. The registry lookup
essentially obtains a reference as a result of the invocation of the lookup ()
method.

— As an argument to a method called on the client
The third way in which a client may obtain a reference to a remote object, is
as an argument to a method invoked on the client, by the server. This case
arises when the client is also an RMI server object. In such a scenario, an
RMI server may make a callback to the client and may potentially pass it a
reference to a further remote object.

As is the case with the registry lookup, what is in most cases returned is a
reference to the stub representing the object, rather than the object itself.

5.2 Using Dynamic Proxy Classes for Redirection

Dynamic proxies provide the basis of the invocation redirection mechanism de-
veloped. It is possible using dynamic proxies to create a proxy representation of
a class, which implements a set of interfaces, at runtime. Method invocations are
then handled by an implementation of the java.lang.reflect.InvocationHandler
interface, which if present on the MG, could forward the invocation onto the MH
attached to it. It is possible to remove all knowledge of creating the proxy from
the client code which enables client-side transparency in the process.

Following the dynamic proxy approach, a proxy class, say a ServerProxy,
is developed which implements the java.lang.reflect.InvocationHandler inter-
face. This class takes a generic Object as an argument to its constructor and
then uses reflection to determine what interfaces the object implements. Each
object hosted on a MH needs to bind to the registry running on the MG that
it is currently connected to. What is actually bound to the registry, however,
is a dynamic proxy object transparently implementing the same remote inter-
face as the remote object. This ServerProxy object is bound to the registry on
the MG and is what is actually returned to clients performing a lookup against
the remote object name. The ServerProxy also maintains a reference to the MG
from which it originated and any invocations made on the proxy are propagated
firstly to the MG and then on to the actual remote object, the location of which
is known to the MG. Invocation responses are likewise propagated back through
the MG. Figure 3 presents the operation of the scheme in more detail. In the sce-
nario shown, a client obtains a reference to a remote object by way of a registry
lookup.

The dynamic proxy based scheme operates as follows :

1. The MG process binds to the Mobility Registry daemon on the MG, using
a well-known name.

2. A remote object resident on a MH performs a lookup, against the well-known
name, on the MG to which it is attached.

3. A reference to the MG process is returned to the remote object.

Mobile Host Mobility Gateway Fixed Host

v Mobility Registry |‘

A

Mbility
Gat eway
4 Process v\

Server }
<

Fig. 3. Dynamic proxy architecture

4. The remote object invokes the register() method on the Mobility Gateway

process, passing itself as a parameter.

5. The registration process creates a ServerProxy object on the MG which im-
plements the same set of interfaces as the remote object. This completes the
set up process.

. A client performs a lookup against the server name, on the MG.

7. A reference to the ServerProxy object, rather than to the actual remote

object is returned to the client.

8. Any invocations made against this reference are forwarded to a single method

within the ServerProxy object and then onto the MG process.

9. The MG process then forwards the invocation onto the actual remote object

resident on the MH, and returns the result along the same path back to the
client.

(=)

This approach is achievable with no changes to the existing RMI architecture
and therefore is one of the most attractive solutions to the location management
problem.

Reference obtained as return value of invocation. The case where a FH
receives a reference to a remote object by way of the return value of a method
invocation, is illustrated in Fig. 4 and operates in a similar manner except that
the value returned by the invocation in step 3 of Fig. 4 is inspected at the MG.
If it is a reference to a remote object, a dynamic proxy representing the object
is created and registered with the MG and a reference to the proxy object is
returned to the client in step 4. The rmiregistry is not necessarily involved in
the process, although it may have been involved in obtaining the reference to sl.

M obile Host Mobility Gateway Fixed Host

Mobility Registry

L, 2 sl.invoke() P sl.invoke() 1.
Server s1 | B
3. <<Renote s2>> <<Renpte s2>> 4 _
» Mobi Ity p| Client c1
Gat eway f
Process P s2.invoke() 5.

<«

Fig. 4. Reference obtained from invocation

Reference obtained by argument. A similar scheme is employed to detect
whether a reference to a remote object is passed as an argument in a callback
from a MH to a FH. Each argument is inspected at the MG and if a remote
reference is being passed, a proxy representation is created at the MG, and a
reference to this proxy replaces the original argument.

