
AspectC#: An AOSD implementation for C#.

Howard Kim

Department Of Computer Science

Trinity College Dublin

A dissertation submitted to the University Of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 13, 2002

Declaration

I declare that the work described in this dissertation is, except where other-

wise stated, entirely my own work and has not been submitted as an exercise

for a degree at this or any other university.

Signed:

Date: September 13, 2002

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon

request.

Signed:

Date: September 13, 2002

Acknowledgments

I would firstly and most importantly like to thank Dr. Siobhn Clarke for in-

troducing me into the world of AOSD and for her help, advice and guidance both

inside and outside office hours throughout the year. Her faultless guidance allowed

me to be lucky enough to have a paper published at a workshop at the first inter-

national conference on AOSD in Utrecht in April 2002. Within the pages of this

dissertation lie the bloom of the seeds Dr. Clarke laid throughout my postgraduate

year studying under her, any errors, omissions or mistakes are mine and should not

reflect on her. I hope the quality of this dissertation is a small reflection on the hard

work put into it by Dr Clarke, thank you!

I’d like to thank: All the members of lecturers/staff at the Computer Science

Department for their help throughout all my years at TCD. To the lecturers of the

NDS course for their help and advice throughout the year. The students of the

NDS class 2001-2002! Cormac for his help with AspectJ, Hyper/J and all things

with aspects. Martin for sitting beside me all year! Rich Greenane for his help with

Texnic and images. Simon Dobson for his advice and help with latex. Owen for his

help with the thesis. To all my friends for their support.

Finally but certainly not least, I’d like to thank my family. To my mother for

all her love and support. To my brothers Jong and Oisin for their proof reading,

suggestions, advice and support. Thank you!

Abstract

A major problem with Object Oriented Programming (OOP) is that it cannot deal

efficiently with crosscutting concerns. Aspect Oriented Software Development (AOSD)

is a new methodology that tries to enable the extension of the separation of con-

cerns capabilities in software development. AOSD, which encompasses Aspect

Oriented Programming (AOP), hopes to enable the developer or architect to capture

crosscutting concerns in a modular fashion.

The objectives of the dissertation include the design, implementation and eval-

uation of a tool that enables the modularisation of crosscutting concerns within C#,

that we have called “AspectC#”. AspectC# must:

� Allow the developer to use AOP constructs within C#.

� Make no explicit language extensions to C#.

� Be extensible for future development.

AspectC# hopes to enable the developer to modularise crosscutting concerns

within C#. By modularising crosscutting concerns this will lead to an easier devel-

opment and maintenance of applications.

The evaluation included a small case study comparing an example using As-

pectC# and OOP with C#. We believe the case study and tool supports the case for

the use and promotion of AOSD. Special emphasis was placed on picking a real

world, easily understood example of the use of the tool and we believe this repre-

sents an excellent introduction to some of the most widely used AOP and AOSD

techniques.

Contents

1 Introduction 11

1.1 Introduction . 11

1.2 Addressing the Problem . 11

1.3 Motivation . 12

1.4 Goals . 13

1.5 Thesis Outline . 14

1.6 Summary . 15

2 State of the Art 16

2.1 Introduction . 16

2.2 .NET Framework . 16

2.2.1 Architecture . 17

2.2.2 Languages . 17

2.2.3 Base Class Library . 18

2.2.4 Common Language Runtime (CLR) 21

2.3 AOSD Technology . 25

2.4 Java AOP Approaches . 26

2.4.1 AspectJ . 26

2.4.2 Hyper/J . 31

2.5 .NET AOP Approaches . 36

2.5.1 Cross Language Aspect Weaving (CLAW) 36

5

2.5.2 AOP# . 39

2.5.3 Other .NET approaches 43

2.6 Summary . 43

3 Requirements and Design 44

3.1 Introduction . 44

3.2 Requirements . 44

3.2.1 Functional Requirements 44

3.2.2 Non-Functional Requirements 46

3.3 Design . 47

3.3.1 Different Approaches . 47

3.3.2 Our Approach . 48

3.3.3 Project Architecture . 52

3.4 Summary . 57

4 Implementation 58

4.1 Introduction . 58

4.2 AOP Engine . 58

4.3 Parser . 58

4.4 Abstract Syntax Tree . 61

4.5 Aspect weaver . 62

4.5.1 Dynamic Crosscutting Implementation 63

4.5.2 Static Crosscutting Implementation 65

4.6 Compiler . 67

4.7 Aspect Deployment Descriptor 68

4.8 Summary . 69

5 Evaluation 71

5.1 Introduction . 71

5.2 .NET as an AOSD platform . 71

5.2.1 Meta Data . 72

5.2.2 Reflection mechanism 72

5.2.3 CodeDOM . 73

5.2.4 MSIL . 73

5.3 Evaluation Methodology . 73

5.4 AspectC# versus The Rest . 74

5.4.1 How the AOP system specifies aspects 75

5.4.2 Composition mechanisms the system provides 75

5.4.3 Implementation mechanisms 76

5.4.4 Decoupling . 79

5.4.5 Software Process . 79

5.4.6 Usability . 80

5.5 An Example: A Bank Account 81

5.5.1 The Problem . 81

5.5.2 OO Solution . 81

5.5.3 AspectC# Solution . 84

5.5.4 Results . 86

5.6 Summary . 88

6 Conclusions 89

6.1 Introduction . 89

6.2 Summary of Objectives . 89

6.3 Benefits . 91

6.4 Limitations of System . 91

6.4.1 Parser Limitations . 91

6.4.2 CodeDOM Limitations 92

6.4.3 Semantic Limitations . 92

6.5 Future Work . 92

6.5.1 Parser . 93

6.5.2 CodeDOM Graph . 93

6.5.3 Semantics of AspectC# 93

6.5.4 Testing . 93

6.5.5 Cross language weaving 94

List of Figures

2.1 .Net Framework Block Diagram. 18

2.2 CodeDOM Hierarchy . 19

2.3 Execution Model .Net Framework. 22

2.4 .Net Type System. 22

2.5 .Net Compiling . 23

2.6 Assembly Structure . 24

2.7 Hyper/J overview . 32

2.8 Architecture AOP#. 40

3.1 Different AOP tool approaches. 47

3.2 Project Architecture. 52

3.3 AOP Engine Architecture. 53

3.4 Parser Class Diagram. 54

3.5 Compiler Class Diagram. 57

4.1 Sequence Diagram of AST representation 62

4.2 Sequence Diagram of Aspect Weaver 64

5.1 Bank account class diagram. 82

5.2 Bank account AOP class diagram. 84

5.3 Number of lines of code from OO solution. 87

5.4 Number of lines of code from AOP solution. 87

9

List of Tables

2.1 Join Point Model AspectJ . 27

2.2 Advice in AspectJ . 28

3.1 Different AOP tool approaches 49

3.2 Aspect C# approach . 51

5.1 How AOP system specifies aspects 76

5.2 Composition mechanisms the system provides 77

5.3 Implementation mechansims . 78

5.4 Decoupling . 79

5.5 Software Process . 80

5.6 Usability . 81

10

Chapter 1

Introduction

1.1 Introduction

Since the invention of the computer programming languages have evolved from ba-

sic machine code and assembly languages to procedural and object oriented (OO)

languages. Each progression in technology has enhanced the ability to make a clean

separation of concerns in the source code, which in turn allowed easier develop-

ment and maintenance. For the past decade the predominant way of programming

has been using Object Oriented Programming (OOP); OOP can deal effectively

with real world problems because the object model can encapsulate real world ob-

jects.

1.2 Addressing the Problem

Separation of concerns is at the heart of software engineering and has been at-

tributed to Dijkstra & Parnas [Dij76] [Par72]. Ossher [OT01] describes separation

of concerns by saying: “In its most general form, it refers to the ability to identify,

encapsulate, and manipulate those parts of software that are relevant to a particu-

lar concept, goal or purpose.”. Therefore a ‘concern’ can be thought of as module

11

that encapsulates a particular area of interest. Concerns are the main reason for

decomposing software into smaller parts or elements. There exist many types of

concerns that are relevant to developers at different stages in the development life-

cycle. With regard to OOP , a class is the encapsulation of a concern within the OO

paradigm.

As stated, the main concept of OO is that everything is modelled within a class

structure; this technique is effective for some real world situations as the object

model provides a general fit to these problem domains. OOP has many advantages

but there are also many limitations to OOP. Many problems occur with OO tech-

niques when concerns crosscut each other. When we state that concerns crosscut

we mean that some concerns are localised within a single system element (e.g. class

or method) and other span or cross multiple system elements. They ‘cross cut’ mul-

tiple system elements. This leads to problems identified by Kiczales [KLM
�

97],

which are:

1. Code Tangling: Occurs when multiple concerns are implemented within the

same system element. This has the affect that the elements are more complex

to understand and maintenance becomes more difficult.

2. Code Scattering: Occurs when a concern results in the implementation of

duplicate code or different code that is distributed across multiple system

elements. This makes maintenance harder because changes in the code must

be replicated across all elements, therefore the developer must understand all

elements within the system. This results in greater chance of inconsistencies

and mistakes.

1.3 Motivation

In a paper by Kiczales et al. [KLM
�

97] the term ‘aspects’ was coined. An aspect

is a modular unit of a crosscutting concern. The programming technique that ad-

12

dressed these design issues was called Aspect Oriented Programming (AOP).

Aspect-Oriented Software Development (AOSD) is a new technology that tries

to enable the extension of the separation of concerns capabilities in software devel-

opment. There has been much research into AOSD with the key goal being better

separation of concerns. Aspects may appear at any stage within the software de-

velopment lifecycle and common examples of aspects or concerns are: security,

quality of service (QoS), transactions and synchronisation.

AOSD, which encompasses AOP, hopes to enable the designer or architect or

developer to capture crosscutting concerns at any stage within the development

lifecycle, this will lead to a more modularised design and implementation and also

easier maintenance.

1.4 Goals

The objectives of the dissertation include the development a tool that we have

called AspectC#, which enables the modular organisation of crosscutting concerns

within the C# language. This should also include an investigation and evaluation of

the .NET platform as an AOSD platform. In creation of this tool a thorough evalu-

ation of both the .NET Framework and currently available AOP tools is necessary.

The dissertation goals are:

1. To design and implement a tool (AspectC#) that enables the developer to use

AOP mechanisms within C#.

2. Evaluation of AspectC#.

3. Investigate and evaluate the .NET Framework with regard to the potential of

AOSD within the Framework.

13

4. Investigate current AOP technologies.

If we elaborate on the design and implementation of AspectC# the specific

goals with regard to AspectC# are:

� Enable the developer to use AOP mechanisms within C#: This goal will en-

able developers of C# applications to modularise crosscutting concerns by

using our tool.

� Make no language extensions to C#: By not extending the C# language there

is no need to develop a compiler for AspectC#, it also has the effect that

developers can write applications within Visual Studio .NET environment.

� Be extensible for future development: AspectC# is currently limited to just

C#, we hope that in future versions other .NET supported languages may be

used for cross language aspect weaving. It is also a goal that the semantics

of AspectC# may be extended.

1.5 Thesis Outline

Chapter 1 Introduction attempts to introduce the reader to some of the back-

ground on programming languages, the motivation for the project, what are the

goals of the project and what is the aims of AspectC#.

Chapter 2 State of the Art reviews the state of the art of Aspect Oriented Soft-

ware Development. This includes Java and .NET based tools that provide AOP

mechanisms.

Chapter 3 Requirements and Design gives a detailed Requirements Specifica-

tion and gives an overview of how components of the AspectC# tool interact with

each other.

14

Chapter 4 Implementation describes the implementation of AspectC#. It details

how particular design features were implemented in the system. Small simple code

examples are described to reinforce points.

Chapter 5 Evaluation attempts to provide an analysis of the currently available

tools for AOP. Also an evaluation of AspectC# is performed using a small case

study.

Chapter 6 Conclusion reviews the goals and how they were met, it then suggests

areas of AspectC# that warrant future work and research.

1.6 Summary

In this chapter a basic introduction into reasons for AOSD has been discussed;

how the object model does not fit all problems and how this leads to the problems

of code tangling and scattering. AOSD technology is currently in a nascent stage

but there are already a large number of research groups investigating the possible

future directions of AOSD.

15

Chapter 2

State of the Art

2.1 Introduction

In this chapter, we examine the state of the art of the .NET Framework and look

at the latest AOP technologies for both Java and .NET languages. The chapter be-

gins with an assessment of the .NET Framework and its encompassing tools and

technologies. Next there is an overview of AOSD. Finally we examine the latest

approaches in AOP tools for both Java and .NET languages.

