
Compositionality and Context

Two and a half 90-minute lectures

Tim.Fernando@tcd.ie

ESSLLI XIII (Helsinki, August 2001)

These notes are based on lectures constituting the second half of a week-
long course on Compositionality and Context, the first half of which
was taught by Dag Westerst̊ahl. The lectures were intended to com-
plement DW’s lectures, although I have tried to make them reasonably
self-contained. §§1, 2 are primarily about contexts for compositionality ,
putting (as it were) compositionality in context. With a scheme for com-
positional frameworks in place (and some motivation from §2.5), §3 turns
to notions of context within such a framework, extending these to include
choices among (and leaps between) such frameworks. That is, §3 is about
context in compositionality (incorporating context change into meaning).

1 Complicating Hodges?

References

Wilfrid Hodges, Formal features of compositionality. J. Logic, Language and
Information, 10(1):7-28, 2001. [www.maths.qmw.ac.uk/˜wilfrid]

Marcus Kracht, Strict compositionality and literal movement grammars. In
Logical Aspects of Computational Linguistics ‘98, LNAI 2014. Springer, 2001.
[www.math.fu-berlin.de/˜kracht]

Peter Pagin and Dag Westerst̊ahl, Editorial: Compositionality: Current Issues.
J. Logic, Language and Information, 10(1):1-5, 2001.

1.1 Compositionality

“The standard formulation” (Pagin and Westerst̊ahl 2001, page 1)

(C) Thea meaningb of a complexc expressiond is determineda by thea meaning
of its partse and thea “mode of composition.”f,g

a- Does ‘the’ presuppose existence and uniqueness? In particular, does (C)
take for granted that every expression has a unique meaning, and a unique
mode of composition?

b- What sort of thing is a ‘meaning’? Model-theoretic? Representational?. . .

c- What does it mean to be ‘complex’? Is (C) an inductive recipe for cal-
culating meanings of complex expressions, based on meanings of non-
complex (atomic) expressions?

d- Is the notion of an ‘expression’ subject to theoretical construction/bias, or
is it composed of theory-neutral, strictly perceptible ingredients (audible
and/or visible)?

1

e- Are ‘parts’ immediate (as opposed to more general hereditary) constituents?
Are parts expressions?

f- What is a ‘mode of composition’? Is that built into the notion of a [well-
formed] expression?

g- ‘and by nothing else’?

To give (C) bite, the answer to g must be yes, surely?
Not so fast: it is easy to read Hodges 2001 and Kracht 2001 as saying no (or
better: not necessarily) to g (as well as a).

1.2 From expressions to grammatical terms (Hodges)

Hodges collects the expressions in a set E, and is careful to distinguish an
expression e from a a grammatical term t ∈ GT that provides a “structural
analysis” of e assuming a certain function val (defined simultaneously with
GT) maps t to val(t) = e.

In general one expects a semantics to give different meanings to an
expression under different structural analyses of the expression. So
I shall assume that meanings attach to elements of the grammatical
term algebra GT rather than to elements of E. In fact the set E
plays only a parasitic role from this point onwards. [page 9]

Before the passage above, Hodges constructs GT from a grammar1 (E, A, α)α∈Σ

where

- A is the subset of E consisting of atomic expressions

- Σ is a set of n-ary function symbols α, interpreted as partial n-ary func-
tions α on E.

Putting aside for the moment the precise definition of GT ,2 the point is that
Hodges takes a semantics for E to be a function µ, the domain of which is
a subset of GT .3 Hodges examines the problem of extending µ to a function
µ̂ ⊇ µ satisfying dom(µ̂) = GT and

1We follow DW’s modification here, trading quotes ‘·’ (marking terms) for underlines ·
(marking interpretations).

2For the record, GT and val : GT → E are defined by simultaneous induction as follows:

(i) for every a ∈ A, a ∈ GT and val(a) = a

(ii) for every α ∈ Σ with arity n and all t1, . . . , tn ∈ GT s.t. (val(t1), . . . , val(tn)) ∈ dom(α),

α(t1, . . . , tn) ∈ GT and val(α(t1, . . . , tn)) = α(val(t1), . . . , val(tn)).

Note that E is used implicitly in (ii), α being a partial n-ary map on E. (Another natural
notation for α would be val(α).)

3Writing M for the range/co-domain of µ (i.e. M is the set of “meanings”) and ⇁ for

partial functions, we get the picture

µ
GT ⇁ M

val ↓
E

2

there is a function r such that for every complex term α(t1, . . . , tn) ∈ GT ,

µ̂(α(t1, . . . , tn)) = r(α, µ̂(t1), . . . , µ̂(tn)) .

(GT is closed under subterms, but need not include every term built from
(A, Σ).) Now, an expression e has, for every structural analysis t ∈ GT of e
(i.e. val(t) = e), the/a meaning µ̂(t). By requiring that val be surjective (onto
E), Hodges ensures that every expression has a µ̂-meaning (and, assuming val
is not 1-1, possibly several).

1.3 A question

Returning to compositionality (C), let us apply Hodges’ terminology to formu-
late the following question.

(P) How is a meaning µ̂(t) of an expression val(t) determined by meanings of
the parts of val(t)? In fact, what are “the parts of val(t)”?

