

Using Group Communication to Support

Inter-Vehicle Coordination

Eoin O’Gorman B. Eng.

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science.

2002

Declaration

I declare that the work described in this dissertation is, except where otherwise

stated, entirely my own work and has not been submitted as an exercise for a

degree at this or any other university.

Signed:__________________________________

Eoin O’Gorman

16th September, 2002.

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed:__________________________________

Eoin O’Gorman

16th September, 2002.

Acknowledgments

I wish to thank the following individuals for their contribution:

My supervisor, Dr. Vinny Cahill, for his time, help and advice throughout

the year, which I appreciate very much, thank you;

My Mum, Dad, Granny, my brothers and especially my sister, Clodagh, for

“putting me up”, always with a smile, for an entire year.

Finally, I would also like to thank my girlfriend Jennie to all her support.

Abstract

Recent advancements in wireless communication technology and portable computing are

opening up exciting possibilities for the future of mobile network applications. One

obvious domain for such mobile network applications is in vehicle traffic scenarios, where

vehicle-mounted mobile hosts, with wireless communication ability, form an ad hoc

network. With the aim of improving transportation systems, through the reduction of road

accidents, inter-vehicle coordination applications are being built upon these vehicle-based

ad hoc networks.

This dissertation is concerned with investigating the use of group communication to

support inter-vehicle coordination applications in ad hoc networks. Specifically, one

particular case study of inter-vehicle coordination is examined: the 4 Way Stop. A 4 Way

Stop is a common road junction, with four approaching roads, of equal importance,

meeting at a single point. The problem of a 4 Way Stop is in determining which vehicle

should be allowed to cross the junction at any one time.

This dissertation identifies the requirements on group communication to successfully

support a 4 Way Stop application. Requirements for optional group communication

application implementations: primary component implementation and partitionable

membership implementation are both listed. Moving from the specific to the general, the

examination of a 4 Way Stop application provides valuable insights into the general

domain of inter-vehicle coordination.

Table of Contents

Abbreviations 1

Chapter 1: Introduction 2

1.1 The Group Communication Paradigm 3

1.1.1 Applications of Group Communication 3

1.1.2 Group Communication Terminology 4

1.2 Inter-vehicle Coordination 6

1.3 Related Technologies 6

1.3.1 Global Positioning System 7

1.3.2 Obstacle Detection 7

1.4 Dissertation Organisation 9

Chapter 2: State of the Art 10

2.1 Group Communication Services 10

2.1.1 ISIS, Cornell University 11

2.1.2 Horus, Cornell University 12

2.1.3 Transis, Hebrew University of Jerusalem 14

2.1.4 Totem, University of California 14

2.2 Location Aware Group Communication Research 15

2.2.1 “Safe Distance” 15

2.2.2 “Proximity Groups” 17

2.2.3 Architecture for location-aware group members 17

2.3 Wireless Traffic Applications 18

2.3.1 “FleetNet – Internet on the Road” 18

2.3.2 DriveBy InfoFueling™ 20

2.3.3 Traffic jam detection using wireless technology 21

2.3.4 CarNet 22

2.3.5 GPS-based message broadcasting 23

Chapter 3: The 4 Way Stop Problem 24

3.1 Junction Layout 24

3.2 The Problem 25

3.3 4WS Automated Vehicle Model 26

3.4 Application-Level Traffic Scenarios 28

Chapter 4: Mapping 4 Way Stop Problem to Group Communication 37

4.1 Membership Interest 37

4.2 Group Communication Primitives 37

4.2.1 Ordering of Group Communication Primitives 39

4.3 Shared Data Structure 41

4.3.1 Maintenance of Shared Data Structure using Primitives 47

4.3.2 Right of Way Algorithm 53

Chapter 5: Group Communication Requirements 56

Related Work 56

Primary component and partitionable membership services 56

Operating Environment: Fault Model and Assumptions 57

Proposed System Architecture 58

Notation 59

Primary Component Membership Required Properties 61

Property 1: “Self Inclusion” 62

Property 2: “Local Monotonicity” 62

Property 3: “Initial View Event” 63

Property 4: “Primary Component Membership” 63

Property 5: “Delivery Integrity” 64

Property 6: “No Duplication” 64

Property 7: “Same View Delivery” 65

Property 8: “Virtual Synchrony” 65

Property 9: “Safe Indication Prefix” 66

Property 10: “Strong Total Order” 67

Partitionable Membership Required Properties 69

Property 1: “Self Inclusion” 70

Property 2: “Local Monotonicity” 70

Property 3: “Initial View Event” 71

Property 4: “Delivery Integrity” 72

Property 5: “No Duplication” 72

Property 6: “Same View Delivery” 73

Property 7: “Virtual Synchrony” 73

Property 8: “Transitional Set” 74

Property 9: “Safe Indication Prefix” 75

Property 10: “Weak Total Order” 76

Chapter 6: Conclusion 79

Future Work 81

References 83

List of Figures and Tables

Figure 2.1: Group communication microprotocols envisaged as Lego blocks [20]. 13

Figure 2.2: Example of safe distance [41]. 16

Figure 2.3: Layered Architecture for Group Communication [43]. 18

Figure 2.4: High level FleetNet infrastructure and communication methods [44]. 19

Figure 2.5: Example DriveBy InfoFueling scenarios [46]. 21

Figure 2.6: Example of detecting the traffic jam size [19]. 22

Figure 3.1: 4WS Junction (aerial view). 25

Figure 3.2: Example 4WS scenario, illustrating rule of right of way granting. 26

Figure 3.3: An empty junction. 28

Figure 3.4a: A single vehicle approaching an empty junction. 29

Figure 3.4b: Multiple vehicles approaching an empty junction “simultaneously”. 29

Figure 3.5a: Vehicle approaches a non-empty junc. along an empty approach road. 29

Figure 3.5b: Vehicle approaches a non-empty junc. along an non-empty approach road. 29

Figure 3.6: Vehicle seizes right of way (with the intention of crossing the junction). 30

Figure 3.7a: A vehicle seized right of way and left the junction subsequently empty. 30

Figure 3.7b: A vehicle seized right of way and left the junction subsequently non-empty. 30

Figure 3.8a: A vehicle, before seizing RoW, leaves the junction subsequently empty. 31

Figure 3.8b: A vehicle, before seizing RoW, leaves the junction subsequently non-empty.31

Figure 3.9a: A vehicle stalls at the front of an approach road. 32

Figure 3.9b: A vehicle stalls on an approach road, but not the front. 32

Figure 3.9c: A vehicle stalls on the junction. 32

Figure 3.10a: A local vehicle obstruction at the front of an approach road. 33

Figure 3.10b: A local vehicle obstruction on an approach road, but not at the front. 33

Figure 3.10c: A local vehicle obstruction on the junction. 33

Figure 3.11: Vehicle relinquishes right of way before entering on to the junction. 34

Figure 3.12a: A vehicle reports a blockage at the front of an approach road.. 35

Figure 3.12b: A vehicle reports a blockage along an approach road, but not the front. 35

Figure 3.12c: A vehicle reports a blockage on the junction. 35

Figure 3.13a: Vehicle reports a removal of a blockage on the junction. 36

Figure 3.13b: Vehicle reports a removal blockage of a blockage along an approach road. 36

Figure 4.1: Example Traffic Scenario. 43

Figure 4.2: Element 1: “Membership Queue”. 44

Figure 4.3: Element 2: “Right of Way History”. 45

Figure 4.4: Local vehicle blocking all vehicles on approach road 3. 46

Figure 4.5: Element 3: “Blockage Status”. 46

Figure 4.6: Local vehicle blocking subset of vehicles on approach 3. 46

Figure 4.7: Example data structure elements after group is created. 47

Figure 4.8: Example “join” traffic scenario. 48

Figure 4.9: Membership queue update after join. 49

Figure 4.10: Before and after membership queue for an “expected leave”. 49

Figure 4.11: Before and after right of way history for an “expected leave”. 50

Figure 4.12: Before and after membership queue for “seize right of way”. 50

Figure 4.13: Before and after membership queue for “relinquish right of way”. 51

Figure: 4.14: Before and after blockage status for “report junction blocked”. 51

Figure: 4.15: Before and after blockage status for “report approach blocked”. 52

Figure: 4.16: Before and after blockage status for removal of blockage on junc. 52

Figure 4.17: Before and after blockage status for removal of blockage on approach. 53

Figure 4.18: Right of Way algorithm. 55

Figure 5.1: Proposed System Architecture. 59

Figure 5.2: External actions of the GCS [23]. 60

Table 5.1: External actions of the GCS. 60

Table 5.2: Shorthand Predicates. 61

Table 5.3: Summary of primary component requirements. 68

Figure 5.3a: A traffic scenario before partition. 69

Figure 5.3b: A traffic scenario after partition. 69

Table 5.4: Summary of partitionable membership service requirements. 77

 1

Abbreviations

4WS 4 Way Stop

AHN Ad Hoc Network

EVS Extended Virtual Synchrony

GCS Group Communication Service

GLS Grid Location Service

GMP Group Membership Protocol

GMS Group Membership Service

GPS Global Positioning System

ITS Intelligent Transportation Society

IVC Inter-Vehicle Communication

IVI Intelligent Vehicle Initiative

LAN Local Area Network

 2

Chapter 1: Introduction

Recent advancements in wireless communication technology and portable computing are

opening up exciting possibilities for the future of mobile network applications. Through

the combination of wireless communication ability and mobile devices, applications of

self-organising, infrastructure-free, mobile networks are being developed in many

domains: educational, industrial, commercial and military. Mobile devices form a mobile

ad hoc network when they wirelessly communicate with other nearby wireless devices

without the support of fixed infrastructure. The mobility of nodes means that an ad hoc

network’s topology changes frequently and dynamically. With the absence of fixed

infrastructure to support the monitoring of these network topology changes, mobile nodes

must themselves track changes in a decentralised manner.

We propose investigating the use of group communication to support tracking the network

topology changes in an ad hoc network. Specifically, we propose investigating the use of

group communication in ad hoc networks formed by mobile vehicles with wireless

communication ability. These vehicles will form an ad hoc network with the purpose of

coordinating their respective actions and driving manoeuvres. Interest in so-called inter-

vehicle coordination is growing. Groups such as the Intelligent Transportation Society

(ITS), the Intelligent Vehicles Initiative (IVI), vehicle manufactures and, indeed,

academics are researching inter-vehicle coordination with a common goal of improving

transportation systems through the reduction of road accidents, the improvement of traffic

congestion, the availability of traffic information and the reduction of traffic-related

environmental pollution.

As an example of inter-vehicle coordination, built upon group communication in ad hoc

networks, we study the problem of the 4 Way Stop. This specific problem, which is fully

 3

described in chapter three, was used as a case study of inter-vehicle coordination to

identify the requirements on group communication to support inter-vehicle coordination

in mobile ad hoc networks. The identifications of these requirements is the objective of

this dissertation. Through an investigation on a specific inter-coordination application, we

will make observations on such applications in general.

1.1 The Group Communication Paradigm
Group communication is a powerful paradigm for creating distributed services and highly

resilient, fault-tolerant applications [1, 2]. Group communication is a method of providing

point to multi-point communication due to the arrangement of processes into groups.

According to a principle of mutual cooperation group member processes interact and

communicate to achieve a common objective. The group communication paradigm is an

important and widely used technique to achieve reliability, fault-tolerance and high

availability in distributed computing [3, 4].

What makes the group communication paradigm novel is that an entire set of processes

can be considered as a single logical connection. This is accomplished through the notion

of group abstraction which allows processes to be grouped together into multicast groups

each of which are assigned group identifications [1, 2]. Messages to these multicast

groups are addressed simply using the group’s identification, which is assigned when the

group is created. Depending on the strength of the associated multicast semantics, a

multicast message addressed to a group is guaranteed to reach all currently connected,

functional members. This means

1.1.1 Applications of Group Communication

Many applications have been built using the group communication paradigm. A classic

group communication application is data replication using a variant of the state

machine/active replication approach [5, 6, 7]. Other classical group communication

applications include load balancing [8, 9], distributed transactions and database replication

[10, 11], resource allocation [12, 13], and highly available servers [14].

 4

More recently, the group communication paradigm has been applied to collaborative

computing applications such as distributed whiteboards [15], audio and video

conferencing [16, 17] and distance learning [18].

Group communication has also been applied to vehicle traffic scenarios. Traffic jam

detection and emergency braking are example of group communication used in traffic

applications [19]. This dissertation will look to using group communication in

coordinating automated vehicles. Member vehicles will coordinate their actions through

the principle of mutual assistance, where vehicles keep each other informed of the state of

the local traffic environment by location-enriched message passing. Group

communication based traffic applications are faced with the challenge of operating in a

wireless environment. Problems such as node mobility and message loss are obstacles to

such applications. However, the current trend towards safer vehicles through automation

motivates the development of such wireless group communication applications.

1.1.2 Group Communication Terminology

This section describes the key ideas and terminology in group communication. Group

Communication Services (GCSs) are middleware systems that hide underlying network

inconsistencies from distributed applications and provide the applications with consistent

views of a distributed execution [4, 20, 21, 22]. GCSs are particularly useful for providing

applications with reliable point to multi-point communication.

The idea of group abstractions is used by GCSs to group distributed processes into

multicast groups. All multicast group members can then be addressed by applications

using only their group id, which is assigned to multicast groups upon creation. The

usefulness of the group abstraction is that different members of a group each have a

consistent view of all group communication. In general, these semantics are achieved

using group membership and reliable multicast.

Group membership is concerned with maintaining a view of the distributed processes that

comprise a group. Membership of a group is dynamic over the lifetime of a group due to

processes joining, leaving, failing or disconnecting. A Group Membership Service (GMS)

is responsible for tracking the changes to the group and reporting these changes to the

members of the group in the form of group views [2]. Group views, consist of a group

 5

view identification and a list of the current members of the group. The test of a group

membership service is in delivering each connected member of the group consistent views

of the group i.e. each member is to be delivered a list of currently connected members, so

that members know their possible communication partners.

Reliable multicast is concerned with providing applications with the ability to reliably

send messages to all members of a specific group. Different GCSs may provide numerous

reliable multicast semantics: different reliable multicast protocols have different

properties. For example, different message ordering properties could be specified.

Example multicast semantics include: FIFO, Reliable FIFO, Causal, Reliable Causal and

Totally Ordered [23]. However, most reliable multicast semantics can at least guarantee

the property of virtual synchrony.

Virtual Synchrony semantics specify how group communication is synchronized with

group view delivery [24]. The essence of the virtual synchrony principle is that it

guarantees that membership changes within a process group are observed in the same

order by all the group members that remain connected. Virtual synchrony guarantees that

every two processes that observe the same two consecutive group membership changes,

receive the same set of group multicast messages between the two group membership

changes. Virtual synchrony places no requirements on the order of delivery or receipt of

the set of multicast messages. A separate protocol could be built on top of virtual

synchrony which could ensure a specific ordering of messages at all group members. With

regards consistent distributed application execution, virtual synchrony means that, at

group view changes, members transitioning from one consistent group view to the next

have identical contexts. This means that members can act upon received messages in a

consistent manner, as if synchronised.