6 Implementation

This section describes the implementation of our solution to connectivity man-
agement and location management for mobile RMI. We use the same layer nota-
tion and terminology as in [5]. When referring to an entire layer, either the full
name (the Mobility Layer) or its abbreviated form (the ML) will be used. When
referring to a single component of a layer, the location of the component will be
subscripted. For instance, the component of the ML residing on the MG will be
referred to as MLjy;g. The position of each of the components implemented is
illustrated in Fig. 5.

6.1 Connectivity Management

Connectivity management is achieved through integration of the ML into RMI
by the specification of alternative socket factories to RMI as discussed in Sect.
4.2.

MLag Component. The MLy component is the component of the ML
present on the MH. It is this component that provides the ALICE socket re-
placement functions and the sockets+ API (for mobile-aware applications) to

layers above it, and which replaces the TCP transport layer in mobile-enabled
applications. The MLsg component also contains a daemon, the mlmhd, which
multiplexes applications’ connections onto a single transport connection to the
MG.

In terms of RMI, socket functions are not accessed explicitly by the applica-
tion programmer, but rather by the RMI runtime system which creates sockets
through the standard APT as they are needed for communication. Consequently,
it is for this API that an interface to Java needs to be constructed.

MLp;¢ Component. The ALICE ML ¢ component consists of a daemon, the
mlmgd, which executes on the MG. The mlmgd daemon is connected to the mlmhd
daemon running on a MH and is responsible for relaying connections between
the MG and the MHs. Since this part of the ML is a daemon process and does
not require any interaction with the application programmer, there is no need
to provide an interface to it from Java.

Integration into RMI. The integration of the ML into the RMI runtime en-
tails a number of steps, discussed below.

— The creation of a custom Shared Object Library
We created a file named ALICESocketImpl.c, which was functionally equiva-
lent to the PlainSocketImpl.c file, but contained additional methods for the
sockets+ API, and linked this file against the ALICE Mobility Layer socket
replacement functions, to produce a shared object file called 1ibALICEnet. so.

— The creation of a custom Socket Implementation
The next step was to create a custom Java socket implementation class, ex-

M obile Host Mobility Gateway Fixed Host
Application - — — — — — — » Application
JRWP/ R

JRWP/ RNH NG
JRWP JRWP JRWP
M‘M—I M‘lvG
TCP/ | P TCP/ I P <—> TCP/ I P
LEGEND :

<« »lLogical Data Flow

<+—>Physical Data Fl ow

Fig. 5. Software architecture

tending from the java.net.SocketImpl class and making calls to 1ibALICEnet.

— The creation of custom Socket classes
Up until this point, there has been no distinction between Socket and Server-
Socket types, as both use the same implementation class. The creation of
custom socket classes realises this distinction and two separate socket classes
are created, alice.rmi.ALICESocket and alice.rmi.ALICEServerSocket.

— The creation of a custom Socket Factory
The final step is the creation of client socket factory and server socket factory
objects which RMI uses to supply instances of alice.rmi.ALICESocket and
alice.rmi.ALICEServerSocket respectively for communication.

6.2 Location Management

A new layer, named the Java Remote Method Protocol Redirect (JRMP/R)
Layer, was developed using dynamic proxy objects to provide location manage-
ment for mobile RMI servers.

The JRMP /R layer consists of two components, that component resident on
the MH, JRMP /R rp, and that resident on the MG, JRMP /R pr¢.

JRMP /Ry Component. The JRMP /R g component consists of a modi-
fied version of the java.rmi.Naming class. The alice.rmi.Naming class maintains
a reference to the current MG to which the MH is connected. When mobility
support is required, RMI server objects use the alice.rmi.Naming class to regis-
ter themselves with the RMI runtime. This class presents the same API to the
application programmer as the java.rmi.Naming class.

The alice.rmi.Naming class overrides a subset of the methods in the java.-
rmi.Naming class and introduces some additional methods. The most important
change introduced by the alice.rmi.Naming class is the overriding of the bind ()
and rebind() methods. The overridden methods still take the same arguments
as the methods in java.rmi.Naming, that is a String name for the object, and the
remote reference to the object. The java.rmi.Naming class causes the binding of
the remote reference and the name of the object in a table within the rmireg-
istry subject to the condition that a remote object may only register with an
rmiregistry running in the same address space as itself.

The overridden bind () method, rather than causing the binding of the name
and remote reference to a registry in the same address space, causes the registra-
tion of the reference with the JRMP /R r¢ component on the MG. Registration
with this component effectively causes the instantiation of a proxy representa-
tion of the server and its binding to an rmiregistry running on the MG (in a
separate address space). In this way, the semantics of RMI are changed slightly
in that calling the bind() method in one address space causes the binding of the
object (at least a proxy representing the object) in a different address space.