A possible reaction to Question (P) is to suggest that “expression” in (C) be
identified with an element not of E, but of GT , and use the notion of “subterm”
for “part.” But, so long as a distinction between GT and E is drawn, what is
to stop us from raising (P) for E? And in www.math.fu-berlin.de/˜kracht/
(Stand: Thu Jul 5 14:00:00 2001), we read

My main intuition about compositionality is that present theories
do not contain a notion of part of an expression. I have written on
this in ‘Strict Compositionality and Literal Movement Grammars’.

That paper (hereafter Kracht 2001) provides “a formal set-up of language as a
semiotic system” of “signs,” where, to a first approximation, expressions become
“exponents.”

1.4 From grammatical terms to signs (Kracht, Part 1)

Given

- a set E of exponents e, . . .

- a set T of types t, . . . (not to be confused with Hodges’ terms/structural
analyses, though, in some sense, shadowy projections of them)

- a set M of meanings m, . . .

Kracht defines

- a sign over (E, T, M) to be a triple (e, t, m) ∈ E×T ×M (with exponent
e, type t and meaning m)

- a language over (E, T, M) to be a set of signs over (E, T, M)

- ε to be the first projection on E × T ×M , τ the second, and µ the third,

3

whence for a sign σ over (E, T, M),

σ = (ε(σ), τ(σ), µ(σ)) .

Examples. Kracht gives the following examples of signs

‘a’ : (a, np/n, λP.λQ.(∃x)(P (x) ∧Q(x)))
‘man’ : (man, n, λx.man′(x))

‘walks’ : (walks, np\n, λx.walk′(x))

the intuition being that exponents are visible (audible) while types provide
some form of structural analysis. [end of Examples]

Next, to specify languages given by a grammar, he

- fixes a signature (F, Ω) where F is a set of function symbols, with arities
specified by the function Ω from F to natural numbers

- defines a partial Ω-algebra to be a pair A = (A, I), where A is a non-
empty set (the carrier set of A) and I is a function from F (= dom(Ω)),
mapping each f ∈ F to a partial Ω(f)-ary function I(f) on A

- defines an (E, T,M)-grammar G to consist of a finite signature (F, Ω)
and functions IE , IT , and IM making (E, IE), (T, IT) and (M, IM) partial
Ω-algebras.

Given such an (E, T, M)-grammar G and an n-ary f ∈ F , let I(f) be the partial
n-ary function on E × T ×M such that for all σ1, . . . , σn ∈ E × T ×M ,

I(f)(σ1, . . . , σn) ' (IE(f)(ε(σ1), . . . , ε(σn)), IT (f)(τ(σ1), . . . , τ(σn)),
IM (f)(µ(σ1), . . . , µ(σn)))

by which it is understood that (in particular)

(σ1, . . . , σn) ∈ dom(I(f)) iff (ε(σ1), . . . , ε(σn)) ∈ dom(IE(f)) and
(τ(σ1), . . . , τ(σn)) ∈ dom(IT (f)) and
(µ(σ1), . . . , µ(σn)) ∈ dom(IM (f)) .

Example. Developing the example above, Kracht considers a binary • ∈ F
(called merge), taking IE(•) to be concatenation with a blank inserted between
arguments

IE(•)(a, man) = a man

IT (•) to be slash-cancellation

IT (•)(np/n,n) = np

and IM (•) to be function application

IM (•)(λP.λQ.(∃x)(P (x) ∧Q(x)), λx.man′(x)) = λQ.(∃x)(man′(x) ∧Q(x))

so that

I(•)(‘a’, ‘man’) = (a man, np, λQ.(∃x)(man′(x) ∧Q(x))) .

4

1.5 Signs versus expressions (Kracht, Part 2)

Kracht defines the language of G, L(G), to be the set of signs generated by Ω
and I as follows. For every natural number k, let Sk be the set of signs defined
from the subsets

Fn = {f ∈ F : Ω(f) = n} (for every n)

of F by

S0 = {(IE(f), IT (f), IM (f)) : f ∈ F0} [the lexicon of G]
Sk+1 =

⋃

n>0

⋃

f∈Fn

{I(f)(σ1, . . . , σn) : (σ1, . . . , σn) ∈ dom(I(f)) ∩ Sk
n} .

The language of G is the union of these sets

L(G) =
⋃

k≥0

Sk .

Referring to f ∈ F as a mode, Kracht writes

Notice that our definition of grammar is modular . . . we assume
that modes operate independently on the exponents, the types and
the meanings of the signs. Therefore, in order to define a grammar,
one needs only specify the interpretation of the modes in each of
the three sets E, T and M independently. This defines the algebras
(E, IE), (T, IT) and (M, IM). The rest is completely determined.

Relating Kracht to Hodges, we have, as a first approximation,

Hodges Kracht

E expressions exponents
A (qua terms) F0

modes α ∈ Σ f ∈ F
α IE(f)

GT ∼ L(G)
val ∼ ε
µ ∼ µ

Table 1

The last three rows of Table 1 are not quite compatible with the first row, and
can be sharpened as follows. Backing up from the set L(G) of signs, define the
subset tm(G) of the free Ω-algebra simultaneously with a map θ : tm(G) →
L(G) by the clauses

(i) for every f ∈ F0, f ∈ tm(G) and θ(f) = (IE(f), IT (f), IM (f))

(ii) for all n > 0, f ∈ Fn and g1, . . . , gn ∈ tm(G) such that (θ(g1), . . . , θ(gn)) ∈
dom(I(f)),

f(g1, . . . , gn) ∈ tm(G) and θ(f(g1, . . . , gn)) = I(f)(θ(g1), . . . , θ(gn)).