2.2 .NET Framework

The .NET initiative began in 1997 when Microsoft decided that it would be the

successor to WindowsTM. The .NET Framework is the base for the .NET initia-

tive. In the most general sense the framework consists of a set of types, classes,

services and tools that are combined to form the new platform. The framework

has been designed to address the limitations of Windows, which included complex

development and complex deployment. The goals of the .NET Framework are:

1. New development platform: provide a development platform for both Inter-

net and distributed applications.

16

2. Simplify development of applications: Enable easy development and deploy-

ment with better tools.

3. Improve interoperability and integration: Easier integration between system

and applications.

4. Support for any device “Universal access”.

2.2.1 Architecture

The .Net Framework is composed from several layers that provide services, tools

and classes for the development platform. Figure 2.1 shows a block diagram of the

.NET framework. The framework consists of:

� Languages and developer tools: Visual C# .NET (C#), Visual Basic .Net

(VB.NET) , Visual C++, Visual J# and other 3rd party languages.

� Base Class library: The base class library is a collection of reusable types

that tightly integrate with the common language runtime. The base class li-

brary forms the .NET framework Software Development Kit (SDK), which

provides access to system functionality and is designed to be the base upon

which .NET components, applications and controls are built.

� Common Language Runtime (CLR): provides a reliable, secure execution

environment and also multiple language support.

2.2.2 Languages

The languages currently supported by the .NET framework are: C#, VB.NET, C++,

J#, Jscript, Eiffel.NET, Cobol, Small Talk, Perl, Pascal, Python, Oberon, Haskell,

Mercury, Scheme, CAML, Component Pascal, Mondrian, Fortran, Mercury, Dya-

log APL, CLisp and OZ.

17

Figure 2.1: .Net Framework Block Diagram.

2.2.3 Base Class Library

The .NET framework provides a large and extensible class library. The class library

framework is organised into a hierarchical structure that can be used across any of

the supported .NET languages.

Of special interest to the project is the Code Document Object Model (Code-

DOM) namespace which is part of the base class library. The CodeDOM names-

pace provides interfaces, classes and architecture to represent the structure of a

source code document independent of language as an object graph or tree. The

CodeDOM API also provides a set of classes for compilation of the object graph

into a supported language. Figure 2.2 shows the hierarchical structure of the Code-

DOM API. Also, we can see in figure 2.3 where exactly CodeDOM is positioned

18

within the .NET Framework.

Figure 2.2: CodeDOM Hierarchy

Hello World example using CodeDOM

This example shows how to create a C# class called HelloWorld that prints to the

console HelloWorld using CodeDOM. The code examples are written in C# using

the CodeDOM API. From figure 2.2 we can see that firstly we need to create a

CodeCompileUnit 1, then added to the compile unit is the namespace followed

by any import statements. Next is the actual class and finally the Main method is

added.
1The CodeCompileUnit is the only object that can be directly compiled using the CodeDOM

compiler. The CodeCompileUnit represents the main reference point of the object graph and elements

such as namespaces are added to the compile unit.

19

Compile Unit The compile unit references a CodeDOM tree that can be com-

piled. CodeDOM compilers process the tree referenced by the compile unit. The

CodeCompileUnit class defines the compile unit and source files already in

the target language can be defined by using the CodeSnippetCompil-eUnit

class. The following code snippet creates a new compile unit.

CodeCompileUnit compileUnit = new CodeCompileUnit();

Defining and importing a namespace Defining a namespacewith CodeDOM

is done by creating a CodeNamespace object. To add namespace imports to the

namespace we can call CodeNamespace.Imports.Addmethod.

CodeNamespace myNamespace = new

CodeNamespace("HelloWorld");

myNamespace.Imports.Add("System");

Defining a class To declare an interface, class, struct or enumeration in Code-

DOM we use CodeTypeDeclaration class. As shown below:

CodeTypeDeclaration myClass = new

CodeTypeDeclaration("HelloWorld");

MyNamespace.Types.Add(myClass);

Adding class members to a class The CodeDOM model provides a variety of

elements that can be added to a class. A new member can be added to a class using

CodeTypeDeclaration.Members.Addmethod, as shown below:

CodeEntryPointMethod Main = new CodeEntryPointMethod();

CodeMethodInvokeExpression expression = new

CodeMethodInvokeExpression (

new CodeTypeReferenceExpression("System.Console"),

"WriteLine",

20

new CodePrimitiveExpression("Hello World!")

);

myClass.Members.Add(expression);

2.2.4 Common Language Runtime (CLR)

The CLR provides a runtime execution environment for .NET applications; it is

analogous to the Java Runtime Environment (JRE) from the Java Language TM.

Code that is run under the control of the CLR is called managed code. The CLR

manages the code i.e. compilation of the code into native code and memory man-

agement. Code that runs outside the control of the CLR is called unmanaged code,

but it is possible to integrate unmanaged code within the CLR. The CLR can be

divided into three main categories:

� The Type system.

� The Execution system.

� The Metadata system.

The Type system consists of the Common Type System (CTS) and the Com-

mon Language Specification (CLS). Types in the .NET framework can be either

value types or reference types. Value types can either be built-in value types such

as int or user defined value types. Reference types can be either user defined ob-

ject, interface or pointer types. Figure 2.4 shows the hierarchy for the type system

within the .NET framework. The CTS defines the standard value and reference

types supported by the framework.

The CLS defines rules that a language must obey if it is to execute under the

CLR. The CLS defines a subset of the CTS, that is the same rules apply to the CTS

as to the CLS. The CLS also establishes requirements for compliance, these help

to determine if the language conforms to the CLS. If a language conforms to the

21

Figure 2.3: Execution Model .Net Framework.

CLS it may be used within the CLR and also by other .NET languages.

Figure 2.4: .Net Type System.

22

The Execution system is at the heart of the .NET framework. Source code writ-

ten in any of the supported .NET languages is compiled into Microsoft Intermedi-

ate Language (MSIL). When the CLR executes an application the MSIL is ‘Just In

Time’ (JIT) compiled into native machine code. It is the MSIL that allows for cross

language integration of applications.

Figure 2.5: .Net Compiling

The Metadata system is an integral part of the framework. An assembly is a

primary building block of a .NET application. In previous versions of Windows an

application or program was usually installed using a Dynamic Link Library (dll) in

.NET a managed dll is called an assembly. It is analogous to the Java Archive (jar)

file within the Java Language. An assembly contains:

� Manifest - Describes the assembly, e.g. assembly name, version etc.

� Meta data about types - Type information about the classes is kept within the

assembly.

� Modules - The module contains the MSIL code, this code is used by the CLR

and JIT compiled before execution.

� Resources - Resources can be anything from text files to images, this enables

the assembly to be self contained.

23

Figure 2.6: Assembly Structure

Assemblies are fundamental part of the development in .NET they perform

functions such as:

� Contains code needed for execution within the CLR

� Forms the security boundary, permission are granted or revoked at this level.

� Type boundary, every type as an associated assembly.

� Reference boundary, the manifest of an assembly contains metadata used for

resolving conflicts.

� Version boundary, an assembly forms the smallest version-able unit within

the CLR.

� An assembly is the deployment unit within the CLR.

The .NET framework is an improvement on the Windows platform and ad-

dresses many of the limitations of Windows. But it more than just Windows++,

the .NET initiative enables simplified development and deployment of applications

within the Framework, with greater interoperability and integration and support for

any device.

24

2.3 AOSD Technology

Aspect-Oriented Software Development (AOSD) is a new technology that extends

the separation of concerns (SoC) in software development. The methods of AOSD

facilitate the modularisation of crosscutting concerns within a system.

Aspects may appear in any stage of the software development lifecycle (e.g.

requirements, specification, design, implementation, etc.). Crosscutting concerns

can range from high-level notions of security to low-level notions like caching and

from functional requirements such as business rules to non-functional requirements

like transactions.

As described on the AOSD website [AOS] the main thrust of research in AOSD

is into the extension of separation of concerns (SOC) techniques, but not only

crosscutting techniques: “Researchers in AOSD are largely driven by the funda-

mental goal of better separation of concerns. So while crosscutting tends to be

a significant focus of their work, they also incorporate other kinds of SOC tech-

niques, including such well established approaches as OO and good old-fashioned

structured programming. This is reflected in the way much of the work in the field

blends support for many different kinds of modularity including block structure,

object structure, inheritance as well as crosscutting.”.

A principal design model language in AOSD is Theme/UML [Cla]. Theme

/UML presents a method for designing systems based on the object-oriented model

but with added extensions or decomposition mechanisms. Each model consists of

a theme, which is an individual requirement; extensions to Unified Modelling Lan-

guage (UML)[Boo98] are required for the composition of the thematic design mod-

els. Theme/UML contains support for overlapping specifications and crosscutting

specifications.

25

2.4 Java AOP Approaches

In this section we cover the principal Java approaches to AOP. Currently the prin-

ciple approaches are AspectJ [Tea], Hyper/J [HYP], Composition Filters [COM]

and DemeterJ [Lie]. AspectJ and Hyper/J will be covered in detail over the next

two subsections.

2.4.1 AspectJ

AspectJ is a simple and practical aspect-oriented extension to Java that enables

the modular implementation of crosscutting concerns [KHH
�

01]. It is also the

basis for an empirical assessment of aspect-oriented programming. The designers

of AspectJ would like to gain a better understanding of how AOSD and an AOP

language can be use in a “real user community”. The designers of AspectJ call a

well modularised crosscutting concern an ‘aspect’.

The Language

AspectJ extends the Java LanguageTM with support for two types of crosscutting

implementation. The first type enables the developer to define additional imple-

mentation to run at certain well-defined points of execution in the program; this

is called “dynamic crosscutting”. The second type enables the developer to define

new operations on existing types; this is called “static crosscutting”.

Dynamic Crosscutting The dynamic crosscutting in AspectJ is based on set con-

structs. A Join Point is a well-defined point of execution in the program. Pointcuts

are a mechanism of referring to a set of join points and certain values at those join

points. Advice is a method like construct that enables additional implementation to

be inserted at join points. An aspect is a modular unit of a crosscutting concern;

composed of pointcuts, advice and Java declarations.

26

Static Crosscutting The static crosscutting in AspectJ is achieved by introduc-

tion. New member variables and methods can be introduced statically from aspect

classes into base classes. This is a powerful construct as not only does it change

the behaviour of a class it can change the relationship between classes.

Join Point Model

The Join Point model is a critical element in the design of any AOP language. In

AspectJ the join point model is defined as well-defined points of execution in the

program. In this model join points can be considered to be where method calls or

object field accesses are executed, or on exceptional handling or static initialisation

within a class or method. Table 2.1 shows the full list of the dynamic join points in

AspectJ.

Join Point Point in program execution.

method call a method or constructor of a class is

called.

method call reception an object receives a method or

constructor call.

method execution a method is invoked.

field get or set a field of an object is accessed.

exception handling execution exception handler invoked.

class initialisation any static initialiser are run.

object initialisation any static initialiser are run during object

creation.

Table 2.1: Join Point Model AspectJ

27

Pointcut Designators

A pointcut is a set of join points. AspectJ provides several pointcut designators for

associating advice with join points. For example the following code matches any

call to method setX() of an object of type Point. Pointcuts may also be combined

using
���
, && and ! operators.

receptions(void Point.setX());

AspectJ allows for advice to have access to certain values at join points; in

advice declarations values can be passed from the pointcut designator to the advice.

In the next example the variables p and nval are available for use in the advice

body.

before(Point p, int nval) : receptions(void
p.setX(nval)) {
System.out.println("x value of " + p +

" will be set to " + nval);
}

Advice

Advice is a method like mechanism used to declare that certain code should be

executed at join points in a pointcut [KHH
�

01]. AspectJ supports three types of

advice (before, after and around). Table 2.2 explains each type of advice.

Advice Type Description

before Advice executed before ‘base’ method at join point.

after Advice executed after ‘base’ method at join point.

around Advice selectively pre-empts normal execution.

Table 2.2: Advice in AspectJ

28

Advice declarations define advice by associating the type of advice with a join

point (when it should be executed) and the code associated with the advice with

the base code of the method. For example the following advice is associated the

method move() and it is of type after; it associates the code flag = true;

with the method:

after(): moves() {
flag = true;

}

Around advice dynamically alters the behaviour of a method by running instead

of the method. The original method can be called by using the proceed keyword.