JRMP /Rye Component. The JRMP/Rag component of the JRMP/R
layer consists of the following objects that collectively work together to trans-
parently intercept invocations on server objects as described in Sect. 5.2.

— Mobility Gateway Process
The MG process executes on the MG itself and provides a set of methods to
the JRMP /R g component to allow the registration and deregistration of
remote objects resident on a MH that is connected to the gateway. The MG
process is involved with server handoff.

— Mobility Registry
The Mobility Registry is an rmiregistry running on the MG and providing a
lookup service for clients wishing to obtain a reference to a server hosted by
a MH. The Mobility Registry contains the name of the server object bound
to a proxy representation of the object created upon registration.

— Proxy objects
Each remote object that registers with the MG has a dynamic proxy object,
implementing the same remote interface, created on the gateway. This proxy
object is an instantiation of the alice.rmi.ServerProxy class, which is part
of the JRMP /R component.

7 Ewvaluation

This section evaluates our dynamic proxy based location management scheme
for mobile RMI applications in terms of performance and transparency of the
solution.

7.1 Performance

The performance evaluation first compared the cost of standard one-hop RMI
with that of standard one-hop RMI with the introduction of a dynamic proxy at
the server. This indicated the overhead introduced by dynamic proxies for stan-
dard one-hop RMI. Since mobile RMI introduces an extra hop per invocation,
we then compared the cost of standard two-hop RMI via an MG, with that of
standard two-hop RMI via an MG using dynamic proxies to determine the cost
of introducing dynamic proxies in this scenario. Finally, this was compared with
the cost of introducing full JRMP /R support for mobile RMI to determine the
cost of introducing full JRMP /R functionality.

Parameterless Invocation (Type 1). For one-hop RMI between a client
and a server, the introduction of a dynamic proxy that simply forwarded the
invocation to the real remote object, resulted in a marginal increase of 3.6%

T

Normal RMI ———
Dynamic Proxy -------

60000 q

50000 —

40000 [B

30000 —

Time (milliseconds)

20000 —

10000 B

1 2 3 4 5 6
Type of Invocation

Fig. 6. Invocation times for 10 000 remote method invocations in one-hop RMI for 5
types of invocation

in the time taken to perform a remote invocation as illustrated in Fig. 6. This
increase is due to the use of reflection by the dynamic proxy.

For mobile RMI, the use of dynamic proxies introduced additional overhead
into this type of invocation, leading to an increase of 14.6% in the time taken,
over that of standard two-hop RMI. The extra time is due to the high costs of
reflection which is used by dynamic proxies in Java to determine which method
has been invoked on the proxy.

The operation of full JRMP/R support for this type of invocation led to
an increase of 5.1% in the time taken over that of using dynamic proxies, and
an increase of 20.5% in the time taken over standard two-hop RMI. This is
illustrated in Fig. 7. The additional time taken to perform an invocation using
full JRMP /R support is introduced by the need to use additional reflection at
the MG in order to determine the method to be invoked at the server due to the
non-serialisability of the Method type. Since the method being invoked is both
void and parameterless, there is no need for the replacement of parameters or
return types with proxy representations at the gateway.

Primitive Parameter (Type 2). Once again, the introduction of dynamic
proxies between client and server in standard, one-hop RMI led to a slight in-
crease of 2% in the time taken to perform an invocation, as illustrated in Fig.
6.

For RMI in a mobile environment, the invocation of a void method with a
primitive parameter (an integer in this case) was once again least expensive at the
level of standard RMI. The introduction of dynamic proxies led to an increase
in the time taken to perform an invocation of 16.6% which is comparable to
the increase observed in the void parameterless invocation and has the same
explanation.

70000 T

60000 E— e . —

50000 ¢ — 1 — 4

40000 —

30000 B

Time (milliseconds)

20000 —

10000 1

1 2 3 4 5 6
Type of Invocation

Fig. 7. Invocation times for 10 000 remote method invocations in two-hop RMI for 5
types of invocation

Full JRMP/R operation in this type of invocation led to an increase of 11.4%
in the time taken over that using only dynamic proxies, and an increase of 30%
over that using standard RMI. The increase is illustrated in Fig. 7.