5

Note the similarity with Hodges’ definition of GT and val. We get

Hodges Kracht

GT ≈ tm(G)
val ≈ θ; ε
µ ≈ θ; µ
? ≈ L(G)

Table 2

where ; is function composition, applied sequentially so that

Hodges Kracht

val : GT → E ≈ θ; ε : tm(G) θ→ L(G) ε→ E

µ : GT → M ≈ θ; µ : tm(G) θ→ L(G)
µ→ M .

We keep the marks ≈ of imperfection and add a row ‘? ≈ L(G)’ as otherwise
Table 1 hides the role played by L(G). Notice that the definition of tm(G) uses
I(f), and not just Table 1’s α-counterpart, IE(f). L(G) is crucial to Kracht
2001. This fact should not be lost when replacing L(G) in Table 1 by tm(G)
in Table 2. The prominence Table 1 gives to expressions/exponents ought to
be balanced against the centrality of L(G), hinted by the last row of Table 2.
(And remember, there is more to a sign σ in L(G) than its exponent ε(σ); σ
carries with it also its type τ(σ), and meaning µ(σ).)

1.6 Back to Parts (Kracht, Part 3)

Indeed it is between signs in L(G) that Kracht sets out to develop a notion of
part , although this is based largely on the signs’ exponents, which he takes to
be strings.4 “To talk meaningfully about parts of a sign,” a principle called
analyticity is imposed, the main force of which is that for every n-ary mode f
and every (σ1, . . . , σn) ∈ dom(I(f)) ∩ L(G)n,

each ε(σi) occurs at least once in ε(I(f)(σ1, . . . , σn)).

(Or more simply, if IE(f)(e1, . . . , en) is defined then it deletes none of e1, . . . , en.)
An important (additional) requirement is that in the generation of L(G), “every
step” from Sk to Sk+1 “leaves a visible trace on the exponent,” as illustrated
by the following two conditions.

Nonemptiness. No sign has an empty exponent.

Productivity . If σ is composed from σ′ by applying a unary mode, then
ε(σ′) is shorter than ε(σ).

Interestingly, Kracht concedes that

There is plenty of evidence that in language there are empty signs
and also non-productive modes. However, their use must obviously

4As strings, exponents have a completely straightforward notion of part — substring.

6

be highly restricted otherwise the determination of meaning from
sound can become infeasible. So, when one looks closely at the mat-
ter it often appears that the use of empty signs and non-productive
modes can be eliminated. . .

He adds further conditions on G, with the goal of ensuring that there be a
polynomial-time decision procedure to check

given an exponent e, is there a sign σ ∈ L(G) the exponent of which,
ε(σ), is e?

Now, the meaning of a sign σ is just its third projection µ(σ). So if we collect
all the signs with a particular exponent e, we collect what e could mean — that
is, arguably e’s meaning. Of course, to say that

we can collect what e could mean, given (the parts of) e

is different from saying that

we can collect what e could mean, given what the parts of e could
mean.

The latter comes closer to question (P) from §1.3 (above), but fails to mention a
mode of composition. A somewhat simplified version of question (P) in Kracht’s
framework is

Given an n-ary mode f , what is the meaning of an expression built
from f and parts with meanings m1, . . . , mn?

The answer is simple: IM (f)(m1, . . . ,mn). A trickier version of (P) is

Given a partial n-ary function ϕ which is IE(f) for some n-ary mode
f , what is the meaning of an expression built from ϕ and parts with
meanings m1, . . . , mn?

In this case, there can be many f ’s such that ϕ = IE(f) and accordingly many
answers IM (f)(m1, . . . , mn). The problem is to get our hands on them/one.
Notice that in the above versions of question (P), what is important is not so
much whether we are talking about an “expression” or a “sign.” It is whether
a “mode” gives us the function IM (f) or not.

All this suggests that perhaps question (P) isn’t very interesting afterall.
The surjectivity (assumed by Hodges) of val and the generation (by Kracht) of
L(G) from F both point to the conclusion that it is the modes that matter (the
terms built from which have [like all terms] a straightforward notion of ‘part’
— subterm). The conditions of analyticity, non-emptiness and productivity
Kracht incorporates into strict compositionality are all directed at reconstruct-
ing modes from their exponent projections. Moreover, Kracht’s assertion that
“our definition of grammar is modular” should not obscure the fact that

(†) modes (in Ω) had better be choosen carefully for an interesting language
L(G) to emerge from “independent” definitions (after Ω is fixed) of the
modules (E, IE), (T, IT) and (M, IM).

7

The challenge in designing a common skeleton Ω for exponents, types and mean-
ings could well make claims of modularity sound hollow.5 Indeed, one might,
as a result, shy away from global semiotic ambitions, and seek more local and
modest applications of compositionality. That is to say, rather than worrying
about designing modes for three “independent” algebras (E, IE), (T, IT) and
(M, IM), one might focus on getting one right (impossible though that is). And
for that, Hodges’ simpler framework might do.

1.7 So, what next?

Section 2 is an attempt to get away with an even simpler framework than
Hodges’. While perhaps not completely successful, it is, I think, instructive. It
brings out a notion of Context that we will try to develop in different directions
in the remainder of these notes/lectures, keeping in mind questions a to g from
§1.1, and also turning to some concrete examples (of expressions, modes and
meanings).