To illustrate the virtual synchrony principle, consider the following example. Consider a

group of processes that is initially comprised of processes {A, B, C} but changes to {A,

B, D}. Processes A and B will initially receive a configuration message indicating that

the group consists of A, B and C. A and B will then receive the exact same set of regular

communication messages, followed by the configuration message indicating the group

now consists of A, B and D. Process C , however, after the first configuration message

may receive any superset or subset of the set of messages received by A and B. The result

 6

of this is that A and B, who participate in identical, consecutive group views have the

same contexts when the second group view configuration message arrives and hence can

act on messages in a consistent manner.

1.2 Inter-vehicle Coordination
This dissertation is concerned with investigating the use of the group communication

paradigm in the area of inter-vehicle coordination. Inter-vehicle coordination involves

vehicles communicating and interacting, using inter-vehicle communication (IVC), so as

to organize their respective movement and driving manoeuvres. Current examples of

inter-vehicle coordination applications include organising vehicles into tightly spaced

platoons for efficient traffic flow, cooperative lane changing and overtaking [25, 26, 27].

Our research specifically looks at coordinating automated vehicles crossing a 4 Way Stop

(4WS) junction. Based solely on message passing, location-aware vehicles must

unambiguously determine which vehicle is allowed to cross the junction at any one time.

This coordination will be built upon group communication, which in turn will be built

upon communication in an ad hoc network. This research was motivated by the need to

explore and investigate the requirements on group communication to coordinate vehicles

operating as mobile nodes in an ad hoc network.

Group communication offers many useful tools for implementing such an inter-vehicle

coordination application, however, we will investigate the requirements on current GCSs

to fully coordinate automated vehicles at a 4WS junction in an ad hoc network. Ad hoc

network characteristics such as message loss, frequent disconnections, network partitions

and unpredictable node mobility make reliable coordination difficult. Also, inter-vehicle

coordination using group communication must accurately reflect real world vehicle

situations i.e. the group communication paradigm must respect actual physical traffic

constraints such as vehicle queuing order.

1.3 Related Technologies
Although our research is primarily concerned with inter-vehicle coordination using group

communication in ad hoc networks, other technologies are assumed. This section details

the two main technologies assumed by the remainder of this dissertation: the Global

Positioning System (GPS) and Vehicle Obstacle Detection.

 7

1.3.1 Global Positioning System

A fundamental assumption of the 4WS protocol, and other similar safety critical inter-

vehicle protocols, is that a vehicle is aware of its global position. Numerous vehicles

currently use the American Government’s Global Positioning System (GPS) [28, 29] as

part of their navigation system. Established in the early 1990’s, GPS is the a system

designed to give a relatively accurate (to within 10m) position on Earth, anytime,

anywhere and in any weather. 24 GPS satellites orbit the Earth, each transmitting signals

which can be detected by a GPS receiver. Using a minimum of three received satellite

signals, a GPS receiver is able to provide a global position.

Currently, GPS can only offer positioning accuracy to within 10m, however,

improvements in GPS accuracy are expected within the next few years. In [30], Rogers

and Schroedl predict that future GPS vehicle systems will be accurate to one meter and

better by 2005. This improvement is expected to be achieved using differential

corrections. Improvements in GPS accuracy coupled with improvements in the accuracy

of digital road maps using probe vehicles [31] will enable precision vehicle safety

applications, such as the 4WS application, to be developed.

1.3.2 Obstacle Detection

A primary challenge in developing intelligent autonomous vehicles is reliable obstacle

detection. Roadways present an unknown and dynamic environment with real-time

constraints. Also, the high speeds of vehicle travel require a system to detect objects at

long distances. There has been a great amount of research devoted to the obstacle

detection problem in intelligent vehicles.

One method of alerting vehicles of obstacles on roadways is the deployment of sensors on

the roadside. These sensors regularly scan the roadway for the presence of obstacles and

broadcast information to vehicles in the locality. A significant problem with this solution

is the expensive deployment of these roadside sensors. A more suitable solution would be

for the vehicles to detect the presence of obstacles themselves, and hence free the

detection of obstacles from a reliance on roadside support.

 8

A variety of competing methods for obstacle detection have been proposed for example

optical flow [32, 33], stereo vision [34, 35], radar [36] and laser range-based [37, 38].

One of the most effective methods of obstacle detection are laser range scanners, or

ladars, which have been used for many years for obstacle detection. Laser scanners

operate by sweeping a laser across a scene and at each angle, measuring the range and

returned intensity. The laser provides an elevation map of the scanned area. This

elevation map is scanned for discontinuities which indicate obstacles. Radar is another

excellent means of detecting obstacles. One implementation of radar obstacle detection is

capable of detecting vehicles at distances of up to 200m [39]

For the purpose of this dissertation, we require vehicles to have the ability to detect the

presence of an obstacle within maximum braking distance in front of the vehicle. The

chosen method of obstacle detection is unimportant, assuming, however, that the obstacle

detection sensors are contained within the vehicle and not on the roadside. This

dissertation is concerned with infrastructure-free ad hoc networks and, as such, it would

not be rational to constrain a final implementation to rely on roadside obstacle detection

sensors.

 9

1.4 Dissertation Organisation
This dissertation is organised into six chapters as follows:

In chapter two we detail the state of the art concerned with our research.

In chapter three we introduce the 4 Way Stop problem, which is the specific

example of inter-vehicle coordination with which this dissertation is concerned.

In chapter four we detail the initial steps towards developing a 4 Way Stop

application using group communication.

Chapter five is concerned with detailing the requirements on group

communication to successfully implement a 4 Way Stop application in both

primary component and partitionable network environments.

Finally, chapter six concludes the discussion.

 10

Chapter 2: State of the Art

This dissertation is concerned with inter-vehicle coordination built upon group

communication, where group members are aware of their global location using GPS. As a

result, our literature review will examine current and previous research and industrial

development in the areas of group communication, location aware group communication

and wireless applications in inter-vehicle scenarios.

The examination of group communication research was motivated by the need to

understand how existing Group Communication Services (GCSs) have been implemented

and identify novel features of their implementations. Location aware group

communication is concerned with group communication where group members have

some understanding of their physical position. This is the case with inter-vehicle

coordination built upon group communication and therefore it was advantageous to

identify possible use of location information by mobile nodes. A study of current wireless

traffic applications was also carried out. This study was carried out with the intention of

identifying similar traffic applications and classifying the methods of implementation

used.

2.1 Group Communication Services
In this section, we detail research carried out into Group Communication Services. To

understand features of the well-known GCSs we studied ISIS [2, 3, 4], Horus [2, 20],

Transis [22, 40] and Totem [21]. These GCSs are middleware systems which provide

distributed applications with group communication semantics, thus increasing reliability

and availability. Also, the GCS’s provide applications with reliable point to multi-point

communication thus enabling the applications to implement reliable data replication. This

study of existing GCSs was carried out so as to understand the basics of group

 11

communication including group membership, group membership tracking, system

architecture and multicast semantics.

2.1.1 ISIS, Cornell University

ISIS [2, 3, 4] was first developed at Cornell University in 1987 as a group communication

toolkit with the aim of providing fault tolerance in distributed systems. The ISIS system

implements a collection of techniques for building software for distributed systems that

performs well, is robust despite both hardware and software crashes, and exploits

parallelism. As the ISIS Group Membership Service (GMS) was the original group

membership service, it was of particular importance to this dissertation to study this GMS

so as to understand the basics and original notions of group membership. The following is

a review of how group membership in ISIS is tracked.

The ISIS GMS maintains the group membership list on behalf of the group members. The

ISIS GMS assumes a dynamic membership environment in which the group membership

is represented by strictly ordered group views. ISIS assumes a model in which possible

member processes must contact the GMS in order to join the group. The GMS itself must

be a highly available entity, which itself may have a dynamic membership necessitated by

GMS member process failures.

As stated, the primary role of the ISIS GMS is to track membership of processes within

the system, however, in order to accomplish this the GMS must first track its own

membership. This is accomplished by the Group Membership Protocol (GMP). The GMP

handles the addition and deletion of GMS member processes and replicates the GMS

membership list amongst the GMS members. Member failures are detected through

members monitoring each others’ status using a ping-timeout system.

In order to track the membership of the system, the ISIS GMS offers three operations to

system members: join, leave and monitor. The join and leave operations are self-

explanatory. The monitor operation is used by a process if it suspects another process of

having failed. The provision of this operation is necessary because the GMS must handle

all failure notification i.e. member processes are not allowed to assume another process

has failed. The use of the monitor operation by the ISIS GMS tracks membership of the

entire group in the background.

 12

As a primary component service, the ISIS GMS may fail to progress under certain

conditions. In order to create a new group view i, the GMS must contain a majority of

group members from group view i-1.

As the first and most famous GCS, ISIS provides an invaluable investigation into the

history and original implementation of group communication.

Much of the work of this dissertation follows on from the investigation and analysis of the

ISIS system. ISIS being the original and most famous GCS provides much of the

understanding of group membership and group membership monitoring. However, it must

be noted that ISIS assumes an environment in which message loss is not possible. Such an

assumption cannot be made by inter-vehicle coordination applications, which will have to

operate in asynchronous environments.

2.1.2 Horus, Cornell University

The Horus middleware system [2, 20] offers application developers a flexible group

communication model. Horus was designed to facilitate adding group communication

semantics such reliability, fault-tolerance and security to already existing applications

without significant changes to the application. The flexibility of Horus is due to the fact

that Horus embeds group communication support into a modular systems architecture.

Before Horus, GCSs tended to offer a “flat” architecture: in that the offered API was fixed

and closely matched to exact group communication primitives, regardless of the specific

requirements of the distributed application using the GCS middleware. Horus, on the

other hand, offers a configurable group communication architecture, meaning that Horus’

API is dynamic depending on the application’s requirements.

The configurable group communication architecture is achieved by a protocol block

abstraction. These protocol blocks can be looked upon as Lego blocks, where the Horus

system is a box containing the Lego blocks (see figure 2.1 taken from [20]). Each block

offers a unique group communication microprotocol, with standardised top and bottom

interfaces. Combinations or stacks of blocks form macroprotocols, which contain the

desired group communication properties of the distributed applications.

 13

Figure 2.1: Group communication microprotocols

envisaged as Lego blocks [20].

This modular architecture of group communication protocols, to support a distributed

application, can be configured at runtime to match the requirements of the specific

application. Horus’ flexibility comes from the fact that its protocol stack can be optimized

by including or excluding specific protocol stack blocks, or modules, depending on the

specific application’s requirements. For example, in a secure environment group

communication need not be encrypted so Horus offers the application developer the

option of removing the encryption/decryption functionality from the protocol stack. Other

example microprotocol (block) functionalities include: encryption/decryption (CRYPT),

provision of group membership list through use of virtual synchronous protocol

(MBRSHIP), flow control (FC), totally ordered messaging (TOTAL) and detection of

stable messages at all endpoints (STABLE).

Although novel, the architectural modularity of Horus is not relevant to the group

communication functionality that will be offered by a 4 Way Stop application. Horus was

designed to “slide under” existing distributed applications to offer optional and

configurable group communication semantics. A 4 Way Stop application has specific

group communication requirements, which will be detailed in later chapters. These

requirements will be the sole requirements implemented by the group communication

layer of a 4 way Stop application. To offer a dynamic set of configurable group

communication semantics to a specific application, with its own specific group

 14

communication requirements, would be overkill. The study of Horus was useful in that

the Horus configurable architecture provided an insight into the fact that group

communication semantics can be modularized, an insight which proved useful in

identifying specific 4 Way Stop requirements.

2.1.3 Transis, Hebrew University of Jerusalem

Transis [22, 40] is a multicast communication middleware system that was designed to

facilitate easier development of fault tolerant distributed applications over a network of

machines. Transis supports high availability applications through the provision of reliable

group communication and associated multicasts.

The primary design feature of Transis to support ease of application development was that

it offers distributed application developers numerous multicast protocols with different

ordering guarantees. Specifically, Transis offers: FIFO ordered, causally ordered, totally

ordered, and safely delivered. As multicast semantics vary, so do the associated costs of

the multicasts (e.g. message latency, number of rounds etc.), with FIFO ordered and

causally ordered having the least associated cost. Application developers choose a

multicast based on an application’s requirements. For example, total ordering of

messages, which incurs a high cost, means that all messages are delivered to all

applications in the same order. Application developers would use such multicast

semantics for data replication applications. Also, for example, causal ordering will

guarantee that a response to a message will never be delivered to an application before the

original message.

Of particular interest to this dissertation is Transis’ observation: that different multicast

semantics are required for different application requirements. Transis offers software

developers a suite of multicast semantics. With regards this dissertation, the specific case

study on inter-vehicle coordination too will require specific multicast semantics for its

specific requirements, which shall be detailed in a later chapter.

2.1.4 Totem, University of California

Totem [21] is a group communication system designed to facilitate productive software

development of reliable, fault-tolerant group applications involving replicated data in

local area networks. This is accomplished by the Totem system’s provision of totally

 15

ordered multicast message delivery throughout the entire process group system. A

protocol hierarchy delivers totally ordered messages to group members over a LAN or

even over multiple LANs connected by gateways. The Totem system offers two reliable

totally ordered multicast message delivery services: agreed delivery and safe delivery. Of

particular use is safe delivery which guarantees that before a process delivers a message, it

has determined that every other process in the current group view has received the

message. Total ordering is achieved using a system of logical time stamps, token passing

and message sequence numbers.

Totem is an example of the use of multicasting messages to achieve data replications in a

network. Unlike this dissertation, Totem is only concerned with operation in a LAN.

Operation in an ad hoc network poses serious network problems which will be detailed in

a later chapter. However, the use of multicast semantics to replicate data will be of

importance in the remainder if this dissertation.

2.2 Location Aware Group Communication Research
Research has been carried out into group communication with an emphasis on the mobile

nodes being aware of their physical location. Likewise, this dissertation will be concerned

location-aware hosts. Using GPS technology, vehicles approaching the 4WS junction will

know their global location and, in conjunction with digital roadmaps, their position on the

road/highway. The following section examines other research in the area of location

aware mobile hosts, with the aim of understanding how mobile node location information

has been used.

2.2.1 “Safe Distance”

In ad hoc networks unexpected node disconnection can be frequent and common, the

network may even partition and never remerge. [41] uses node location information to

decide if a node is to be admitted to or eliminated from a group. Node location and

movement is monitored and announced disconnection is forced to ensure that nodes are

eliminated from the group before an unexpected disconnection can occur. Node

connectivity is mapped by a logical connective graph and not a physical connective graph.

The former is a sub-graph of the latter. Both graphs share the same vertices (nodes), but

the logical graph is missing some of the edges (links). The concept of safe distance (figure

 16

2.2 based on [41]) is used to generate the logical connective graph. Taking node relative

velocity, node transmission range and network latency, for a given communication task,

into account a maximum safe distance is calculated for any two nodes. If the actual

physical distance between the two nodes does not exceed this threshold distance then

these two nodes can complete the communication task in question.

With regards figure 2.2a (based on [41]), mobile nodes a and b are within communication

range, R. Both a and b may wish to form a group, however, under the concept of safe

distance, they will not be allowed to do so. This is because, a and b may move out of

communication range immediately after acknowledging membership of the group,

resulting in messages, sent between them, being lost. As stated above, the solution of safe

distance enforces nodes to be within a threshold distance from each other before

membership of a group is established. In figure 2.2b, the threshold distance is shown as r,

where:

r = R – 2v * (t + t’);

R is the transmission range of mobile hosts;

t is the upper bound on message latency;

t’ is the time required for a group level operation (group merge / split);

and, v is the maximum speed of a mobile host.