The significant increase in the time taken over that using standard RMI is
due in part to the need to perform reflection at the MG in order to determine the
method type, and due in part to the need to inspect the method parameter at the
MG. The inspection of the parameter is needed in order to determine whether
a reference to a remote object is being passed as a parameter, in which case a
proxy representation is required (see Sect. 5.2). The process of inspection utilises
reflection which accounts for the additional time introduced into the invocation.

Object Parameter (Type 3). A marginal increase of 2.3% in the time taken
to perform a remote method invocation is observed with the introduction of a
dynamic proxy in one-hop RMI as illustrated in Fig. 6.

Similarly, for mobile RMI, the passing of a Java object as a parameter to a
method is least expensive when using standard RMI. The use of dynamic proxies
in the architecture led to an increase of 11.3% in the time taken to perform an
invocation, which is similar to the previous two scenarios.

Additional overhead is introduced by reflection at the MG in order to deter-
mine both the method type and in order to inspect the parameter type to see
whether a reference to a remote object is being passed. In this case, the method
type determination and parameter inspection together resulted in an increase
of 5.9% in the time taken to perform an invocation, over that of just using dy-
namic proxies, and an increase of 17.8% over standard RMI (see Fig. 7). This
is significantly less than the overhead introduced by the inspection of primitive
parameters at the MG. This may be explained by the fact that object creation
is an expensive operation in Java. For the primitive parameter scenario (Type

2), an object representation of the primitive data type needs to be constructed
so that it may be serialised for the RMI call. For example, if the parameter is
an int, then an object of type Integer must be created to represent this integer.

Primitive Return (Type 4). For one-hop RMI an increase of 2.3% in the time
taken to invoke a remote method is observed with the introduction of dynamic
proxies (Fig. 6), due to the reflection performed by the dynamic proxy.

For mobile RMI, the invocation of a method with no parameters, but a
primitive return type (an integer in this case) was least expensive under standard
RMI, with an additional 13.1% being introduced into the time taken to perform
an invocation with the introduction of dynamic proxies.

The operation of the full JRMP/R Layer led to an increase of 16.4% in the
time taken over that of RMI using dynamic proxies, and an increase of 31.6%
over standard RMI. This is illustrated in Fig. 7.

Once again,the additional cost of making an RMI call may be accounted for
by the need to determine the method type and inspect the return value of the
invocation.

Object Return (Type 5). The introduction of a dynamic proxy to one-hop
RMI for this type of invocation increased the time taken to invoke a remote
method by 2.7% as shown in Fig. 7.

For mobile RMI, the invocation of a method with no parameters, but which
returns a Java object is the most costly type of invocation in terms of standard
RMI. This is due to the need to serialise the return value of the method.

The use of dynamic proxies for this type of invocation increases the time taken
to invoke such a method by 10.8% due to the cost of reflection. Full JRMP/R
Layer support increases the time taken to invoke a method of this type by 4.3%
over the use of dynamic proxies and an overall increase of 15.6% over standard
RMI (see Fig. 7).

Client Side Transparency. The incorporation of the location management
support offered to mobile RMI servers by the JRMP/R Layer is almost com-
pletely transparent to the client of a mobile RMI server, barring the need to
perform certain bootstrap remote reference lookups on a different host (the MG,
rather than the MH itself). Whilst this may require the alteration of hard-coded
host addresses in certain legacy applications, in most cases it should simply
require the change of the host parameter provided at runtime to the client.

Server Side Transparency. The introduction of the JRMP/R layer at the
server side is not (and should not be) completely transparent to the application
programmer. The use of an alternative to the java.rmi.Naming class is required
for mobile servers, but the alternative Naming class does present the same API
and use of it is syntactically identical to the standard RMI Naming class.

8 Related Work

The problems of host mobility addressed by our architecture are also addressed
by Mobile IP [7] at the network layer. However, the Mobile IP solution to host
mobility requires all hosts to use a modified network protocol and requires the
maintenance of a centralised location register. An element of routing indirection
is also introduced in Mobile IP. Our architecture does not require the replacement
of the existing IP protocol, nor the maintenance of a centralised location register.
Previous work has been carried out on the extension of the ALICE architecture
to RMI [8], resulting in a Java version of the ML. Our architecture improves
upon this approach through re-use of the existing ML component, dealing with
all possible ways that a client may obtain a remote reference and by making
mobility support transparent to the client by removing the need to hand code
proxy classes.