2 Simplifying Hodges?

Reference (in addition to Hodges 2001)

Tim Fernando, Ambiguity under changing contexts. Linguistics and Philoso-
phy , 20(6):575-606, 1997.6

2.1 Simplification short of trivialization?

In his first lecture for this course, DW characterized triviality claims asserting
the emptiness of compositionality as follows

“Any semantics can be made ‘compositional’ by suitable syntactic
and/or semantic manipulations.” More formally:

(1) For any µ : E → M there is another semantics µ′ : E′ → M ′

which is compositional and related to µ in some natural way.

The interest of (1) depends entirely on how µ′ is related to µ.

What DW underscores here is the tension between the ∀-claim in (1), implying
triviality, and the relationship between µ and µ′, which had better be inter-
esting if the triviality claim is to have any content. By requiring that µ ⊆ µ′,
Hodges stops short of claiming triviality. It is easy to choose a µ that has no
compositional extension µ′.

5None of this is meant to deny that the semiotic framework Kracht proposes is interesting.
6Pages 585 and 589-594 are especially relevant (with the criticism of Assumption A in

p.585 motivating an investigation of refinements, and pages 592-594 giving what is presented
below as Theorem 4). We depart somewhat from the notation in Fernando 1997 for an easier
comparison with Hodges 2001.

All papers by Fernando referred to in these notes can be obtained from www.cs.tcd.ie/

Tim.Fernando.

8

Drawing on Fernando 1997, the present section relaxes the requirement
µ ⊆ µ′, proposing instead that µ′ be what might be called (for reasons that
will become clear shortly) a Fregean refinement of µ. As it turns out, every
semantics µ has a compositional Fregean refinement µ′, raising the question:
aren’t we flirting with triviality here? Or rather, just how interesting could this
notion of a Fregean refinement (whatever it is) be? We will see that for µ’s that
have compositional extensions, Fregean refinements of µ coincide exactly with
Hodges’ Fregean extensions of µ. The present section simplifies Hodges by

(i) sidestepping the question of when compositional extensions exist, and

(ii) passing from functions µ to their synonymies ≡, setting aside the distinc-
tion between E and GT .

The shift from functions to synonymies is natural given that it is up to synonymy
that Fregean extensions/refinements are unique. As for cases where composi-
tional extensions fail to exist, I claim that Hodges’ formal analysis of Frege’s
Context Principle in terms of Fregean extensions does not suffer when gener-
alizing Fregean extensions to Fregean refinements. Indeed, it is sharpened by
the construction of Fregean refinements presented below, which applies whether
or not compositional extensions exist (outputing one if they do). The thrust
of that construction is to view compositionality not so much as an inductive
recipe for computing the meaning of an expression by computing the meaning
of its parts, but rather as a co-inductive system of constraints on synonymies
imposed by a suitable notion of context .

2.2 Compositionality “without parts”: congruences

Let us review some well-known facts, mainly to fix notation and to relate that
to Hodges’ framework. Given an equivalence relation ≡ on a set E (of “expres-
sions”), e ∈ E, and an n-ary function f : En → E on E,

(i) let e≡ denote the ≡-equivalence class

e≡ = {e′ ∈ E : e ≡ e′}

(ii) define f≡ : Pow(E)k → Pow(E) by

f≡(ε1, . . . , εn) = {f(e1, . . . , en)≡ : e1 ∈ ε1, . . . , en ∈ εn}
for all ε1, . . . , εn ∈ Pow(E)

(iii) call ≡ a congruence relative to f if

e1 ≡ e′1 · · · en ≡ e′n
f(e1, . . . , en) ≡ f(e′1, . . . , e′n)

for all e1, . . . , en, e′1, . . . , e′n ∈ E.

Fact 1. An equivalence relation ≡ on E is a congruence relative to f : En → E
iff

9

(∗) f(e1, . . . , en)≡ = f≡(e≡1 , . . . , e≡n) for all e1, . . . , en ∈ E.

Construing e≡ to be the meaning of e, (∗) can be read as a restricted form of
compositionality (C) for complex expressions f(e1, . . . , en) with n parts e1 . . . en

and a total mode of composition f — provided we can make sense of the words
“complex” and “parts” here.

But that is easy, if E is the set of terms built from function symbols f . Adopt-
ing Hodges’ terminology (as modified by DW, and writing f instead of α),
we assume that E comes with a grammar (E, A, f)f∈Σ where A = {f ∈ Σ :
arity(f) = 0} and for every f ∈ Σ with arity n, f is the (total) n-ary function
on E such that for all e1 . . . en ∈ E,

f(e1, . . . , en) = the term ‘f(e1, . . . , en)’ .

This trivial instance of Hodges’ set-up dispenses with partiality, inviting the
question

(‡) how are we to address the problem of extending a partial semantics µ if
E = GT = the set of terms built from a set Σ of function symbols?

The short answer is: by looking at equivalence classes on E.
For a more informative answer (developed in the remainder of this section),
some notation is handy. Given a function µ : E → M (from “expressions” to
some set M of “meanings”), let ≡µ be the equivalence relation (of “synonymy”)
on E given by

e ≡µ e′ iff µ(e) = µ(e′)

for all e, e′ ∈ E.

Fact 2. Fix a function µ : E → M .