Figure 2.2: Example of safe distance [41].

Safe distance is an example of novel use of location information to predict mobile node

disconnection. However, this novel design assumes that all inter-node communication is

symmetric and that link failure cannot not occur when nodes are within communication

range. These assumptions can not be made for the 4WS protocol because message loss

a b

R R R

r

(a) (b)

b a

 17

and asymmetric communication are common in ad hoc networks. To ignore these issues

in a safety critical protocol would not be acceptable.

2.2.2 “Proximity Groups”

In [42] Killijian, Cunningham, Meier, Mazare and Cahill introduce a new definition of

proximity groups. According to their definition, a proximity group takes into account a

mobile node’s location information and functional aspects before membership is allowed.

Location alone does not warrant a node’s membership of a group. An example cited is a

group of vehicles in the vicinity of traffic lights which are interested in receiving traffic

light state changes. Clearly, this example of an absolute proximity group (i.e. a proximity

group formed around an fixed geographic location) is concerned with both location

information (area around traffic lights) and functional aspects (interest in traffic light

changes). In order to be able to apply for group membership, a node must be within the

geographical area corresponding to the group and must also be interested in the group.

[42] also details a novel approach to coverage estimation and partition anticipation of

member nodes.

The definition of absolute proximity groups is extended in this dissertation from the

general to the specific. The remainder of the dissertation will be concerned with an

example absolute proximity group comprised of vehicles in the vicinity of a 4WS junction

(location aspect) and who are interested in gaining right of way at the junction (functional

aspect).

2.2.3 Architecture for location-aware group members

Prakash and Baldoni [43] propose an architecture for group communication in mobile

systems based on mobile nodes’ location awareness. Under this architecture, a group is

composed of all nodes within a certain distance from the group co-ordinating node. The

proposed architecture introduces two layers between the Application Layer and the

Underlying Network Layer: the Proximity Layer and Group Membership Layer (figure

2.3, taken from [43]). The Proximity Layer uses MAC sub layer services to determine all

mobile hosts within a certain distance from the original group creator. The Group

Membership Layer, which is built upon the Proximity Layer, constructs group views

based on a three phase protocol. This architecture, however, does not address the issues of

network partitions and host disconnection. These issues are of paramount concern to any

 18

protocol implementing a distributed inter-vehicle co-ordinating application where human

life is at stake. What is important to this dissertation is the layered architecture and the

modularisation of the various subsections of an group communication-based application.

Figure 2.3: Layered Architecture for Group

Communication [43].

2.3 Wireless Traffic Applications
As wireless networking is gaining increased importance within the communications

industry, more and more applications for wireless technologies are being investigated. The

automotive industry has proved to be an obvious area in which to develop such wireless

applications. Academics and automotive industrialists alike are both researching novel

uses of mobile technology in vehicles. Likewise, the automotive industry has proved an

ideal area for development of civilian applications using GPS. As a result, we will

examine research being carried out in the area of wireless traffic applications, specifically

traffic applications using GPS technology.

2.3.1 “FleetNet – Internet on the Road”

The FleetNet project [44] was set-up by a consortium of six companies and three

universities with the objective of developing an open-standard inter-vehicle

communication platform to handle data exchange between vehicles and between roadside

infrastructure and vehicles. The development of such a communication platform is fuelled

by vehicles and drivers’ increased need for information on their current location.

Information regarding traffic flow conditions, available local services and even

entertainment information are all valid types of information which could be distributed by

 19

future FleetNet systems. All results of the FleetNet project will be open, available

international standards.

FleetNet assumes vehicle-vehicle and vehicle-infrastructure radio communication in an ad

hoc network (figure 2.4 from [44]). FleetNet assumes the roll-out of permanently

immobile nodes in the form of FleetNet roadside gateways which provide vehicles with

access to the Internet. The FleetNet ad hoc network is not designed to be stand alone.

Other nodes with the FleetNet network are mobile nodes (moving vehicles) and

temporarily immobile nodes (parked vehicles), which together with the roadside

infrastructure form the ad hoc network (although, the validity of such an “ad hoc network”

could be questioned due to the presence of fixed infrastructure).

Figure 2.4: High level FleetNet infrastructure and

communication methods [44].

The FleetNet project is attempting to address both technical and marketing issues of

developing such a system. The main technological challenges facing the project are: the

development of suitable communication protocols for use in such an ad hoc network

environment; the choice of appropriate existing radio broadcasting hardware for

standardisation; the integration of Internet availability into the ad hoc network

environment; the interpretation of data and the presentation of interpretations to the driver

in a safe manner. Marketing issues facing the FleetNet project are due to the fact that ad

hoc network applications require a principle of mutual assistance in order to for the

 20

application to function as specified. Therefore, a FleetNet system will require a high

market penetration in order for meaningful applications to be provided.

FleetNet applications are designed with passenger comfort and safety in mind. [44] cites

three FleetNet application classes: 1) cooperative driving assistance e.g. emergency

braking; 2) decentralised floating car data applications e.g. traffic jam detection and 3)

user communication and information services e.g. online games and chat.

The FleetNet project is concerned with inter-vehicle communication, however, unlike this

dissertation, the FleetNet platform is being designed to cater for a general suite of

applications which involve information distribution and integration to the Internet. We are

concerned with a more specific application of reliably coordinating automated vehicles

within a stand alone ad hoc network using group communication. Also, FleetNet assumes

the use of fixed infrastructure for some of its intended applications, this dissertation makes

no such assumption meaning cheaper rollout of services.

2.3.2 DriveBy InfoFueling™

DaimlerChrysler Research [45] are currently investigating a new high performance, low

cost, scalable technology called “DriveBy InfoFueling” [46]. Similar to the suggested

infrastructure of FleetNet, this technology involves providing an infrastructure of roadside

wireless local area network access points. These network access points will allow passing

road vehicles to download large volumes of data from the internet. An example scenario is

shown in figure 2.5, taken from [46]. Research estimates that a vehicle passing an

InfoFueling station at 60 MPH would be able to download many Megabytes of data in a

matter of seconds. Some quoted in-vehicle applications for use in conjunction with

DriveBy InfoFueling are: vehicle navigation, news provision (traffic, current affairs, stock

market information etc.) and entertainment (radio, video, email etc.).

 21

Figure 2.5: Example DriveBy InfoFueling scenarios [46].

Of particular interest to this dissertation is DriveBy InfoFueling’s contribution to vehicle

navigation. DaimlerChrysler envisage that a vehicle passing a InfoFueling station will be

able to download up to date local traffic information in the form of a digital road map.

This digital road map will be used in conjunction with the vehicle’s GPS equipment to

help the driver navigate through a strange city or town. Navigation using DriveBy

InfoFueling shows the possibility of an innovative joining of wireless and GPS

technologies in the area of traffic control. However, the necessity of fixed infrastructure in

the new technology could prohibit its development and will increase associated costs. This

dissertation will look at implementing a decentralised vehicle protocol without the need

for fixed infrastructure yet involving both GPS and wireless technologies. Such an

implementation of a traffic application would be cheaper to deploy and quicker to market.

2.3.3 Traffic jam detection using wireless technology

In [19] Breisemeister explores a new routing paradigm in the context of inter-vehicle

communication in ad hoc networks. The routing paradigm implicitly addresses message

destinations based on the network situation. Scoped, controlled flooding is used to reach

destination nodes. Considering possible scaling problems, nodes only maintain a localized

group membership list, which is comprised only of adjacent nodes within radio range. The

sample inter-vehicle application built on this new paradigm detects the presence of a

traffic jam and estimates the size of the jam (figure 2.6 from [19]). Using digital road

maps and GPS equipment, slow vehicles share their location information with other

Vehicle driving towards
University campus

Sending request for a map and

point of interest information

DBIF station at University

Downloading map and point
of interest information

On University Campus

 22

vehicles in order to distribute the traffic situation. Other vehicles can then detect and

estimate the size of traffic jams.

Figure 2.6: Example of detecting the traffic jam size [19].

This inter-vehicle system was designed to operate in sparsely connected ad hoc networks.

Also, a system constraint was that 100% deployment was not required for the system to

operate, however, traffic jam estimations may be inaccurate as a result. This system is an

example of original use of a vehicle’s location information in an ad hoc network

environment. Similarly, the 4WS system will make clever use of node location

information, yet an important difference must be noted: in order to operate correctly,

100% deployment of the 4 Way Sop system will be necessary. Also, the 4WS system will

involve reaching distributed agreement as to which vehicle should receive right of way at

the junction, whereas, Breisemeister’s system is concerned with incomplete dissemination

of information about the traffic situation and hence vehicles have an incomplete

observation of the traffic situation.

2.3.4 CarNet

[47] describes CarNet, a new wireless network system for vehicles being developed at

MIT. CarNet is designed around the authors’ work on GLS (Grid Location Service). In

GLS a node’s location is distributed throughout the network and maintained in nodes

which act as location servers for other nodes. Geographic information is used by a source

node to forward packets to a destination node. Intermediate nodes make local decisions to

forward the packet to geographically closer nodes. CarNet is an application of inter-

vehicle communication in an ad hoc network, which will be used to develop other traffic

applications which need to be geographically aware such as congestion monitoring, fleet

tracking, resource location discovery and even inter-vehicle chat.

 23

CarNet is designed to be a large scale, widely deployed inter-vehicle system. It shows

how geographic location within an ad hoc network can be used to develop useful

distribute applications. From this we can explore the idea of using geographic location

and distributed consensus to develop a right of way system at a 4WS junction. However,

geographical forwarding, in which only a subset of all possible nodes are reached, will be

irrelevant in the 4WS system as all nodes will have to reach a distributed consensus as to

which node should be granted right of way.

2.3.5 GPS-based message broadcasting

In [48] the authors propose a new wireless broadcast protocol specifically designed for

inter-vehicle scenarios using GPS technology. The authors cite two important differences

between Inter-Vehicle Communication (IVC) and standard ad hoc networks. Firstly, node

speed in IVC is assumed to be faster than in average ad hoc networks. This has the effect

of making vehicles travelling in opposite directions be only briefly connected. Secondly,

node velocity is not random as vehicles travel along fixed roads. This observation is

exploited by the new broadcast protocol in that message propagation need only occur in a

single dimension i.e. the direction of the road and not in two or three dimensions as would

be expected in standard ad hoc networks. The key to the new protocol is that a (re)sending

node only selects a subset of neighbouring nodes to rebroadcast its message. The

advantage of only selecting a subset of nodes to (re)broadcast the message is that

bandwidth utilization is improved while maintaining node reachability. The choice of the

subset of re-broadcasting nodes is based on nodes’ GPS location. Although not directly

related to the 4WS system, this new broadcast protocol again shows how GPS location

information and inter-vehicle communication can be used in innovative ways.

With the state of the art identified, the next chapter looks at a specific case study of inter-

vehicle coordination. The problems of coordinating vehicles in a 4 Way Stop are

identified. This case study serves to provide an insight into inter-vehicle coordination

applications and scenarios in general.

 24

Chapter 3: The 4 Way Stop Problem

This chapter details the inter-vehicle coordination scenario that we investigated. The

problem is concerned with a 4 Way Stop (4WS) junction. A 4WS is a common road

junction, with four approaching roads, of equal importance, meeting at a single point.

In the following sections we detail the physical environment of a 4WS junction. The

problem of the 4WS is explained. We also describe the vehicle model which is assumed to

operate in the 4WS environment. Finally, all application 4WS scenarios are listed.

In the next chapter, chapter four, we detail steps towards implementing a 4WS application

using group communication. It must be noted, before reading this chapter, that a core

feature of a group communication implementation of the 4WS problem is the

development of a suitable data structure, which will be shared among vehicles. The

purpose of this data structure is to provide vehicles with shared knowledge so that they

can independently determine which vehicle should have right of way at the junction.

3.1 Junction Layout
So as to understand the 4WS rules and the eventual shared data structure, it is first

necessary to understand the physical environment in which a 4WS protocol will be

expected to operate. As can be seen in figure 3.1, a 4WS junction consists of four

approach roads, of equal importance, joining at a single point. For descriptive purposes,

approach roads are labelled 1 to 4 in a clockwise manner. Also, it must be noted that this

dissertation assumes that vehicles travel on the left hand side of the road.

 25

Figure 3.1: 4WS Junction (aerial view).

3.2 The Problem
The problem presented to automated vehicles approaching a 4WS junction is:

Which vehicle should have right of way at the junction?

The general rule which we assume for granting right of way at a 4WS junction is:

The vehicle longest awaiting right of way at the front of an unblocked 4WS

approach will be granted right of way.

For example, in figure 3.2 an example traffic scenario is shown. Four vehicles (1, 2, 3 and

4) are queuing on four different 4WS approaches. Assume that vehicle 1 has been waiting,

at the front of approach road 1, for right of way longer than any of the other three

vehicles. Vehicle 2 has been queuing for the second longest period of time at the front of

an approach, vehicle 3 the third longest period of time and vehicle 4 the most recent

vehicle to queue at the front of an approach road. In such a scenario, the vehicle to be

granted right of way first will be vehicle 1, followed by vehicle 2, then vehicle 3 and

finally vehicle 4. This is due to the fact that vehicle 1 has been queuing at the front of an

approach for the longest period of time.

Approach Road 1

Approach Road 2 Approach Road 4

Approach Road 3

Vehicle Driving
Direction

 26

Figure 3.2: Example 4WS scenario, illustrating rule of

right of way granting.

An algorithm is presented in the next chapter which will be performed by vehicles to

determine which vehicle has right of way or which vehicle is entitled to right of way. This

algorithm is based on the 4WS shared data structure also detailed in the next chapter.

It must be noted that the ordering of right of way granting to vehicles is relatively

unimportant to this dissertation. This is due to the fact that deciding which vehicle has

right of way at any one time is based on an interpretation of the vehicles’ shared data

structure (detailed later). Future research could involve revising this interpretation of the

shared data structure to ensure maximum efficiency or fairness for all concerned vehicles.

Of primary concern to this dissertation is the correctness and maintenance of the shared

data structure, not the interpretation thereof. We are investigating if current group

communication services can accurately maintain the shared data structure.

3.3 4WS Automated Vehicle Model
Automation is an important focus of current research in transportation systems. Research

indicates that vehicle automation will lead to improved transportation systems through

4

1

2

3

Approach Road 1

Approach Road 3

Approach Road 4 Approach Road 2

 27

increased safety, decreased traffic congestion and improved environmental pollution [49,

50, 51].

We are concerned with a specific automated vehicle model which will operate in a 4WS

implementation. A 4WS vehicle is expected to be intelligent and sentient, in that it must

be aware of its surrounding environment and be able to react reasonably to changes in the

environment. Such vehicle sentience, will be provided by a diverse range of onboard

sensors and decentralised vehicle communication. At a minimum, for implementation of a

4WS application, the required features of a 4WS vehicle will be provided by: global

position awareness using GPS, digital road maps, vehicle obstacle detection and wireless

communication ability.

A 4WS vehicle will be more or less aware of its accurate global location. This will be

achieved by a system integrating accurate GPS and digital road maps, with the effect that

vehicles can determine what road they are on, which direction they are travelling, what

junction they are approaching etc.

Using obstacle detection technology, 4WS vehicles will be able to detect the presence of

an obstacle in front of the vehicle. Such vehicle obstacle detection will be accurate to a

distance that exceeds the maximum braking distance of the vehicle. This maximum

braking distance is in turn dependent on the maximum allowable speed of the vehicle.

