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Chapter 1

Introduction

The World Wide Web is probably the most popular application running on the Internet,

and the traffic generated by the ever growing number of users on the Web forces Web sites

to implement scalable Web server architectures that will be able to handle current loads

as well as grow to meet future performance requirements.

Cluster Web servers are a popular solution for building scalable Web serving plat-

forms, they offer a cost-effective alternative to high-end servers and can be built from

relatively economical hardware and software. State-of-the-art commercial Web cluster-

ing products employ a specialized front-end node that is a single point of contact for

Web clients and distributes HTTP requests to the back-end nodes in the clusters. Back-

end nodes are typically standard Web servers than can be built with common of-the-shelf

(COTS) hardware and run a Unix-like or Windows operating system. The front-end node

is normally a device that integrates proprietary hardware and software from a commercial

vendor.

Web clustering front-ends can be broadly divided in layer 4 and layer 7 switches or

dispatchers. Layer 4 refers to the OSI network protocol layer 4, TCP in TCP/IP networks,

and means that the front-ends can only use TCP information for taking request distribution

requests. In layer 7 switches the front-ends are application layer information aware, the

application being HTTP in the case of Web servers. Access to HTTP information such as

the request URL, file type or cookies sent by the Web browser allows for a more effective

and flexible configuration of the cluster. For example, layer 7 front-ends can dispatch

all requests for a certain kind of file type to a specific server, or when used with Web

application servers, send all the request with the same session cookie to the back-end

server that has the relevant session data in main memory.

However, state-of-the-art Web clustering solutions achieve only limited scalability ,

and offer a solution based on embedded hardware and software that does not integrate

well with, and take advantage of, existing Web server and application software. The

scalability offered by dedicated front-end nodes is limited, and they do not necessarily
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integrate with the back-end nodes’ software as they have to offer a solution that is as

“standalone” and “plug and play” as possible. Most clustering products don’t work as

an integrated whole, they are implemented as separate front-ends or Web switches that

“clusterise” a set of back-end Web server nodes.

The requirement for Web cluster front-ends to be transparent to the back-end nodes

has important scalability implications when layer 7 switching is used. The front-end has

to accept TCP connections and read their HTTP request data, tasks that were previously

performed by the back-end Web server. This extra work can make the front-end become

a bottleneck, and with front-ends that are transparent to the back-end servers the HTTP

request decoding is done once more by the back-end Web server as well.

In this dissertation a Web cluster architecture is designed, implemented and evaluated.

We believe that with the use of COTS hardware and integrated front-end and back-end

software better scalability and flexibility can be achieved for Web clusters. Furthermore,

the clustering software is all implemented in Java, with the goal of evaluating Java as a

platform for the implementation of high-performance network servers. The Web cluster

prototype described here is built out of a set of distributed components that collaborate

to achieve good scalability as a Web server. As all the components have been designed

from scratch to integrate with each other and work well together, the scalability problems

associated with state-of-the-art content-aware commercial clusters are avoided.

The prototype Web cluster described in this dissertation will be evaluated using pub-

licly available Web benchmarking tools and Web access-log traces. Different workloads

will be applied to the cluster as well as to a standalone Java Web server to compare their

performance and scalability. Web clustering research has frequently assumed that the

Web traffic is mostly static, that is, mainly composed of requests for static files. However,

more and more Web sites implement dynamic Web applications and there is a tendency

toward completely dynamic sites. Thus, apart from standard static traffic dynamic Web

traffic is also simulated and evaluated in our tests.

The evaluation results show that a differentiation between static and dynamic re-

quests is necessary for better understanding of Web server scalability issues. When han-

dling static traffic, it is easy for a single node Web server to saturate an Ethernet 100

Mbit/second connection, and I/O throughput is the main factor. However, scalability of

Web servers that handle dynamic traffic is much improved from using a clustering ap-

proach. This is due to the fact that when serving dynamic requests I/O performance is not

the main scalability factor and CPU processing becomes very important as well. Further-

more, issues involved in implementing scalable network servers in Java are discussed as

well, focusing specifically on how the new non-blocking I/O facilities affect the architec-

ture and scalability of server applications.

This dissertation is organised as follows: chapter two contains a state of the art
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overview of Web clustering, chapter three discusses the design and implementation of

an scalable Web cluster in Java, chapter four evaluates the performance and scalability of

the cluster prototype and chapter five presents conclusions and future work.
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Chapter 2

State of the Art Overview

2.1 Web Serving Overview

URLs are the most user-visible component of how the World Wide Web (Web) works.

When a user wants to retrieve a Web page, all the necessary information for contacting

the right Web server and making the appropriate request for the desired page is contained

in a URL that the user can type in the address bar of the browser. URLs are composed by

several parts as seen in figure 2.1, they are:

Protocol The protocol specifies which application layer (OSI layer 7) protocol the browser

will use to communicate with the server. In the case of Web connections, the pro-

tocol will normally be http for traditional clear-text requests or https for secure en-

crypted requests. These two are the standard Web protocols, but current browsers

usually understand others like ftp or mailto, even if they are not strictly part of the

Web.

Host The host name will specify which Web server a request is directed to. It is a human-

understandable name that will be translated to an IP address by the DNS naming

system used in the Internet. Once the browser obtains the IP address that the host

name belongs to using DNS, it can directly address the Web server host.

Port The port component of the URL is an optional part required by the underlying net-

work protocol layer, TCP. Even if the Web client will always use a port number

when connecting to the server, the port is optionally in the URL, as different proto-

cols have well-known ports that are chosen by default if no specific port number is

given. For example, HTTP uses 80 as its well-known port number.

File path It contains the path to a Web page or file in the Web servers file system, ex-

pressed in a form relative the document root of the Web server, not to the operating-

system root of the server’s file system. The format for the path uses Unix conven-
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tions for separators. With the popularity of dynamic sites and Web applications,

the path frequently doesn’t specify the location of a physical file that exists on the

servers file-system, instead it serves more as a Remote Procedure Call that the Web

server will use to decide which part of the Web application logic to execute.

http://www.example.com:80/index.html

protocol://host:port/filePath

Figure 2.1: Example URL division.

The initial URL that the Web browser user types in an address bar will eventually be

mapped to a set of blocks in a file-system that a Web server process will read or a set of

instructions that will generate a dynamic response.

DNS Resolution
Host name IP address

ARP Resolution
Network interface

Server hostMAC address

Figure 2.2: Web server address resolution steps.

There are various steps in this process assuming that the final server is connected to

an Ethernet network (Figure 2.2):

DNS Resolution The Domain Name System (DNS) is the standard mechanism on the

Internet for resolving a given host or domain name to an unique IP adress. The IP

address identifies one physical machine connected to the Internet.

IP Routing When the Web browser obtains the IP address from the name resolution sub-

system, it sends an HTTP request to that IP address, by sending a set of IP packets

with the IP address of the host. These IP packets go through potentially several

hops between Internet routers until they reach the sub-network that is configured as

including the host with the IP address.

ARP Resolution When the request IP packets reach the last router before the host, the

router will resolve the IP address of the host to an Ethernet MAC address. A MAC

address is an unique identifier of the network card installed on the host. The map-

ping between IP and MAC addresses translates allows the Ethernet switch to send

the request packets to the right network interface connected to it.

Once the request IP packets arrive to the Web server host, they get reassembled to build

a HTTP request, and the server maps the URL to a file in the local file-system. The Web
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server will use then the standard operating system facilities to read the disk blocks needed

for obtaining the contents of the file.

This process has several steps in which a resolution of a mapping between different

naming or addressing schemes is performed: from host name to IP address, from IP ad-

dress to MAC address and from requested URL to file-system block. These points in the

process of handling a HTTP request are where Web clustering techniques can be intro-

duced. For example, DNS round-robin will resolve a given host name to one of several IP

addresses available, or a Web server can cache files in main memory instead of loading

them from the file-system for each request. Several examples of cluster architectures are

discussed in the next section.

2.2 Cluster architecture

We will use a classification of different Web server clustering technologies that has been

proposed explicitly by Steve Goddard and Trevor Schroeder [32, 33], but is common

as well in the research literature. Most of the Web server clustering technologies are

transparent to the client browsers, the browsers are at no time aware of the existence of

clustering on the server side. However, not all clustering technologies are transparent

to the web server software. While still being transparent to the clients, some clustering

solutions are visible to the Web servers, and need specialised software at different levels

in the server system.

2.2.1 Layer 4 switching with layer 2 forwarding

In L4/2 clustering, the dispatcher and the servers all share a common cluster network

address (referred as “Virtual IP address” by some vendors). All incoming traffic for the

cluster address is routed to a dispatcher, using static ARP entries, routing rules, or some

other mechanism. All the servers have a primary unique IP address, but share the cluster

address with the rest of the servers and the dispatcher, which has the cluster address as its

main IP address.

When a packet arrives, the dispatcher determines whether it belongs to a currently es-

tablished TCP connection or is a new connection. If it is a new connection, the dispatcher

chooses one target server to satisfy the request according to its request distribution policy

and saves the mapping between the connection and the server in its memory. Then the

MAC (physical layer or layer 2) address of the frame is rewritten and the packet is sent to

the chosen server.

The server receives the packet and it accepts it as the packet has the address of the

cluster, which all the servers have been configured to answer to. Replies go back through
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Dispatcher
Requests

.

.

..

.

Server 1

Server N

cluster address(secondary)

cluster address(secondary)

Cluster address(main)

Replies

Replies

Figure 2.3: Layer 4/2 cluster architecture

the servers’ default gateway, instead of going through the dispatcher, avoiding the bottle-

neck of passing all the traffic through the dispatcher. When the TCP connection gets drop,

the dispatcher will delete the associated information from its memory.

This technique is very simple while still providing high throughput, as only the incom-

ing traffic is processed by the dispatcher. In typical Web traffic, replies account for most

of the data transmitted, and with L4/2 clustering the reply data is sent straight from the

server to the client. Moreover, as only layer 2 information is rewritten at the dispatcher,

there is no need to recompute TCP/IP checksums.

The drawback is that all the nodes have to be in the same switch as the dispatcher, due

to its use of layer 2 addressing, which is not usually a problem as clustered servers are

usually interconnected by high-speed LANs, and it could be possible to use proprietary

solutions like Cisco switch-to-switch interconnects to propagate MAC address between

different switches.

Research prototypes of L4/2 clustering are ONE-IP [24] from Bell Labs and LSMAC

[20] from the University of Nebraska. Most of the commercial load balancing solutions

provide this kind of clustering as an option.

2.2.2 Layer 4 switching with layer 3 forwarding

It is also known as “Load Sharing Using Network Address Translation (LSNAT)”, and

it is an Internet standard detailed in RFC 2391[30]. Examples of commercial imple-

mentations are Cisco’s LocalDirector 400 series [5], Foundry Networks’ ServerIron web

switches[11] and Nortel’s Alteon ACEdirector series [23]. A research prototype using it

is MagicRouter from Berkeley [22].