(a) Given f : En → E, there is a function rf : Mn → M such that

µ(f(e1, . . . , en)) = rf (µ(e1), . . . , µ(en)) for all e1, . . . , en ∈ E

iff ≡µ is a congruence relative to f .

(b) Let µ◦ : E → Pow(E) map e ∈ E to its≡µ-equivalence class {e′ : e ≡µ e′}.
Then ≡µ is ≡µ◦ .

2.3 A co-inductive characterization of compositionality

An equivalence relation on E is a congruence relative to a set Σ of functions on
E (of various arities) if it is a congruence relative to every function in Σ. Given
an equivalence relation ≡ on E, let Cng[≡, Σ] be the set of congruences relative
to Σ that are ⊆-contained in ≡

Cng[≡, Σ] = {R ⊆ ≡ : R is a congruence relative to Σ} .

What’s so interesting about Cng[≡, Σ]? To say R ⊆ ≡ is to say R refines ≡ —
i.e., respects all distinctions made by ≡. (Form contra-positive of implication

10

expressing R ⊆ ≡). But, of course, not all elements of Cng[≡,Σ] give interesting
semantics. For instance, the ⊆-least element of Cng[≡,Σ], =, does no work at
all (corresponding to syntactic identity7). The purpose of this subsection is to
show that Cng[≡, Σ] has a ⊆-largest element, which we will relate in the next
subsection to what Hodges calls Fregean extensions.

Towards that end, let us re-state the defining condition for an equivalence
relation ≡ on E to be a congruence relative to a unary function f on E as

≡ ⊆ ≡f

where

≡f = {(e, e′) ∈≡ : f(e) ≡ f(e′)} .

More generally,

Lemma 3. Given f : E → E and ≡ ⊆ E × E, let

≡0 = ≡
≡k+1 = ≡k

f for every integer k ≥ 0 .

Then
⋂

k≥0 ≡k is the ⊆-largest element of Cng[≡, {f}].
Proof. Shortening

⋂
k≥0 ≡k to ≡ω, it is easy to verify that ≡ω is an equivalence

class contained in ≡, and

e ≡ω e′ iff (∀k) e ≡k e′

iff e ≡0 e′ and (∀k) e ≡k+1 e′

iff e ≡ e′ and (∀k) f(e) ≡k f(e′)
iff e ≡ e′ and f(e) ≡ω f(e′)

for all e, e′ ∈ E. Finally, to see that every element R of Cng[≡, {f}] is ⊆-
contained in ≡ω, it suffices to show that R ⊆ ≡k for every k ≥ 0. This follows
by a routine induction on k. a

Next, what about a binary function f? We have two arguments to check,
and the obvious modification of ≡f (to get a congruence) is

{(e, e′) ∈≡ : (∀(d, d′) ∈≡) f(e, d) ≡ f(e′, d′) and f(d, e) ≡ f(d′, e′)} .

The occurrence of ‘(d, d′) ∈ ≡’ above is not positive, and we lose monotonicity
(used to get fixed point from ≡0 ⊇ ≡1 ⊇ ≡2 · · · and cardinality argument).
Fortunately, we can make do with d′ = d as follows.

Given an (n + 1)-ary f : En+1 → E, let us break down the constraint for a
congruence ≡ relative to f

e1 ≡ e′1 e2 ≡ e′2 · · · en+1 ≡ e′n+1

f(e1, e2, . . . , en+1) ≡ f(e′1, e′2, . . . , e′n+1)

into n+1 parts, with the idea of working our way through the rule, one argument
at a time.

7This is W. Zadrozny’s celebrated result.

11

e1 ≡ e′1
f(e1, . . . , en+1) ≡ f(e′1, e2, . . . , en+1) e2 ≡ e′2

f(e1, . . . , en+1) ≡ f(e′1, e′2, e3, . . . , en+1) e3 ≡ e′3
... en+1 ≡ e′n+1

f(e1, . . . , en+1) ≡ f(e′1, . . . , e′n+1)

Accordingly, we form unary functions from f by freezing all but one of f ’s
arguments as follows. For all i ∈ {1, . . . , n + 1} and ~e ∈ En, define the unary
function fi,~e : E → E on E by

fi,~e(e) = f((e,~e)i)

where (e,~e)i is ~e with e inserted at the ith position. For convenient reference,
let us collect these unary projections of f in the set

u(f) =
⋃

1≤i≤n+1

{fi,~e : ~e ∈ En} .

Now, we get an obvious analog of Hodges’ notion of 1-compositional (simplified
a bit):

an equivalence relation ≡ on E is a 1-congruence relative to a set
Σ of functions on E (of various arities) if for every f ∈ Σ, ≡ is a
congruence relative to every function in u(f).

Theorem 4. Let ≡ be an equivalence relation on E and Σ be a set of functions
on E.

(a) ≡ is a congruence relative to Σ iff it is a 1-congruence relative to Σ.

(b) Cng[≡, Σ] has a ⊆-largest element, namely
⋂

k≥0 ≡Σ
k where

≡Σ
0 = ≡

≡Σ
k+1 =

⋂

g∈Σ

⋂

f∈u(g)

(≡Σ
k)f

(with ·f as defined before Lemma 3).

Remark. It is natural to read
⋂

k≥0 ≡Σ
k as the coarsest refinement of ≡ re-

specting the contexts given by
⋃

f∈Σ u(f).