Although, vehicles will be able to detect the presence of an obstacle, they will be unable

to identify the obstacle. For example, when an obstacle is detected, the vehicle will not be

able to determine if the obstacle is another vehicle or a pedestrian etc.

Another feature of 4WS vehicle, is its ability to wirelessly communicate with other 4WS

vehicles. This will be accomplished using wireless 802.11 transmitters and receivers. This

hardware will enable vehicles to wirelessly communicate in a decentralised manner. This

wireless communication will enable vehicles to inform each other about their common

environment. In conjunction with GPS and digital roadmaps, vehicles can enrich

messages with location information.

An intelligent vehicle may also have other sensors or features, not mentioned above.

Other optional sensors may be incorporated into an intelligent 4WS vehicle, but are not

 28

directly required for a 4WS implementation. It must also be noted that this dissertation is

only concerned the problem posed at a 4WS: which vehicle has right of way to cross the

junction. Other protocols may be responsible for actually driving and manoeuvring the

vehicle in the vicinity of the junction.

3.4 Application-Level Traffic Scenarios
In order to develop a suitable shared data structure which can be accurately and

unambiguously interpreted to determine which vehicle at the 4WS junction should seize

right of way, we must first look at all possible application-level scenarios at the junction.

Eleven general scenarios were identified which classify all possible traffic scenarios at the

4WS. These scenarios were used to identify group communication primitives and features

of a suitable share data structure, both of which are detailed in chapter four. The identified

application level scenarios are detailed now:

1. An empty junction:

a. In the initial case, the 4WS junction and its surrounding area is empty of

vehicles interested in gaining right of way at the junction (figure 3.3).

Figure 3.3: An empty junction.

2. Vehicle(s) approach an empty junction:

a. A single vehicle approaches an empty junction (figure 3.4a);

b. More than one vehicle approach an empty junction “simultaneously”

(figure 3.4b).

 29

Note, that by “simultaneously”, we mean that the vehicles enter the

vicinity of the 4WS junction at approximately the same time.

3. A vehicle approaches a non-empty junction:

a. A vehicle approaches a non-empty junction along an empty approach road

(figure 3.5a);

b. A vehicle approaches a non-empty junction along a non-empty approach

road (figure 3.5b).

4. A vehicle seizes right of way:

a. Based on an interpretation of the shared data structure, a vehicle

determines that it should have right of way at the junction. It then seizes

the right of way (figure 3.6) with the intention of crossing the junction.

Figure 3.4a: A single vehicle

approaching an empty junction.

Figure 3.4b: Multiple vehicles

approaching an empty junction

“simultaneously”.

Figure 3.5a: Vehicle approaches a non-

empty junc. along an empty approach

road.

Figure 3.5b: Vehicle approaches a non-

empty junc. along an non-empty approach

road.

 30

Figure 3.6: Vehicle seizes right of way (with the intention

of crossing the junction).

5. A vehicle leaves junction after seizing right of way:

a. A vehicle has seized right of way then crossed the junction leaving the

junction subsequently empty of interested vehicles (figure 3.7a);

b. A vehicle has seized right of way then crossed the junction leaving the

junction subsequently non-empty of interested vehicles (figure 3.7b).

6. A vehicle leaves 4WS queue before seizing right of way (e.g. vehicle “pulls in” or

performs a u-turn):

a. A vehicle leaves 4WS queue leaving the junction subsequently empty

(figure 3.8a);

Figure 3.7a: A vehicle seized right of

way and left the junction subsequently

empty.

Figure 3.7b: A vehicle seized right of way

and left the junction subsequently non-

empty.

Intended junction crossing.

Previous crossing
manoeuvre

 31

b. A vehicle leaves 4WS queue leaving junction subsequently non-empty

(figure 3.8b).

7. A vehicle stalls:

a. A vehicle stalls at the front of an approach road (figure 3.9a);

b. A vehicle stalls along an approach road, but not the front of the approach

road (figure 3.9b);

c. A vehicle stalls on the junction (figure 3.9c).

Figure 3.8a: A vehicle, before seizing

RoW, leaves the junction subsequently

empty.

Figure 3.8b: A vehicle, before seizing

RoW, leaves the junction subsequently

non-empty.

 32

Figure 3.9c: A vehicle stalls on the junction.

Definition: A “local vehicle” is a vehicle that is in the proximity of a 4WS junction

but that is not interested in crossing the junction. For example: a vehicle that has

already crossed the junction and is driving away from the junction, or a vehicle that is

travelling on an approach road but that intends pulling in before the junction.

8. A “local” vehicle obstruction:

a. A local vehicle causes an obstruction at the front of an approach road

(figure 10.a);

b. A local vehicle causes an obstruction along an approach road, but not the

front of the approach road (figure 10.b);

c. A local vehicle causes an obstruction on the junction (figure 10.c).

Figure 3.9a: A vehicle stalls at the front

of an approach road.

Figure 3.9b: A vehicle stalls on an

approach road, but not the front.

Stalled
vehicle

Stalled
vehicle

Stalled
vehicle

 33

Figure 3.10c: A local vehicle obstruction on the junction.

9. A vehicle relinquishes right of way before leaving the junction:

a. A vehicle relinquishes right of way before entering on to the junction

(figure 3.11);

Note, a vehicle may not relinquish right of way while on the junction. For

example, if a vehicle stalled on the junction, it should not relinquish right

of way, because to do so would imply that another vehicle should cross the

road while the stalled vehicle is still present on the junction. This could

lead to possible collisions.

Figure 3.10a: A local vehicle

obstruction at the front of an approach

road.

Figure 3.10b: A local vehicle obstruction

on an approach road, but not at the front.

Local vehicle

Local
vehicle

Local
vehicle

 34

Figure 3.11: Vehicle relinquishes right of way before

entering on to the junction.

10. A vehicle reports a blockage:

a. A vehicle reports a blockage at the front of an approach road (figure

3.12a);

b. A vehicle reports a blockage along an approach road, but not the front of

the approach road (figure 3.12b);

c. A vehicle reports a blockage on the junction (figure 3.12c).

Vehicle relinquishing right
of way

 35

Figure 3.12c: A vehicle reports a blockage on the

junction.

11. Vehicle reports removal of a blockage:

a. A vehicle reports the removal of a blockage previously on the junction;

b. A vehicle reports the removal of a blockage previously on an approach

road.

Figure 3.12a: A vehicle reports a

blockage at the front of an approach

road..

Figure 3.12b: A vehicle reports a

blockage along an approach road, but not

the front.

Blockage Blockage

Reporting
vehicle Reporting

vehicle

Reporting
vehicle

Blockage

 36

This chapter introduced the background behind the 4 Way Stop problem. The rule for

granting right of way to vehicles was described and application-level 4WS traffic

scenarios were detailed. The next chapter builds on this background and makes steps

towards implementing a 4WS application using group communication. Group

communication primitives and a suitable 4WS shared data structure are discussed.

Figure 3.13a: Vehicle reports a removal

of a blockage on the junction.

Figure 3.13b: Vehicle reports a removal

blockage of a blockage along an approach

road.

Location of
previous
blockage

Location of
previous
blockage

Reporting
vehicle Reporting

vehicle

 37

Chapter 4: Mapping 4 Way Stop Problem to Group

Communication

In order to implement a 4WS protocol to coordinate vehicles, we must identify group

communication primitives based on the application-level scenarios detailed in the

previous chapter. Also, we must understand membership of the 4WS group. Finally, we

must develop a shared data structure to represent the traffic scenario, and identify the

requirements on the shared data structure.

4.1 Membership Interest
Following on from the definition of proximity groups in [42], which states that

membership of groups in mobile systems should depend on both location and on

functional aspects, only certain vehicles within the 4WS junction’s proximity will be

involved in determining who has right of way. This is necessitated by the fact that some

vehicles in the vicinity of the junction may not be interested in joining the group: for

example vehicles intent on “pulling in” before the junction or vehicles performing a u-

turn. Also, vehicles driving away from the junction do not need to involve themselves in

group communication, however, they may have previously been involved. A vehicle’s

presence in proximity to the junction is not sufficient for membership in the proximity

group: a vehicle must explicitly specify its interest in joining the group and hence its

interest in eventually gaining right of way at the junction.

4.2 Group Communication Primitives
From the application level traffic scenarios listed previously, we have identified the

following 4WS group communication primitives which if successfully implemented will

enable the 4WS shared data structure to be accurately maintained through mutual

assistance of member vehicles. The purpose of each primitive is detailed in this section,

 38

however, later in the chapter, the effects of each of these primitives on the shared data

structure will be discussed.

1. Create:

A vehicle creates a proximity group when it approaches a previously empty

4WS junction. This will involve, creating and initialising the 4WS shared data

structure.

2. Join:

A vehicle issues this join primitive when it wishes to join the proximity group

around a 4WS junction with the intention of eventually seizing right of way at

the junction.

3. Expected leave:

This primitive is issued by a vehicle when it successfully crossed the 4WS

junction and wishes to leave the proximity group.

4. Unexpected leave:

This primitive is issued by a vehicle when it wishes to leave the proximity

group before seizing right of way at the junction. This primitive is used when a

vehicle performs a u-turn, for example, after deciding it is no longer interested

in gaining right of way at the junction.

5. Seize right of way:

After interpreting the shared data structure and determining that it should have

right of way, this primitive is issued by a vehicle before attempting to cross the

junction.

6. Relinquish right of way:

A vehicle may relinquish right of way using this primitive. If a vehicle is to

issue this primitive, it must also have previously reported a blockage on an

approach road (primitives 8).

 39

7. Report junction blocked:

A vehicle can report the junction as blocked using this primitive. This may be

done because of an unexpected obstacle detected on the junction, or due to the

vehicle itself stalling on the junction.

8. Report approach blocked:

A vehicle can report an approach road as blocked using this primitive. This

may be done because of an unexpected obstacle detected on the approach, or

due to the vehicle itself stalling on the approach.

9. Report removal of blockage on junction:

This primitive is used by a vehicle to report the removal of a blockage on the

junction.

10. Report removal of blockage on an approach road:

This primitive is used by a vehicle to report the removal of a blockage on an

approach road.

4.2.1 Ordering of Group Communication Primitives

The above group communication primitives should be subject to certain ordering

constraints. Primitive ordering is classified into local ordering and global ordering. Local

ordering means that primitives must be issued by individual vehicles in specific orders, for

example a vehicle can only issue an unexpected leave primitive after issuing a join

primitive. Global ordering enforces an ordering on primitives being issued among all

member vehicles, for example one vehicle must issue the create primitive before another

vehicle can issue the join primitive.

Local ordering of primitives:

o join before seize right of way:

A vehicle must have joined the proximity group before it can possibly seize

right of way at the junction.

 40

o seize right of way before expected leave:

A vehicle must have seized right of way and successfully crossed the junction

before it can leave the group by issuing an expected leave primitive.

o join before unexpected leave:

A vehicle must have joined the proximity group before it can leave the group

by issuing an unexpected leave primitive.

o Seize right of way before report approach blocked:

A vehicle must have seized right of way, and still be in possession of the right

of way, before it can report an approach as blocked. This has the effect of

ensuring that only one car can report a blockage along an approach at any one

time, thus limiting shared data structure updates.

o Seize right of way before report junction blocked:

A vehicle must have seized right of way, and still be in possession of the right

of way, before it can report the junction as blocked. This has the effect of

ensuring that only one car can report a blockage on the junction at any one

time, thus limiting shared data structure updates.

o report approach blocked before relinquish right of way:

A vehicle can only relinquish right of way if it has reported an approach as

blocked. This is because, if the vehicle cannot successfully cross the junction

after seizing right of way then there must exist a blockage of some form

(foreign object, other vehicle or the vehicle itself stalled) at the front of the

approach, which is required to be reported to other vehicles.

Global ordering of primitives:

o Create before join:

One vehicle must have established a proximity group using the create

primitive before another vehicle can join the group.

 41

o report approach blocked before report removal of blockage on approach road:

An approach must have been reported as blocked by one vehicle before

another vehicle can report the approach as unblocked. The vehicle reporting

the approach as unblocked may have been the same vehicle that reported the

approach as blocked, but not necessarily so.

o report junction blocked before report removal of blockage on junction:

The junction must have been reported as blocked by one vehicle before

another vehicle can report the junction as unblocked. The vehicle reporting the

junction as unblocked may have been the same vehicle that reported the

junction as blocked, but not necessarily so.

The above ordering constraints can be nested to give full ordering constraints for any

particular primitive. For example, when a vehicle reports the removal of a blockage on an

approach, the following is a possible ordering of primitives:

Create before join (global); join before seize right of way (local); seize right of

way before report approach blocked (local); report approach blocked before report

removal of blockage on approach (global).

4.3 Shared Data Structure
In order for the 4WS protocol to be successfully implemented, it is necessary that a

suitable data structure be successfully shared among, and maintained by, all proximity

group member vehicles. If the data structure is successfully distributed amongst all

interested group members then, all members can independently determine which vehicle

is next to be granted right of way at the 4WS junction by interpreting the shared data

structure. A level of sentience is achieved when vehicles independently determine which

vehicle has right of way. This is due to the fact that vehicles identified changes in their

environment (4WS), through group communication, obstacle detection, GPS and digital

roadmaps, and acted upon these changes to control crossing the junction.

 42

The proposed shared data structure is composed of three elements:

1. Membership Queue:

This element lists the member vehicles according to the approach road (1 to 4)

on which they queue and also orders the vehicles according to their actual

physical ordering upon the approach road.

2. Right of Way History:

This element is an historical record of the ordering of right of ways granted to

each of the four approach roads.

3. Blockage Status:

This element contains a Boolean status flag for each of the four approach

roads. These Booleans represent each of the approaches’ blockage status. For

example, if an approach has been reported as blocked, then its Boolean will be

set to true, otherwise the Boolean is set to false. There is also a Boolean to

represent the blockage status of the entire junction. If the junction is reported

as blocked then the Boolean is set to true, otherwise it is set to false.

These data structure elements are best explained by examples.

 43

Figure 4.1: Example Traffic Scenario.

In figure 4.1, there are twelve vehicles in the vicinity of the junction: ten vehicles queuing

on the four approach lanes and two vehicles driving away from the junction. Although,

vehicles 879, 936 and 655 are within the geographical area of the junction, they are not

members of the 4WS group. Vehicle 936 and 655 are driving away from the junction and

hence are not interested in receiving right of way to cross the junction. Vehicle 879 is

queuing along approach road, yet has not joined the group. This “local vehicle” may be

about to “pull in” before the junction or might be about to perform a u-turn or may even

be broken down. Perhaps, the vehicle intends on joining the group, but has not yet. This,

however, is only speculation: the fact remains that the vehicle is not a group member.

Taking all this into account, the Membership Queue data structure element for this

scenario will look like that shown in figure 4.2:

Approach Road 2

432 321

283

578

203 099

102

543

304

655

936

879

 Non-member vehicles

 Member vehicles

Approach Road 1

Approach Road 3

Approach Road 4

 44

Figure 4.2: Element 1: “Membership Queue”.