In L4/3 each server in the cluster has a unique IP address, and the dispatcher is the

only one that has the address assigned as the cluster address. When a packet arrives the

dispatcher, it rewrites the destination IP address to be the address of the chosen server out

of the cluster, recomputes necessary checksums, and sends it back to the network. When

the packets are TCP connection initiations, the dispatcher will choose one of the cluster
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servers using a request distribution algorithm, keeping the association between layer 4

connection and the server for all future packets part of the connection.

Dispatcher

.

.

..

.

Server 1

Server N

Replies

Requests

Figure 2.4: Layer 4/3 cluster architecture

The server processes the packet and sends the response back to the dispatcher. This

last step is necessary, as without changes in the network protocol, the server operating sys-

tem, or device drivers, the packet must be sent to the dispatcher, because the client expects

a reply from it. When receiving the response, the dispatcher changes the source address

from that of the responding server to the cluster IP address, recomputes checksums, and

sends the packet to the client.

It is well known that a L4/3 cluster will perform worse than a L4/2 architecture, due

to the workload imposed upon the dispatcher by L4/3. As all the traffic has to go through

it and it has to compute the checksums for each packet, the dispatcher becomes quickly a

bottleneck .

2.2.3 Layer 7 switching

Also known as content-based switching or content-aware request distribution, it operates

at the application layer (L7) of the OSI protocol stack. Commercial implementations

that have this functionality are Nortel’s Alteon ContentDirector [23], Foundry Networks’

ServerIron family [11]and Cisco’s CSS 11000 switches [5].

In an L7 cluster the dispatcher is a single point of contact for clients, similarly to the

layer 4 switching architectures. However, the dispatcher does not merely pass packets

depending on a load balancing algorithm or which TCP connection they are from. In-

stead, the dispatcher will accept the connection and choose an appropriate server based

on application level information sent by the client in the request.

There are two main approaches to the handling of the connection once the target back-

end server has been chosen, TCP gateway and TCP hand-off.
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TCP Gateway

HTTP Response

Open Connection

HTTP Request Open Connection

HTTP Request

HTTP Response

Close Connection Close Connection

Client Dispatcher Server

Server

selection

Figure 2.5: TCP gateway operation

In this case, once the dispatcher has decided which back-end server will handle the re-

quest, a new TCP connection is established between the dispatcher and the server, and the

dispatcher acts basically as a TCP gateway, relaying the data between the server and the

client. This approach has similar problems to L4/3 switching, all data has to go through

two connections and TCP/IP protocol stacks, the first one between the client and the dis-

patcher and the second one between the dispatcher and the back-end server.There are

various optimisation techniques used with this architecture, connection pooling and TCP

splicing.

Connection Pooling

Creation of TCP connections is a time and resource consuming operation, to avoid this

time the dispatcher can “pre-fork” connections to the servers, keeping a pool of open

TCP connections that it can reuse. This way, once the target server has been chosen

the dispatcher simply picks an idle connection from the pool instead of establishing a

new connection with the server, avoiding the overhead of initiating a TCP connection for

every new HTTP request. A research prototype of this design is used for Content-based

Routing[9].

TCP Splicing

Typically, proxies and load-balancing dispatchers that work at the application layer use

an architecture called split connection, where there is a connection between the client and

the proxy/dispatcher and a different connection exists between the proxy and the server.
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This scheme illustrated in figure 2.6 has important performance problems and violates

end-to-end semantics of TCP.

Interface
Network

Client

Application
Space

Kernel
TCP/IP
Stack

Proxy Server

client−proxy connection proxy−server connection

Client application Dispatcher Server application

Figure 2.6: Architecture of split connection application layer dispatchers. The proxy or
dispatcher keeps open TCP connections both with the client and with the server.

TCP Splice has been proposed by David Maltz [35] as an improved design for TCP

gateways. The basic idea behind TCP Splicing is shown in figure 2.7, the packets that

are subject to being forwarded can be modified as they are received without passing them

up and down through the whole TCP/IP stack. Once the dispatcher has set up the splice

for a given connection, all the packets that are part of this connection go through the

splice, without performing all the expensive data-copying operations caused by the transit

through the protocol stack.

Interface
Network

Client

Application
Space

Kernel
TCP/IP
Stack

Proxy Server

client−proxy connection proxy−server connection

Client application Dispatcher Server application

TCP splice

Figure 2.7: Architecture of a dispatcher or layer 7 proxy using TCP splice. The request
data that moves between client and server is kept at the kernel level.
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TCP hand−offTCP Gateway

Client Frontend

Server

Server

Client Frontend

Server

Server

Figure 2.8: Traffic flow in TCP gateway versus TCP hand-off

TCP Hand-off

This approach, illustrated by figure 2.8allows the dispatcher to give or “hand off” a TCP

connection to a particular server once it has decided which one of the servers is the right

one to answer the request. In layer 7 switching clusters, dispatchers need to be able to fully

establish a TCP connection with the clients to receive the application layer (HTTP in this

case) request data that will allow them to make a choice regarding which back-end server

will deal with the request. Once the decision has been made, the dispatcher has to be able

to “re-establish” the connection on the back-end server, recreating the required connection

state. This protocol is extensively discussed in Thomas Larkin’s dissertation [18] and is

used in layer 7 designs like Content-Aware Request Distribution [4] or Locality-aware

Request Distribution [17]. Resonate [29] commercialises a proprietary solution that uses

this approach under the name of TCP Connection Hop in their Central Dispatcher product

[29].

2.3 Server selection / request distribution

2.3.1 DNS Round Robin

In a Server selection system that uses DNS, the DNS server will resolve the name of

the service or domain to a different IP address using different algorithms such as load

average of a simple round-robin. This mechanism is specified in RFC 1974 [31]. DNS is

the naming system used in the Internet, as such it supports massive scalability by making

use of hierarchical organisation of naming information and caching at several levels of

the naming system.

DNS-based server selection techniques base their effectiveness on setting a very low

(down to 0) value for the TTL (Time To Live) field of their responses, minimising caching

of the name resolutions, which allows the implementation of round-robin or other load

balancing algorithms, as well as more complex solutions that try to resolve to IP addresses

that will give better service based on the physical location of the client. If clients contact

the DNS server for each request, the DNS server that is in front of a web cluster can
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control the back-end server to which each request gets sent.

The problem with this approach is that all the elements involved in resolving a name

to an IP address, from the browser to the root DNS servers, use caching for improving

performance and response times to users. Between DNS servers, the validity of a piece

of information is given by a TTL field that specifies how long that information can be

cached before refreshing it from the original or “authoritative” source, and web browsers

are known to cache resolution information for about 15 minutes. This caching at several

layers is what makes DNS so scalable.

It has been shown in [10] that DNS-based server selection schemes actually have

a negative impact on client-perceived web access latency. Without caching, the client

should always need to contact the DNS server before each request, increasing name res-

olution overhead by up to two orders of magnitude. This problem is aggravated by the

delays caused by DNS queries needed for embedded objects in HTML pages such as

images.

2.3.2 Weighted Round Robin (WRR)

Weighted Round Robin (WRR) is the most common distribution algorithm found in com-

mercial web load-balancing solutions, and although commercial vendors frequently sup-

port other more complex server selection schemes such as URL-aware selection, WRR

and its variants are still very popular and widely used, thanks to their simplicity and scal-

ability.

In this server selection scheme the front-enback-end dispatcher is usually a Layer

4 switch that distributes request to back-end servers using only load-balancing require-

ments. As its name implies, it is a variant of Round-Robin that instead of “blindly” dis-

patching requests iteratively to the available back-end servers, has a weighting introduced

for each server, normally calculated as a function of the CPU, disk and/or memory use.

The weight of each server in the load-balancing algorithm is reevaluated periodically.

The main benefits of WRR are that it obtains low idle times in the back-end servers

and achieves a very well balanced load distribution. However, the main problem of WRR

is that it show a high cache miss ratio. In web servers, being able to cache the working set

(the set of web objects that the server accepts requests for) is critical, as the throughput of

the current disk devices is much lower than the expected throughput of network servers.

For web server clusters that have big working sets this supposes a problem, as each in-

dividual node main memory cache has to fit the entire working set, which is frequently

impossible. When the node caches are not able to hold all their working set, the through-

put is low, as the cluster is not taking advantage of its aggregated cache size. WRR scales

well to high-traffic sites but doesn’t provide greatly improved response rates when the

working set bigger than the node caches.
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Different distribution schemes based on Layer 7 switching try to overcome this prob-

lem by distributing requests to nodes that are more likely to already have the requested

object in the cache, effectively partitioning the working set and making it possible for

individual nodes to keep their respective partitions in cache. One example of this design

is Locality-Aware Request Distribution [17].

2.3.3 Weighted Least Connections

Weighted Least Connections (WLC), is a common alternative to WRR as a request dis-

tribution algorithm. It is a weighted variant of Least Connections (LC), which bases its

distribution decisions on the number of open TCP connections each back-end server has

open. The rationale behind this idea is that if the server has several open connections, it

means that it is busy servicing requests, and the more open connections it has, the less

new requests it should receive.

The weighted version of LL, WLC, goes one step further and includes a weight in the

distribution algorithm. This weight is calculated and updated the same way as with WRR,

using variables such as disk, CPU or network resources usage. This algorithm is available

for several load-balancing solutions, in software Linux Virtual Server [21] is an example

and in hardware Cisco Catalyst web switches [5] provide it as well.

2.3.4 LARD

AAA C B C A A C B

A A A A A

C B C C B

Backend

Dispatcher

server

Backend
server

Figure 2.9: LARD operation

Locality-aware request distribution (LARD) is a form of content-based request dis-

tribution described in [17]. It uses Layer 7/HTTP information. The main advantages of

content-based request distribution compared to schemes like WRR or WLC are:

1. Better throughput thanks to a lower number of main memory cache misses in the

back-end servers.

2. Ability to partition the working set over the different back-end servers, having more

available disk space.
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3. Ability to use specialised back-end nodes for services like multimedia streaming or

dynamic web applications.

LARD focuses on obtaining the first of the advantages cited above, improved cache hit

rates. In figure 2.9 the operation of a basic locality-aware dispatcher is shown, by dis-

tributing requests in this way, there is the risk that the load on the back-end servers

becomes unbalanced, resulting in worse performance than with simpler round-robin al-

gorithms. Thus, LARD has to provide a solution that simultaneously achieves load-

balancing and high cache hit rates on the back-end servers.

Basic LARD

The basic version of LARD always assigns a single back-end server to handle a given

target/URL, effectively assuming that a the requests for a single URL can’t exceed the

capacity of a single server.

Figure 2.10 shows the pseudo-code for basic LARD. The dispatcher maintains a one-

to-one mapping of requested URLs to back-end servers in the server hash-table. When

a given URL is requested for the first time, the least loaded back-end server is assigned

to it, and the decision is recorded. In subsequent requests for the same URL, the same

server will be assigned unless the server is overloaded, in which case the request will be

assigned to the least loaded node of the cluster.