In the next example the original method is called by using proceed keyword but

only positive values are passed to the method as Math.max(int, int) returns

the greater of the two numbers.

around(int nv) returns void:
receptions(void Point.setX(nv)) ||
receptions (void Point.setY(nv))
{

proceed(Math.max(0, nv));
}

Aspects

Aspects are modular units of crosscutting implementation [KHH
�

01]. An aspect

is defined by aspect declarations, which have a similar form to the class structure.

An aspect can consist of:

� Pointcut declarations

� Advice declarations

� Normal class declarations

The following code segment is an example of a tracing aspect. It associates

advice with methods from the classes FigureElement,Line and Point.

29

aspect MoveTracing {
static boolean flag = false;

static boolean testAndClear() {
boolean result = flag;
flag = false;
return result;

}

pointcut moves() :
receptions(void FigureElement.incrXY(int, int) ||
receptions(void Line.setP1(Point) ||
receptions(void Point.setX(int));

after(): moves() {
flag = true;

}
}

Aspect precedence refers to the fact that more than one piece of advice may

apply to a join point. There exists certain rules that determine which advice should

run depending on if an aspect inherits from the other, or if the dominatesmodi-

fier is used.

Reflective Access to Join Point

AspectJ provides access to the current join point by means of a special variable

called the thisJoinPoint. It is bound to the current object and represents the

join point.

Property Based crosscutting

It is possible within AspectJ to use wildcarding of pointcut designators. This can be

simple pattern matching like receptions (* Point.*(..)), which matches

any method call or execution on a Point object. More advanced pointcut designa-

tors are allowed using the cflow keyword to select pointcuts that are determined

based on whether the join points are in a particular control-flow relationship with

other join points.

30

Implementation

The main work of any AOP language is to ensure the correct combination of

aspect and non-aspect code. This coordination process is called aspect weaving

[KHH
�

01]. In AspectJ the weaving is best described as a compile time weaver;

the compiler transforms the source program in three ways:

� Advice declarations is compiled into standard methods.

� Parts of the program where advice is applicable are transformed correspond-

ing to the join points

� Any parts of the program with dynamic dispatch code is inserted at those

static points.

Relevance to AspectC#

AspectJ makes simple language extensions to Java that enables Java to modularise

crosscutting concerns. There are many features of AspectJ that will be useful in

AspectC#, the Join Point model is very effective and captures crosscutting concerns

well. The different types of crosscutting identified by AspectJ will also be used

within AspectC# (I.e. Static and dynamic).

2.4.2 Hyper/J

In Tarr et al [TOHS99], they describe how modern languages and methodologies

suffer from a problem they call “tyranny of dominant decomposition”. Examples

of tyranny are classes in OO and functions in Functional languages. This prob-

lem leads to the developer having to commit to one of these dominant decom-

positions early in the design and changes to this decision can effect the whole

application. Often the developer is not given a choice about the decomposition

dimension e.g. in OO it must be a class. The multi-dimension separation of con-

cerns breaks the tyranny of dominant decomposition by not relying on a single

decomposition mechanism. Hyper/J is an evolving tool that provides hyperspace

31

support. Hyper/J TM supports “Advanced Multi-Dimensional Separation of Con-

cerns(MDSOC) in standard Java TM software” [TO00]. Hyper/J provides a power-

ful composition model where separated concerns can be integrated into a program

or component. Hyper/J can be used at any stage in the software development life-

cycle: design, implementation, or maintenance.

The Language

The approach taken by the Hyper/J team is called the ‘hyperspaces approach’. Hy-

perspaces permit the identification and encapsulation of any arbitrary concern at

any stage with the development lifecycle. It is also possible to manage the relation-

ship between concerns. Figure 2.7 highlights the different terms within Hyper/J.

Figure 2.7: Hyper/J overview

32

Concern Space of Units

A unit can be thought of as construct in a language; it may be, for example a

statement, state chart, class, interface or any entity within a given language. There

exists two types of units: primitive and compound units. Primitive units can be

treated as atomic, while compound units are grouped together. A concern space

encompasses all units in a piece of software. The purpose of the concern space is

to group all units in the system so that it is possible to separate all concerns and to

describe the inter-relationship between those concerns.

� Identification: refers to the process of selecting concerns and populating

them with units that are relevant to them.

� Encapsulation: refers to how after identification concerns are encapsulated.

E.g. method, class or package.

� Integration: Once concerns have been identified and encapsulated they must

then be integrated so the system addresses multiple concerns.

Identification: Concern Matrix

A hyperspace is a concern space specially constructed to support multi dimensional

separation of concerns. Units are organised into a multi-dimensional matrix where

each axis represents a dimension of concern and each point on an axis is a concern

in that dimension. Each dimension can be viewed as a section of the set of all units.

A hyperspace file specifies the Java classes that contain code units that will

populate the hyperspace. The following code segment shows a piece of a specifi-

cation file. The specification file can contain either Java fully qualified class names

or path name of files.

hyperspace Expression_SEE_Hyperspace
class com.ibm.hyperJ.ExpressionSEE.*;
file c:\u\smith\com\ibm\hyperJ\util\Set.class

33

Units Hyperspaces can organise and manipulate units in any language but cur-

rently only Java is supported. In Java, member variables and functions are treated

as primitive units and classes, interfaces and packages are treated as compound

units.

Concern Specifications The concern specification serves to identify the dimen-

sion and concern in the concern matrix. A simple approach is to use a set of concern

mappings, such as:

x: dimension.concern
e.g.

package com.ibm.hyperJ.ExpressionSSE: Feature.Kernel
operation display : : Feature.Display
operation check : : Feature.Check

Where x if the name of the unit.

Hyperslices

The concern matrix identifies and manages units within a given dimension and con-

cern. To support the encapsulation of concerns Hyper/J uses an additional mech-

anism called a hyperslice; a hyperslice is a set of concerns that are declaratively

complete 2.

The declarative completeness means that there is no coupling between hyper-

slices. Instead of one hyperslice referring to another, an abstract declaration of what

the hyperslice needs is declared. This has the effect that the hyperslices are self-

contained, but of course someone will have to implement the abstract declarations.

2Declaratively complete means that anything a concern uses must be declared within the concern.

34

Relationship between concerns

Units, concerns and hyperslices may be interrelated in a number of ways. Hyper/J

has two classifications of relationships:

� Context-insensitive were concerns are always related the same way, as long

as they share units in common.

� Context-sensitive relationships depend on the context that the concerns are

being used for.

Hypermodules

Hyperslices are the building blocks for system in Hyper/J. The binding relationship

between units is called correspondence; correspondence is a context-sensitive rela-

tionship and occurs in the integration of the component or system. This integration

context is called a hypermodule.

A hypermodule consists of a set of hyperslices and their integration relation-

ships. Integration relationships stem from the composition rules of Subject Ori-

ented Programming (SOP) [HO93]. In Hyper/J, a compositor tool can be used

to associate integration relationships, therefore one can think of a hypermodule

as a combination of hyperslices. Hypermodules can be used to encapsulate many

types of software artefacts, components or whole systems. Each hyperslice is self-

contained but with integration rules the system can work together in a co-ordinated

fashion. The following code is of a hypermodule; a hypermodule contains a set of

hyper slices and an integration relationship among the hyper slices.

hypermodule SEE_With_Display_And_Check
hyperslices: Feature.Kernel, Feature.Display

Feature.Check
relationships: mergeByName

In this hypermodule the relationship is “mergeByName” this means that units

in the different concerns are related if they have the same name. The are other types

35

of relationships within Hyper/J for example: merge (merge relationship between

specified set of units), nomerge (opposite to merge, causes unit which match not to

merge) and override (Indicates that one unit overrides another unit).

Implementation

Hyper/J is a tool that realises the hyperspaces approach from Java TM. The units

that are supported are: packages, interfaces, classes and members. The concern

matrix can work with these units and there is the ability to make hyperslices from

these units. Integration of the hyperslices is possible to form hypermodules that

can be generated into Java class files.

Relevance to AspectC#

Hyper/J uses a different approach but there are still lessons to be learned from it, a

feature of Hyper/J that is of particular interest is that Hyper/J offers modularisation

of crosscutting concerns without explicit language extensions. By making concerns

declaritively complete they become self contained. Hyper/J does not make any

language extensions.

2.5 .NET AOP Approaches

In this section we cover the principal .NET approaches to AOP. Although there

exists many Java base AOP tools, the development of .NET tools is still only in

nascent stages. We will cover two of the foremost approaches CLAW[Lam] and

AOP# [AOP]. Other approaches include Aspect.NET [Mica] and IL based ap-

proaches like “Aspect-Oriented Infrastructure for a Typed, Stack-based, Intermedi-

ate Assembly Language” [DEC].

2.5.1 Cross Language Aspect Weaving (CLAW)

CLAW has many similarities to AspectJ as covered in section 2.4.1. CLAW bor-

rows many features such as advice (before, after) and contains a similar Join Point

36

model. But they dramatically differ in the process of aspect weaving. CLAW con-

tains an Execution Engine (EE) that weaves base and aspect code together at run-

time; the aspect to base code mapping is achieved through weaving instructions

that are generated by a weave compiler. All weaving occurs at runtime and it is

a future goal that the CLAW will be able to emit ‘aspect assemblies’. Any CLR

compatible compiler can provide aspect assemblies, which in turn provide the as-

pect code to the Execution Engine. Aspects can be weaved with target methods that

are not written in the same language thereby performing true cross language aspect

weaving.

Architecture

The CLAW architecture consists of:

� A set of base assemblies.

� A set of aspect assemblies.

� Weave definition files that contains the mapping of aspect code to base code.

The base and aspect code can be written in any normal .NET language; it is

then compiled using a compliant compiler into an assembly. The mapping from as-

pect to core methods is through two weave definition files: weave.xml and weave-

manifest.xml. The weave.xml definition file contains a set of weaver definitions;

each definition describes how a join point is mapped to an aspect. The weavemain-

fest.xml file contains the aspect or base assemblies. The weave compiler compiles

the weave definition files into a weave instruction file that is used by CLAW to

perform weaving at runtime. The following code segment shows the two weave

definition files.

<weave>
<aspect pointcut="App.Main"

37

adviceType="before"
advice="MyAspect.Before" />

</weave>
weave.xml

<manifest>
<aspects>
<assembly path="c:\temp\HelloWorld\MyAspect.dll"/>

</aspects>
<targets>
<assembly path="c:\temp\HelloWorld\App.exe"/>

</targets>
</manifest>
weavemanifest.xml

CLAW operates by weaving aspect code prior to JIT compilation of the target

method. CLAW reads the IL of the target method and constructs an abstract syn-

tax tree (AST). It then weaves in aspect IL and writes the modified IL into memory.

The following is a simple aspect using CLAW. It prints out “Hello from C#

Aspect” before the target method is executed, the target method is specified in

the weave.xml file in this case the method is MyAspect.Before. Join Points are

specified in the weave.xml file.

public class MyAspect
{
private static MyAspect this_;

static MyAspect() { this_ = new MyAspect(); }

public static MyAspect AspectOf() { return this_; }

public void Before(CodeXP.CallContext c)
{
Console.WriteLine("Hello from C# Aspect");

}
}

38

Summary

CLAW has not been released yet, but promises to be an extremely useful tool from

the start. A current limitation is the security issue. CLAW allows developers to dy-

namically alter the behaviour of code within the CLR. Until a security policy can

be created, this is a major limitation. Also CLAW cannot weave unmanaged and

managed code, that is, code that runs outside the CLR. Future work includes sup-

port for intra-method join points, XPath syntax for join point selection and support

for link-time weaving.

Relevance to AspectC#

One of CLAW’s features is the ability to perform cross language weaving, VB.NET

code can be weaved with C# code and vice vearsa. It was interesting finding out

how CLAW performs this weaving, CLAW targets IL while AspectC# targets

source code therefore it is not possible to gain an advantage here but the XML

mapping technique is similar to the one employed by AspectC#.

2.5.2 AOP#

AOP# has been developed by Schupany, Schwanninger and Wuchner from the

Siemens Corporation. It is named AOP# in accordance with the language C#. The

requirements of AOP# are:

1. No language extensions; the user should not have to learn any new constructs

and a standard compiler is used.

2. Complete separation of base and aspect code.

3. Easy mechanism to join base and aspect code; something along the lines of

the J2EE EJB container model.

4. The ability to switch on and off aspects. This concept is called “aspectual

polymorphism”.

39

A feature of AOP# is that any language supported by the .NET framework may

be used as either base or aspect code.