Please note, that no global ordering exists throughout this data structure element. For

example vehicle 283 being indexed lower than vehicle 321 in the data structure does not

hold any significance. However, there does exist an ordering within the data structure

element with regards to each of the approach road queues. Take the approach road queue

consisting of vehicles on approach 3. This queue contains vehicles 102, 543 and 304. The

indexing of vehicles within this approach road queue is significant: the significance is that

the three vehicles are ordered within the approach road queue according to their actual

physical ordering on the approach road (i.e. their physical distance from the 4WS

junction). That is vehicle 102 is physically in front of vehicle 543, which in turn is in front

of vehicle 304. This will be a very important requirement on the 4WS application: group

membership joins must be added to the “Membership Queue” in a manner respecting the

joining vehicle’s actual physical ordering on the approach road.

The second data structure element is the Right of Way History. This historical data

structure element consists of four fields, one field for each of the four approach roads. The

fields represent the order in which vehicles on each of the approach roads last received

right of way at the junction and hence it represents the future right of way priority of an

approach. Consider the Right of Way History in figure 4.3: this log shows that the last

approach to receive right of way at the junction was approach 4 and the approach longest

waiting for right of way is approach 3. Hence approach 3 should be the next approach to

receive right of way. This is of course assuming that there are vehicles queuing on

approach 3, which is the case on this example scenario. If in a scenario some approach

Membership Queue
Vehicle ID Approach

Road ID
Right of

Way
321 4 False
432 4 False
304 3 False
543 3 False
102 3 False
099 2 False
203 2 False
578 1 False
283 1 False

Ordered according to
increasing physical
distance from 4WS
junction

Decreasing
index

 45

roads were empty of queuing vehicles, then right of way is given to the highest prioritised

non-empty approach road.

Figure 4.3: Element 2: “Right of Way History”.

The third and final data structure element is the Blockage Status. This element is

comprised of five Booleans, one for each of the four approaches and a fifth for the

junction itself. The fields represent the current status of each of the approaches and the

junction with regard any possible blockages. An approach is considered blocked if and

only if all vehicles, interested in gaining right of way at the 4WS junction, along the

approach in question cannot make progress towards the 4WS due to a blockage. Example

blockages include: a fallen tree, a stalled car, road works, pedestrians, a local vehicle

obstruction etc. Consider the scenarios shown in figure 4.4 and figure 4.6. As can be seen

in figure 4.4 a local vehicle has blocked approach 3 such that no member cars on the

approach can make progress. In this case the blockage status should look like figure 4.5,

assuming approaches 1, 3 and 4 (unshown in figure 4.4) are unblocked. As can be seen,

the entry corresponding to approach road 3 indicates that the approach is blocked and no

vehicles along approach 3 can make progress. The scenario illustrated in figure 4.6 is

different however: not all the vehicles along approach road 3 are blocked, only vehicle

035. Again, according to the above definition of a blocked approach, all vehicles must be

unable to make progress. Hence, the blockage status data structure element corresponding

to figure 4.6 will show approach road 3 to be unblocked, although, after vehicle 903 has

seized right of way, approach road 3 will be reported as blocked assuming the local

vehicle is still causing an obstruction.

Right of Way History
Approach
Road ID

Approach
Priority

1 2
2 3
3 1
4 4

Approach last given right of
way

Approach longest waiting
for right of way

 46

Figure 4.4: Local vehicle blocking all vehicles on

approach road 3.

Figure 4.5: Element 3: “Blockage Status”.

Figure 4.6: Local vehicle blocking subset of vehicles on

approach 3.

The blockage status data structure element also contains a field to represent the blockage

status of the junction itself. The junction should be reported as blocked, by a vehicle in

possession of right of way, if any unexpected obstruction exists on the junction. Reporting

of a junction as blocked will have the effect of causing the 4WS application of also

Blockage Status
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 True
4 False

235

643

Approach Road 3

Member vehicle

Non-member
vehicle

Local vehicle
obstruction

932

035

Approach 3

Member vehicle

Non-member
vehicle

Local vehicle
obstruction

 47

blocking. No vehicles should attempt to cross the junction if the junction is blocked. All

vehicles must simply wait for the obstruction to be reported as cleared before progress can

be made.

4.3.1 Maintenance of Shared Data Structure using Primitives

To show how the shared data structure is maintained using the 4WS group

communication primitives this section explained shared data structure updates for each

primitive.

Create:

The group-creating vehicle will create a data structure and initialise it. The

membership queue data structure element shall contain only a single entry

containing the creating vehicles id and its approach road number. The right of way

history log will be initialised to prioritise the approach on which the creating

vehicle approaches the junction. The other approaches’ priorities will be set in a

clockwise manner starting from the creating vehicle’s approach. The blockage

status data structure element will also be initialised to assume that no blockages

exist on any of the four approach roads or on the junction. For example, assuming

a group-creating vehicle of id 915, say, approach a 4WS junction along approach

number 1, the newly created data structure elements will look like that shown in

figure 4.7.

Figure 4.7: Example data structure elements after group is

created.

Membership Queue
Vehicle ID Approach

Road ID
Right

of Way
915 1 False

Right of Way History
Approach
Road ID

Approach
Priority

1 1
2 2
3 3
4 4

Blockage Status
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 False
4 False

 48

Join:

When a vehicle joins an established proximity group, the only required change to

the data structure is to the membership queue. The joining vehicle’s id and the

number of the approach road on which the vehicle is approaching the junction are

added to the data structure element. If a vehicle joins the group on an approach

road which was previously empty of member vehicles, then the joining vehicle is

simply added to the membership queue with no ordering constraints. However, if

the approach road has other member vehicles queuing for right of way then an

ordering constraint does exist on the membership queue: the joining vehicle’s

associated membership queue entry must be added to the data structure element

with an index higher than all membership queue entries of vehicles physically

ordered in front of the joining vehicle and with an index lower than all

membership queue entries of vehicles physically order behind the joining vehicle.

For example, say vehicle of id 407 joins a group while approaching a junction on

approach road 2. Also, assume that on approach road 2, two vehicles of id 200 and

943 are already group members with vehicle 200 physically in front the joining

vehicle and vehicle 943 physically behind the joining vehicle. This scenario,

shown in figure 4.8, could occur if vehicle 943 somehow managed to join the

group before 407. Vehicle 407 may for example have pulled out in front of vehicle

943.

Figure 4.8: Example “join” traffic scenario.

Such a join scenario will be required to update the membership queue as shown in

figure 4.9, assuming that no other member vehicles have joined the group.

407

200

943

Approach Road 2

Member vehicle

Joining vehicle

 49

Figure 4.9: Membership queue update after join.

Expected leave:

An expected leave has the result of removing a member vehicle from the data

structure. The member vehicle will be in possession of right of way when the

removal occurs. An example membership queue update is shown in figure 4.10

when vehicle id 768 leaves the group after crossing the junction.

Figure 4.10: Before and after membership queue for an

“expected leave”.

An expected leave also has an effect on the right of way history data structure

element. The approach which is now releasing right of way (approach road 2), in

the form of vehicle 768’s expected leave, will be the least prioritised approach

(new priority of 4). All other approach roads’ priorities are decreased by one.

Figure 4.11 shows that approach road 1 is the highest prioritised approach after the

expected leave.

Membership Queue
Vehicle ID Approach

Road ID
Right

of Way
943 1 False
407 1 False
200 1 False

Membership Queue (before)
Vehicle ID Approach

Road ID
Right

of Way
303 4 False
768 2 True
285 1 False

Membership Queue(after)
Vehicle ID Approach

Road ID
Right

of Way
303 4 False
285 1 False

Increasing
distance from
start of approach
road .

 50

Figure 4.11: Before and after right of way history for an

“expected leave”.

Unexpected leave:

An expected leave has the same effect on the membership queue data structure

element as an expected leave, above, except that the leaving vehicle was not

previously in possession of right of way before leaving the group. Although both

“leave” primitives could be implemented as a single primitive, with the

“expected” and “unexpected” semantics determined locally by an interpretation of

the data structure change, it was decided to allow two specific leave primitives for

the sake of enforcing ordering constraints on when leave events can occur.

An unexpected leave has no effect on any data structure elements other than the

membership queue.

Seize right of way:

The seize right of way primitive is issued by a vehicle when it has determined that

it is due to receive right of way. A vehicle issuing a seize right of way primitive

changes its membership queue entry to indicate that it now has right of way as

shown in figure 4.12.

Figure 4.12: Before and after membership queue for

“seize right of way”.

Right of Way History (before)
Approach
Road ID

Approach
Priority

1 2
2 1
3 3
4 4

Right of Way History (after)
Approach
Road ID

Approach
Priority

1 1
2 4
3 2
4 3

Membership Queue (before)
Vehicle ID Approach

Road ID
Right

of Way
285 1 False

Membership Queue (after)
Vehicle ID Approach

Road ID
Right

of Way
285 1 True

 51

Relinquish right of way:

A vehicle issues a relinquish right of way primitive if it cannot cross the junction

for some reason e.g. vehicle stalled or obstruction. Such a primitive will be follow

a blocking report approach primitive (primitive 8). The effect of the relinquish

right of way primitive, as shown in figure 4.13, is that the vehicle’s membership

queue entry is updated to show that the vehicle no longer is in possession of the

right of way.

Figure 4.13: Before and after membership queue for

“relinquish right of way”.

Report junction blocked:

A vehicle, in possession of the right of way, can report the junction as blocked if it

detects an obstruction on the junction preventing the vehicle from crossing the

junction or if the vehicle itself has stalled on the junction. The associated data

structure update, affecting the blockage status element, changes the junction status

to indicate the blockage. This in turn will have the effect of stopping all vehicles

from proceeding across the junction. An example update is shown in figure 4.14.

Blockage Status (before)

Approach Road
ID / Junction

Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 False
4 False

Figure: 4.14: Before and after blockage status for “report

junction blocked”.

Membership Queue (before)
Vehicle ID Approach

Road ID
Right

of Way
285 1 True

Membership Queue (after)
Vehicle ID Approach

Road ID
Right

of Way
285 1 False

Blockage Status (after)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction True
1 False
2 False
3 False
4 False

 52

Report approach blocked:

A vehicle, in possession of the right of way, can report the approach, on which it is

located, as blocked if it detects an obstruction at the front of the approach

preventing the vehicle from crossing the junction or if the vehicle itself has stalled.

The associated data structure update, affecting the blockage status element,

changes the affected approach status to indicate the blockage. This in turn will

have the effect of stopping all vehicles on that approach from gaining right of way.

An example update for a blockage detected on approach 2 is shown in figure 4.15.

Figure: 4.15: Before and after blockage status for “report

approach blocked”.

Report removal of blockage on junction:

A vehicle can report the removal of a blockage on the junction after an obstruction

was previously reported on the junction by a vehicle. This occurs when a vehicle

no longer detects a blockage on the junction. The associated data structure update,

affecting the blockage status element, changes the junction status to indicate the

removal of the blockage. Vehicles will be able to resume normal operation

following the issuance of this primitive. An example update for is shown in figure

4.16.

Figure: 4.16: Before and after blockage status for removal

of blockage on junc.

Blockage Status (after)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 True
3 False
4 False

Blockage Status (before)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 False
4 False

Blockage Status (before)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction True
1 False
2 False
3 False
4 False

Blockage Status (after)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 False
4 False

 53

Report removal of blockage on an approach road:

A vehicle can report the removal of a blockage on an approach road after an

obstruction was reported on the approach by a vehicle. This occurs when a vehicle

no longer detects the presence a blockage on the approach. The associated data

structure update, affecting the blockage status element, changes the affected

approach road status to indicate the removal of the blockage. Vehicles on the

affected approach will be able to resume normal operation following the issuance

of this primitive, assuming the junction is unblocked. An example update for a is

shown in figure 4.17.

Figure 4.17: Before and after blockage status for removal

of blockage on approach.

4.3.2 Right of Way Algorithm

The following algorithm is used to determine which vehicle currently has right of way or

which vehicle is entitled to seize right of way at the 4WS junction. The algorithm is based

on the 4WS shared data structure. If the shared data structure is correctly maintained then

this algorithm can be used by each vehicle to locally determine if it is seize right of way at

the junction.

Blockage Status (before)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 True
2 False
3 False
4 False

Blockage Status (after)
Approach Road

ID / Junction
Blockage Status
(Blocked=true)

Junction False
1 False
2 False
3 False
4 False

 54

Right of Way History:

Determine approach road
with priority equal to

Approach Priority Level.

Membership
Queue: Does

a vehicle
hold right of

way?

Yes

No

Return vehicle
identification

Blockage
Status: Is
junction
blocked?

Yes

No

Return NULL

Approach Priority Level = 1

Increase Approach Priority
Level

Is Approach
Priority

Level == 5?
Yes Return NULL

No

 55

Figure 4.18: Right of Way algorithm.

If the ten 4WS group communication primitives are successfully implemented to maintain

the correctness of the shared data structure as described in this chapter, then the a 4WS

group communication protocol could be developed to reliably determine vehicle right of

way at a 4WS junction using the algorithm detailed above. The next chapter shall list the

requirements on a group communication service to successfully implement a replication

service to maintain the global consistency of the shared data structure. The chapter shall

detail the requirements for both a primary component implementation and a partitionable

membership implementation.

Blockage
Status: Is
approach

road
blocked?

Yes

No

Membership
Queue: Is
approach

road empty?

Yes

No

Membership Queue:
Determine lowest indexed
vehicle on approach road.

Return vehicle
identification

 56

Chapter 5: Group Communication Requirements

This chapter examines the requirements on group communication to successfully support

the 4WS inter-vehicle coordination application. Group communication will be required to

maintain the consistency of the replicated 4WS shared data structure. We provide specific

group communication requirements for two optional 4WS group communication–based

implementations: primary component membership and partitionable membership.

Related Work
The group communication requirements considered in this chapter are based on those

defined by Chockler, Keidar and Vitenberg in their exhaustive survey of over thirty

published group communication specifications [23]. Chockler et al. provide a

comprehensive set of clear and rigorous group communication requirements. These

requirements can be combined to provide the required guarantees of most existing group

communication systems.

The paper provides a unifying framework for analysis, comparison and classification of

group communication protocols. The authors’ work was fuelled by the fact that many

GCSs use different terminologies to express their respective requirements. Also, some

expressed requirements were found to be ambiguous, thus increasing the difficulty in

analysing and comparing GCSs.

Primary component and partitionable membership services
A group membership service may be either primary component or partitionable. In a

primary component membership service, views installed by all the member processes in

the system are totally ordered. However, in a partitionable membership service, views are

only partially ordered. This implies that within a partitionable membership service,

 57

multiple disjoint views may exist concurrently within the system. A GCS is partitionable

if its membership service is partitionable; otherwise it is primary component. With regards

the 4WS problem, a network partition could occur. In a primary component GCS, one

network component identifies itself as primary. Vehicles in all other network components

(non-primary) must rejoin the primary component group and be reissued the shared data

structure from the primary component. However, in a partitionable implementation no

network component identifies itself as primary: all network components are considered

equals. Each component continues issuing dynamic, disjoint group views and, when a

network merge occurs, vehicles within components perform state transfers to update their

respective shared data structures with changes that occurred in other components during

the partition.

Operating Environment: Fault Model and Assumptions
Any 4WS or other inter-vehicle coordination application implementation will be required

to operate in an wireless network environment. Specifically, this dissertation investigates

4WS implementations operating in an infrastructure-free, ad hoc network wireless

environment. As a result, an implementation (primary component or partitionable

membership) would not require an expensive, time consuming deployment of wireless

hardware infrastructure at all required junctions. All coordination would be managed on a

peer-to-peer basis by the vehicles communicating amongst themselves and would

therefore not be reliant on any form of upper hierarchy or infrastructure. The operating

environment of an ad hoc network characteristics must be investigated to shape a fault

model for a 4WS implementation.