The number of open connections are used to calculate the load on the back-end servers.

An overloaded server will have a higher number of open connections as it will not be able

to handle them quickly, while a lightly loaded node will have few or none active connec-

tions. This factor is the easiest way for the dispatcher to get load information from the

back-end servers without using explicit communication, but other systems that involve

communication could be used as well.

while (true)
request = fetch next request
if (server[request] is null)

node, server[request] = least loaded node
else:

node = server[request]
if ((node.load > Thigh and exists node with load < Tlow) or

(node.load >= 2 * Thigh))
node, server[request] = least loaded node

send request to node

Figure 2.10: Pseudo-code for the basic LARD request distribution algorithm.
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Basic LARD considers only locality when partitioning the working set. It keeps this

strategy unless a “significant load imbalance” is detected, in which case it reassigns the

URL to a different back-end server. The algorithm to reassign an URL works as follows:

Tlow is defined as the number of active connections (load) below which a back-end server

will have idle resources and Thigh as the load above which the server’s response times

will increment substantially. There are two conditions that can trigger a reassignment of

the URL to the least loaded node:

� When a server has a load larger than Thigh wile another server has a load less than

Tlow.

� When the server reaches a load of 2Thigh, even if no server has a load lower than

Tlow.

The two conditions try to ensure that the reassignment only happens when the load dif-

ference is substantial enough. To prevent the case in which the load on all servers rises to

2Thigh,causing LARD to behave like WRR, the total number of connections handed to

the back-end servers is limited by the value S = (n - 1) * Thigh + Tlow - 1, where n is the

number of back-end servers.

LARD with Replication

while (true)
request = fetch next request
if |serverSet[request]| is 0:

node, serverSet[request] = least loaded node
else:

node = least loaded node in serverSet[request]
mostLoaded = most loaded node in serverSet[request]
if ((node.load > Thigh and exists node with load < Tlow) or

(node.load >= 2 * Thigh))
p = least loaded node
add p to serverSet[request]
node = p

if ((|serverSet[request]| > 1)and (time() -
serverSet[request].lastMod > K))

remove mostLoaded from serverSet[request]
send request to node
if (serverSet[request] changed in this iteration)

serverSet[request].lastMod = time()

Figure 2.11: LARD with Replication

There is a potential problem with the basic LARD strategy: only one backend server

can handle each URL at any given time. If one URL or document receives too many
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requests for a backend, it is possible that the backend gets overloaded, degrading perfor-

mance considerably. The solution is to allow several backend servers to handle a single

URL in a round-robin fashion. This is called “replication” in the LARD design, as the

objects are replicated in more than one server.

Figure 2.11 contains pseudo-code for this approach. The main difference is that the

dispatcher maintains a set of backend servers that handle each URL. Normally, the re-

quests are assigned to the least loaded node in the server set. In the case of a load imbal-

ance occurring, the least loaded node from the cluster will handle the request and will be

added to the server set for this URL. To prevent the server set from growing until includ-

ing all the backend servers for each URL, the dispatcher removes the most loaded server

from the server set if the set hasn’t been modified for K seconds.

This design has several advantages: it doesn’t require any extra communication be-

tween the dispatcher and the backend servers, it is independent of the local replacement

policy used by the caches of the backend servers and as it doesn’t use any complex state

information in the dispatcher the recovery in case of failure is very simple.

In the trace-driven simulations run on LARD [17], it is shown that it performs better

than state-of-the-art WRR strategies, improving performance by a factor of two in the

case of working sets that don’t fit in a single backend server’s main memory cache. Inter-

estingly, simulations show that outperforms global memory system clusters that use WRR

as well, even with the advantages of being able to manage a global shared main memory

cache.

Scalable LARD

The standard cluster architecture of the proposed LARD implementation uses a cen-

tralised dispatcher or front-end switch and the TCP hand-off technique. TCP hand-off

is indeed more scalable than other TCP gatewaying designs such as TCP splicing, but

empirical experiments have shown that peak throughput of TCP hand-off is limited to

about 3500 connections per second with real trace workloads and doesn’t scale well be-

yond four cluster nodes [4].

The centralised nature of the content-aware request distribution strategies (e.g. LARD)

makes it difficult to obtain scalability by using multiple front-end switches, which fur-

thermore would introduce load-balancing concerns. The approach taken [4] separates the

functionality of the front-end node in two components, a distributor and a dispatcher, as

shown by figure 2.12. The dispatcher is in charge of deciding which backend server will

handle each request, while the distributor is the component that actually performs the

action of passing or “handing off” the request to the server. With this division, it can

be appreciated that while the dispatcher needs to be centralised to be able to implement

LARD, the distributor can be distributed over all the backend servers as it is completely
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Figure 2.12: Centralised dispatcher and distributor

independent of any centralised control, while still being able to keep a centralised content-

aware dispatcher as shown in figure 2.13.

Server

Distributor

Server

Distributor
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Dispatcher

Figure 2.13: Scalable LARD cluster architecture

To be able to use distributed distributors, this architecture uses a fast layer 4 switch

that is the single point of contacts for clients, working the same way as other Layer 4

cluster architectures. The main difference is that once the requests hit the distributors, the

dispatcher will be contacted and the distributor that received the request will hand off the

request to the backend server that the dispatcher considers adequate. As the switch does

not perform any content-aware distribution, the benefit is that it can be a fast hardware-

based implementation.

The proposed approach is considerably more scalable than using a single front-end

node that performs content-aware request distribution based on LARD or other algorithm.

The distributor’s job, the establishment and handing off of TCP connections, is typically
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the bottleneck in this kind of switches, and making it distributed better scalability can

be achieved paying only a small latency penalty. The centralised dispatcher could be a

potential bottleneck as well, but it is not in practice as it is a very simple component that

can be implemented in a dedicated node and handle up to 50,000 connections per second

[4].

2.3.5 WARD

Workload-Aware Request Distribution (WARD) is a content-aware request distribution

strategy that intends to improve some shortcomings of the scalable LARD architecture.

The basic idea behind WARD is that “by mapping a small set of most frequent files to

be served by multiple number of nodes, we can improve both locality of accesses and the

cluster performance significantly” [39].

In a cluster using LARD of n nodes, only 1/n of the requests will be handled locally

forwarding the other (n-1)/n requests, a relatively expensive operation [4] that can in-

troduce a forwarding overhead that limits the performance and scalability of the cluster.

Additionally, Web server workload studies have shown that 90% of the web requests are

for only 2-10% of all the accessed documents, constituting less than 5% of the total work-

ing set. WARD aims to minimise forwarding overhead from handling the most frequent

files while keeping the benefits of the optimised use of the overall cluster main memory

caches that LARD provides.

WARD chooses a set of most frequently accessed documents, called core, that will be

served by all the cluster nodes and partitions the rest of the files to be served by the back-

end servers.It uses an algorithm called ward-analysis [39] that identifies the optimal core

for a given workload and system parameters such as the number of nodes, main memory

cache size, TCP hand-off overheard and disk access overhead. The core is proposed to

be computed once in a day, so that the cluster will always use the values obtained from

previous day’s workload.

This basic form of WARD is very similar to the scalable LARD architecture, and

it would use the LARD distribution algorithm for the files that are not in the core. The

other change proposed in WARD is to decentralise the dispatcher, by using a precomputed

partitioning of the working set based on the workload of the previous days. The scalable

LARD architecture introduces the idea of a co-located distributor that resides in every

backend server, but still keeps a centralised dispatcher that every node has to contact to

decide which backend server will handle the request. With a decentralised dispatcher,

the overhead of a unique dispatcher is eliminated and better scalability is achieved. This

approach will work well assuming that the core is reasonably stable, if workload stability

is not possible, the simpler “dynamic” centralised dispatcher will be a better solution most

of the time.
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Simulation tests [39] show that WARD provides performance improvements of up to

260% increased throughput compared to round-robin strategies and up to 50% compared

to locality-based strategies such as LARD. The use of a distributed dispatcher together

with previous day’s workload information improves throughput furthermore for typical

stable workloads.

2.3.6 PPBL

Most web cluster architectures use a push approach to request distribution, the dispatcher

decides which backend server should handle a given request based on layer 3, 4 or 7

information and then sends or “pushes” the request to the chosen server. WARD [39] in-

troduces a distributed dispatcher, but it does so at the expense of having a static dispatch-

ing information that is updated with previous day’s information instead of more dynamic

algorithms like LARD [17]. The PPBL prototype web proxy uses a Distributed Shared

Memory (DSM) based cluster interconnected by a Scalable Coherent Interface (SCI) net-

work. It uses certain features of the DSM architecture to obtain better performance, and it

is uncertain if this design would be able to be generalised to be appropriate for non-DSM

clusters.

Parallel Pull-Based LRU [26] is an architecture that aims to distribute the dispatcher

while still having the advantages of a dynamic content-based request distribution algo-

rithm. As its name implies, it uses a “pull” approach to request distribution, where

backend server nodes don’t just receive requests but take part in a parallelised request

distribution algorithm. This algorithm uses the basic idea that the backend servers, pull

the requests that they should handle from an incoming request queue that resides in the

front-end node.

The algorithm works as follows: each backend node selects a pending URL from the

incoming queue and checks if it is in its own URL list. If the matching entry is found, the

backend modifies the incoming queue to signal that it is handling the request and sends

the reply directly to the client. The front-end can delete the entry from the incoming

queue once a backend node has decided to handle it. If the entry is not found by any of

the backend servers, the front-end will choose the less loaded node to handle it. The load

information is kept in the DSM and periodically updated by each backend. If the backend

that has found the request in its local URL list is overloaded, it can choose a less loaded in

the entry’s server list or if there is none, it can forward it directly to the less loaded node in

the cluster keeping all the information about the URL local, accessible to the other node

through the DSM.

A first implementation that used the above design proved not to be very scalable.

Throughput doesn’t improve anywhere near linearly by adding nodes to the cluster, and

the synchronisation locks required by the request distribution algorithm prevent the cluster
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from performing better. A second implementation is proposed by the authors that will

limit the number of locks that are necessary for each request. This implementation uses

new data structures and an special SCI mapping that performs a fast atomic fetch and

increment on each access that can be used by the backend nodes to signal when they have

finished evaluating if a given request is for them. Good scalability is achieved by making

use of these low level capabilities of the middleware, a cluster of 7 nodes has a 580%

better throughput than a single node server.

PPBL is a very interesting design that takes a new approach to request distribution,

both because it uses a pull based approach whereas most other cluster architectures use

a push design as well as because it makes use of high-speed SCI networks and DSM

middleware to achieve better scalability. It would be interesting to evaluate if the ideas

behind PPBL are applicable outside of the specific implementation technologies used

by the authors, as they had to resort to low-level optimisations to achieve reasonable

scalability.