Architecture

AOP# architecture consists of three parts:

1. Application assemblies - holds the application or business code called ‘core

code’.

2. Aspect assemblies - holds the aspect code.

3. Coordinating component called the XML-Connector. The AOP environment

use the connector to associate aspects with the core code.

Figure 2.8: Architecture AOP#.

Base and aspect classes are compiled into MSIL and then composed into as-

semblies, from there the connector advises the AOPEnvironment which core classes

should have aspects. The AOPEnvironment intercepts at runtime the core code and

inserts the aspect code. This interception is achieved using the Profiling and Meta-

data API of the .NET framework [Micd]. One restriction with this approach is that

40

only managed code may be used and the Profiling API cannot handle unmanaged

code. An example of unmanaged code is memory allocation (pointers) in C++ as

this cannot be mapped to MSIL.

Aspects in AOP# are ordinary .NET classes that are declared as abstract and

inherit from a base class called Aspect. Aspects are organised into assemblies

and there are no language extensions. The implementation of an aspect consists of:

� The (abstract) declaration of an interface expected from any core class the

aspect should later be weaved into.

� The implementation of the aspects method, this corresponds to the “around”

advice in AspectJ.

The expected interface of the aspect consists of abstract methods that can be

divided into two categories marked by attributes “isRequired” and “IsExtended”.

� IsRequired methods aim to interact with ‘aspectised’ core classes. It is simi-

lar to the declarative completeness of Hyper/J.

� IsExtended methods aim to extend core class methods. They require a con-

crete implementation of the form Extend *, where * is the method name in

the core class.

The following is a simple example of an aspect in AOP#. It represents a sim-

plistic bounds checker that works on graphical elements of a core system.

public abstract class BoundsChecker : Aspect
{

private const int MAX_X = 100;
[IsRequired]
public abstract int GetX();
[IsRequired]
public abstract void SetX();
[IsExtended]

41

public abstract int ShiftX(int shiftFor);

//Implementation of aspect
public void Extends_ShiftX(int shiftFor)
{

//before
bool isOutOfBounds ;
if(GetX() + shiftFor > Max_X)
{

SetX(Max_X - shiftFor);
}
//call to core method
ShiftX(xValue);
//after
..

}
}

The XML-connector describes how core classes and aspect methods should be

mapped together.

Aspectual Polymorphism

Aspectual Polymorphism relates to the ability of turning on and off aspects at run-

time. During the course of the application the aspect context (set of aspects being

aspectized) can change. This is a ne feature and not seen in any other AOP tool.

Summary

A first prototype of AOP# is due for release, but because all concepts are taken

from existing successful approaches the designer expect it to be useful from the

beginning. AOP# and CLAW are quite similar in their approach to weaving aspects

and working on assemblies, a key difference is the aspectual polymorphism were

aspects can be turned on and off.

Relevance to AspectC#

Both AOP# and CLAW are very similar in their approach to AOP, but what sepa-

rates them is the Aspectual Polymorphism in AOP#. This is interesting to AspectC#

42

and it would be interesting to see if this feature can be added to AspectC#.

2.5.3 Other .NET approaches

As stated .NET tools are still in early stages of development but two other promis-

ing approaches are Aspect.NET[Mica] and MSIL-based AOP tool by Dechow

[DEC]. Aspect.NET aims to research AOP tools that target both source code and

MSIL. It aims to create tools that are both static and dynamic. They also intend to

investigate language extension to the C# language (similar to AspectJ extensions

to Java). Dechow’s tool aims at weaving on MSIL and can be describe as “source

to-source preprocessor for the Common Intermediate Language (CIL)”[DEC].

2.6 Summary

In this chapter we have covered a state of the art review of the .NET platform

and the main Java and .NET approaches to AOP. But there exist many other ap-

proaches to AOP including supported systems like AspectR[ASPb], AspectS[Hir],

DemeterJ[Lie] and research prototypes like AspectC[Coa] and AspectC++[ASPa].

43

Chapter 3

Requirements and Design

3.1 Introduction

In this chapter, firstly we look at the requirements for AspectC#. We then discuss

the design of the system with regard to other approaches mentioned in Chapter 2.

3.2 Requirements

One of the objectives of the project is to develop a tool ‘AspectC#’ that enables

AOP constructs within the C# language. The system must be developed within a

12-week time frame and a small example must also be developed to show a work-

ing prototype.

The major use of the system will be to apply AOP constructs within the C#

language. Developers should be allowed to use a rich set of instructions that will

aid in modularisation of crosscutting concerns. AspectC# can be applied to a new

project in development or to existing applications by refactoring the design of the

application.

3.2.1 Functional Requirements

AspectC# must allow developers to use AOP mechanisms within C#. It must allow

developers to specify aspect and base classes, and to allow the merging of these

44

classes and create ‘aspect assemblies’, which are normal assemblies and can run

under the CLR.

1. AspectC# must allow the developer to modularise crosscutting concerns within

the C# language.

2. The tool should not make any language extensions to the C# specification

[Micb]. The reasoning behind this requirement is that the developer does

not have to learn new language constructs making it easier to learn AOP

techniques. Also the fact that there are no language extensions means that a

standard C# compiler can be used. This reduces the development time of the

tool and allows the use of GUI IDEs such as Visual Studio .NET (VS.NET)

as a development environment.

3. Although we see the prototype as a proof of concept; a requirement is that

the system should be extensible and may, in future versions of the system,

be able to support multiple languages rather than just C#. The semantics of

AspectC# should also be extensible allowing for new constructs if necessary.

4. The system must not permanently modify the base code. AspectC# must take

base source classes as inputs and perform weaving inside the system, leaving

the base classes unchanged. The reason behind this is that with AspectC# it

should be possible to compile and run base classes on their own, and when

using AspectC# the base code developer can be oblivious to the aspect class

and concentrate on the functionality of the base concern. A temporary direc-

tory of intermediate weaved files should be produced to enable debugging

purposes.

45

5. AspectC# must be easy to use and have a small learning curve. It should be

based on the ‘state of the art’ of AOP tools and technologies to try and make

the tool effective from the beginning.

6. The evaluation of the project is an extremely important requirement. Firstly

the resulting weaved code must be compared with an object oriented version

of the example system; and the system must be compared with other AOP

tools on: How the system specifies aspects, what composition mechanisms

the system provides, implementation mechanisms of the system, decoupling

issues, software process and usability must be evaluated.

3.2.2 Non-Functional Requirements

The non-functional requirements are that the tool should be developed using Mi-

crosoft Visual Studio .NET (Release Version) and should be able to run on the

Microsoft .NET Framework TM.

Requirements Summary

In summary the requirements of the system are:

� Enable the modularisation of crosscutting concerns within C#.

� No language extensions to C#.

� System should be extensible for future development.

� Complete separation of base and aspect code.

� Ease of use.

� Thorough evaluation.

46

3.3 Design

This section attempts to describe the design of the system. Firstly we begin by

comparing and contrasting the state of the art approaches in AOP tools both in

Java and .NET. Finally we describe in detail the AOP Engine, which satisfies re-

quirement no.1 (which is made up of modules): Parser, AST Representation, which

satisfies requirement no.2 and no.3, Aspect Mapping, which satisfies requirement

no.4, Weaver satisfies requirement no.4 and Compiler.

3.3.1 Different Approaches

There exist many approaches to AOP, the principle ones have been discussed in

section 2.4. Figure 3.1 highlights where each currently available tool applies its

composition mechanism. We evaluated each approach based on the language that

it used, the architecture of the system and how the system was implemented.

Figure 3.1: Different AOP tool approaches.

47

AspectJ [Tea] covered in section 2.4.1 works with source code and weaves as-

pects at compile time; it has a lot of specific constructs and is probably the most

used tool in the field. Hyper/J [HYP] covered in section 2.4.2 stems from subject

oriented programming and does not contain the idea of aspect and base but rather

a concern and concern interaction. Hyper/J works on the idea of declarative com-

pleteness were everything a concern uses is declared in the class. Hyper/J weaves

concerns at a byte code level.

CLAW [Lam] covered in section 2.5.1 has similar syntax to AspectJ and the

central idea of an aspect. CLAW weaves base and aspect code at a MSIL level and

then calls the JIT compiler. CLAW uses a XML mapping of aspects to base code.

AOP# [AOP] covered in section 2.5.2 again works on a MSIL level and uses an

XML mapping of aspect to base code.Table 3.1 summaries each approach.

3.3.2 Our Approach

The approach that we decided to take was to use similar semantics and architec-

tures of existing tools and use the features from these other tools for our approach.

By using similar methods of existing successful tools we can infer that hopefully

our tool will be useful from the beginning. But it must be stated that this tool is a

proof of concept and a goal of further research is to make it the leading AOP tool

for the .NET framework.

In our approach it was decided to use similar semantics to AspectJ [Tea]. That

is, we make a clear separation of what is base (often describe as ‘business’ or ‘core’

code) and what is aspect code. The Join Point model is a sub set of the AspectJ

Join Point model. An aspect in AspectC# is the same as in AspectJ but it must be

declaratively complete like concerns in Hyper/J. We use an XML base mapping of

48

Topic AspectJ Hyper/J CLAW AOP#
Language(s) Works with Works with Works with Works with
Used the Java the Java any .NET any .NET

Language. Language. compatible compatible
language. language.

Expressive AspectJ Hyper/J CLAW uses AOP# uses
Power contains contains aspects and aspects and

constructs for constructs for a xml a xml mapping.
declaring identification mapping.
aspects and
and pointcuts. encapsulation

of concerns.
Composition AspectJ has Hyper/J has CLAW has no AOP# has no
mechanisms explicit no language language language

language extensions. extensions. extensions.
extensions. Concerns Aspects are Aspects are
Aspects are composed applied to applied to
Explicit using classes. classes. classes.
applied to
classes.

Implementation AspectJ is Hyper/J is CLAW is AOP# is
mechanisms applied to applied to applied to applied to

source code. byte code. MSIL within MSIL.
Composition Composition the CLR. Composition is
is static at is static at Composition is dynamic at run
compile time. compile time dynamic at run time.

time.
Ease of Use AspectJ is Hyper/J is Currently no Currently no

extremely more a prototype prototype
user friendly complex available. available.
with IDE approach but
developer does have
plug-ins GUI support.
also available.

Aspectual No support No support No support Support for
Polymorphism Aspectual

Polymorphism

Table 3.1: Different AOP tool approaches

49

aspects to core classes.

The Language

AspectC# has a similar semantics to AspectJ, it supports two types of crosscutting

implementation:

� Static: Enables the developer to add variables and methods to existing types

� Dynamic: Enables the developer to define additional implementation to run

at well defined points in the program.

Aspect Mapping (Join Point Model)

AspectC# allows for advice to be associated with base methods before a method

execution and after a method execution. This is a sub set of the AspectJ Join Point

Model. As we did not want any language extension we use an XML mapping of

aspect advice to base code, this is instead of the Pointcut designators in AspectJ.

Aspect

An aspect is a modular unit of crosscutting concerns and it contains advice. Advice

has the same meaning as in AspectJ, but as there are no language extensions to C#

so the advice must be proper C# code. Aspects are declaratively complete therefore

any variable or method a piece of advice uses must be declared within the advice or

as an abstract method or variable. There is also the reflective access of a join point

available to the developer. The reflective access allows the developer to get infor-

mation about the current join point and to access data about the current join point

which may be useful in the development of crosscutting concerns. In summary, the

semantics of AspectC# are:

� An Aspect is a modular unit of crosscutting concerns, it contains advice that

can be applied to base code. Aspects must be declaratively complete.

50

� Advice can be of type before, after or around, as covered in section 2.4.1. It is

a method like mechanism used to insert code at certain well defined pointed

in the program execution.

� The Join Point model is a subset of the AspectJ Join Point model. A file

called the Aspect Deployment Descriptor is used to hold these mappings.

� The developer has reflective access to a join point, with use of a special

variable called ThisJoinPoin.

In Table 3.1 we summarised the different approaches of the most popular avail-

able tools at present; Table 3.2 summarises our approach.

Issue AspectC#
Language(s) AspectC# works with C# and hopefully in future versions it will
Used extend to all .NET languages.

Composition AspectC# has a similar semantics to AspectJ, it contains the
Mechanisms constructs for declaring aspects, implementing advice and

associating aspects with base classes in the form of the Aspect
Deployment Descriptor.

Expressive AspectC# contains support for constructing and declaring aspects.
Power It uses a subset of the AspectJ Join Point model and an XML mapping.