The physical characteristics of an ad hoc network environment give rise to the fault model

for the 4WS. These characteristics will, in turn, affect how each of the group

communication properties described in this chapter are approached.

It is observed that in an ad hoc network any communication system is subject to message

omission and network partitions:

Message omission is common in ad hoc networks primarily due to unpredictable

node mobility and limited bandwidth availability.

 58

With regard network partitions, it is noted that an ad hoc network may partition

into a finite number of components. Processes in a component can receive

multicasts from other processes within the component, but processes in two

different components cannot communicate.

Some observations of mobile ad hoc networks are noted, but not addressed by this

dissertation. We assume message corruption is not possible. Also it is assumed that

Byzantine failures [53] do not occur, that is, processes to do not behave in a malicious

manner. Most group communication systems do not address Byzantine failures. Also, we

assume network partitions will eventually heal.

In order for a 4WS application to be developed, any implementation must address the

fault model laid out above, specifically, the issues of message omission and network

partitioning.

Proposed System Architecture
The proposed system architecture is comprised of two layers (figure 5.1): 4WS

application layer (application layer) and group communication service layer (group

communication layer). The application layer integrates the necessary GPS, digital

roadmaps and obstacle detection technologies as required. Also, the application layer, will

have internal functionality to determine if a vehicle has right of way, based on the shared

data structure interpretation using the algorithm detailed in the previous chapter.

Embedded within the application layer is a shared data structure replication module. This

replication module will maintain a local replica of the shared data structure. Updates to

the local data structure replica are handled by the replication module based on the

multicast semantics provided by the lower group communication layer. Finally, the group

communication layer is primarily responsible for providing a totally ordered multicast to

the upper layers based on simple send and receive operations to and from the underlying

network. Requirements on the group communication layer are further detailed later in this

chapter.

 59

Figure 5.1: Proposed System Architecture.

Notation
This section summarises the notation used by Chockler et al. For more detailed references

of the formal language used to describe the group communication properties, see [23].

The following are the basic sets used to formally define the group communication

properties:

Each action of the GCS is parameterised by a unique process p (an element of P) at which

the action occurs. This means that one of the parameters of every GCS action must be the

process which performs the action. The GCS interactions with the application are shown

in figure 5.2 [23].

P The set of processes within the system.

M The set of messages sent by the application.

V The set of views delivered to the application, where V is a pair

containing V.id and V.elements.

VID The set of view identifiers, partially ordered by the < operator.

4WS Application

Shared Data Structure
Replication

Group Communication Service

Send Receive

Send Receive

Underlying Network (Ad Hoc Network)

Safe
indication

View
Change

4WS Application

Shared Data Structure
Replication

Group Communication Service

Send Receive

Send Receive

Safe
indication

View
Change

 60

Figure 5.2: External actions of the GCS [23].

As can be seen, the application uses the GCS to both send and receive messages. The

GCS also notifies the application of changes in the group view and indicates to the

application when a message is safe. The external actions of the GCS are summarized in

table 5.1.

Table 5.1: External actions of the GCS.

The group communication requirements are also formally stated using shorthand

predicates. These predicates are summarised for reference in table 5.2.

send (p, m) Process p sends message m.

recv (p, m) Process p receives message m.

view_chng (p, (id, members), T) Process p is informed of a group view change.

The new group view is identified by (id,

members) where id is the group view id and

members are the member processes. T is the

transitional set associated with the group view

change.

safe_prefix (p, m) Process p is indicated that message m is safe

within the system.

crash (p) Process p crashes.

recover (p) Process p recovers after crashing.

 61

Table 5.2: Shorthand Predicates.

With the formal notation used to express the group communication properties

summarised, the next two sections shall describe the group communication requirements

to successfully support a 4WS application. The first section is concerned with a 4WS

implementation based on a primary component GCS. The subsequent section is concerned

with an implementation based on a partitionable membership GCS.

Primary Component Membership Required Properties
As discussed previously, in a primary component membership GCS, views installed by all

the member processes in the system are totally ordered. In a 4WS traffic scenario, a

network partition could occur, meaning that certain vehicles in the vicinity of the 4WS

junction cannot communicate with each other. This will mean that different network

components have different views of their membership and hence will have different views

of the traffic situation based on their respective, inconsistent shared data structures. In a

primary component implementation one component will identify itself as primary (based

on members that survive from the unpartitioned group to the partititioned group). This

component will be the only component allowed to continue after a partition. Vehicles, not

members of the primary component, will be expected to join the primary component after

receives (p, m) Process p receives message m.

receives_in (p, m, v) Process p receives message m in view v.

sends(p,m) Process p sends message m.

installs(p,v) Process p installs view v.

installs_in(p,v,v’) Process p installs view v in view v’.

viewof(ti) This returns the view in which event ti occurred.

receive_before(p,m,m’) Process p receives message m before message m’.

receive_before_in(p,m,m’,v) Process p receives message m before message m’,

both in view v.

indicated_safe(p,m,v) Message m received in view v is indicated as safe

at process p.

stable(m,v) Message m is stable in view v.

 62

the partition. The group communication requirements for a primary component 4WS

implementation primarily involve maintaining a consistent shared data structure, within

the primary component, through the use of a totally ordered broadcast communication

service using a view-synchronous group communication service. The individual group

communication requirements and an explanation thereof follows.

Property 1: “Self Inclusion”

Definition: “If process p installs view V, then p is a member of V.”

Formally: membersvpvpinstalls .),(∈⇒

The first required group communication property states that a process should always be a

member of the view it is installing. In order to deliver a new group view, the vehicle

should be part of the 4WS membership. It wouldn’t make sense for a process to install a

group view of which it was not a member. A group membership list is meant to be the set

of processes with which a process can communicate. A process can always communicate

with itself and as such should always be a member of any group it delivers.

Property 2: “Local Monotonicity”

Definition: “If a process p installs view V after installing view V' then the

identifier of V is greater than that of V'.”

Formally:

idvidvjiTvpchngviewtTvpchngviewt ji '..)',',(_),,(_ >⇒>∧=∧=

This property means that views are installed locally at any process in increasing order of

view identifiers. This property guarantees that a member does not install the same view

more than once and that if two members both install the same two views, they install these

views in the same order. Local monotonicity is required because, otherwise, a vehicle

could possibly install the same group view twice. This in turn could lead to duplicate

messages being received from the GCS. Duplicate messages would result in multiple

 63

updates to the shared data structure where only one was intended. This could lead to

inconsistent views of the current traffic scenario and potentially lead to an accident.

Property 3: “Initial View Event”

Definition: “Every send, recv and safe_prefix event occurs within some

view.”

Formally:

λ≠⇒=∨=∨=)(),(_),(),(iiii tviewofmpprefixsafetmprecvtmpsendt

This property means that all communication events, with respect to each process, must

occur within a specific group view. This mainly relates to restricting a process from a

send event before the first view_chng event. The advantage of such a requirement is

in that a vehicle should not be allowed to send or receive shared data structure updates

until it has joined the group and installed its initial group view. When a vehicle joins the

primary component group, it is issued a copy of the shared data structure. Only then

should the vehicle be in a position to update the shared data structure, otherwise, updates

would be “blind”, in that the vehicle wouldn’t have a copy of the data structure which it is

updating. Such blind updates could be meaningless and lead to an inaccurate shared data

structure that doesn’t represent the true traffic situation.

Property 4: “Primary Component Membership”

Definition: “There is a one to one function f from the set of views installed in the

trace to the natural numbers, such that f satisfies the following property:

for every view V with f(V) >1 there exist a view V’, such that f(V)=f(V’)+1, and a

member p of V that installs V in V’ (i.e., V is the successor of V’ at process p).”

Formally: Nvpinstallspvf →∃∃)},(:|{: such that:

)))',,(_:.1)'()(('
1)(()')'()((

vvpininstallsmembersvpvfvfv
vfvvvvfvf

∈∃∧+=∃⇒
>∀∧=⇒=

 64

This property requires that for every pair of consecutive group views, there is a process

that survives from the first group view to the second. This means that the intersection of

the membership list of two consecutive group views is not the null set. The property of

primary component membership is fundamental to a primary component membership

4WS implementation. From one group view to the next, at a minimum, a single vehicle

must survive. Vehicles that expected to survive, but did not, will be expected to rejoin the

primary group.

Property 5: “Delivery Integrity”

Definition: “For every recv event there is a preceding send event of the same

message.”

Formally:)),((),(mqsendtijjqmpreceivet ji =∧<∃∃⇒=

This property requires that messages are never generated spontaneously by the group

communication service, that is every receive communication event must have a

corresponding, preceding send communication event. If this requirement was not

implemented, meaningless messages could be delivered to the 4WS application which

would be undesirable if these messages were misinterpreted.

Property 6: “No Duplication”

Definition: “Two different recv events with the same content cannot occur at the

same process.”

Formally: jimprecvtmprecvt ji =⇒=∧=),(),(

Every message is received at most once by each member. The GCS should not deliver

duplicate messages to the application. This implies that the GCS cannot offer the same

quality of service as the underling network which could deliver duplicate messages to the

member processes. If duplicate messages were allowed, then multiple data structure

 65

updates could take place for a single intended update, which could lead to inconsistent

views of the data structure within the primary component.

Property 7: “Same View Delivery”

Definition: “If a process p receives message m in view V, and some process q

(possibly p = q) sends in view V’, then V = V’.”

Formally: ')',,(_),,(_ vvvmqinreceivesvmpinreceives =⇒∧

If a GCS has the property of same view delivery, it guarantees that a message will be

delivered in the same view at all members that deliver the message. The view in which the

message is delivered need not necessarily be the same view in which the message was

initially sent. With regards the 4WS, it is important that messages containing shared data

structure updates should be delivered in the same view at each process in the group view.

Otherwise, update messages will be received in different group views at different

processes. This in turn would mean that local replicas of shared data structures would be

inconsistent for periods of time. Inconsistent data structures implies that vehicles will

have different views of the traffic situation, possibly two vehicles could both seize right of

way and block each other on the junction.

Coupled with virtual synchrony and strong total ordering this property has the effect that

all receiving group members can act upon shared data structure updates in a consistent

manner. The result is that processes can take consistent actions based on received

messages as their contexts will be identical.

Property 8: “Virtual Synchrony”

Definition: “If process p and q install the same new view V in the same previous

view V’, then any message received by p in V’ is also received by q in V’.

 66

Formally:

)',,(_
)',,(_)',,(_)',,(_

vmqinreceives
vmpinreceivesvvqininstallsvvpininstalls

⇒
∧∧

This property requires that two processes that participate in the same two consecutive

views deliver the same set of messages in the former view. This property is useful for

GCSs which operate in the presence of network partitions. Processes that remain

connected will receive the same set of messages in the previous group view and hence

will have identical contexts. Thus, these processes can continue updating, through

message passing, the shared data structure. Disconnected processes (from the primary

component) will be required to rejoin the primary group and therefore update their

internal contexts. Only then can these disconnected processes continue updating the

shared data structure

Property 9: “Safe Indication Prefix”

Definition: “If a message is indicated as safe, then it is stable in the view in which

it was received”

Formally:),(),,(_ vmstablevmpsafeindicated ⇒

All or nothing semantics are desirable in many distributed applications, however, in

network environments where message loss is possible, all or nothing semantics are

impossible to achieve. As an approximation to all or nothing, the concept of safe

messages were introduced by the EVS Model [52]:

“A safe message m is received by the application at process p only when p’s GCS knows

that the message is stable”, where, “a message is stable when all members of the current

view have delivered this message to the application (and not just received the message

from the network)”.

This property means that a message is indicated as safe only if it has been delivered to all

member processes of the current view. Such an indication would be required in ensuring

 67

that a shared data structure update has been carried out (delivered to the 4WS application)

at all vehicles. The use of this property with totally ordered multicast messages would

ensure consistent replication of the shared data structure among all member processes that

deliver the messages.

Property 10: “Strong Total Order”

Definition: “There is a TS function f such that messages are received at all the

processes in an order consistent with f.”

Formally:

)))'()()',,(_(')(_(mfmfmmpbeforerecvmmpffunctionTSf <⇒∀∀∀∧∃

Strong total order multicast semantics require that messages are delivered in the same

order at all processes that deliver these messages. These semantics will be used to

maintain the consistency of replicated data in primary component groups, hence, will be

used to maintain the consistency of the 4WS shared data structure in a primary component

implementation. Strong total ordering only applies to processes that continue together in

consecutive group views. Strong total ordering offers no guarantees to processes that are

disconnected from the primary group. As such, again, disconnected processes will be

expected to rejoin the primary group in order to receive totally ordered data structure

updates.

The ten group communication requirements for a primary component-based 4WS

application are summarised in table 5.3.

 68

Property 1 Self Inclusion
Property 2 Local Monotonicity
Property 3 Initial View Event
Property 4 Primary Component Membership *
Property 5 Delivery Integrity
Property 6 No Duplication
Property 7 Same View Delivery
Property 8 Virtual Synchrony
Property 9 Safe Indication Prefix
Property 10 Weak Total Order *

* These properties are unique to a primary component implementation.

Table 5.3: Summary of primary component requirements.

The advantage of a primary component 4WS implementation is that a connected majority

of vehicles can always make progress. However, vehicles, not members of the primary

component due to a network partition, will not be able progress and will be expected to

rejoin the primary group. From the perspective of vehicles in the primary component,

disconnected vehicles will be removed from the membership list and their corresponding

shared data structure entries will also be removed using an “unexpected leave” primitive.

In effect, disconnected vehicles will be viewed upon as “local vehicles”. In figure 5.3, part

a shows a traffic situation before a network partition in which all vehicles are members of

the same, primary, component. Part b, then shows the situation after a partition where,

previously connected vehicles which are now disconnected are viewed upon as local

vehicles. As can be seen, the primary component will be able to continue granting right of

way to entitled vehicles as normal. This is because of an implicit knowledge that no other

views of the traffic situation exist in, non-existent, non-primary components and that

disconnected vehicles will be looked upon as local vehicles and handled accordingly.

When disconnected vehicles rejoin the primary component they recover the state of the

primary and form part of the new primary component.

 69

A notion of fairness could be used to argue that a primary component implementation

would not respect the equal priorities of member vehicles and partitioned vehicles, treated

as local vehicles. Treating a vehicle as a local vehicle implies that the vehicle is

uninterested in gaining right of way at the junction, which is not necessarily the case with

vehicles disconnected from the primary component. However, with safety being a

paramount concern of any inter-vehicle coordination application, fairness must be a

secondary concern.

Partitionable Membership Required Properties
A partitionable membership service allows different group views of the same group to co-

exist. Such group views are called concurrent, disjoint group views. Network partitioning

is a fact of life in most distributed systems, however, the presence of wireless links, as is

the case in ad hoc networks, further increase the frequency and number of partitions.

During a partition, multiple network components exist within a system. A partitionable

membership service supports disconnected operation of these components i.e. components

disconnected from each other are allowed to make progress by maintaining their own

dynamic membership and by sending and receiving multicast messages. This is in contrast

to a primary component membership service, which, requires only a single group view

and hence only a single component, to exist within the system at any one time

With regards a 4WS partitionable membership implementation, groups of vehicles may be

disconnected from each other during a network partition. These distinct vehicle groups

Figure 5.3a: A traffic scenario before

partition.