2.4 Web caching replacement policies

Web caching used with HTTP proxy servers is a widely used and well studied [3, 8, 7, 27,

28] mechanism for reducing both latency and network traffic in accessing resources on the

Web. In the context of a Web server, the purpose of a cache and its associated replacement

policy is to maximise the number of requests that are handled with data available in the

main memory of the server, avoiding thus costly file-system input-output operations.

Modern computer main memory and high speed networks feature access speeds which

are still considerably faster than the speeds of magnetic hard disks, making the manage-

ment of an in-memory cache an important and frequently overlooked part of the design of

a clustered web server. Web server cluster designers, both research-oriented and commer-

cial, acknowledge the benefits of taking in account locality of references in Web traffic

for added performance, but the majority of proposed solutions deal with this issue only

at the request distribution level. Unlike with Web proxies, there is little previous research

on cooperative caching strategies for Web clusters.

The main aspect that determines the performance of a cache is its cache replacement

policy. This algorithm will be in charge of deciding which document(s) is/are evicted

from the cache when its capacity has reached its limits and a new document has to be

loaded and maybe cached by the server. Before the Web, cache replacement policies

have been studied for file-system caching and virtual memory page replacement, but Web

caching has different requirements than those domains, most importantly that Web objects

(HTML pages, image files, etc.) vary widely in size. Furthermore, Web cluster caches

differs from Web proxy caching in that network traffic use is not a big concern for clusters,
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the nodes are normally interconnected using high-speed private networks, so for a given

node it is always preferable to obtain a resource from the main memory of another node

instead of reading it from the file-system.

When evaluating Web proxy cache replacement policies several performance metrics

are commonly considered:

Hit rate The fraction of the total requests that are served from the local cache.

Byte hit rate The percentage of network traffic that were sent directly from the cache,

without involving file-system operations.

Optimising one of these two metrics doesn’t optimise the other, so a trade-off has to me

made, depending if CPU cycles or network bandwidth is the bottleneck. Byte hit rate

is important for Web proxies that need to minimise the traffic between the proxy and

the original servers. In a common deployment scenario of a Web proxy such as in a

University campus, there are important costs in latency and/or money for each byte part

of a request that requires a connection to the original server, while Web clusters do not

have this concern, as the nodes in a cluster use high-speed interconnects. Thus, the most

important metric when evaluating cache replacement policies for Web clusters is hit rate.

2.4.1 Least Recently Used (LRU)

Least Recently is a very popular policy in file system and virtual memory caching, it evicts

the document which has been least recently accessed from the cache. In the absence of

cost and size concerns, LRU is the optimal on-line algorithm for requests sets with good

locality. However in Web caches, replacing a recently used big file can give better hit ratio

than replacing a less recently used but small file. Thus, for a good Web cache replacement

policy size has to be taken into consideration and the basic LRU is not a good option

because it ignores the sizes of cached documents.

There are several variations of LRU that try to improve its performance:

LRU Size

[3] It is a variant of LRU [3] that tries to minimize the number of documents replaced by

taking the size of them in account as well as the last access time. It will always remove

the larger documents first, and fall back to LRU in the case of having several documents

of the same size.

Log(Size)+LRU [3]

This variation of LRU-Size uses a logarithm of the size, to avoid giving to much weight

to the size aspect of a document, so that the LRU order is used more frequently than in
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the case of LRU-Size.

LRU-Min

This policy [3] gets a list of documents that are of bigger size than the requested document,

and evict them in LRU order until there is enough free space on the cache to fit the new

request. When there are no files bigger than the requested document left in the cache,

LRU is used to choose the next eviction candidate(s).

LRU-Threshold

Another variant of LRU that will avoid caching documents that are too big by setting a

threshold size so that no document larger than that size will be cached [3].

Segmented LRU

Segmented LRU is a frequency-based variation of LRU designed for fixed-size page

caching in file-systems. Observing that objects with two accesses are much more popular

than those with only one access, the cache space is partitioned into two LRU segments:

probationary segment and protected segment.

Objects brought to the cache are initially put in the probationary segment, and will

only be moved to the protected segment if they get at least one more access.When an

object has to be evicted, it will be taken from the probationary segment first. The protected

segment has a fixed size, and when it gets full the objects that don’t have space in it will

be kept in the probationary segment.

Segmented LRU is not suitable for Web caching as it ignores the size of cached objects

and assumes fixed-size objects. Furthermore, it has the problem of needing parametrisa-

tion of the number and sizes of segments.

2.4.2 Least Frequently Used (LFU)

This policy keeps track of the number of requests that are made for each document in the

cache, evicting the document of documents that have been less frequently requested first

if space is needed. As it ignores the document sizes, it can lead to an inefficient use of

the space on the cache. Where LRU is equivalent to sorting by last access time, LFU is

equivalent to sorting by number of accesses.

2.4.3 Hyper-G

It is a policy that combines LFU, LRU and the size aspect [28]. It uses a hierarchical

approach, where LFU is always applied first, if a tie happens LRU is used and finally if
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there is still more than one candidate the size of the documents is taken in account for

deciding which one to evict.

2.4.4 Pitkow-Recker

It uses a different primary key depending whether or not all cached documents have been

accessed in the current day [28]. It will use the LRU policy, except if all the documents

have been accessed today, in which case it uses a Size removal policy, removing the largest

one(s).

2.4.5 Hybrid

The Hybrid policy [27] has been designed to minimise the time that end-users wait for

a page to load as well as hit rate and byte hit rate. It is a hybrid of several factors,

considering download time, number of request (frequency) and size. Hybrid selects for

eviction the document i with the lowest value for the following expression:

(clatser
�
i � +WB/cbwser

�
i � )(nrefi**WN)/Si

where nrefi is the number of references to document i since it last entered the cache, si
is the size in bytes of document i, and WB and WN are constants that set the relative im-

portance of the variables cbwser �
i � and nrefi, respectively. A document won’t be evicted

if the expression above evaluates to a large value, which could occur if the document is in

a server that takes a long time to connect and is connected via a low bandwidth link, if the

document has been referenced many times in the past and if the document size is small.

Although this replacement policy has the advantage of considering the latency of a

document, this is only applicable to Web proxy caching. Retrieval latency is not a concern

on Web server clusters, as all the nodes are expected to be interconnected by the same kind

of network and the latency should be the same for all of them.

2.4.6 Lowest Relative Value (LRV)

LRV is based on the relative value (V), a function of the probability that a document is

accessed again (Pr). The LRV algorithm simply selects the document with the Lowest

Relative Value as the candidate for eviction. As V is proportional to Pr, the issue is to find

this probability.

The parameters used for computing Pr are the following:

� Time from the last access.

� Number of previous accesses.

� Document size.
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In the simulations carried out by Rizzo and Vicisano [19] LRV features higher byte hit

rate than other policies in all conditions, and has better hit rate than all of them except

SIZE.

2.4.7 GreedyDual-Size

GreedyDual-Size is a variation of GreedyDual, an algorithm for uniform-size variable-

cost cache replacement [12]. GreedyDual deals with the case in which cached pages are

of the same size but have different associated costs for bringing them into the cache. It

associates a H value with each cached page, initially set to the cost of adding a page from

secondary storage to the cache. When a replacement has to be made, the page with the

lowest H is evicted, and all the rest pages reduce their H value by the evicted page’s H

value.

GreedyDual-Size incorporates the size factor by setting the initial H value of a docu-

ment to cost/size, where cost is the cost of bringing the document to the cache and size is

the size of the document in bytes. There are different versions of GreedyDual-Size that

differ on the definition of cost, depending if the goal of the replacement algorithm is to

maximise hit rate or byte hit rate. GreedyDual-Size(1) sets the cost to 1 and achieves the

best hit rate while GreedyDual-Size(packets), which sets the cost to 2+size/536 (the esti-

mated number of network packets sent and received if a cache miss happens) maximises

byte hit ratio. GreedyDual-Size(1) has very good hit rate at the price of lower byte hit

rate, while GreedyDual-Size(packet) achieves the highest byte hit rate with moderately

lower hit rate than GreedyDual-Size(1).

Although GreedyDual-Size(packets) would be the recommended policy for the overall

best performance in Web proxy caches, in the case of a Web cluster GreedyDual-Size(1)

would be more appropriate as it achieves better hit rate by not paying attention to the byte

hit rate. This replacement policy can be considered the current “champion” of web cache

replacement algorithms.
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Chapter 3

Design and implementation

Web clusters have been traditionally implemented by “growing” single-node Web server

architectures instead of being designed from scratch as a system that takes advantages

of a clustering architecture, clustering has been more “bolt-on” Web servers than “built-

in”. This legacy reflects on the design of commercial Web clustering and load balancing

solutions. A very common deployment scenario for a commercial clustered Web server

configuration is shown in Figure 3.1, where the dispatcher is the central point of contact

for all the clients and it distributes requests to the backend Web servers using layer 4

switching with either layer 2 or 3 forwarding. There are some advantages to this design:

� Backend nodes are standard Web servers, keeping the same configuration and ad-

ministration needs of a single-node Web server, minimising the system administra-

tion overhead of moving from a single Web server to a cluster.

� The front-end dispatcher can be a dedicated device with embedded software that is

very efficient at the request distribution and load balancing tasks it performs.

� Every component in the cluster is transparent of the others, it is a loosely-coupled

architecture where each component has no or minimal knowledge of how the others

work, providing both fault tolerance and simpler administration and deployment, as

well as allowing heterogeneous systems to work together.

The architecture in Figure 3.1 is simple and provides some degree of scalability. How-

ever, goals of higher scalability and better use of resources available on the backend nodes

require different solutions. Most of the commercial state-of-the-art Web switch/dispatcher

products have the optional functionality of taking in account application layer (OSI layer

7) information, such as the requested URL or the current session.

Application layer data awareness (layer 7 switching) is important for achieving better

request distribution , but commercial dispatchers pay a big performance price when doing

it as they have to be both transparent to the clients as well as to the backend Web servers.
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Figure 3.1: Common Web cluster deployment scenario.

The fact that these clustering solutions are highly transparent between their own compo-

nents (dispatchers and backend nodes) as well as to the outside world (Web browsers)

makes it difficult to implement highly scalable clustered Web servers with them.

In this section the design and implementation of a clustered Web server that uses com-

modity off-the-shelf (COTS) hardware and distributed software components is described.

Designing all the components from scratch allows more flexibility for using state-of-the-

art algorithms and controlling resources globally in the cluster, achieving better load-

balancing and efficiency, which should lead to good scalability. This Web cluster could

be considered as a Web server with an integrated content-aware layer 7 switch and global

cache management.

All the clustering software discussed in this dissertation has been implemented in

Java. It is not very common in the research literature to use Java as the platform for

implementing prototype Web servers or proxies. However, there are popular commercial

application server products implemented in Java that prove that it is a viable platform

for high-performance network servers. Furthermore, with the release of Java Standard

Edition version 1.4, non-blocking I/O support is made available to Java developers both

under Unix as well as Win32 operating systems.