Implementation AspectC# has no explicit language extensions. Aspects are
Mechanisms applied to classes, with the aid of the Aspect Deployment

Descriptor.

Implementation AspectC# is applied to source code.
Mechanisms Composition is static at compile time.

Ease of Use It is a goal of AspectC# that it will be easy to use. It is based on
current technology and hopefully will have a low learning time.

Aspectual No support.
Polymorphism

Table 3.2: Aspect C# approach

51

Figure 3.2: Project Architecture.

3.3.3 Project Architecture

The project architecture, as shown in figure 3.2 works with base and aspect source

code. Therefore it needs a parser to analyse the source code. Next it must model

this code in the form of an Abstract Syntax Tree (AST), by using the CodeDOM

API [Micc]. The weaver merges base and aspect graphs � trees. Finally the com-

piler compiles the tree using a standard C# compiler. The AOP engine consists of

five main areas, as shown in figure 3.3. The 5 components are described in the

subsequent sections:

� Parser: Parsing of both base and aspect code.

Satisfies requirement no.1

� AST: Representation of source code files as an AST.

Satisfies requirement no.1, no.2, no.3

52

� Aspect Mapping (Join point): The Join point model.

Satisfies requirement no.1, no.4

� Weaver: Weaving aspect and base graphs together.

Satisfies requirement no.1, no.4

� Compiler: Compilation of weaved aspect and base graph.

Satisfies requirement no.1

Figure 3.3: AOP Engine Architecture.

Parser

The purpose of a parser is to analyse the phrase structure of a program. As we

decided that the weaving would only occur at well defined join points (i.e. within

class and member functions) this effected the requirements of our parser. We only

needed a subset of the C# grammar for the prototype. As shown in figure 3.4 our

parser can model namespace, class, function and variable items. The classes are

discussed in detail in section 4.2.

53

Figure 3.4: Parser Class Diagram.

AST Representation

Once the source file has been parsed the next step is to create an AST representation

of the code. By using the CodeDOM API as covered in section 2.2.3, we have a

language neutral AST. We believe that by using the AST in future versions of

our system, it will be possible for cross language aspect weaving because other

languages can be modelled as a CodeDOM object graph and weaving can occur at

the object graph level.

Aspect Mapping

The Join Point model is a significant part of any AOP tool; we decided to use a sub

set of the AspectJ Join Point model. An XML based approach for mappings was

used, where aspects can be mapped to base methods. The following code segment

is the Document Type Definition (DTD) for the Aspect Deployment Descriptor.

1. <!ELEMENT Aspect(TargetBase, AspectBase, AspectMethod+,
Target+)>

2. <!ELEMENT TargetBase (#PCDATA)>
3. <!ELEMENT AspectBase (#PCDATA)>

54

4. <!ELEMENT AspectMethod(Name, Namespace, Class, AMethod)>
5. <!ELEMENT Target (Namespace, Class, Method+)>
6. <!ELEMENT Name (#PCDATA)>
7. <!ELEMENT Namespace (#PCDATA)>
8. <!ELEMENT Class (#PCDATA)>
9. <!ELEMENT AMethod (#PCDATA)>
10. <!ELEMENT Method (Name, Type, Aspect-Name)>
11. <!ELEMENT Type (#PCDATA)>
12. <!ELEMENT Aspect-Name (#PCDATA)>

The structure of the Aspect Deployment Descriptor is quite simple. An Aspect

element consists of four main elements: TargetBase,AspectBase,AspectMethod

and TargetMethod.The TargetBase and AspectBase elements represent

the configuration information, where the base and aspects classes are found, as

shown on lines 2 and 3. An AspectMethod represents an aspect method it con-

sists of a name, namespace of the class, class name and the method name, as shown

on line 4. A TargetMethod represents the target or base class it consists of

namespace, class name and method name, as shown on line 5. A Method element

represents the target method it consists of name, type of advice to apply (e.g. be-

fore, after or around), and the aspect method name that contains the actual advice,

as shown on line 10.

Aspect Weaver

The weaving involves making sure that the advice specified by the XML Aspect

Deployment Descriptor is inserted into the target methods. The weaving covers

both static crosscutting called ‘introduction’ and dynamic crosscutting.

Variables and methods can be introduced by using an attribute [introdu-

ction(<string>)], where <string> is a list of classes that the variable or

method should be introduced too.

With dynamic crosscutting advice is specified by the XML Aspect Descriptor.

55

Target methods are identified within the XML file.

As shown in figure 3.5, the AOP engine has explicit access to member functions

and variables through the CodeIdentifier class.

Within the weaving module aspect conflicts are resolved, if more than one as-

pect is applied to a base method then there needs to be an ordering of aspects.

Aspects are applied to base methods depending on the type of advice:

1. Any around advice is firstly applied.

2. Before advice is applied, if more than one piece of before advice is applied

to a base method then the order in which it appears in the Aspect Deployment

Descriptor is the order in which it is applied.

3. After advice is then applied, again if more than one piece of after advice

is applied to a base method then the order in which it appears in the Aspect

Deployment Descriptor is the order in which it is applied.

With AspectC# aspects can be tailored to the developers needs. An aspect can

be general and affect all classes in an application or they can be specific and only

affect a small number of classes. With runtime based approaches to AOP many

tools have problems with the security issue and injecting code before JIT compi-

lation, as aspect weaving is performed at compile time there are no security issues

with AspectC#.

Compiler

The final job of the AOP engine is the compilation of weaved source code into an

assembly; we call the compiled assembly an ‘aspect assembly’. Here a standard C#

compiler can be used because there is no language extension.

56

Figure 3.5: Compiler Class Diagram.

3.4 Summary

In this chapter we have covered the main functional and non-functional require-

ments of the system. The usage of the tool has been described and finally the de-

sign of the tool has been discussed. AspectC# design allows developers to capture

crosscutting concerns in a modular way. There are no language extensions neces-

sary and aspect and base code is kept separate from each other. We believe our

design is modular and extensible so that in future versions of the tool it may be

possible for cross language aspect weaving.

57

Chapter 4

Implementation

4.1 Introduction

This chapter describes the implementation of the prototype system. We describe

the AOP Engine and its parts: Parser, AST Representation, Weaver, Compiler and

Aspect Deployment. Finally there is a summary of the implementation. The sys-

tem was developed using the Microsoft Visual Studio .NET release version. The

database used for the example project was the Microsoft SQL server version 8.0.

4.2 AOP Engine

The AOP Engine forms the heart of AspectC#, as shown in figure 3.3 it consists of

five modules. Each module is responsible for a certain area of the overall require-

ment of allowing the modularisation of crosscutting concerns.

4.3 Parser

This section describes the implementation of the parser of the system. We could

have used a parsing tool like YACC [YAC], LEX [LEX] or Visual Parse [SAN];

but it was decided that our system did not warrant the additional complexity and

dependencies on 3rd party libraries or software so a simple parser was developed

that parsed the necessary constructs namely, class, variable and member level.

58

As discussed in section 3.3.3, the main functionality of the parser is to lexically

analyse the source file whether it is a base or aspect source file. The parsing in-

volved using regular expressions classes from the namespace System.Text.RegularExpressions.

Regular expressions provide a mechanism for capturing and matching large amounts

of text. The RegularExpressions namespace is based upon the PERL5 [Per]

regular expression syntax.

The classes involved in the parsing are, see figure 3.4:

� CodeIdentifier: represents a parsed source field with references to class,

field and member information.

� ParsedNameSpace: represents a parsed namespace directive.

� ParsedUsing: represents a parsed using directive.

� ParsedClass: represents a parsed class directive.

� ParsedField: represents multiple parsed variable directive.

� ParsedConstructor: represents a parsed constrcutor directive.

� ParsedMethod: represents a parsed method directive.

� ParsedParameter: represents a parsed parameter directive.

� ClassRegex: contains the regular expressions.

As an example of parsing the following code segment represents the process in-

volved in parsing a namespacedirective. Firstly the C# grammar for a namespace

[Micb] is inspected to find the possible combinations. Then the regular expression

is generated and finally the code may be using within the CodeIdentifier

class. We begin by looking at the namespace grammar as defined in the C# speci-

fication.

59

compilation-unit:
using-directivesopt global-attributesopt namespace-
member-declarationsopt

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ using-directivesopt namespace-member-declarationsopt }

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
using identifier = namespace-or-type-name ;

using-namespace-directive:
using namespace-name ;

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

60

This grammar segment is the full grammar for the namespace declaration in

the C# specification. The next code segment represents the regular expression for

the namespace grammar.

\s?(namespace)(\s\w+)(\u002E\w+)*

where,
\s? = zero or more whitespace characters.
(namespace) = the text namespace (all lower case).
(\s\w+) = any whitespace character followed by

one or more letters.
(\u002E\w+)* = a fullstop followed by one or more letters,

repeated zero or more times.

E.g. namespace Ie.Tcd.AspectCSharp;

4.4 Abstract Syntax Tree

The AST representation of the source code is vital to the project, a requirement cov-

ered in section 3.2 is that the system should be extensible. By modelling the source

code as a CodeDOM tree we keep it independent from a specific language; this

will leave the possibility of cross language weaving. The AST representation relies

heavily on the CodeDOM API as discussed in section 2.2.3. The CodeDOM API

provides interfaces, classes and architecture to represent the structure of a source

code document independent of a programming language. The classes involved in

the representation of the AST of a source code file are:

� CodeBuilder: The CodeBuilder class acts a the central location for the

creation of the AST. It uses the ParsedNameSpace, ParsedUsing,

ParsedClass, ParsedMethod, ParsedField classes from the pars-

ing module to create the tree.

� ParsedNameSpace,ParsedUsing,ParsedClass,ParsedMethod,

ParsedField classes: These classes are used to generate the information

about the source file.

61

The process of representation of source code as an AST is best shown in the

form of a sequence diagram. Figure 4.1 shows the process of source code to AST

representation.

Figure 4.1: Sequence Diagram of AST representation

4.5 Aspect weaver

The merging of aspect and non-aspect code is a critical element in the design of

any aspect-oriented language mechanism. The aspect weaving is performed on two

types of crosscutting implementations as stated: dynamic, advice and static, intro-

duction. In section 3.3.3 we discussed the design our aspect weaving mechanism,

figure 3.5 illustrates the structure. The classes involved in weaving are:

� CodeBuilder: Models the source code file as an AST, performs weaving

at methods joinpoints.

� ClassJoinPoint: Each source file � class contains one ClassJoinPoint,

which contains target class information and aspect information.

62

� MethodJoinPoint: Each method is checked to see if it has associated

advice, if this is true then a MethodJoinPoint object is created that contains

advice for the method.

� Advice: Conatins the type of advice it is (i.e. before, after, around) and

a reference to an spectBuilder object that represents the aspect code to be

woven at the join point.

� AspectBuilder: An AspectBuilder object contains explicit access to the

fields and methods of an aspect class. An Advice object queries the Aspect-

Builder to obtain the advice code.

4.5.1 Dynamic Crosscutting Implementation

Advice from aspect classes is woven with base classes by firstly identifying the

target methods (with Aspect Deployment Descriptor) and then inserting the advice

into the AST object graph. Figure 4.2 shows the sequence diagram of weaving

aspect advice into target methods.

The following code snippet shows the weaving of aspect and base code for

before and after advice. Each method is firstly checked to see if has advice using

the hasAdvice method, this method contains access to the Aspect Deployment

Descriptor information and this in turn can be used to identify methods that have

advice. If the method has advice then a MethodJoinpointobject is created that

holds the specific advice for the given method. Finally the weaving is performed at

the object graph level.

MethodJoinPoint methodJP = hasAdvice(c.getNameAndParameters());
if(methodJP.hasAdvice())
{
if(before)
{
foreach(Advice beforeAdvice in beforeList)
{
AspectBuilder aspectAdvice =

63

Figure 4.2: Sequence Diagram of Aspect Weaver

beforeAdvice.GS_Aspect;
string codeBefore = aspectAdvice.

getAspectCode(beforeAdvice.GS_methodName);

CodeExpressionStatement expressionBefore = new
CodeExpressionStatement(

new CodeSnippetExpression(codeBefore));

method.Statements.Add(expressionBefore);
}

}

string code = c.getFinalText();
CodeExpressionStatement expression = new

CodeExpressionStatement(
new CodeSnippetExpression(code));

method.Statements.Add(expression);

if(after)

64

{
foreach(Advice afterAdvice in afterList)
{
AspectBuilder aspectAdvice = afterAdvice.GS_Aspect;
string codeAfter= aspectAdvice.getAspectCode(

afterAdvice.GS_methodName);
CodeExpressionStatement expressionAfter = new

CodeExpressionStatement(
new CodeSnippetExpression(codeAfter));

method.Statements.Add(expressionAfter);
}

}

Class.Members.Add(method);
}

4.5.2 Static Crosscutting Implementation

In order for introduction to be enabled within AspectC# it was necessary to use the

attribute mechanism of the C# language. An attribute is an object that represents

data that you would like to associate with an element within your program [Lib01].