Figure 5.3b: A traffic scenario after

partition.

Partitioned / Local
Vehicles

Primary component
member vehicles

 70

may continue to operate in the presence of such a partition by continuing to update their

group membership and maintain their respective copies of the now disjoint, shared data

structures. Group membership will be required to provid an ordered multicast service to

each of these partitioned groups. Such a membership service, will be used to maintain the

consistency of the shared data structures within each group. In a primary component

implementation, a strong totally ordered multicast service was required. In a partitionable

implementation a strong totally ordered multicast service is not relevant because it

requires a single group view to exist in the system at any one time. However, a weak

totally ordered multicast does not require such a constraint. It is upon this weak total

ordering that the partitionable 4WS application will be built. A list of the required group

communication properties for a partitionable membership service is now given.

Please, note that many of the group communication properties are required for both a

primary component implementation and a partitionable membership implementation. As

such, some of the following discussions are similar to discussions on the previous section.

Property 1: “Self Inclusion”

Definition: “If process p installs view V, then p is a member of V.”

Formally: membersvpvpinstalls .),(∈⇒

Again, this required group communication property states that a process should always be

a member of the view it is installing, regardless of whether the system is partitioned or

not. In order to deliver a new group view, the vehicle should be part of the 4WS

membership. Because, a group membership list is meant to be the set of processes with

which a process can communicate, and a process can always communicate with itself, it

wouldn’t make sense for a process to install a group view of which it was not a member.

Property 2: “Local Monotonicity”

Definition: “If a process p installs view V after installing view V' then the

identifier of V is greater than that of V'.”

 71

Formally:

idvidvjiTvpchngviewtTvpchngviewt ji '..)',',(_),,(_ >⇒>∧=∧=

This property means that views are installed locally at any process in increasing order of

view identifiers. This property guarantees that a member does not install the same view

more than once and that if two members both install the same two views, they install these

views in the same order. Local monotonicity is required because, otherwise, a vehicle

could possibly install the same group view twice. This in turn could lead to duplicate

messages being received from the GCS. Duplicate messages would result in multiple

updates to the shared data structure where only one was intended. This could lead to

inconsistent views of the current traffic scenario and potentially lead to an accident.

Property 3: “Initial View Event”

Definition: “Every send, recv and safe_prefix event occurs within some

view.”

Formally:

λ≠⇒=∨=∨=)(),(_),(),(iiii tviewofmpprefixsafetmprecvtmpsendt

This property means that all communication events, with respect to each process, must

occur within a specific group view. This mainly relates to restricting a process from a

send event before the first view_chng event. The advantage of such a requirement is

in that a vehicle should not be allowed to send or receive shared data structure updates

until it has joined a group, be it a partitioned group or not, and installed its initial group

view.

When a vehicle joins a group, it is issued a copy of the group’s shared data structure and

added to the group’s membership list. Only then should the vehicle be in a position to

update the group’s shared data structure, otherwise, updates would be “blind”, in that the

vehicle wouldn’t have a copy of the data structure which it is updating. Such blind

 72

updates could be meaningless and lead to an inaccurate shared data structure that doesn’t

represent the true traffic situation.

Property 4: “Delivery Integrity”

Definition: “For every recv event there is a preceding send event of the same

message.”

Formally:)),((),(mqsendtijjqmpreceivet ji =∧<∃∃⇒=

This property requires that messages are never generated spontaneously by the group

communication service, that is every receive communication event must have a

corresponding, preceding send communication event. If this requirement was not

implemented, meaningless messages could be delivered to the 4WS application which

would be undesirable if these messages were misinterpreted.

Property 5: “No Duplication”

Definition: “Two different recv events with the same content cannot occur at the

same process.”

Formally: jimprecvtmprecvt ji =⇒=∧=),(),(

Every message is received at most once by each member of a group, whether the group is

within a partitioned component or a non-partitioned group. The GCS should not deliver

duplicate messages to the application. This implies that the GCS cannot offer the same

quality of service as the underling network which could deliver duplicate messages to the

member processes. If duplicate messages were allowed, then multiple data structure

updates could take place for a single intended update, which could lead to inconsistent

views of the data structure within a group (partitioned component or non-partitioned

group).

 73

Property 6: “Same View Delivery”

Definition: “If a process p receives message m in view V, and some process q

(possibly p = q) sends in view V’, then V = V’.”

Formally: ')',,(_),,(_ vvvmqinreceivesvmpinreceives =⇒∧

If a GCS has the property of same view delivery, it guarantees that a message will be

delivered in the same view at all group members that deliver the message. The view in

which the message is delivered need not necessarily be the same view in which the

message was initially sent. With regards the 4WS, it is important that messages containing

shared data structure updates should be delivered in the same view at each process in the

group’s view. Otherwise, update messages will be received in different group views at

different processes. This in turn would mean that local replicas of shared data structures,

within groups, would be inconsistent for periods of time. Inconsistent data structures

implies that vehicles will have different views of the traffic situation, possibly two

vehicles could both seize right of way and block each other on the junction.

Coupled with virtual synchrony and weak total ordering this property has the effect that

all receiving group members, within a partitioned component or non-partitioned group,

can act upon shared data structure updates in a consistent manner. The result is that

processes within specific groups can take consistent actions based on received messages

as their contexts will be identical relative to the group of which they are members.

Property 7: “Virtual Synchrony”

Definition: “If process p and q install the same new view V in the same previous

view V’, then any message received by p in V’ is also received by q in V’.

Formally:

)',,(_
)',,(_)',,(_)',,(_

vmqinreceives
vmpinreceivesvvqininstallsvvpininstalls

⇒
∧∧

 74

This property requires that two processes that participate in the same two consecutive

views deliver the same set of messages in the former view. This property is useful for

GCSs which operate in the presence of network partitions. Whenever the network

partitions, disconnected processes may diverge and reach different states. When

disconnected processes merge, they must perform state transfer to reach a common state.

Virtual synchrony allows transfer to be avoided among processes that continued together.

The next property, transitional sets, is used to determine the subset of merged group

members which will require state transfers.

With regards a 4WS implementation, during a network partition multiple disjoint views of

the traffic situation may exist within the network. It must be possible for groups of

vehicles to make progress during a network partition by continuing to update their

respective shared data structures, although progress across the junction is not allowed

during a partition. Once a network has merged, state transfer must take place in order for

the previously disconnected groups of vehicles to once again establish a common view of

the traffic situation and resume determining which vehicle has right of way.

Property 8: “Transitional Set”

Definition: “If process p installs a view V in (previous) view V’, then the

transitional set for view V at process p is a subset of the intersection between the

member sets of V and V’.”

,or,

“If two processes p and q install the same view, then q is included in p’s

transitional set for this view if and only if p’s previous view was also identical to

q’s previous view.”

Formally:

 membersvmembersvTvtviewofTvpchngviewt ii '..')(),,(_ ∩⊆⇒=∧=

,or,

)'''()'',,(_')(),,(_ vvTqvvqininstallsvtviewofTvpchngviewt ii =⇔∈⇒∧=∧=

 75

A transitional set contains information that allows processes to locally determine whether

the hypothesis of virtual synchrony applies or a state transfer is required. When used in

conjunction with virtual synchrony the transitional set delivered at process p reflects the

set of processes whose states are identical to p’s state. In order to facilitate state transfers,

it must be possible for processes to determine whether or not state transfers are actually

required after a network partition has remerged. A possible solution would be for

processes to piggyback their previous group membership details with any group

communication messages sent. Processes could therefore locally determine if state

transfer is required.

Groups of previously disconnected vehicles will use this property after a network merge

to determine which vehicles will require state transfers. Updates to disjoint shared data

structures (such as new vehicles joining) which took place during a network partition must

be represented in the shared data structure of the remerged group. Transitional sets will be

used to determine which vehicles will need to perform this state transfer, of shared data

structure and membership list, to reach mutually consistent internal contexts. After a state

transfer, weak totally ordered multicast and virtual synchrony will mean that vehicles that

continue together in the same group view will continue to maintain their identical internal

contexts and hence be able to act upon received messages in a consistent manner.

Property 9: “Safe Indication Prefix”

Definition: “If a message is indicated as safe, then it is stable in the view in which

it was received”

Formally:),(),,(_ vmstablevmpsafeindicated ⇒

Recall the definition of a safe message, introduced by the EVS Model [52], as an

approximation to all or nothing semantics:

“A safe message m is received by the application at process p only when p’s GCS knows

that the message is stable”, where, “a message is stable when all members of the current

 76

view have delivered this message to the application (and not just received the message

from the network)”.

Again, the property of safe indication prefix means that a message is indicated as safe

only if it has been delivered to all member processes of the current view. Such an

indication would be required in ensuring that a shared data structure update has been

carried out (delivered to the 4WS application) at all vehicles. The use of this property with

weak totally ordered multicast messages would ensure consistent replication of the shared

data structure among member processes that continue together through successive group

and that actually deliver the messages.

Property 10: “Weak Total Order”

Definition: “For every pair of views V and V’ there is a timestamp function f so

that every process that installs V in V’ receives messages in V’ in an order

consistent with f”

, or,

“For every view V there is a timestamp function f so that every process that has V

as its last view receives messages in V in an order consistent with f”

Formally:

))'()(
)',',,(__)',,(_(')(_

('

mfmf
vmmpinbeforerecvvvpininstallsmmpffunctionTS

fVV

<⇒
∧∀∀∀∧

∃∀∀

,or,

))'()(
),',,(__),(_(')(_

(

mfmf
vmmpinbeforerecvvpviewlastmmpffunctionTS

fV

<⇒
∧∀∀∀∧

∃∀

Weak total order semantics guarantee that processes that remain connected receive

messages in the same order. Weak total order allows disconnected processes (i.e.

processes in different network components due to a network partition) to disagree on the

order of messages. However, if all processes remain permanently connected, then weak

 77

total order offers the same guarantee as strong total order where all processes receive

messages in the same order.

Weak total ordering in a 4WS implementation means that vehicles within a specific group

(partitioned-component or non-partitioned group) receive the same shared data structure

updates in the exact same order. This means that shared data structures within a group are

consistently maintained, although, other versions of the shared data structure may exist in

other network components.

The above properties, summarised in table 5.4, if guaranteed by a group communication

service would provide a partitionable membership service 4WS application with the

necessary tools to successfully support accurate, consistent and complete maintenance of

the shared data structure.

Property 1 Self Inclusion
Property 2 Local Monotonicity
Property 3 Initial View Event
Property 4 Delivery Integrity
Property 5 No Duplication
Property 6 Sending View Delivery
Property 7 Virtual Synchrony
Property 8 Transitional Set *
Property 9 Safe Indication Prefix
Property 10 Weak Total Order *

* These properties are unique to a partitionable membership implementation.

Table 5.4: Summary of partitionable membership service

requirements.

The advantage of a partitionable membership 4WS implementation is in the fact that all

network components can continue to make progress during a network partition. Each

component maintains its own version of the 4WS shared data structure during a partition.

Also, each component can continue to maintain its own dynamic vehicle membership.

Partitions are not hidden from the 4WS application, instead, the application becomes

aware of network partitions and handles them by allowing group membership to change

and allowing updates to the shared data structure. However, an exception to normal

 78

operation is enforced during a partition: no vehicle is allowed to seize right of way during

a network partition. If a vehicle in one partitioned component was to seize right of way

and attempt to cross the junction, it cannot do so safe it the knowledge, that no other

vehicle in a different partitioned component is also attempting to cross the junction. Thus,

the seize right of way primitive is not allowed during a partition. Instead, network

components will be required to fully merge before any vehicle can seize right of way. The

act of merging will make use of the property of transitional sets to identify vehicles that

must update their internal contexts (membership lists and shared data structure) to respect

changes that occurred in other network components during a partition.

One possible disadvantage of not granting right of way during a network partition is that a

partition may never remerge. However, according to the fault model, described above, we

operate under the principle that every partition will eventually remerge.

This chapter offered group communication requirements to successfully maintain the

consistency of the 4WS shared data structure. Requirements were listed for both a primary

component implementation and a partitionable membership implementation. These

requirements are not just specific to a 4WS implementation, the are applicable to any

inter-vehicle coordination application, based on group communication, in which vehicles

actions are determined by the contents of a shared data structure. The investigation of a

specific inter-vehicle coordination scenario was used to identify the group communication

requirements for inter-vehicle coordination applications in general. The next, and final,

chapter will conclude the discussion.

 79

Chapter 6: Conclusion

Advancements in wireless communication technology and portable computing have

fuelled research in mobile ad hoc network applications. Ad hoc networks provide a unique

application environment, in which applications are posed challenges in the form of node

mobility, limited bandwidth availability, frequent network topology changes, network

partitions and the absence of fixed infrastructure.

One application domain which must face these communication challenges is that of inter-

vehicle coordination. Due to the mobility of vehicles, wireless communication, and hence

ad hoc networks, provide the obvious communication domain to develop inter-vehicle

coordination applications. This dissertation investigated the use of group communication

to support the development of inter-vehicle coordination. We identified the requirements

on group communication in a specific inter-vehicle coordination application: the 4 Way

Stop.

By investigating this specific inter-vehicle coordination example, we made some

important observations of inter-vehicle coordination applications in general.

Firstly, we believe that the notion of a proximity group will be important to any inter-

vehicle coordination application. Vehicles’ interests in coordinating their manoeuvres

should not solely be based on a location aspect: it should also involve a functional aspect.

This means that vehicles in the vicinity of an inter-vehicle coordination application need

not necessarily be interested in coordinating their actions with other vehicles. For

example, a coordination application to platoon vehicles, for efficient movement of traffic,

should not try to involve parked vehicles, or emergency vehicles, which by their nature

would be uninterested in “normal” traffic flow.

 80

Core to the 4WS application was the use and maintenance of a shared data structure. From

the perspective of individual vehicles, this shared data structure provided the basis on

which vehicles decided upon their actions. From a wider perspective, the shared data

structure was used to coordinate the actions of all interested vehicles within proximity of

the junction. We believe that many, though perhaps not all, inter-vehicle coordination

applications will involve the use of some form of shared data structure. Vehicles must

decide upon their coordinated actions based on access to information regarding other

involved vehicles and the traffic environment. We suggest that such information will be

stored in the form of a shared data structure, which vehicles update and read from.

Although, the complexity and size of the applicable shared data structures may vary: from

a simple data structure to handle coordinated overtaking, to a intricate data structure to

control coordination and navigation of vehicles through an urban setting, the notion of a

shared data structure will be of paramount importance to inter-vehicle coordination.

An investigation to identify how group communication should support inter-vehicle

coordination in an ad hoc network primarily involved determining the requirements on

group communication to maintain the consistency of the shared data structure. An

important observation was that the requirements on the consistency of the shared data

structure varied depending on the implementation of choice: primary component

implementation or partitionable membership implementation. In a partitionable

implementation multiple versions of a shared data structure can exist concurrently within

a system (one version per partitioned components), whereas in a primary component only

one version can exist at any time. Again, depending on the implementation of choice, an

inter-vehicle application may have to constrain application primitives, as both primary

component and partitionable membership implementations did in the face of network

partitions. Recall, for example, that in a partitionable membership implementation,

vehicles could not seize right of way to cross the junction during a network partition.

Other such application constraints may be necessary in other inter-vehicle coordination

application.