This chapter is organised as follows: first the overall architecture of the clustered Web

server is described; next each of the components’ (front-end/dispatcher, node manager

and cache manager) design is discussed, giving details of their different implementation

approaches and how they interact with the rest of the cluster components.

3.1 Architecture

Three main components form the clustered Web server discussed in this dissertation:

Front-end The front-end is the process that will be the single point of contact for all

the clients that want to issue an HTTP request to the server and receive a response

from it. Every byte of data that the server receives or sends has to go through it,
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Figure 3.2: Logical view of the components in a running cluster.

so it is the most performance-sensitive component of the server. It has three main

responsibilities:

1. Wait for connections on a TCP port and accept requests from Web clients,

keeping track of the open client connections.

2. Obtain the request URLs and decide which backend node will handle them.

3. Receive and send back the responses generated by the backend nodes to the

appropriate clients.

Cache manager The cache manager is the component that holds cluster-wide global in-

formation about the state of the backend nodes’ main memory cache. Its main

responsibility is to keep a mapping of files and the nodes that have them them in

their cache, so that when a backend node has a request for a file that is not in its

local cache it can retrieve it directly from another node’s main memory instead of

accessing the file-system. The reason for this design is that with the current net-

work interconnection technologies it should be faster for a node to retrieve some

data from another node’s main memory across the network than reading it from the

file-system.

Node manager The node manager is the main “worker” process in the cluster. Each

backend node runs one or more node manager process. Its main responsibilities

are:

1. Retrieve requests assigned to it by the front-end, obtain the response data and

send it back to the front-end.

2. Keep a local main memory cache of files, with its associated cache replace-

ment policy.
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There are two possible views that can be used when describing how these components

(or instances of them) are organised in a running clustered Web server to handle client

requests. Figure 3.2 shows a logical view where one front-end, two node managers and

one cache manager work to accept a request, route it through the cluster software and

send the right response back to the client.

Figure 3.3 describes the same cluster configuration as Figure 3.2 but from a physi-

cal point view, showing how the component processes could be distributed in different

computers. In this case there is one system dedicated as front-end, another one running

the cache manager process and two nodes running one node manager process each. This

configuration is the one that will be evaluated in this dissertation, with the only difference

of the number of systems running node manager processes.

The server software is flexible with respect to the physical distribution of its compo-

nents. It requires the existence of one front-end, one cache manager and one or more node

manager, but does not require them to be physically distributed among the nodes of the

cluster in a certain way. It is possible for example to have all the components running in

the same system, even though that would obviously not be recommended.

Another aspect in which the cluster software offers high flexibility is that different

implementations of its subsystems can be used by specifying a command line option at

startup time. For example, there are multi-threaded and non-blocking I/O implementa-

tions of the front-end server, and there are different request distribution and cache re-

placement policies available as well. It is a framework that can easily integrate new im-

Response

Request

Cluster

Dispatcher

Node Manager 1

Cache Manager

Node Manager 2

Figure 3.3: Physical view of the components in a running cluster.

plementations for most of its parts, with clearly identified interfaces between the different

subsystems so that they can inter-operate.
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3.2 Inter-process communication

The Web cluster software described in this dissertation is designed to run in a cluster of

computers connected by a network that supports TCP/IP. Thus, there is a need to define a

set of protocols that the different components - front-end, cache manager and node man-

agers - will use for communicating between them. For example, each node manager needs

to have a protocol that allows it to contact the front-end and retrieve HTTP requests that

the front-end has assigned to it. In the same way, there has to be an agreed-upon protocol

between node managers and the cache manager so that they can collaborate to implement

an effective caching policy that takes advantage of the aggregated main memory cache

available in the cluster.

Two alternative inter-process communication protocols have been implemented in the

cluster, the first one uses Java interfaces via Java Remote Method Invocation (RMI) and

the other one uses a custom application-specific protocol based on low-level TCP socket

connections. These two protocols will be described in the following sections.

3.2.1 RMI protocol

Remote Method Invocation (RMI) is a Java-specific middleware for implementing dis-

tributed object systems. It allows Java programs residing in different address spaces and

potentially different machines to invoke object method calls between themselves. RMI

makes it possible to ignore up to a certain extent that the object that will receive a given

method call can possibly be in a different machine across the network.

The main advantages of RMI are that it is a standard part of the Java platform and

that it makes it very simple to specify inter-process communication protocols using Java

interfaces. RMI servers are simply objects that implement a certain remote interface and

“export” it to the RMI subsystem, making those objects accessible by their interfaces to

remote Java processes.

However, as will be later discussed, RMI has shown to not be suitable for implement-

ing high-performance scalable servers. It uses a thread and an associated TCP connection

for each method call, an approach with very poor scalability. Threads and TCP connec-

tions are expensive resources with high overhead, so the standard RMI implementation is

not suitable for systems that are expected to handle hundreds or even thousands of method

calls per second. Even if Java has introduced new much more scalable non-blocking I/O

in 1.4 the rest of the APIs that come with the Java Development Kit (JDK), RMI included,

do not use it. A reimplementation of RMI using non-blocking I/O and multiplexed TCP

connections would possibly be more scalable, BEA WebLogic uses a proprietary imple-

mentation of RMI that does this.
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3.2.2 Socket-based application-specific protocol

The use of an application-specific inter-process communication protocol provides two

main advantages compared to RMI for the development of the Web cluster:

� The protocol can be much more efficient, only transmitting the strictly necessary

data between the processes and avoiding the generic approach of RMI and its asso-

ciated serialization and deserialization overhead. RMI implements a subsystem that

has to support any kind of legal Java method call and parameters, using a generic

object serialization format to transfer information from one machine to the other.

The application-specific protocol can be more efficient by only supporting specific

kinds of messages between the processes.

� Use of the new Java non-blocking I/O facilities and event-driven architectures.

The current implementation of RMI uses blocking TCP sockets and a thread-per-

connection model, which limits its scalability. When implementing an application

specific protocol based on raw TCP sockets, it is possible to take advantage of the

new Java I/O and to implement it using an event-driven approach that provides bet-

ter scalability than using one dedicated thread per message.

The main reason for using the socket-based protocol is to achieve a good scalability and

throughput in the cluster, at least better than what is possible with an RMI-based approach.

For this reason, where RMI would cause the establishment of several TCP connections

between the front-end and the node managers and the node managers and the cache man-

ager, in this design each cluster component has only one open TCP connection to any of

the other components it has to communicate with. The front-end will have a connection

to each one of the node managers, and the node managers will all have one connection to

the cache manager as well.

These connections will have associated non-blocking SocketChannels that will de-

liver I/O events to the main loop of the components. The use of non-blocking I/O im-

poses significant changes in the design of the concurrency model used on the different

components, reducing the use of threads to the strictly minimum. This aspect of the

interprocess-communication in the cluster will be discussed in the next section.

We will not detail the structure of every the possible message sent between the compo-

nents, but the format of the messages sent from the dispatcher to the node managers will

be described as an example of the protocol design approach used. Figure 3.4 shows the

format of the messages that the front-end sends to the node managers when it is handing-

off client requests for the node managers to fulfill. The message has a fixed-size header

part and variable-size message data or payload part. The header is composed of eight

bytes, which contain two 32 bit integers, the first one specifies the length in bytes of the
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Figure 3.4: Structure of the messages sent from the front-end to the node managers.

client address field that comes after the header and the second one gives the number of

bytes that the requested URL takes after the client address. The client address in the data

part contains a text string that uniquely identifies which client made a certain request,

this is necessary so that the front-end knows which client should receive a response. The

second field of the data part contains the request URL, which will eventually be mapped

to a file in the file-system by the node manager.

The structure of the message described above shows how the protocol between the

dispatcher and the node manager allows for information of variable size to be sent to

the node manager, but does it in an efficient way, without all the space and processing

overhead of serialising and deserialising Java String objects.

3.3 Concurrency model

In the Web cluster design described in this dissertation all the components have to be able

to handle as many simultaneous requests as possible: the front-end receives requests from

the Web clients, node managers receive requests assigned to them by the dispatcher and

the cache manager receives queries and updates from the node managers. It is extremely

important that each one of the component is able to handle several simultaneous requests,

and does so in an as efficient as possible way.

There are two main approaches to implementing the concurrency or process model of

the components, a thread-per-connection model that was most common in Java servers

until recently and an event-driven approach which has only been made possible with Java

1.4 and the introduction of the new non-blocking I/O facilities.

3.3.1 Thread-per-connection model

The thread-per-connection model is typically used in Java network servers to be able to

handle simultaneous client requests. The basic idea behind this model is that each service

request is handled by its own dedicated thread. When used for Web servers, this means

that as soon as the server accepts a TCP connection from a Web client, it will assign the
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servicing of any request that comes through that connection to a “handler” thread, so that

the main server loop can keep accepting new connections.

Server

Client

Client

Client

ProcessDecode Encode SendRead

Handler thread

ProcessDecode Encode SendRead

Handler thread

ProcessDecode Encode SendRead

Handler thread

Figure 3.5: Thread-per-connection model.

Although it is a straightforward and common design, the thread-per-connection model

has its own problems. The throughput and scalability of the server will suffer due to

threading overhead. Each thread has its own stack and receives some CPU allocation, and

thread switching can be considerably expensive if hundreds or even thousands simultane-

ous connections are expected to be handled. Furthermore, threads would only represent a

performance and scalability improvement when used in systems with more than one CPU,

in single-CPU machines threading can help in handling more than one task or request at

a time, but paying always a cost in throughput and scalability. Ideally multiple threads

should only be used in multi-processor machines, and using up to one thread per proces-

sor, but they are frequently used for overcoming the limitations caused by the Java’s until

recently only blocking I/O facilities.

3.3.2 Event-driven model with multiplexed I/O

Until Java 1.4, the standard I/O facilities offered by the Java platform where all blocking,

so the only way to handle simultaneous requests clients was to use a multi-threaded de-

sign, with its scalability limitations. The introduction of non-blocking I/O in Java 1.4 has

changed this, allowing the implementation of event-driven designs like the one described

in this section.

For single-processor Web servers and Web clusters built with single-processor sys-

tems, use of multiple threads does not provide good scalability and should be avoided

if possible. Threads, when used for monitoring multiple sockets and blocking on ac-

cept/read/write operations on them, are just performing the job of a socket monitor and

the thread scheduler is working as the notification mechanism. The problem here is that
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they were not designed for this use, and there are big performance costs for the Java virtual

machine in managing multiple threads.

Encode Send

Client

Client

Client

Reactor ProcessDecodeRead

Accept

Single threaded Reactor server

Figure 3.6: Single threaded event-driven model with multiplexed I/O.