2.4 Refining extensions

Given a set E and a function µ the domain of which is a subset of E, let ≡µ,E

be the equivalence relation on E given by the 1-point extension µ⊥ ⊇ µ on E
defined by

µ⊥(e) =

{
µ(e) if e ∈ dom(µ)
⊥ otherwise

12

where, by assumption, ⊥ 6∈ image(µ). That is, ≡µ,E is

≡µ ∪ ((E − dom(µ))× (E − dom(µ))) .

(Notice that if dom(µ) = E, then ≡µ,E is just ≡µ.)

There is, of course, no guarantee that ≡µ,E is a congruence relative to a set Σ
of (multi-ary) functions on E. But we know from the preceding subsection how
to fix that: form the ⊆-largest element of Cng[≡µ,E , Σ], call it ≡Σ

µ , and define
the Fregean refinement of µ relative to Σ to be the function µΣ : E → Pow(E)
mapping e to its ≡Σ

µ -equivalence class {e′ : e ≡Σ
µ e′}.

Proposition 5. Let E be the set of terms built from Σ, and µ be a partial
function with domain ⊆ E. If µ has an extension to E that is Σ-compositional,
then µΣ is (equivalent to) one (i.e. for all e ∈ dom(µ), µΣ(e) = {e′ : µ(e) =
µ(e′)}), and is what Hodges calls a Fregean extension of µ.

Remark. ≡Σ
µ is not necessarily the coarsest Σ-congruence refining ≡µ. Indeed,

there isn’t always a coarsest extension. Suppose µ were defined on exactly two
expressions a and b with µ(a) 6= µ(b). Given c 6∈ {a, b}, an extension of µ to
{a, b, c} that is maximally synonymous would make c synonymous with a or
b but cannot do both. How do we choose? We don’t, inventing instead new
meanings for expressions outside dom(µ). Whether or not it is desirable that
an extension of µ distinguish its domain from dom(µ) probably depends on the
particular choice of µ — which is to say, claims that Fregean extensions are
fully abstract ought probably to be evaluated on a case-by-case basis.

2.5 Applications: ambiguity and changing contexts

Recall our assumption in §2.2 that the grammar of E is (E, {f ∈ Σ : arity(f) =
0}, f)f∈Σ where for every f ∈ Σ with arity n, f is the (total) n-ary function on
E such that for all e1 . . . en ∈ E,

f(e1, . . . , en) = the term ‘f(e1, . . . , en)’ .

This assumption has the effect of establishing

(Tot) GT = the set of terms built from Σ

as well as E = GT . Question (‡) from §2.2 asked how we are to investigate
partial semantics, given (Tot) and E = GT . Our longer answer to (‡) comes
down to: weaken/generalize requirement of extension to refinement.

Now, for applications to ambiguity, it will pay to be a bit more careful about
E, requiring of f only that it be a total n-ary function on E. This suffices
to secure (Tot), without forcing val : GT → E to be the identity function
on GT (or even 1-1). That is, we stop short of eliminating the distinction
between “parasitic” expressions and grammatical terms (⊇ dom(µ)), with a
view to putting Hodges’ framework to greater use. Given (Tot), what possible
difference could val : GT → E make? As far as semantics µ (total or partial) for

13

GT alone are concerned, none. But, coupling µ with val to produce meanings
for e ∈ E as in §1.2, define µval : E → Pow(M) by

µval(e) = {µ(t) : t ∈ dom(µ) and val(t) = e} .

(Assuming wlog that E ∩GT = ∅, we can extend µval to GT so as to contain
µ.) The difference between µval and µ is genuine only if val is not 1-1 (allowing
expressions in E to be ambiguous). The question is

just how illuminating a semantics of ambiguity is µval?

µval(e) says nothing about disambiguation (and disambiguation is arguably
crucial to any conception of ambiguity). Worse, µval(e) quantifies away the
structural analyses t, . . . linking e to µ.

Enter Frege’s Context principle:

(X) never ask what a word means in isolation, but only in the context of a
proposition.

It is natural to broaden (X) from “proposition” to discourse, interpreting con-
text as co-text. As everyone knows, discourse can disambiguate; compare

A pal of every student in her class loves squash

(in isolation) with

Doris couldn’t believe it.

A pal of every student in her class loves squash.

He is the only kid in town who eats it raw.

Taking E to be a set of discourse fragments, structured by a merge operation
•, we get the following ingredients for disambiguating E on the basis of some
subset Φ ⊆ E with well-defined interpretations [i.e. Φ ≈ GT]

• : (E ×E) → E [“merge”]
δ : E → Pow(Φ) [compare to val−1 : E → Pow(GT)]

[[·]] : Φ → M [compare to µ : GT → M]

Question (concerning what sort of subset of E is Φ):

Does discourse E constitute (in Hodges’ terminology) an end extension
of sentences Φ? Or is Φ cofinal in E?

Argument for cofinal extension: a 2-sentence discourse can be turned into a
single sentence, using “and” or perhaps “but”, “because” . . .

But is that really the case? Consider the following discourse, analyzed at
length by Nicholas Asher and Alex Lascarides (e.g. Linguistics and Philos-
ophy , 16(5):437-493, 1993).

John fell. Mary pushed him.

14

The full stop (period ‘.’) between fell and Mary can be disambiguated as
“because” or “and.” But without further information (as to which of the two
[or more?] to choose), one might argue that ‘.’ is simply underspecified. A
further argument that discourse constitutes an end extension (with ‘.’ mapping
a sentence to a discourse) is provided by the following example, due to B. Partee.