In chapter five, we presented the requirements on group communication to maintain a

4WS shared data structure in a partitionable ad hoc network. These requirements were

presented in two classes: those for a primary component implementation and those for a

 81

partitionable membership implementation. These requirements made no stipulations on

the type of, or contents of, the shared data structure. This means that these requirements

can be used by any inter-vehicle coordination application to maintain a shared data

structure, indeed, the requirements are applicable to any data replication application in a

partitionable network. Also presented was a fault model for these requirements. This fault

model must be addressed by any inter-vehicle coordination application operating in an ad

hoc network.

As was the case in the 4WS, we foresee that in inter-vehicle coordination, group

membership and the associated shared data structure will be strongly linked, in that every

group member may have an associated entry in the shared data structure. As such, an

inter-vehicle coordination application may need to respect certain real world physical

conditions. For example, in the 4WS application a physical ordering requirement was

stipulated to ensure the shared data structure represented the actual physical ordering of

vehicles on an approach. Standard group communication “join” primitives offer no such

respect for a mobile nodes physical location: a node which joins a group is simply added

to the next group view. We foresee that location information, through GPS for example,

will have to be used in conjunction with group communication primitives to respect such

physical constraints.

Obviously, the primary use of this research is as a reference for an implementation of a

4WS application. Although specific in its examination of the 4 Way Stop case study, the

above conclusions and observations and indeed, the entire dissertation, will prove useful

in the development of general inter-vehicle coordination applications. The specified

requirements on group communication to successfully maintain an inter-vehicle

coordination shared data structure are also applicable to all such applications.

Future Work
The most obvious suggestion for future work would be the implementation, or simulation,

of a 4WS group communication-based protocol based on the group communication

requirements and shared data structure proposed by this research. Perhaps, two versions of

a 4WS implementation could be developed: a primary component implementation and a

partitionable membership implementation. Then these two implementations could be

 82

tested and analysed to determine which implementation works most efficiently in terms of

both group communication cost and application level costs. Such research would further

provide an insight into group communications support of inter-vehicle coordination.

Although, not directly related to group communication, other research could be carried

out to determine a suitable 4WS shared data structure and right of way algorithm to

maximise performance or fairness at the 4WS junction. This suggested research is fuelled

by the implicit insight that at a junction, there is a fixed overhead, in terms of time, for

every vehicle to cross the junction: the vehicle must accelerate from the front of the

approach, turn (or go straight), and exit the junction before another vehicle can attempt to

cross the junction. Perhaps, groups of vehicles, from the same approach, should cross the

junction “simultaneously” to maximise throughput at the junction. Otherwise, perhaps, the

right of way algorithm could be optimised for fairness, such that vehicles longest queuing

on an approach, and not just the front of the approach as is the case with the 4WS, are

prioritised over vehicles queuing for shorter periods of time.

 83

References

[1] K. Birman, “The process group approach to reliable distributed computing.”,

Communications of the ACM, December 1993.

[2] K. Birman, “Building Secure and Reliable Network Applications.”, chapters 13-18,

Manning Publications, 1996.

[3] K. Birman and R. van Renesse, “Reliable Distributed Computing with the Isis

Toolkit.”, IEEE Computer Society Press, 1994.

[4] K. Birman, “ISIS: A System for Fault-Tolerant Distributed Computing.”, Technical

Report , Department of Computer Science, Cornell University, April 1986.

[5] R. Friedman and A. Vaysburg, “Fast replicated state machines over partitionable

networks.”, In 16th IEEE International Synopsium on Reliable Distributed Systems,

October 1997.

[6] R. Friedman and A. Vaysburg, “High-performance replicated distributed objects in

partitionable environments.”, Technical Report 97-1639, Department of Computer

Science, Cornell University, Jul 1997.

[7] I. Keidar and D. Dolev, “Efficient message ordering in dynamic networks.”, In 15th

ACM Symposium on Principles of Distributed Computing, May 1996.

 84

[8] R. Khazan, “Group Communication as a base for a load-balancing, replicated data

service.”, Masters thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, June 1998.

[9] R. Khazan, A. Fekete and N. Lynch, “Multicast Group Communication as a Base for a

Load-balancing Replicated Data Service.”, In 12th International Symposium on

Distributed Computing, September 1998.

[10] A. Schiper and M.Raynal, “From group communication to transactions in distributed

systems.”, In Communications of the ACM, April 1996.

[11] B. Kemme and G. Alonso, “A suite of database replication protocols based on group

communication primitives.”, In 18th International Conference on Distributed Computing

Systems, June 1999.

[12] J. Sussman and K. Marzullo, “The Bancomat problem: An example of resource

allocation in a partitionable asynchronous system.”, In 12th International Symposium on

Distributed Computing, September 1998.

[13] O. Babaoglu, R. Davoli, A. Montresor and R. Segala, “System Support for Partition-

Aware Network Applications.”, In 18th International Conference on Distributed

Computing Systems, May 1998.

[14] S. Mishra, and G. Pang, “Design and implementation of an availability management

service.”, In 19th International Conference on Distributed Computing Systems Workshop

on Middleware , June 1999.

[15] G. Shamir, “Shared Whiteboard: A Java Application in the Transis Environment.”,

Lab project, High Availability Lab, The Hebrew University of Jerusalem, 1996.

[16] M. Valenci, “Audio Conferencing using Transis.”, Lab project, High Availability

Lab, The Hebrew University of Jerusalem, 1998.

 85

[17] S. Chodrow, M. Hircsh, I. Rhee and S. Cheung, “Design and implementation of a

multicast audio conferencing tool for a collaborative computing framework.”, In JCIS,

March 1997.

[18] E. Al-Shaer, A. Youssef, H. Abdel-Wahab, K. Maly and C. Overstreet, “Reliability,

scalability and robustness issues in IRI.”, In IEEE Sixth Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, June 1997.

[19] Linda Briesemeister, “Group Membership and Communication in Highly Mobile

AdHoc Networks.”, Technical University of Berlin , School of Electrical Engineering and

Computer Sciences, Berlin, November, 2001.

[20] R. van Renesse, K.P. Birman and S. Maffeis, “Horus: A Flexible Group

Communication System.”, In Communications of the ACM, vol.39, no.4, April 1996.

[21] D. Agarwal, R. Budhia and C. Lingley-Papadopoulos, “Totem: A Fault-Tolerant

Multicast Group Communication System.”, In Communications of the ACM, 39 (4) April

1996.

[22] Y. Amir, D. Dolev, S. Kramer, D. Malki, “Transis: A Communication Sub-System

for High Availability.”, In 22nd International Conference on Fault-Tolerant Computing,

pp.76-84, IEEE Computer Society Press, 1992.

 [23] G.V. Chockler, I. Keidar, R. Vitenberg, “Group Communication Specifications: A

Comprehensive Study”, In ACM Computing Surveys 33(4), pages 1-43, December 2001.

[24] K. Birman and T. Joseph, “Exploiting Virtual Synchrony in Distributed Systems.”, In

11th ACM SIGOPS Symposium on Operating Systems Principles, November 1987.

[25] H. Tan, R. Rajamani and W. Zhang, “Demonstration of an automated highway

platoon system,” American Control Conference (ACC), 1998.

 86

[26] K. Chang, W. Li, A. Shaikhbahai and P. Varaiya, “A preliminary implementation for

vehicle platoon control system”, In Proceedings of the 1991 American Control

Conference, June 1991.

[27] W. Chee and M. Tomizuka, “Lane change manoeuvre of automobiles for the

intelligent vehicle and highway systems”, In Proceedings of American Control

Conference, 1994.

[28] “The Global Positioning System”, The Aerospace Corporation, Los Angeles, 1999.

[29] E. Blackwell, “Overview of differential GPS methods.", In Papers published in

Navigation, vol. 3, pp. 89-100, 1980.

[30] Christopher K. H. Wilson, Seth Rogers, and Shawn Weisenburger, “The Potential of

Precision Maps in Intelligent Vehicles.”, IEEE International Conference on Intelligent

Vehicles, pages 419-422, October 1998.

[31] S. Rogers and S. Schroedl, “Creating and Evaluating Highly Accurate Maps with

Probe Vehicles” IEEE Conference on Intelligent Transportation Systems, Dearborn, MI,

USA, October 2000.

[32] S. Bohrer, M. Brauckmann and W. von Seelen, “Visual Obstacle Detection by a

Geometrically Simplified Optical Flow Approach”, In 10th European Conference on

Artificial Intelligence Proceedings, 1992.

[33] N. Ancona, “A Fast Obstacle Detection Method based on Optical Flow.”, In

Proceedings of the European Conference on Computer Vision, 1992.

[34] J. Bruyelle and J. Postaire, “Direct Range Measurement by Linear Stereovision for

Real-Time Obstacle Detection in Road Traffic.”, In Proceedings of the International

Conference on Intelligent Autonomous Systems, 1993.

[35] S. Cornell, J. Porrill and J. Mayhew, “Ground Plane Obstacle Detection Under

Variable Camera Geometry Using a Predictive Stereo Matcher.”, In Proceedings of the

 87

British Machine Vision Conference, 1992.

[36] C. Frölich, M. Mettenleiter and F. Haertl, “Imaging Laser Radar for High-Speed

Monitoring of the Environment.”, In Proceedings of the SPIE Conference on Intelligent

Transportation Systems, 1997.

[37] J. Hancock, M. Hebert, and C. Thorpe. “Laser Intensity-Based Obstacle Detection.”,

In Proceedings of the IEEE Conference on Intelligent Robots and Systems, 1998.

[38] J. Hancock, E. Hoffman, R. Sullivan, D. Ingimarson, D. Langer and M. Hebert,

“High performance laser range scanner.”, In Proceedings of the SPIE Conference on

Intelligent Transportation Systems, 1997.

[39] D. Langer, “An Integrated MMW Radar System for Outdoor Navigation.”, Ph.D.

Thesis, Carnegie Mellon Technical Report, CMU-RI-97-03, 1997.

[40] Y. Amir, D. Dolev, S. Kramer, D. Malki, “The Transis Approach to High

Availability Cluster Communication.”, In Communications of the ACM, 39 (4) April

1996.

 [41] G.-C. Roman, Q. Huang and A. Hazemi, “Group Membership Data in Ad Hoc

Networks”, Washington University, St. Louis, technical report wucs-00-26, April 16,

2000.

[42] M.-O. Killijian, R. Cunningham, R. Meier, L. Mazare and V. Cahill, “Towards

Group Communication for Mobile Participants.”, Proceedings of the 1st ACM Workshop

on Principles of Mobile Computing (POMC), Newport, Rhode Island, USA, August 29-

30, 2001.

[43] R. Prakash and R. Baldoni, “Architecture for Group Communication in Mobile

Systems”, Symposium on Reliable Distributed Systems, West-Lafayette (IN), USA, 1998.

[44] W.J. Franz, H. Hartenstein, B. Bochow, “Internet on the Road via Inter-Vehicle

Communication”, DaimlerChrysler AG, NEC Europe Ltd., GMD FOKUS.

 88

[45] http://www.rtna.daimlerchrysler.com

[46] “DriveBy InfoFueling - Telematics beyond the Anytime Anywhere Paradigm”

whitepaper, Mercedes-Benz USA, Montvale, New Jersey; DaimlerChrysler Research and

Technology North America, Palo Alto, California, November 2001.

[47] Robert Morris, John Jannotti, Frans Kaashoek, Jinyang Li and Douglas S. J. De

Couto, “CarNet: A Scalable Ad Hoc Wireless Network System.”, Proceedings of the 9th

ACM SIGOPS European workshop: Beyond the PC: New Challenges for the Operating

System, September 2000, Kolding, Denmark.

[48] Min-te Sun, Wu-chi Feng, Ten-Hwang Lai, Kentaro Yamada, Hiromi Okada, Kikuo

Fujimura “GPS-Based Message Broadcasting for Inter-vehicle Communication.”,

Proceedings of the Proceedings of the 2000 International Conference on Parallel

Processing, 2000.

[49] P. Varaiya, “Smart cars on smart roads: Problems of control," IEEE Transactions on

Automatic Control, vol. 38, Feb 1993.

[50] “Intelligent vehicle highway systems”, Special Issue on Vehicle System Dynamics,

vol. 26, no. 4, 1996.

[51] P. Varaiya, “Models, simulation, and performance of fully automated highways”,

California PATH Research Report, 1994.

[52] L. Moser, Y. Amir, P. Melliar-Smith and D. Agarwal, “Extended Virtual

Synchrony”, In 14th International Conference on Distributed Computing Systems, 1994.

[53] L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals Problem.”, In ACM

Transactions on Programming Languages and Systems 4, 1982.

	Abbreviations
	Chapter 1: Introduction
	1.1 The Group Communication Paradigm
	1.1.1 Applications of Group Communication
	1.1.2 Group Communication Terminology

	1.2 Inter-vehicle Coordination
	1.3 Related Technologies
	1.3.1 Global Positioning System
	1.3.2 Obstacle Detection

	1.4 Dissertation Organisation

	Chapter 2: State of the Art
	2.1 Group Communication Services
	2.1.1 ISIS, Cornell University
	2.1.2 Horus, Cornell University
	2.1.3 Transis, Hebrew University of Jerusalem
	2.1.4 Totem, University of California

	2.2 Location Aware Group Communication Research
	2.2.1 “Safe Distance”
	2.2.2 “Proximity Groups”
	2.2.3 Architecture for location-aware group members

	2.3 Wireless Traffic Applications
	2.3.1 “FleetNet – Internet on the Road”
	2.3.2 DriveBy InfoFueling™
	2.3.3 Traffic jam detection using wireless technology
	2.3.4 CarNet
	2.3.5 GPS-based message broadcasting

	Chapter 3: The 4 Way Stop Problem
	3.1 Junction Layout
	3.2 The Problem
	3.3 4WS Automated Vehicle Model
	3.4 Application-Level Traffic Scenarios

	Chapter 4: Mapping 4 Way Stop Problem to Group Communication
	4.1 Membership Interest
	4.2 Group Communication Primitives
	4.2.1 Ordering of Group Communication Primitives

	4.3 Shared Data Structure
	4.3.1 Maintenance of Shared Data Structure using Primitives
	4.3.2 Right of Way Algorithm

	Chapter 5: Group Communication Requirements
	Related Work
	Primary component and partitionable membership services
	Operating Environment: Fault Model and Assumptions
	Proposed System Architecture
	Notation
	Primary Component Membership Required Properties
	Property 1: “Self Inclusion”
	Property 2: “Local Monotonicity”
	Property 3: “Initial View Event”
	Property 4: “Primary Component Membership”
	Property 5: “Delivery Integrity”
	Property 6: “No Duplication”
	Property 7: “Same View Delivery”
	Property 8: “Virtual Synchrony”
	Property 9: “Safe Indication Prefix”
	Property 10: “Strong Total Order”

	Partitionable Membership Required Properties
	Property 1: “Self Inclusion”
	Property 2: “Local Monotonicity”
	Property 3: “Initial View Event”
	Property 4: “Delivery Integrity”
	Property 5: “No Duplication”
	Property 6: “Same View Delivery”
	Property 7: “Virtual Synchrony”
	Property 8: “Transitional Set”
	Property 9: “Safe Indication Prefix”
	Property 10: “Weak Total Order”

	Table 5.4: Summary of partitionable membership service requirements.

	Chapter 6: Conclusion
	Future Work

	References