The new I/O APIs available in Java 1.4 provide facilities for non-blocking I/O and a

built-in mechanism called Selector that implements the Reactor pattern explained in the

next section.Using these two mechanisms, servers can be notified when I/O operations

are available, with no need for the servers to dedicate threads to blocking on sockets or

files. This design is called “event-driven” because the server application does not initiate

and block until I/O operation, it only registers its interest in one or more operations and

gets notified when they can be performed in a non-blocking way. It is a design similar to

how GUI event-loops work.

Server applications that use a event-driven multiplexed I/O model are designed quite

differently from thread-per-connection servers, as seen in Figure 3.6. In thread-per-

connection servers the “unit of work” is the whole client connection, a single thread han-

dles a connection from when it is accepted until it is closed. In event-driven servers, the

server handles several different I/O “events”, performing each time a small non-blocking

operation that handles the received event. For example, if a Web server receives a WRITE

event on a SocketChannel, it means that it can at least write something to that client socket

without blocking. When a non-blocking write method is called on the socket channel, and

depending on if all the bytes of the response have already been written or not it could close

the channel if those are the semantics of the protocol between the server and the client.

Reactor architectural pattern

The Reactor pattern allows event-driven applications to demultiplex and dispatch service

requests that are received by an application from one or more clients. It inverts the flow

of control typical in traditional servers, in the sense that a component called a reactor
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is responsible for waiting for external event notifications and dispatching them to the

appropriate event handlers, the application does not actively wait for events, it is instead

notified when they happen.

Reactor defines the concept of event handlers that process certain types of events

from certain event sources. Even handlers are registered with a reactor, specifying the

concrete event types and sources they are interested in. When a given event occurs, the

reactor will notify the event handler registered for that concrete event type and source of

its occurrence, so that it can handle it in an application-specific way.

Figure 3.7: Class diagram of main participants in the Reactor pattern.

There are five main participants in the Reactor pattern (see Figure 3.7):

Handle Identifies event sources such as network connections or open files that can gener-

ate events. Events can be for example ACCEPT and READ for handles associated

with network sockets or WRITE for handles that are linked to file I/O. In Java,

handles are represented by the java.nio.Channel interface and all the classes that

implement it.

Synchronous event multiplexer It is the function that waits for one or more events to

occur on a set of handles. It will block until there is at least one handle in its set that

is ready, meaning that it can perform I/O operations without blocking. An example

of a synchronous event multiplexer is the select() function support by many POSIX-

like operating systems.
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Event handler EventHandler is an interface that defines a set of hooks or callback meth-

ods that should be called when a certain indication event occurs.

Concrete event handler Concrete implementations of EventHandler implement application-

specific logic to process the indication events received through their associated han-

dle. Each concrete event handler is associated with a certain handler that uses as an

indication event source.

Reactor The Reactor is the “registry” that keeps track of event handlers and their as-

sociated handles. When an event occurs in the handle set of the Reactor, it finds

the associated handler that is interested in the occurred indication event and it calls

the appropriate method of the concrete event handler so that it can run whatever

application-specific code that should be run for the event. In the Java APIs, the

java.nio.channels.Selector class performs the function of the Reactor.

3.4 Front-end

The front-end is in charge of accepting connections from the clients, distributing them

between the different backend nodes and sending the responses back to the clients. The

front-end deals with every byte received and sent by the cluster as well as with all the

client connections. It can be said that the front-end is the component of a Web cluster that

determines its scalability. There are important aspects that can be handled by the backend

nodes such as global main memory cache management and request pulling approaches,

but the front-end is more likely to be the bottleneck most of the time.

In the design implemented in this dissertation, the front-end performs the minimum

tasks that any centralised layer 7 HTTP switch has to perform:

1. Accept connections from web clients.

2. Read the HTTP request from the clients and determine which is the request URL.

3. Decide which backend node will handle each of the requests.

4. Send the responses back to the clients when the backend nodes have finished pro-

cessing them.

The front-end has been implemented as a Java daemon that listens on a certain TCP port.

The daemon has two main subsystems with different pluggable implementations of them:

Socket listener This is the part of the front-end that deals with accepting client connec-

tions, reading the data they send and passing it to the dispatcher. It defines the

concurrency model that the will be followed by the front-end, that is, how many
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concurrent threads will run and which are their responsibilities. The socket listen-

ers’ interface is specified by the ISocketListener Java interface, and two alternative

implementations of it are discussed in this dissertation: a multi-threaded socket

listener and a socket listener based on the Reactor architectural pattern that uses

non-blocking I/O.

Dispatcher The dispatcher’s main responsibility is to decide which one of the node man-

agers should handle a given request. There are several different implementations of

the IDispatcher interface available in the cluster. A secondary function of the dis-

patcher is to serve as a point of contact for the back-ends’ node managers when

using the RMI-based communication protocol.

3.4.1 Multi-threaded socket listener

The multi-threaded socket listener is one of the two implementations of ISocketListener

that will be discussed in this dissertation. This implementation uses the thread-per-

connection model. However, this socket listener does not just implement an infinite loop

that spawns a new thread for each accepted connection, as that would be too inefficient.

Instead, a thread pool is used so that thread instances are recycled as much as possible.

Figure 3.8: Multi-threaded listener class diagram.
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Figure 3.8 shows the main actors in the design of the multi-threaded listener. The Mul-

tiThreadListener class itself does little more than setting up the thread pool and starting

two main threads that will do most of the work, a RequestHandler and a ResponseSender.

The RequestHandler thread runs an infinite loop that accepts connections from clients

and handles each connection by sending it as a Runnable which is a unit of work that the

threads pooled in the instance of class PooledExecutor carry out, as seen in Figure 3.9.

When the pool receives the task, it will assign a thread to it and call the handleConnection

method of the RequestHandler, which in turn reads the raw bytes of the request sent by

the connecting client and passes the data on to the HttpHandler instance.

Figure 3.9: Sequence diagram for RequestHandler thread.

The HttpHandler is the object that holds all the knowledge necessary for understand-

ing the clients’ HTTP requests, it parses the request data to verify that it is correct and

obtains the URL that the client is interested in. Once the URL is known, the HttpHandler

simply delegates the handling to its associated IDispatcher implementation, that will de-

cide which one of the registered NodeManagers should handle the request and put it in its

request queue.

The multi-threaded socket listener has some mechanisms for avoiding performance

penalties associated to the thread-per-connection model:

� Minimisation of thread creation overhead, by using a PoolExecutor that processes

work items (eg. HTTP requests) backed by a pool of threads. This can be a less

important factor if threads are pooled internally by the JVM, and it could even be

counter-productive in that case.
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� Use of RequestQueues for handling requests to backend nodes. This avoids the

front-end threads to block until a backend node is available for collecting a new

requests, it decouples the decision of which backend node should handle a given

request (producer) from the handling of the request (consumer). This is a common

design idiom for event-based concurrent systems [6].

3.4.2 Reactor-based socket listener

In this section an implementation of ISocketListener, the performance-critical “engine”

behind the front-end, that uses non-blocking I/O is described. As this implementation is

based on the Reactor architectural pattern.

The ISocketListener implementation that uses the new Java non-blocking I/O APIs

has a design approach that is quite different to the thread-per-connection model. The

multi-threaded implementation divides the concurrent tasks by connection, associating a

dedicated thread with each connection so that the clients can be served concurrently. The

underlying idea here is that serving a request associated to a TCP connection is an indivis-

ible work unit that is potentially long-running and its processing should be concurrent to

all the other client connections. However, this is not always a good approach as in reality

it is typical for network servers to be more I/O bound than CPU bound.

The implementation described here uses a minimal amount of threads to evaluate the

performance of non-blocking I/O on its own as much as possible, but there is an endless

possibility of variations that go from a single-threaded server to the use of a pool of

worker threads for handling CPU-intensive requests on servers that run on multiprocessor

machines.

The ReactorSocketListener uses only three threads for processing client requests, as

seen in Figure 3.10:

Acceptor The Acceptor thread is registered to the ACCEPT events of the ServerSock-

etChannel that listens for incoming TCP connections. Its only responsibility is to

accept the client connections store a reference of each client connection and put

them in a queue and notify the Reader thread to register itself for the READ events

on them.

Reader The Reader thread runs an infinite loop alternating between two operations:

� Registering itself for the READ operation events with the SocketChannels that

represent new client connections.

� Reading request data when it is notified that there is some available by block-

ing on a select() call. This call will only return in two circumstances, when

there are client connections ready with data to read from them or when the
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Figure 3.10: ReactorListener class diagram.

queue of new client connections has new connections for the Reader to regis-

ter with.

The Reader thread itself only reads the request data as an array of bytes, it dele-

gates further request processing to an instance of HttpHandler, so from the moment

that it calls HttpHandler::handleRequest() the server follows exactly the same path

as with the SocketListener, the request will go through the HttpHandler to an in-

stance of IDispatcher implementation that will decide to put it in a RequestQueue

associated to a certain NodeManager.

Writer The Writer runs an infinite loop with the task of taking responses that the NodeM-

anagers put in the front-end’s ResponseQueue and writing them to their associated

client socket channels.

The RequestQueue is a remote RMI object that NodeManagers get a reference to

when they register with the front-end. When they obtain the data that satisfies a

given request, they create a Response object that contains this data as well as an

identifier of the client connection that it should be written to.
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The Writer has to simply loop forever taking Responses from the ResponseQueue,

finding their associated client connection channel and writing to it the data that is

in the Response’s responseData property.

3.4.3 Dispatcher

Where the SocketListener is the “engine” of the front-end, accepting and reading requests

from client connections in an as efficient as possible way, the dispatcher implements the

request distribution algorithm used for deciding which backend node will handle each

request.

The IDispatcher Java interface has to be implemented by the any request distribution

algorithm that could be used by the front-end, Figure 3.11 shows the class hierarchy for

IDispatcher. There are different distribution algorithms implemented and other ones are

easily pluggable by just implementing IDispatcher and chosen by the front-end by passing

the desired implementation as a command line option at startup time.

Figure 3.11: IDispatcher interface class hierarchy.

The concrete implementations of IDispatcher are:

DispatcherFacade This is an special implementation of IDispatcher that does not im-

plement any request distribution algorithm by itself. It delegates any IDispatcher

operation to another implementor and as it extends the UnicastRemoteObject class

it is automatically a remote RMI server object.

At front-end startup time, the HttpHandler will always create an instance of Dis-

patcherFacade as the main IDispatcher implementation. The DispatcherFacade in

turn loads and instantiates another concrete IDispatcher implementor that is chosen

by a command line option, delegating all dispatching decisions to it.
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The reason for this slightly complex approach is that apart from the pure algorithm

implementation aspect, the front-end needs to export a IDispatcher implementation

that is remotely accessible for the backend nodes when the RMI-based inter-process

communication is being used. This IDispatcher will be accessed by the back-ends

for registering themselves with the front-end and obtaining the request and response

queues.

It is not necessary for every IDispatcher implementation to be a remote RMI server,

it is desirable to separate the concerns of request distribution algorithm and remote

accessibility. The DispatcherFacade allows other concrete IDispatcher implemen-

tations to be implemented without any concern regarding the local or remote envi-

ronment in which they will be accessed.