Exactly one of the ten balls is not in the bag. It is under
the sofa.

Exactly nine of the ten balls are in the bag. ?It is under
the sofa.

A semantics for E (recognizing both arguments): take the largest element of
Cng[≡ν , {•}] where ν : E → Pow(M) is given by

ν(e) = {[[ϕ]] : ϕ ∈ δ(e)} [compare to µval(e)] .

Fernando 1997 explores the largest element ≡Σ
ν of Cng[≡ν , Σ] where Σ might

contain not only • but further multi-ary functions on E, invoking non-well-
founded sets to characterize the resulting refinements of ν(e).

Two further twists

1. Ideally, one would derive ≡Σ
ν independently of the co-inductive construc-

tion in §2.3, appealing instead to some notion of meaning more explana-
tory than equivalence classes given by synonymy. That is, it is desirable to
justify a “fully abstract” semantics “denotationally” — e.g. via semantic
entities like first-order models (for which, in fact, the natural equivalence,
isomorphism, may fall short of full abstraction, elementary equivalence).

This is not to deny the importance of “operational semantics,” concerning
which an alternative non-deterministic analysis of the merge • above can
be found in

Tim Fernando, Ambiguous discourse in a compositional con-
text. J. Logic, Language and Information, 10(1):63-86, 2001.

That paper couples operational semantics with a novel modal logic (con-
stituting a “logical semantics”), and characterizes full abstractness in
terms of bisimulations.

2. Context may well change during the interpretation of an expression —
e.g. anaphora (where discourse can, say, resolve she? to sheMary)

Contrast 2 kinds of context:

(i) context as bridge to dom(µ) — e.g. inverting val, given e

(ii) context implicit in choice of [say] a grammar [instance] in Hodges’
sense (including E)

Whereas (i) is internal, (ii) is external.

Neither is explicit in compositionality (C).

15

Synonymies leave nature of meaning open, which can be approached abstractly
(denotationally/mathematically) or algorithmically (operationally/from a pro-
cessing view).

Next time: incorporate notion of context into meaning, using more con-
crete and familiar semantic notions (with the basic theme: meaning as context
change) .

3 Updating Montague

References (highly biased towards the last two below)

J. Groenendijk and M. Stokhof, Dynamic predicate logic. Linguistics and Phi-
losophy, 14, 1991.

Irene Heim, The Semantics of Definite and Indefinite Noun Phrases. Disserta-
tion, University of Massachusetts, Amherst, 1982. (Garland Press, NY, 1988.)

H. Kamp and U. Reyle, From Discourse to Logic. Kluwer, Dordrecht, 1993.

Lauri Karttunen, Presupposition and linguistic context. Theoretical Linguis-
tics, pages 181–194, 1974.

Aarne Ranta, Type-Theoretical Grammar. Oxford Univ Press, Oxford, 1994.

Rob A. van der Sandt, Presupposition projection as anaphora resolution. Jour-
nal of Semantics, 9(4):333-377, 1992.

Göran Sundholm, Proof theory and meaning. In D. Gabbay and F. Guenthner
(eds.), Handbook of Philosophical Logic, vol 3. Reidel, Dordrecht, 1986.

Tim Fernando, A type reduction from proof-conditional to dynamic semantics.
J. Philosophical Logic 30(2):121-153, 2001a.

Tim Fernando, Conservative generalized quantifiers and presupposition. Se-
mantics and Linguistic Theory XI , New York, 2001b.

3.1 Context change for disambiguated expressions

This section is about context in a system of dependent types that can be

- interpreted model-theoretically

- extended with generalized quantifiers

- reduced to Discourse Representation Theory (DRT, Kamp and Reyle
1993)

- conceived compositionally by equating meaning with context change po-
tential (Heim 1982).

Why bother? Linguistic interest in “dynamic semantics” can (to a large mea-
sure) be traced to the attention given in Karttunen 1974 to the notion that

a context Γ satisfies the presuppositions of︸ ︷︷ ︸ an expression A.

admits, ¤

16

To analyze ‘Γ ¤ A’, Karttunen examines the effect of context change within and
between sentences. Some pertinent examples are

(a) Buganda has a king and the king of Buganda is bald.

(b) If Buganda has a king, the king of Buganda is bald.

(c) If Buganda has a king, he is bald.

(d) If a farmer owns a donkey, he beats his donkey.

(e) If a farmer owns a donkey, he beats it.

Intuitively, the underlined descriptions in (a) and (b) can be satisfied by a con-
text that is updated by the preceding clause Buganda has a king. Similarly
for the underlined material in (c), (d) and (e), assuming we read the pronouns in
accordance with the co-indexing below (ruling out other [e.g. deictic] readings).

(c)′ If Buganda has ax king, hex is bald.

(d)′ If ax farmer owns ay donkey, hex beats [hisx donkey]y.

(e)′ If ax farmer owns ay donkey, hex beats ity.

How exactly to pass from (c)-(e) to (c)′-(e)′ is the vexing problem of anaphora
resolution. For (a) and (b), that passage is unambiguous (modulo the choice of
the variable x, which is arguably inessential/un-interesting).

(a)′ Buganda has ax king and thex king of Buganda is bald.

(b)′ If Buganda has ax king, thex king of Buganda is bald.