We created a custom attribute called introduction. The following code seg-

ment shows the code of the creation of the attribute.

[AttributeUsage(AttributeTargets.Field |
AttributeTargets.Method)]

public class IntroductionAttribute : System.Attribute
{

private string Name;

public IntroductionAttribute(string Name)
{

this.Name = Name;
}

public string getName()
{

return this.Name;
}

}

65

Once the introduction attribute was created we could associate the at-

tribute with elements within the program. The next code segment demonstrates the

usage of Introduction by adding the method sayHello into the class HelloWorld.

On line 1 we can see by using the [Introduction] attribute we can specify we want

the following method to be added to the target class.

1. [Introduction("HelloWorld")]
2. public void sayHello()
3. {
4. Console.WriteLine("Hello Howard!");
5. }

Within the AOP Engine the CodeBuilder class analyses the aspect class for any

instances of introduction. If any are found then the variable or method is added into

the CodeDOM object graph. The following code shows the procedure involved for

introduction.

foreach(AspectBuilder aspect in getAspects())
{

foreach(CodeMethod c in
aspect.getIntroductionMethods(Class.Name))

{
introductionMethods.Add(c);

}

foreach(CodeField cf in
aspect.getIntroductionFields(Class.Name))

{
introductionFields.Add(cf);

}
}

//Add in CodeMethod and CodeField into CodeDOM object
//graph

66

4.6 Compiler

The System.CodeDom.Compilernamespace contains classes that can be used

to manage compilation of source code from CodeDOM object graphs. The ICodeCompiler

can be used by developers of generators and compilers. The Microsoft.CSharp.CsharpCodeProvider

class provides an implementation of the C# compiler. The System.CodeDom.Compiler.CompilerResults

class gives access to any errors or warnings generated during the compilation pro-

cess. The follow code segment shows the internal compilation process within the

AOPEngine.

Microsoft.CSharp.CSharpCodeProvider csharp = new
Microsoft.CSharp.CSharpCodeProvider();

ICodeCompiler cscompiler = csharp.CreateCompiler();
CodeCompileUnit[] units = getCompileUnits(list);
CompilerResults compresult =

cscompiler.CompileAssemblyFromDomBatch(compparams,
units);

if (compresult == null || compresult.Errors.Count > 0)
{
string errors = "";
foreach (CompilerError err in compresult.Errors)
{
errors += err.ToString() + "\n";

}

Console.WriteLine("Errors: " + compresult.Errors.Count);
Environment.Exit(1);

}

Currently the user only has access to a command line compiler tool. The user

can specify a number of options:

� Output files.

/out: � file � Output assembly name, must be fully qualified.

/target:exe Build a console executable.

/target:dll Build a library.

67

� Input files.

/add: � file � Aspect Deployment Descriptor, XML aspect file.

/main: � Main Class � Main class (Entry point of application) if exe.

With this compiler the developer can create either executables or libraries and spec-

ify where the Aspect Deployment Descriptor file is located.

4.7 Aspect Deployment Descriptor

The Aspect Deployment Descriptor is the name given to the aspect mapping mech-

anism. The System.XML namespace provides support for processing XML files.

The System.XML namespace is part of the base class library. The Document Ob-

ject Model (DOM) is what is used to model the XML files. A single XML file is

read into AspectC#, which contains the mappings of aspects to targets and the base

and aspect code directories.

The Aspect Deployment Descriptor acts as the main configuration file for the

application. In the file the aspect and target directories are specified as well as the

aspect to base code mapping. The aspect and target directories contain the actual

C# files used in the merging of aspect and base code.The classes involved in the

Aspect Deployment Descriptor are:

� CompilerManager: Main entry point of application, handles configura-

tion of aspect and target files, as well as compilation.

� XMLAspectReader: Helper class for reading the aspect deployment de-

scriptor.

The following is an example Aspect Deployment Descriptor:

1. <?xml version="1.0" encoding="utf-8" ?>
2. <Aspect>
3. <TargetBase>D:\Project\Test</TargetBase>

68

4. <AspectBase>D:\Project\Test</AspectBase>
5.
6. <Aspect-Method>
7. <Name>AspectTest</Name>
8. <Namespace>Test</Namespace>
9. <Class>Test2</Class>
10. <AMethod>before()</AMethod>
11. </Aspect-Method>
12.
13. <Aspect-Method>
14. <Name>AspectTest2</Name>
15. <Namespace>Test</Namespace>
16. <Class>Test2</Class>
17. <AMethod>after()</AMethod>
18. </Aspect-Method>
19.
20. <Target>
21. <Namespace>Test</Namespace>
22. <Class>HelloWorld</Class>
23. <Method>
24. <Name>SayHello()</Name>
25. <Type>before</Type>
26. <Aspect-Name>AspectTest</Aspect-Name>
27. </Method>
28. <Method>
29. <Name>SayHello()</Name>
30. <Type>after</Type>
31. <Aspect-Name>AspectTest2</Aspect-Name>
32. </Method>
33. </Target>
34. </Aspect>

In this code listing lines 3-4 contain the configuration of the aspect and target

directories. Lines 6-18 contain information about the aspect classes such as the

name and actual C# class containing the aspect. Lines 20-33 contain information

about the target classes and methods.

4.8 Summary

In this chapter we have looked at the implementation of AspectC#. We have exam-

ined the implementation of the five main areas of the AOP Engine: Parser, AST,

69

Aspect Deployment Descriptor, Weaver and Compiler, collectively they enable the

modularisation of crosscutting concerns. The design and implementation has been

completed so that it is extensible and there are no language extension to C#.

70

Chapter 5

Evaluation

5.1 Introduction

In this chapter, we will evaluate both .NET platform as an AOSD platform and

our tool AspectC#. Firstly we evaluate .NET as AOSD platform, next we describe

our methods in the evaluation, and then we will evaluate it against the currently

available AOP tools and methodologies. Finally there is an evaluation of a small

example using AspectC#.

The main goal of AspectC# is the modularisation of crosscutting concerns.

In the following sections we will evaluate AspectC# and other AOP tools based on

how they specify aspects, the language the system used, how is it was implemented,

the usability of the tool and the actual software process.

5.2 .NET as an AOSD platform

“A platform is any base of technologies on which other technologies or processes

are built. In computers, a platform is an underlying computer system on which

application programs can run.” [is.]. AOSD is a new technology that enables the

separation of concerns in software development. The question we would like to

answer is: Does the .NET platform enable AOSD methods or techniques? We be-

lieve that the .NET platform does enable AOSD, we have built a tool AspectC#

71

that enables the modularisation of crosscutting concerns within C# without any

language extensions. We believe the .NET platform can offer AOSD more than

other previous platforms especially in the following areas: MetaData, Reflection,

Code Generation and Cross Language Aspect Development.

5.2.1 Meta Data

Metadata is information about data, information about code, types, assemblies, etc.

that is stored with the programme. In .NET or C# metadata can be added using at-

tributes. Attributes can either be intrinsic or custom; examples of intrinsic attributes

are: [WebMethod] or [Serializable]. Custom attributes are created by the

developer, in AspectC# we use a custom attribute [introduction(<string>)]

to enable the static crosscutting of methods and variables within base classes. In

CLAW it is the metadata information that enables CLAW to identify methods be-

fore JIT compilation and then it may perform the aspect weaving. Metadata, in

particular custom attributes is an enormous advantage the .NET framework gives

the developer.

5.2.2 Reflection mechanism

Reflection is closely linked to metadata. Reflection is the process by which a pro-

gramme can read its own metadata [Lib01]. In Java the reflection mechanism views

data, has type discovery or dynamic invocation were properties and methods can

be invoked at runtime, but with C# there is more powerful support for reflection.

C# allows the ultimate goal of reflection, which is the creation of types at run-

time this is called reflection emit. Many of the currently available AOP tools have

their origins in reflection-based approaches more investigation is necessary to see

if the improved reflection mechanism of the .NET framework would enable more

reflection based AOP tools.

72

5.2.3 CodeDOM

The ability to model a source code file as a language neutral abstract syntax tree

was of great benefit to our project. Some AOP approaches target source code weav-

ing, such as AspectJ. By modelling source code as an AST there is the possibility

of cross language aspect weaving. If a language can be modelled as a CodeDOM

object graph then cross language aspect weaving would be relative easy as all the

code is at the object graph level. But there needs to be more support from the

CodeDOM API for expressions and statements to enable full AST modelling from

any language. The CodeDOM API currently does not support the full Common

Language Specification.

5.2.4 MSIL

Targeting the MSIL code for weaving aspects is used by most of the currently in

development approaches to AOP within the .NET framework. The fact that C#,

VB.NET and other supported languages are compiled into IL enables cross lan-

guage weaving of aspects to base code. Also because the CLR JIT compiles IL

before execution, this leaves the possibility of aspect weaving at runtime.

5.3 Evaluation Methodology

In the paper Does Aspect-Oriented Programming Work? [MWB
�

01] Murphy et al.

describe how to evaluate the usefulness of AOP. They did this by getting multiple

organisations to implement products with and without AOP, then evaluate. They

describe two basic techniques to evaluating programming technology: experiments

and case studies.

Experiments are usually performed under controlled circumstances with a num-

ber of developers and test programs. Walker et al. [WBM99] performed exper-

iments using AspectJ and three participants. The participants were asked to do

two tasks: Debug an existing application and change an existing application. Case

73

studies are of particular use in investigating the usefulness of an AOP language;

examples include Atlas [MLWR01]. Larger case studies examine how the AOP

technology affects multiple issues concerning the whole development of an appli-

cation. Smaller case studies investigate specific development issues.

We decided that due to time restrictions that it would be only possible to per-

form a small case study, but this would help with evaluating specific issues relating

to development with AspectC#.

5.4 AspectC# versus The Rest

We decided to evaluate AspectC# against four “state of the art” tools: AspectJ,

Hyper/J, CLAW and AOP#. It was decided that evaluation would be performed

under six issues (issues 1 - 5 were taken from Elrads article Discussing Aspects

of AOP [EFB01], issue 6 was added into the evaluation because the usability of a

programming tool is very important.):

1. How the AOP system specifies aspects.

2. What composition mechanisms the system provides.

3. Implementation mechanisms.

4. Decoupling.

5. Software process.

6. Usability.

Before the evaluation begins, it must be stated that the Java solutions have

been in development for a longer period of time and show the greater progression

in AOSD. Most of the .NET solutions borrow ideas from the Java based AOP tools.

But the .NET approaches bring experience with cross language aspect weaving and

aspectual polymorphism which are very promising ideas in AOSD.

74

5.4.1 How the AOP system specifies aspects

Table 5.1 evaluates how each approach specifies aspects; this issue relates to:

1. How the tool defines join points (places in the program were base or core

code interacts with the aspect code).

2. What is the actual source code requirement, can aspects be applied to vari-

able, method or class level? Probably not too useful if just class level.

3. The extent to which an aspect may be customised to a certain usage within

the system. Can aspects be general or specific? A system which allows both

would be of greater value to the developer.

5.4.2 Composition mechanisms the system provides

Table 5.2 show each composition mechanism for each approach, this issue relates

to:

1. Whether there exists a dominant decomposition within the language. Is one

decomposition applied to aspects or are all concerns treated as equals.

2. Does the system contain explicit language extensions for aspects? If the tool

makes explicit language extension then it forces the developer to learn these

extensions and makes source code that does not conform to the language

specification.

3. What is the relationship, visibility between aspects? In order for reusability

of aspects the relationship between aspects must be fully described.

4. Can aspects influence behaviour and is there a mechanism for resolving con-

flicts between aspects?

75

Tool How AOP system specifies aspects
AspectJ AspectJ consists of a Join Point model, were:

(i) A join point is a well-defined point of execution in the program,
as discussed in table 2.1.
(ii) Pointcuts are a set of join points.
An aspect is a modular unit of a crosscutting concern. Aspects can
be customised to specific requirements or be general and effect
multiple areas of the system.