RoundRobinDispatcher The simplest of the IDispatcher implementations, it uses an

standard Round-Robin algorithm. The reason for making available such a simple

and clearly not optimal algorithm is to use it as a base benchmark comparison when

evaluating other more sophisticated request distribution algorithms.

BasicLARDDispatcher The first of the LARD variants implemented follows the Basic

LARD algorithm explained in section 1.3.4. It is a locality-aware request distri-

bution algorithm that maintains a mapping of requests and the backend nodes that

have handled them in the past. It has considerably more overhead than the round-

robin version, but it should offer better performance and less cache misses on the

back-ends.

ReplicationLARDDispatcher A variation of Basic LARD that implements a locality-

aware distribution algorithm with replication. That is, it allows to have more than

one backend node associated to a given request, effectively “replicating” certain

pages in several backend node main caches. Although an improvement compared

to Basic LARD, it is not clear if its added complexity to a performance-critical

front-end is acceptable.

3.5 Cache Manager

The cache manager is the smallest of the components of the cluster. There always has to

be one and only one cache manager in the cluster, as it is the component that allows the

different main memory caches running in the backend nodes’ node managers to collabo-

rate and share resources effectively. It is the component that keeps a global cluster-wide

registry of cached files.

ICacheManager is the only remote RMI interface exported by the cache manager

process. Its two main methods are:
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Figure 3.12: CacheManager class diagram.

registerRemoteCache Used by the node managers to register themselves with the cache

manager at startup time.

addCachedUrl Notifies the cache manager that a node manager has cached a given URL.

When called by node managers, the cache manager will update its mapping of URLs

to node managers (or RemoteCaches) to store this new association. Every node

manager should call this method of the cache manager when a new file is brought

to its local cache.

getRemoteCache Returns the node manager that has the URL passed as parameter cached

on its local cache, or null if the cache manager has no knowledge of any local cache

holding this URL. The returned object is a reference to IRemoteCache, a remote

RMI interface associated with each node manager that the querying node man-

ager can then use to contact the other backend node’s cache directly without going

through the cache manager or front-endfront-end.

In the non-RMI version of the cache manager, these methods are not implemented exactly

the same, but the cache manager provides the same functionality and they document well

how the cache manager collaborates with node managers to keep a cluster-wide caching

registry.

3.6 Node Manager

Node managers are the processes that run on the back-end nodes. Their job is to retrieve

requests from the request queues associated to them at the front-end and put completed

responses back in the front-end’s response queue so that they can be sent to the clients.

Typically only one node manager will run per machine, but this is not enforced by the

software in any way.
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Node managers have two alternative implementations, similar to the front-end. There

is an implementation that follows a a multi-threaded model, similar to the thread-per-

connection approach implemented by the MultiThreadListener, but with the difference

that it handles Request objects instead of HTTP request messages sent through TCP

socket connections from the Web clients. The basic approach is very similar, there is

a main thread that loops forever retrieving requests and giving them to worker threads

from the pool to process. When using the custom socket-based protocol, the node man-

ager is implemented with an event-driven approach that uses a single thread for handling

all the operations.

Figure 3.13: Node manager class diagram.

The main classes participating on the node manager are shown at the class diagram in

Figure 3.13. At startup time, a node manager registers itself with the front-end process,

establishing the communication path used between the front-end and the node manager.

The front-end node can then delegate client requests to the node manager using either an
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RMI-based request queue or the more efficient socket-based protocol.

3.6.1 Caching

Apart from communicating with the front-end to retrieve requests and send responses,

the other main functionality included in the node managers is a main memory cache that

collaborates with the local caches of the other node managers via the cache manager to

provide a cluster-wide collaborative caching service.

Figure 3.14: Class hierarchy for IresponseCache.

There are different alternative implementations of cache replacement algorithms, they

all implement the IResponseCache interface and which one will run is chosen at node

manager startup time from a command line option. A short description each one of the

different concrete IResponseCache implementors, shown in Figure 3.14 follows:

RemoteCache The RemoteCache class does not implement any specific cache replace-

ment policy by itself. It is a facade class that similarly to the DispatcherFacade

discussed previously, delegates all the caching replacement decisions to another

concrete implementor of IResponseCache.

RemoteCache deals with all the communication with the cache manager when the

RMI-based protocols are used, it is the only IResponseCache implementation that

is aware of being run in a distributed collaborative caching system. This way, the

other cache replacement policy implementations are completely independent of the

fact that they collaborate with other caches, and can simply focus on implementing

an specific cache replacement policy as simply as possible.
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When a node manager is using a RemoteCache as its local cache and it requests a

certain response from it, the RemoteCache acts as a bridge between the Remote-

Cache and the rest of the node manager. The request will be delegated to the “real”

local cache only if it is already in its main memory cache.

In the case that a cache miss would happen locally, the RemoteCache communicates

with the cache manager to retrieve the response from the main memory cache of a

different node manager. It will only resort to loading a response from the file-system

if no other backend node contains the response/file in its main memory.

NullResponseCache This is an implementation of IResponseCache that does not cache

anything in main memory, it will always obtain the response data reading it from

the file-system each time. It is useful for testing and evaluation purposes, it is al-

ways recommendable to be able to evaluate the differences between an environment

without caching and one with local or collaborative main memory caching.

LRUResponseCache It implements the traditional Least Recently Used (LRU) replace-

ment policy. This policy has known problems for Web caching, but it is a common

standard and a good benchmark to evaluate against.

GDSResponseCache This class provides an implementation of the GreedyDual-Size re-

placement policy, an state-of-the-art policy that is considered the one of the best

Web cache replacement policies in the research literature.

51



Chapter 4

Evaluation

4.1 Test setup and methodology

Frontend Cache manager

Node managers

The cluster used for the evaluation of the Web cluster prototype has six computer

connected to an Ethernet switch with a 100 MBit/second network. All the nodes are

identical, with one Intel Pentium III processor at 1 GHz and 256 MB of main memory

running Red hat Linux 7.2. One node is always dedicated to being the front-end and

another one is always the cache manager. Depending on the test being performed, from

one to four backend nodes running one node manager process each will be used.

The cluster configuration used for evaluation uses an event-driven architecture for all

the components and a custom socket-based protocol for communicating between the com-

ponents. The front-end uses the Replication LARD dispatcher discussed previously and

the node managers’ caches use the GreedyDual-Size replacement policy. Other design

options discussed previously, like the RMI-based inter-process communication protocols
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or multi-threaded architectures have not been used for the evaluation, as in preliminary

tests they showed very poor performance and specially the RMI subsystem would run out

of resources when loaded considerably.

All tests have been run with with the cluster with different numbers of backend nodes,

as well as a standalone Web server. Comparing the cluster’s performance and scalabil-

ity with a single-node server implemented using the same Java platform allows for better

understanding of the scalability issues on the cluster. The standalone Web server im-

plements an event-driven model and sends response data using Java’s new I/O facilities

straight from the file-system cache of the operating system to the client. The Web server

itself never handles directly or copies the bytes of the files that is serving to clients.

Each one of the available Web traces has been tested with the standalone server and the

cluster in configurations of one to four backend nodes. As a single standalone Web server

is already capable of saturating the available network bandwidth, a clustering approach

should look into improving performance and scalability where raw file and network I/O is

not the only factor. For purely static traffic, a standalone server is the best solution most

of time as the results in following sections will show.

That is why the tests have all been performed twice, once with the standard Web

server and cluster software and the second time with modified server-side software that

introduces a CPU-intensive calculation that takes around 35 millisecond for each request

handled. This modification allows the tests to simulate a request traffic in which all the

requests are for dynamic program or scripts that generate the response sent to the client.

4.1.1 WebStone

WebStone [40] will be used to create the load on the Web server or cluster. WebStone

works by running one or more webclient processes, one or more for each client system

available for the evaluation. Each webclient makes successive HTTP requests as fast as it

can receive data back from the server being tested, simulating the actions of a single very

active (and fast) user visiting the site.

There is a controller process, called webmaster, that distributes the webclient software

and test configuration files to the client computers. Once the test scenario is set, webmas-

ter starts a benchmark run and waits for the webclients to report back the performance

they measured. The webmaster combines the performance results from all the webclients

into a single summary report.

WebStone primarily measures throughput (bytes per second) and latency (time to

complete a request); it also reports pages per minute, connection rate averages and other

information useful for sanity-checking the throughput results. Two types of throughput

are measured by WebStone:
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� Per-client throughput divides the total number of bytes by the total connection time

and by the number of clients.

� Aggregate throughput is the total number of bytes transferred throughout the test

divided by the total test time.

Two types of latency are reported as well:

� Connection latency represents the time taken to establish a connection.

� Request latency consists of the time taken to transfer the data once the connection

has been established.

The latency perceived by the user will consist of the sum of connection and request la-

tencies plus any latency related to the characteristics of the network connecting the client

computer and the web server.

4.2 Traces

There are four set of traces that will be used for evaluating the Web cluster software:

WebStone The standard file-set and file-list that comes with WebStone [40], it is a very

small file-set that does not represent typical Web traffic but is useful for comparing

with the other more “real-world” traces.

NASA Based on traces from the Web server at NASA’s Kennedy Space Center [37].

Calgary Based on traces from the Department of Computer Science at the University of

Calgary [37].

USASK Based on traces from a campus-wide Web server at the University of Saskatchewan

[37].

For the last three traces, which are publicly available, the data has been reduced to include

only GET requests, and simplified so that it can be used for driving WebStone. The

next table summarises the main characteristics of the different traces as they are used for

driving WebStone:

NASA Calgary USASK WebStone

Total Requests 1,692,590 565,513 1,024,864 1,090

Total Bytes Transferred (MB) 86,505 18,089 4,783 18

Mean Transfer Size (bytes) 53,590 33,541 4,894 19,753

Working Set Size (MB) 258 321 216 5.54

54



4.3 Evaluation results

The tests that have been carried out have been all driving WebStone with the different

requests from the traces mentioned previously. For each run with a given trace three

metrics are collected:

Connections per second How many HTTP connections the server has been able to han-

dle per second.

Throughput The number of MBits per second that the server has served during the test.

Average response times How many seconds on average took the server to fulfill a re-

quest during the test.

Furthermore, the test results have been separated depending if they are obtained with

static or dynamic traffic. The static traffic is driven by the four different traces alone and

the dynamic traffic is generated by running WebStone with the same traces, but with a

modified version of the Web serving software that introduces a processing overhead for

each request to simulate dynamic request handling.

In the graphs that follow in this section the x axis goes from zero to four, and represents

the number of cluster backend nodes running node managers that are used for each test.

That is, the cluster will always be running with one system as the front-end, another one

as the cache manager and from one to four nodes running one node manager process each

one. When the number of backend nodes is zero, it means that the standalone event-driven

Web server discussed previously has been used for that test, in this case only one machine

handles all the requests.