Assuming primed representations (with determinate co-indexing), there remains
the problem of checking that the appropriate descriptive conditions are met —
e.g. x is, in (a)′, the king of Buganda, or, in (c)′, masculine. It is this problem
on which we will focus, which is admittedly only a tiny part of the challenge of
interpreting English.8 In particular, the fundamental insight from Karttunen

8Whether that part is conceived as belonging to or coming after anaphora resolution need
not concern us here. There is a good deal of leeway in how to draw the lines between anaphora
and presupposition, although certain distinctions seem to be uncontroversially useful (e.g. that
between anaphoric binding and accommodation).

The basic point, at any rate, is that the pressure (both theoretical and computational)
to decompose natural language interpretation into different (albeit related) processes is irre-
sistible. Integrating these processes leads, I think, to a refinement (as opposed to extension;
see §2) of notions of meaning. A further complication is the need to view meaning as inputs
for further processing — which complicates the conception of meaning as context change by
changing the kind/notion of process/context involved. The notion of context studied in the
present section (§3) must clearly be enriched, some steps towards which are reported in

Tim Fernando, Three processes in natural language interpretation. In Reflec-
tions: A Collection of Essays in Honor of Solomon Feferman , W. Sieg, R. Som-
mer and C. Talcott (eds.), Association for Symbolic Logic, to appear.

Tim Fernando, Towards a many-dimensional modal logic for semantic process-
ing. Advances in Modal Logic 2000, CSLI Lecture Notes, to appear.

17

of interest to us here is that context build-up accounts for the following gener-
alization of (a) and (b)

in A ∧B and A ⊃ B, A filters B’s presuppositions. (1)

Karttunen’s account of (1) can be put in terms of Martin-Löf type theory,
following Sundholm 1986 (and developed extensively in Ranta 1994), as

Γ ¤ A Γ, z :A ¤ B

Γ ¤ (Qz :A)B
(2)

for Q = Σ,Π. Σ and Π are dependent type constructs that, as will be explained
shortly, apply uniformly to the propositional connectives ∧ and ⊃, and the
quantifiers ∃ and ∀. Given this uniformity, (2) accounts for not only presuppo-
sition filtering in (1) but also truth equivalences of the following kind

Some ants bite is true exactly if some ants are ants that bite.

All ants bite is true exactly if all ants are ants that bite.

The truth equivalences above are widely assumed to hold for generalized quan-
tifiers (which are said to be conservative). To turn (2) into an account of that,
we must first understand how the the variable typing z : A in (2) tracks the
dependence of B on A, representing context build-up.

Note. I am afraid the notes get (from here on) increasingly sketchy, and serve
mainly to highlight points made at length in Fernando 2001a,b.

3.2 Dependent types and the contexts on which they depend

Cartesian products and function spaces made dependent

(Σx : A)B = {〈a, b〉 | a :A and b :B[x/a]}
(Σ : A)B = A×B (dummy variable)
l〈a, b〉 = a r〈a, b〉 = b

(Πx : A)B = {functions mapping a in A to b in B[x/a]}
(Π : A)B = A → B

Predicate logic from Σ, Π

force
Σ Π

set ∃ ∀
proposition ∧ ⊃

(∃/∀x ∈ A)B = (Σ/Πx :A)B
A ∧/⊃ B = (Σ/Π :A)B

restrictor A

Next, we relativize dependence to a notion of context.

18

A context Γ is a finite sequence of variable typings x : A.
A type (well-formed formula) may contain terms constructed from proofs in a
context on which the type depend.
Moreover, context changes (from Γ to Γ, x : A) both locally and globally.

3.3 A type reduction: context as variable assignment

From Martin-Löf/Sundholm/Ranta. . . to Kamp/Heim/DPL . . .

‘and’/‘.’ as relational composition ◦ /;
‘not’ as divergence [complement of halting problem]

Equate ‘Γ ¤ A’ with a formalization of ‘Γ ⇒ A prop’ relative to a signature.

DRSs as pretty-printed type expressions . . . Fernando 2001a

3.4 Dependent quantifiers

some(A, B) iff A ∩B 6= ∅
all(A, B) iff A ⊆ B

Determiners D are conservative (Barwise & Cooper 1981, Keenan & Stavi 1986)

D(A,B) iff D(A,A ∩B)

A useful distinction: types A versus unary predicates Bu, from which we can
form types Bu(x) [=B] in a context that types x appropriately.

Sets: formulate the set of x’s in A satisfying B as

{x : A | B} = l[(Σx : A)B]

supporting relational characterizations

(Πx : A)B iff A ⊆ {x : A | B}
(Σx : A)B iff A ∩ {x : A | B}︸ ︷︷ ︸ 6= ∅

{x : A | B}
Selective quantification

Every boy with a nice suit will wear it tomorrow.

Collect tuples on which to quantify to the left, and apply relation Qr to those

(Qx :A)B iff Qr(l[A], l[{x : A | B}])
For external anaphoric links,

(Qx :A)B = {(Σx :A)B} ×Qr(l[A], l[{x : A | B}])

Dependent quantifiers are conservative not only in the sense of GQT (based
on a set-theoretic conception of GQs), but also with respect to DRT-style syn-
tax/semantics interface (from Kamp and Reyle 1993 on).

Moreover, the underlying proofs provide a type-theoretic approach to presup-
position and eventualities. . . . Fernando 2001b

19