Hyper/J In Hyper/J join points are defined by relationships between
concerns. Joining occurs at method level.
Each concern or artefact within a dimension is encapsulated.
Concerns are specific within the dimension.

CLAW CLAW uses a similar syntax to AspectJ; it employs the same join
point model but it is a subset of AspectJ with join points only at
the method level. The mapping of base to aspect code is achieved
through a XML weave definition file.
An aspect in CLAW has the same meaning as in AspectJ. Aspects
can be customised to specific usages or general.

AOP# AOP# uses a similar syntax to AspectJ. A subset of the join point
model of AspectJ is used. The mapping of core to aspect code is
achieved through an XML connector file.
An aspect in AOP# has the same meaning as in AspectJ. Aspects
can be customised to specific usages or general.

AspectC# AspectC# uses a similar syntax to AspectJ. A join point is a well-
defined point of execution: a method execution.
In AspectC# an aspect is a modular unit of crosscutting
implementation. Aspects can be designed to be either general or
specific.

Table 5.1: How AOP system specifies aspects

5.4.3 Implementation mechanisms

Table 5.3 discusses the implementation mechanisms of each tool. This issue in-

cludes all aspects of the implementation from:

1. When the composition is determined. Static is when compositions are deter-

mined at compile time and dynamic is when compositions are determined at

run time.

2. Is there a clean separation of aspect and base code, can the compilation oc-

76

Tool Composition mechanisms the system provides
AspectJ The dominant decomposition within Java is OO, as AspectJ is

applied to Java all aspects are applied to class structures.
AspectJ extends Java with explicit language extensions.
Aspects within AspectJ can influence the behaviour of the main
program namely with the proceed keyword. AspectJ includes
rules for resolving conflicts among aspects.

Hyper/J Hyper/J stems from SOP and is an implementation of Multi-Dimensional
Separation of Concerns (MDSOC) that supports arbitrary concerns
in the form of a hyperslice; therefore there is no dominant
decomposition and different decompositions of a system may coexist.
Hyper/J does not have any language extensions.
It is possible for hyperslices to interact between dimensions and
for hyperslices to influence the behaviour of a system.

CLAW The CLR currently only supports OO languages, this means that
CLAW affects only OO languages although there is the possibility
of support for other decomposition mechanisms.
CLAW does not impose any language extensions.

AOP# AOP# also works within the CLR; therefore AOP# affects only
OO languages although there is the possibility of support for other
decomposition mechanisms.
AOP# does not impose any language extensions.
AOP# uses the concept of ‘aspectual polymorphism’ were
aspects can be turned on and off dynamically at runtime.

AspectC# AspectC# does not extend the C# language. The dominant
decomposition is OO as aspects are applied to classes.
AspectC# does not make any language extensions to C#.
AspectC# has similar constructs to AspectJ and can dynamic alter
the behaviour of methods using the proceed keyword.

Table 5.2: Composition mechanisms the system provides

cur separately? Does the tool make invasive changes to the base leaving the

actual base code file changed after the tool.

3. What is the target code of the system? If the target source code then the

developer must have access to the base source files, if the target is byte code

or an intermediate language then the developer may only need the byte code

or intermediate class file.

4. Can the system be applied to existing applications?

77

5. Is there a way of verifying compositions? Is it possible to tell if the aspect to

base composition is correct?

6. Does system contain support for Aspectual Polymorphism? Can aspects be

turned on and off?

Tool Implementation mechanisms
AspectJ In AspectJ compositions are determined statically at compile time.

There is a clear separation of aspect and base code; but it is
possible to compile and run base code separately.AspectJ may
work on new or existing systems.
AspectJ targets source code and it possible to verify compositions
using the compiler.
No support for Aspectual Polymorphism.

Hyper/J Hyper/J performs compositions are compile time. Hyperslices can
be compiled separately or as a whole system. Hyper/J can be
applied to new or existing systems.
Hyper/J targets byte code and it is not possible to verify
compositions.
No support for Aspectual Polymorphism.

CLAW CLAW performs composition dynamically at runtime. There is a
clear separation of aspect and base code. CLAW can work on new
or existing systems.
CLAW targets MSIL before JIT compilation and there is no
composition verification mechanism.
No support for Aspectual Polymorphism.

AOP# AOP# performs composition dynamically at runtime. There is a
clear separation of aspect and core code. AOP# can work on new
or existing systems.
AOP# targets MSIL, and currently no support for verifying
compositions.
Supports for Aspectual Polymorphism.

AspectC# Compositions in AspectC# are performed statically at compile
time. There is a clear separation of aspect and base code.
AspectC# can be applied to new or existing systems.
AspectC# targets source code, currently it is not possible to verify
compositions.

Table 5.3: Implementation mechansims

78

5.4.4 Decoupling

Decoupling relates to whether the developer of the base code is aware of the aspect

code and does the developer have to make adjustments to prepare for aspect code?

This is called obliviousness [EAK
�

01], the base code developer is oblivious of the

aspect code. Following from this is it possible for the developer to apply aspects

globally, locally or both? It would be better if the developer was left the option

of applying aspect either globally or locally. Table 5.4 describes each approach to

decoupling in detail.

Tool Decoupling
AspectJ AspectJ leaves the option of obliviousness to the developer. The

developer may have to prepare for aspects as in the case of
transactions. Aspects can affect the program locally or globally.

Hyper/J Concerns in Hyper/J are self contained and do not know about other
concerns. The developer must have intimate knowledge of the system,
but if Hyper/J is applied to an existing application. Concerns
can affect the program locally or globally.

CLAW CLAW has a similar syntax to AspectJ, the option of obliviousness
is left to the developer. Aspects can affect the program locally
or globally.

AOP# AOP# has a similar syntax to AspectJ, the option of obliviousness
is left to the developer. Aspects can affect the program locally
or globally. There is also the ability to switch on and off aspects.

AspectC# The option of obliviousness is left to the developer. In some cases
it is necessary for the base code to ‘prepare’ for aspect advice,
while in other cases it is not necessary. Aspects can be either
global or local.

Table 5.4: Decoupling

5.4.5 Software Process

This issue includes the overall software process:

1. What methodology or framework the system uses?

2. What aspect mechanisms enable reuse?

79

3. Is it possible to analyse the performance of the aspect system.

4. Is there a debugging mechanism?

Each software process is discussed in Table 5.5.

Tool Software Process
AspectJ AspectJ uses AOP with a clear separation of base code and

aspect code.
An aspect in AspectJ is a modular unit of crosscutting concern;
this structure enables reuse. Aspects can be either general or specific.
Currently there is no debugger for AspectJ.

Hyper/J Hyper/J uses MDSOC methodology that can deal with arbitrary
concerns.
A hyperslice enables reuse within Hyper/J. Concerns
usually are general but can be specific.
Hyper/J is an on going project and currently there is no debugger.

CLAW CLAW uses AOP with a clear separation of base code and aspect
code.
An aspect in CLAW enables reuse. Aspects can be either
general or specific.
Currently there is no debugger for CLAW.

AOP# AOP# uses AOP with a clear separation of base code and aspect
code.
An aspect in AOP# enables reuse. Aspects can be either
general or specific.
Currently there is no debugger for AOP#.

AspectC# AspectC# uses AOP with a clear separation base and aspect
code.
An aspect is a modular unit of a crosscutting concern and
this structure enables reuse.
Currently there is no debugger for AspectC#.

Table 5.5: Software Process

5.4.6 Usability

The usability issue relates to the up take of the language, how easy it is to pro-

gramme with the system. Is there any developer support or community mailing

lists? Table 5.6 discusses the usability of each tool.

80

Tool Usability
AspectJ AspectJ is user friendly with IDE developer plug-ins also available.

There is a lot of research into the development with
AspectJ and there exist a large user community group.

Hyper/J Hyper/J is more a complex approach but does have GUI support.
There is also a medium size community group.

CLAW Currently no prototype available.
AOP# Currently no prototype available. But because AOP# uses similar

semantics and constructs to existing AOP tools it is hoped that it
will be usable from the start.

AspectC# The alpha version of AspectC# has just been released. We hope
to gain a lot of interest and feedback from its release. The fact that
it uses similar syntax to AspectJ we hope will enable greater
usability.

Table 5.6: Usability

5.5 An Example: A Bank Account

In this example we demonstrate the use of AspectC# from design to implementa-

tion. We will show an example of development with AspectC#.

5.5.1 The Problem

The problem is a simple Bank account scenario: when a user deposits or withdraws

money from their account we would like the entire task to work or none of it to

work, i.e. transactions. Transactions are based upon the ACID principle [Cou01].

Transactions are a crosscutting concern as they result in non-modular code.

5.5.2 OO Solution

The design is simple and consists of four classes: A super class that represents

a bank account and three sub classes that represent types of accounts: current,

savings and business accounts. Figure 5.1 shows a class diagram of the solution.

The solution consists of four classes:

1. Account: Super class for an account, holds details about a individual client.

81

Figure 5.1: Bank account class diagram.

2. CurrentAccount: Represents a current account for the client and has the func-

tions of deposit, withdrawal, pay bill, etc.

3. SavingsAccount: Represents a savings account for the client and has the

functions of deposit, withdrawal, calculate interest, etc.

4. BusinessAccount: Represents a business account for the client and has the

functions of deposit, withdrawal, pay bill, invoices, etc.

The following code segment is taken from CurrentAccount, it represents

the procedure for deposits into the account. Transaction start with a begin transac-

tion command and either end successfully with a commit command or unsuccess-

fully with a rollback command.

1. SqlConnection connection = new SqlConnection(
2. Connection_Source);

82

3. connection.Open();
4. SqlTransaction tx = connection.BeginTransaction();
5. string message = "";
6.
7. try
8. {
9. string CommandText = "Update Account " +
10. " Set Balance = Balance + " + Amount +
11. " Where CustomerID = ’" + base.getID() + "’" +
12. " And Type = ’" + ACCOUNT_TYPE + "’";
13. SqlCommand command = new SqlCommand();
14. command.CommandText = CommandText;
15. command.Connection = connection;
16. command.Transaction = tx;
17. command.ExecuteNonQuery();
18.
19. tx.Commit();
20. message = "Update suceeded!";
21. }
22. catch(Exception e)
23. {
24. tx.Rollback();
25. message = "Record not written to the database!";
26.
27. }
28. finally
29. {
30. connection.Close();
31. }

From the code segments lines 1-4 deal explicitly with the opening of the con-

nection and starting of the transaction. Lines 16 and 19 deal with associating the

transaction with the SQL update and committing the transaction if it was success-

ful. Finally Lines 22 - 31 deal with the situation if an error occurred and the closing

of the transaction. If we examine the updating of the record to the database only

lines 9 - 14 deal explicitly with the updating of the record the rest are needed for

opening the connection to the database and the transaction code. In the OO solution

similar code in each class is necessary for the application to handle transactions.

83

5.5.3 AspectC# Solution

The AspectC# solution is similar to the OO solution as shown in figure 5.1, but the

transactions has been taken out from these classes and put into an Aspect class

called AspectTransaction. In this class all the connection and transaction

management is handled. AspectTransaction consists of two aspect methods:

1. beforeTransaction: Handles connection and transaction setup.

2. afterTransaction: Handles commit
�

rollback of transaction and clos-

ing of connection.

Figure 5.2: Bank account AOP class diagram.

The following code segment shows the two methods beforeTransaction and

afterTransaction from AspectTransaction.

public void BeforeTransaction()

84

{
connection = new SqlConnection(Connection_Source);
connection.Open();
tx = connection.BeginTransaction();
command.Transaction = tx;

}

public void AfterTransaction()
{

if(message.Equals("Error"))
{

tx.Rollback();
}
else
{

tx.Commit();
}

connection.Close();
}

The next code segment shows how the base class method is affected by the as-

pect class. We can see that only the necessary SQL is contained within the method

therefore making the code easier to understand and more modularised. But in the

base code it is necessary to move the connection variable out of the method and

prepare of the aspect code. We do not see this as too much of a limitation as the

resulting code after applying AspectC# is well modularised.

try
{

string CommandText = "Update Account " +
" Set Balance = Balance + " + Amount +
" Where CustomerID = ’" + base.getID() + "’" +
" And Type = ’" + ACCOUNT_TYPE + "’";

command.CommandText = CommandText;
command.Connection = connection;
command.ExecuteNonQuery();
message = "Balance updated successfully";

}

85

catch(Exception e)
{

Console.WriteLine(e.StackTrace);
message = "Error";

}

return message;

5.5.4 Results

We will base the evaluation of the result of the development with AspectC# on

three criteria:

1. Number of Lines of code versus OOP solution: the less number of lines of

code means the less the developer has to write and also for maintenance the

less the better.