Figures 4.1 and 4.2 show the connections per second obtained with dynamic and static

traffic respectively. When dynamic requests are used, the cluster shows good scalability,

increasing connection rate significantly when backend nodes are added to the configu-

ration. For all traces except the NASA one, the connections per second suffer a small

decrease when comparing the standalone server with a one-backend cluster configura-

tion, and the rate obtained with a four-backend cluster is over 300% higher than with the

standalone server.

Connection rate results are very different when static requests are used (Figure 4.2),

the standalone server always outperforms the cluster in this case. The cluster configura-

tions obtain a flat connection rate with minimal variations when backend nodes are added,

this rate is between a 14% and 70% of the connections per second of the standalone server,

depending on the trace.

Figures 4.3 and 4.4 represent the throughput results with dynamic and static requests

respectively. With dynamic requests the pattern is very similar to the connection rates

discussed above, the cluster achieves better throughput than the standalone server when
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Figure 4.1: Connections per second with dynamic traffic.

backend nodes are added, with a throughput decrease when the one-backend cluster is

used and increasing as more backend nodes are added.

Throughput results for static requests are in Figure 4.4. In this case, throughput de-

creases considerably when comparing the standalone server with a one-backend cluster,

and stays flat or increases slightly as backend nodes are added. It is important to no-

tice that in the case of the WebStone and NASA traces the standalone server is already

saturating the network, obtaining between 80 and 90 Mbit/second on a 100 Mbit/second

Ethernet network. This should be very close to the maximum throughput possible with

these traces, given that there is a TCP overhead for each request.

The third and last metric collected in the tests is the average response time that takes

to reply a given request, an important aspect to measure the performance of a Web server

from the users’ point of view. These results are shown in Figures 4.5 and 4.6. As it has

happened with connection rate and throughput, the results are very different depending if

dynamic or static traffic is evaluated.

With dynamic traffic (Figure 4.5), the cluster achieves considerably better (lower)

response times than the standalone server when more than one backend node is used.

The single-backend cluster configuration has slightly higher response times than the stan-

dalone server, but they decrease rapidly as backend nodes are added. When considering

static traffic (Figure 4.6), the behaviour is that response times increase when going from

the standalone server to the one-node backend cluster but they only decrease slightly when

more backend nodes are used, staying always higher than the standalone server’s response

times.
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Figure 4.2: Connections per second with static traffic.

After looking at all the test results, it is clear that the static and dynamic workloads

have very different effects on the scalability of the cluster. When all the requests are for

static files that require the server to simply obtain the contents of the file and send it to the

Web client, the work of the server is I/O intensive, and a Web server running on a single

machine is able saturate a 100 Mbit/second network without using any caching. This

Web server can be implemented in Java, and be able to handle hundreds of connections

per second easily using an event-driven design that avoids threading overhead and directly

transfers data from the file-system cache to the client socket without excessive copying.

When the traffic is mainly composed of static requests, it is very hard for a single-

front-end based Web cluster to improve the performance obtained with a single-node Web

server. In a cluster with systems interconnected with 100BaseT Ethernet, pure I/O per-

formance will always be lower than for a single-node Web server, as both request and

response data has to be copied and sent between the nodes. For this kind of traffic, a

single-node Web server with a good I/O subsystem will outperform a cluster for most

workloads. The cluster’s data path is too long and hits a bottleneck very early when its

workload is I/O intensive. For extremely high workloads and static traffic, replicated

servers in different locations are probably preferable.

Results are very different for dynamic traffic, here the cluster with more than one

backend node is able to outperform the single-node Web server in all metrics considered.

Dynamic requests stress the Web serving system in a very different way than static re-

quests. While for static requests pure I/O throughput of the system is the most important

factor, dynamic traffic uses the Web server’s CPU much more, and can benefit from the

aggregated processing power available in a Web cluster. Performance of the standalone
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Figure 4.3: Throughput with dynamic traffic.

Web server is comparable or slightly higher than the one-backend cluster for dynamic

traffic, but the cluster’s performance increases significantly as backend nodes are added,

providing much higher scalability for this kind of workload.

Handling static and dynamic workloads require very different qualities from Web

servers, static traffic handling is I/O-bound while dynamic traffic is more CPU-bound

than I/O-bound. In I/O-bound applications optimising the path of data and avoiding data

copying are very important, and a Web cluster that uses a single front-end node and stan-

dard Ethernet network interconnections performs poorly in those aspects. However, when

the majority of the traffic is dynamic and thus CPU-bound, the cluster’s limitations from

I/O processing performance point of view are a less important factor than the benefits

obtained from the aggregated CPU power of the cluster.
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Figure 4.4: Throughput with static traffic.
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Figure 4.5: Average response times for dynamic traffic.
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Figure 4.6: Average response times for static traffic.
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Chapter 5

Conclusions and future work

Cluster Web servers are a popular architecture used for improving the scalability of high-

traffic Web sites. Although state-of-the-art commercial Web cluster front-ends offer ad-

vanced functionality such as content-aware or layer 7 request distribution, their architec-

ture is based on the requirements of much simpler layer 4 load-balancers that do not need

to perform sophisticated processing of the request data.

The scalability offered by dedicated front-end nodes is limited by their lack of inte-

gration with the back-end nodes’ software, which is one of their selling points as they

require minimum modification or reconfiguration of the back-end Web server software.

Thus most clustering products don’t work as an integrated whole, they are implemented as

separate front-ends or Web switches that “clusterise” a set of back-end Web server nodes.

In this dissertation a Web cluster architecture is designed, implemented and evaluated.

With the use of COTS hardware and integrated front-end and back-end software better

scalability and flexibility should be achieved for Web clusters. Furthermore, the clustering

software is all implemented in Java, with the goal of evaluating Java as a platform for

the implementation of high-performance network servers. The Web cluster prototype

described here is built out of a set of distributed components that collaborate to achieve

good scalability as a Web server. As all the components have been designed from scratch

to integrate with each other and work well together, the scalability problems associated

with state-of-the-art content-aware cluster front-ends are avoided.

The clustered Web server described in the dissertation includes advanced algorithms

for request distribution and caching, implementing a cluster-wide caching strategy that

allows for optimal management of main memory caches in all the nodes in the cluster.

The cluster prototype has been implemented using Java, a platform that is not a common

choice for the development high-performance network servers, but has shown to scale

well. Design alternatives for highly-scalable Java servers have been discussed, especially

relevant here are the new Java 1.4 I/O facilities and their evaluation for the implementation

of scalable event-driven network servers.

61



The non-blocking I/O facilities available since Java 1.4 allow for truly scalable sys-

tems to be implemented in Java, but there is still a lack of documented best practices and

design patterns that show developers how to take advantage of them. Moreover, the non-

blocking I/O APIs are not well integrated with the rest of the Java I/O APIs, complicating

the modification of existing systems that wish to use them. Most frequently applications

will need to be redesigned to adopt an event-driven architecture so that they can achieve

the scalability benefits of the non-blocking I/O facilities. This is not an easy task as most

Java server applications are currently based on a thread-per-connection model, an ap-

proach that is very different to the event-driven model. Another issue related to the new

Java I/O APIs is that they can manage and allocate memory out of the Java virtual ma-

chine heap, which makes it possible for the application to use too much memory without

the direct control of the developer or JVM, which can eventually cause the server process

to be stopped by the operating system.

Although the Java platform does include all the functionality needed for implementing

highly-scalable network servers, they are bundled together with legacy APIs that are not

suitable for high performance uses. RMI is an example of a component of the standard

Java platform that is implemented in a completely non-scalable way. More work is needed

to re-implement RMI taking into account scalability concerns or at least providing alter-

native implementations suitable for high-performance applications. Similarly, Java still

has extensive blocking I/O APIs that haven’t been integrated well with the new I/O facil-

ities, making it difficult to evolve existing server applications toward using non-blocking

I/O features.

The Web cluster prototype has been evaluated using a trace-driven Web benchmark-

ing tool, WebStone [40], and Web server access logs that are publicly available. Two

kinds of traffic have been simulated for each trace and test, static and dynamic. Static

traffic is comprised of normal HTTP requests, taken directly from Web server access-

logs. Dynamic traffic refers to requests that are directed to some kind of Web application

that generates the responses for each request. These dynamic requests have been simu-

lated by modifying the Web server to perform a calculation that takes approximately 35

milliseconds for each request. Previous Web clustering research has focused more on

static traffic. The introduction of a workload with dynamic requests is a key aspect of the

evaluation, as dynamic Web sites are very common nowadays and the tendency is toward

mostly dynamic sites in the future.

The evaluation results show that a differentiation between static and dynamic requests

is necessary for a better understanding of Web server scalability issues. When han-

dling static traffic, it is easy for a single node Web server to saturate an Ethernet 100

Mbit/second connection, and I/O throughput is the main factor. However, scalability of

Web servers that handle dynamic traffic is much improved from using a clustering ap-
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proach. This is due to the fact that when serving dynamic requests I/O performance is

not the main scalability factor and CPU processing becomes very important as well. Fur-

thermore, issues involved in implementing scalable network servers in Java are discussed,

focusing specifically on how the new non-blocking I/O facilities affect the architecture

and scalability of server applications.

A single-node standalone Java Web server that uses an event-driven architecture has

been implemented for comparing its scalability with the Web cluster’s. This server has

been able to outperform the cluster prototype for most of the metrics measured with the

static workload. It is clear that when considering Web traffic that is comprised of mostly

static requests to files in the server, the overhead and data copying involved in a cluster

offers no substantial advantage over a high-performance standalone Web server for most

loads. A single node standalone server has a shorter data path and can offer better I/O

throughput than a set of cluster nodes interconnected by a FastEthernet network.

However, if dynamic traffic is considered the advantages of a clustered architecture are

clear. When sheer I/O throughput is not the only factor the cluster prototype outperforms

the standalone Web server in all the tests evaluated. When requests involve some kind of

processing that requires the use of the CPU, a cluster can provide better scalability due to

the aggregated CPU power of the back-end nodes, while the standalone node is limited to

its single CPU (in the case of the nodes in our test network). Thus, in the transition from

Web serving to Web application serving, real scalability advantages can be obtained from

using Web clusters instead of standalone Web servers.

For Web workloads that are still mainly static and need massive scalability, there is a

need for more research on distributed dispatchers with Web serving platforms. For I/O

bound applications, a single dispatcher becomes a bottleneck, and it could be interesting

to see how architectures like Scalable LARD [4] could be applied to enable clustering in

modern Web and application servers.

It is probable that static Web sites will lose popularity compared to dynamic sites in

the future, so more research is needed to see how Web application platforms can benefit

from clustering architectures. In the case of the Java platform the reference implemen-

tation of the Java Servlet specification, Jakarta Tomcat [36], could be used as a starting

point for more research on clustering applied to Web application servers. JBoss[15] is a

freely available Java application server that has included clustering functionality in recent

versions.
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