Software mobility of RMI remote objects in a network has been addressed
by [9] resulting in enhanced remote objects which are able to migrate between
different address spaces.

A number of projects have examined the operation of RMI over a wireless
link from the perspective of the efficiency of the communication mechanisms
employed by RMI [10, 11]. These projects deal with aspects of connectivity man-
agement of a wireless connection with specific reference to the operation of RMI
over such a connection. Location management of mobile clients and servers is not
dealt with in these projects. [12] addresses the operation of Remote Procedure
Call in a mobile environment.

Work has been carried out on interceptors for RMI utilising dynamic proxies,
custom socket implementations and replacement of shared libraries [13] to inter-
cept RMI method invocations. The RMI Proxy [14] is a commercial application
protocol which makes use of dynamic proxies to provide an approach to allow
controlled penetration of firewalls by RMI clients and servers.

9 Conclusion

This paper discussed the provision of support to RMI applications in a mobile
environment including connectivity management, in the form of management of
the wireless connection and insulation of RMI applications from the inherent
unreliability of the medium, and location management using dynamic proxies to
support RMI servers on mobile hosts.

Connectivity management was provided for RMI applications through the
re-use of the application protocol independent Mobility Layer module of ALICE
and provided for the full operation of mobile RMI clients.

A location management scheme for RMI based on dynamic proxies was de-
veloped to provide invocation redirection via a gateway between the wireless and
wired networks, and permitted the operation of mobile RMI servers.

The mobility support provided by our architecture enabled the full operation
of both RMI clients and server objects within a mobile environment. Mobility

support was provided on top of the existing network (IP) protocols, with a high
degree of transparency and a low degree of overhead and without the need for a
centralised location register.

Acknowledgements

Gregory Biegel was in receipt of a Beit Fellowship at the time of this research
and is very grateful to the Beit Trust for their generous support.

References

1. Sun Microsystems, Java Remote Method Invocation Specification Revision 1.7,
http://java.sun.com/products/jdk/rmi, December 1999.

2. Sun Microsystems, Enterprise JavaBeans 2.0 Specification,
http://java.sun.com/products/ejb, August 2001.

3. Sun Microsystems, JINI v1.1 Specification, http://java.sun.com/jini, October
2000.

4. George H. Forman and John Zahorjan The Challenges of Mobile Computing IEEE
Computer Journal, April 1994

5. Mads Haahr, Raymond Cunningham and Vinny Cahill, Towards a Generic Ar-
chitecture for Mobile Object-Oriented Applications, In SerP 2000: Workshop on
Service Portability, December 2000.

6. Roger Biggs, Ann Wollrath and Jim Waldo, A Distributed Object Model for the Java
System, In USENIX 1996 Conference on Object Oriented Technologies (COOTS),
pp. 219-231.

7. Charles E. Perkins, Mobile IP IEEE Communications Magazine, Vol. 35, No. 5, pp.
84-99, May 1997

8. Tom Wall, Mobile RMI : Supporting Remote Access to Java Server Objects on
Mobile Hosts, In Proceedings, International Symposium on Distributed Objects and
Applications, pp.41-51, September 2001

9. Avvenuti et al., MobileRMI: a ToolKit to Enhance Java RMI with Mobility, In 6th
ECOOP Workshop On Mobile Object Systems: Operating System Support, Security
and Programming Languages, June 2000.

10. Stefano Campadello, Oskari Koskimies and Kimmo Raatikainen, Wireless Java
RMI, In 4th International Enterprise Distributed Object Computing Conference,
pp. 114-123, September 2000.

11. Vijaykumar Krishnaswamy and Dan Walther and Sumeer Bhola and Ethendranath
Bommaiah and George Riley and Brad Topol and Mustaque Ahamad, Efficient
Implementations of Java Remote Method Invocation (RMI), In Proceedings of the
4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS
’98) pp. 19-35 April 1998.

12. Ajay Bakre and B.R. Badrinath, M-RPC: A Remote Procedure Call Service for
Mobile Clients, In Proceedings of the 1st ACM Mobicom Conference pp.2-11, 1995.

13. N. Narasimhan, L.E Moser and P.M Melliar-Smith, Interceptors for Java Remote
Method Invocation, Java Grande - Concurrency : Practice and Ezperience 2000.

14. Esmond Pitt and Neil Belford, The RMI Proxy White Paper,
http://www.rmiproxy.com March 2001.