2. How modular are the crosscutting concerns after AspectC#: By modularis-

ing crosscutting concerns we do not have problems like code scattering and

tangling, this also aids development and maintenance.

3. Usability of AspectC#: AspectC# is a programming tool, the less usable it is

the less likelihood it will be useful to developers.

Lines of Code

From figure 5.3 we can see in the OO solution that on average each class consists

of approximately 200 - 250 lines of code in the OO solution. The transaction code

is highlighted in each class, we can see that it is scattered and tangled within the

class structure.

From figure 5.4 we can see in the AOP solution that the average class contains

approximately 170 - 200 lines of code in the AOP solution but there is the addition

of another class the aspect class. But what we find is that if more transaction are

86

Figure 5.3: Number of lines of code from OO solution.

necessary then there is no need to tangle code within the base classes all that is

needed is an additional entry in the Aspect Deployment Descriptor.

Figure 5.4: Number of lines of code from AOP solution.

87

Modularisation of crosscutting concerns

From figure 5.4 we can see how the tangled and scattered code associated with

transactions is taken out from the base classes and modularised into a single aspect

class. This results in the code being easier to maintain and lowering the likelihood

of errors being introduced when changes to the application are necessary.

Usability of AspectC#

It is quite difficult to evaluate the usability of AspectC#, it is only a research proto-

type and we would need a large user community to properly evaluate the usability

of the tool. But what we can say is that AspectC# is based upon AspectJ and its

semantics are user friendly. The development environment of AspectC# is the Vi-

sual Studio .NET IDE, which is extremely user friendly and is the de facto IDE for

.NET development.

5.6 Summary

In this chapter we have evaluated .NET as an AOSD platform and our tool As-

pectC#. Firstly we discussed what a platform is and how .NET fits into the AOSD

scheme. Then we compared our tool with other leading AOP tools from both Java

based solutions to .NET based solutions. We have also covered a small example

of using AspectC# in a development environment comparing it against OOP with

C#.

88

Chapter 6

Conclusions

6.1 Introduction

In this chapter we discuss the conclusions of the project. Firstly we begin with a

discussion of the objectives of the dissertation and how well these objectives were

met. Next there is an outline of the benefits of AspectC# over the competition. Then

the limitations of the system are considered and finally the future development of

AspectC# is discussed.

6.2 Summary of Objectives

In chapter 1 we discussed the goals or objectives of the dissertation. We believe

that we have meet, if not exceeded each goal of the dissertation. We will now look

at each objective in turn:

1. Design and Implementation of AspectC#

Chapters 3 and 4 dealt with the design and implementation of AspectC#.

We believe we have created a tool that meets all requirements set our in

the requirements of out system. The modular design of the system has left

the possibility of extending the system to enable cross language weaving. A

thorough discussion on the implementation issues was also described.

2. Evaluation of AspectC#

89

In chapter 5 we discussed the evaluation of AspectC#. This evaluation cov-

ered but a comparison against currently available tools
�

methodologies and

a simple example using AspectC#. We showed how AspectC# reduces the

number of line of code for crosscutting concerns and how modular the code

becomes after running AspectC#.

3. Investigation of AOP technologies

In chapter 2 we investigated the state of the art of AOSD tool support. A full

evaluation of each AOP approach was carried out this included: composi-

tion mechanisms, implementation mechanisms, architecture and semantics.

In summary:

� AspectJ is probably the leading AOP tool currently available. AspectJ

has a large user group and a lot of tool support with IDE plug-ins.

AspectJ can best be described as a source pre compiler that weaves as-

pects at compile time. AspectJ is currently on release 1.0 and its seman-

tics are quite stable at present. Alot of other tools base their semantics

around AspectJ including our own tool AspectC#.

� Hyper/J is more complex than AspectJ. The Hyper/J community is

growing steadily. Hyper/J is the only tool to base their semantics on

Multi Dimensional Separation of Concerns (MDSOC).

� CLAW is still not released and until its security problems are handled

it will not be released. But it promises to be a useful tool from the

beginning, the cross language weaving feature is a major advantage

and the fact it targets the entire .NET platform it is sure to attract more

users into the AOSD community.

� AOP# is soon to be released and is quite similar to CLAW in its ap-

proach to weaving and AspectJ in its approach to the semantic con-

structs. The aspectual polymorphism is something that no tool cur-

rently has.

90

4. AOSD within the .NET Platform

The .NET framework was developed to be the successor to Windows plat-

form, among one of its many goals is easier development of applications.

But does the .NET platform offer anything more than the currently available

platforms to AOSD? In Chapter 5 we discussed areas of the .NET platform

that we think can offer or support added AOSD techniques.

6.3 Benefits

We believe we have created a tool that enables the modularisation of crosscutting

concerns within C# without explicit language extensions and is easy to use. The

system was designed to enable extensibility and hopefully with full CodeDOM

support cross language aspect weaving will be available in later versions of the

system.

To our knowledge AspectC# is one of the firstly available tool that enables

AOP mechanisms within the .NET platform (Both AOP# and CLAW are soon to be

released). Hopefully this tool will enable the .NET community to get more involved

with AOSD, thereby increasing the understanding of AOSD.

6.4 Limitations of System

AspectC# is only a research prototype and there exist many limitations to the sys-

tem. We have identified areas of the system that we think limit the system in the

performance of applying AOSD within C#. The areas are covered in the following

subsections.

6.4.1 Parser Limitations

Currently the implemented parser cannot handle:

� Inner classes.

91

� structs.

� Delegates and Events.

� Attributes.

� Expressions and statements within methods.

6.4.2 CodeDOM Limitations

CodeDOM Limitations The CodeDOM API is part of the .NET base class library.

Currently, the elements are not supported by CodeDOM API are:

� Variable lists e.g. int i,j,k;

� Parameters keyword: params

� Lack of support for expressions and statements

� Attribute targets

6.4.3 Semantic Limitations

AspectC# semantics are a subset of the AspectJ semantics, the semantics of As-

pectJ that are not supported by AspectC# are:

� Join Point Model: AspectC# only supports join points at method execution.

There needs to be full support at method call, exception handling and static

initialisation within classes.

� AspectC# cannot support the cflow keyword from AspectJ.

6.5 Future Work

We believe that AspectC# has achieved it main objective of modularisation of

crosscutting concerns. But for AspectC# to become the leading .NET based AOP

tool we have identified five areas that we think merit future research.

92

6.5.1 Parser

The parser that was implemented for the project was a simple and quickly devel-

oped parser. For the progression of AspectC# there needs to be a better parser. Of

the currently available parsing tools the most promising are:

� C# grammar for Flex
�

Bison [BIS]: This a script that enables flex
�

bison to

parse C# files.

� jb2csharp: This is port of JB Parser and Lexer Generation for Java (currently

in alpha version).

� Mono project: The mono project are implementing an open source .NET

platform, which includes a C# parser.

6.5.2 CodeDOM Graph

The CodeDOM API is of great advantage to us, but there needs to be more sup-

port for modelling code constructs especially within methods and particularly for

expressions and statements.

6.5.3 Semantics of AspectC#

AspectC# uses the same semantics as AspectJ, this is fine for the prototype version.

But there needs to be more investigation into the development of other semantics

for AspectC# and especially the .NET framework.

6.5.4 Testing

The only true way of evaluating a programming technique is to develop systems

with that technique. Clearly one small case study is not enough, there needs to be

more case studies and experiments with AspectC# to fully evaluate the usefulness

of the tool.

93

6.5.5 Cross language weaving

If there exists full parsing support for all languages and full CodeDOM support

this will enable cross language aspect weaving at the source code level.

94

Bibliography

[AOP] AOP#. Unreleased Egon.Wuchner@mchp.siemens.de.

[AOS] AOSD. AOSD Homepage. http://www.aosd.net.

[ASPa] AspectC++ Homepage. http://www.aspectc.org.

[ASPb] AspectR Homepage. http://aspectr.sourceforge.net/.

[BIS] Bison. http://dinosaur.compilertools.net/#bison.

[Boo98] G. Booch. The Unified Modelling Language User Guide. Addison

Wesley, 1st edition, 1998.

[Cla] Siobhan Clarke. Theme UML Homepage.

http://www.dsg.cs.tcd.ie/s̃clarke/ThemeUML/.

[Coa] Yvonne Coady. AspectC Homepage.

http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.

[COM] Compoisition Filters Homepage. http://trese.cs.utwente.nl/composition

filters/.

[Cou01] George Coulouris. Distributed Systemsm, Concepts And Design.

Addison-Wesley, 3rd edition, 2001.

[DEC] DECHOW Homepage. http://cs.oregonstate.edu/d̃echow/.

[Dij76] E.W Dijkstra. A Discipline of Programming. Prentice Hall, 1st edi-

tion, 1976.

95

[EAK
�

01] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr, and

Harold Ossher. Discussing aspects of aop. Communications Of the

ACM, 44(10):33–38, 2001.

[EFB01] Tzilla Elrad, Robert Filman, and Atef Bader. Aspect-oriented pro-

gramming. Communications Of the ACM, 44(10):28–32, 2001.

[Hir] Robert Hirshfled. AspectS Homepage. http://www.prakinf.tu-

ilmenau.de/h̃irsch/Projects/Squeak/AspectS/.

[HO93] W. Harrison and H. Ossher. Subject oriented programming (a critique

of pure objects). Proceedings of the Conference on Object-Oriented

Programming Systems, Languages and Applications, 1993.

[HYP] HyperJ Homepage. http://www.alphaworks.ibm.com/tech/hyperj.

[is.] What is.com. Whatis.com. http://www.whatis.com.

[KHH
�

01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William G. Griswold. An overview of aspectj. Proceedings

of the 5th European Conference on Object Oriented Programming

(ECOOP), 2001.

[KLM
�

97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect

oriented programming. Proceedings of the European Conference on

Object Oriented Programming (ECOOP), 1997.

[Lam] John Lam. CLAW Homepage. http://www.iunknown.com.

[LEX] LEX Homepage. http://dinosaur.compilertools.net/.

[Lib01] Jesse Liberty. Programming C#. O’Reilly, 1st edition, 2001.

[Lie] Karl Lieberherr. DemeterJ Homepage.

http://www.ccs.neu.edu/research/demeter/DemeterJava.

96

[Mica] Microsoft. Aspect.Net project description.

http://research.microsoft.com/programs/europe/rotor/Projects.asp.

[Micb] Microsoft. C# Specification Homepage.

http://msdn.microsoft.com/net/ecma/.

[Micc] Microsoft. CODEDOM Homepage.

http://msdn.microsoft.com/library/en-

us/cpref/html/frlrfsystemcodedom.asp .

[Micd] Microsoft. Microsoft under the hood column.

http://msdn.microsoft.com/msdnmag/columns/hood.asp.

[MLWR01] Gail Murphy, Albert Lai, Robert Walker, and Martin Robillard. Sep-

arating features in source code: An exploratory study. Proceedings of

the 23st International Conference on Software Engineering, 2001.

[MWB
�

01] Gail Murphy, Robert Walker, Elisa Baniassad, Martin Robillard, Al-

bert Lai, and Mik Kersten. Does aspect-oriented programming work?

Communications Of the ACM, 44(10):75–78, 2001.

[OT01] Harold Ossher and Peri Tarr. Multi-dimensional separation of con-

cerns and the hyperspace approach. Proceedings of the Symposium

on Software Architectures and Component Technology: The State of

the Art in Software Development, 2001.

[Par72] D.L Parnas. On criteria to be used in decomposing systems into mod-

ules. Communications of the ACM, 1972.

[Per] Perldoc.com. Perl5 Regular Expressions.

http://www.perldoc.com/perl5.6/.

[SAN] Visual Parse Homepage. http://www.sand-stone.com/.

[Tea] AspectJ Team. AspectJ Homepage. http://aspectj.org.

97

[TO00] Peri Tarr and Harold Ossher. Hyper/J User and Installation Manual.

IBM Corporation, first edition edition, 2000.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. N degrees of sepa-

ration: Multi-dimensional separation of concerns. Proceedings of the

21st International Conference on Software Engineering, 1999.

[WBM99] Robert Walker, Elisa Baniassad, and Gail Murphy. An initial assess-

ment of aspect-oriented programming. Proceedings of the 21st Inter-

national Conference on Software Engineering, 1999.

[YAC] YACC Homepage. http://dinosaur.compilertools.net/.

98

