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Abstract

Dynamic replication is a technique that can be used
by clustered multimedia servers to evaluate the de-
mand for individual streams and selectively repli-
cate or move content to facilitate load balancing.
In this paper we explain the motivation for using
dynamic replication and provide a brief description
of some existing dynamic replication policies. We
present a new policy called Dynamic RePacking.
This policy is based on the existing MMPacking al-
gorithm [11], but has been modified to handle nodes
and files with varying bandwidth and storage char-
acteristics and to reduce the cost of adapting to
changes in client demand or server configuration.
Simulation results show that Dynamic RePacking
performs better than both the original MMPacking
algorithm and the threshold-based scheme which
we have simulated for comparison. Our results
also show that Dynamic RePacking performs signif-
icantly less movement and replication of files than
the original MMPacking algorithm.

1 Introduction

True on-demand multimedia streaming usually re-
quires that each client has an independent stream
that can support interactive operations. Such ap-
plications are demanding on both server and net-
work resources. For example, a two hour high qual-
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ity MPEG-2 movie would require 4Mbps of band-
width and just over 3.5GB of storage. Using to-
day’s commodity PC hardware and software it is
possible to supply an on-demand streaming ser-
vice to a small number of customers. However, the
advent of broadband communication in the home
means that servers will have to deliver reliable on-
demand streaming services cost-effectively to thou-
sands of customers.

The model that has emerged to meet these re-
quirements in other application domains is the
server cluster [2]. High-availability is achieved be-
cause a client request can be handled by more
than one node and each node can independently
service requests. Scalability is achieved (cost ef-
fectively) by adding additional nodes to the clus-
ter. For applications such as web servers and
database systems, this model is in widespread
commercial use. However, the implementation of
large-scale multimedia-on-demand applications in a
server cluster environment presents a specific prob-
lem: the volume and characteristics of the stored
multimedia content means that server performance,
scalability, availability and cost are all highly de-
pendent on the location of the content within the
cluster.

In this paper, we present a policy for performing
partial, selective replication of multimedia content,
based on the the changing demand for individual
multimedia titles, to facilitate load balancing. We
begin in section 2 by describing the motivation for
using partial replication and describe some existing



replication policies. In section 3, we present our
policy, called Dynamic RePacking. This policy is
based on the existing MMPacking policy [11], which
has some useful properties, but must be modified
to handle nodes with varying bandwidth and stor-
age capacities and to reduce the cost of adapting
to changes in client demand or server configura-
tion. The simulation results presented in section
4 show that our policy performs better than the
original MMPacking algorithm, while significantly
reducing the number of multimedia files that need
to be copied or moved between server nodes to per-
form load-balancing.

2 Dynamic Replication

Advances in storage technology have made it pos-
sible for a single commodity server to supply soft
real-time multimedia streams to clients across a
network. Multimedia servers based on the sin-
gle server model, however, exhibit poor scalabil-
ity and availability [7]. One solution is to “clone”
the servers, mirroring available data on each node.
This approach increases the bandwidth capacity
and availability of the service and is common in web
server clusters, where the volume of data stored on
the server is small. Cloned servers can be grouped
to form a network load-balancing cluster and client
requests are distributed among cluster nodes ac-
cording to their capabilities and current workload.
However, the volume of data that is typically stored
on a multimedia server usually prohibits this form
of complete server replication. For example, to
store five hundred typical two-hour DVD quality
videos with a bandwidth of 4Mbps would require
over 1.5TB of storage at each node. Since most
of these videos will only rarely be viewed, cloning
multimedia servers in this way is wasteful.

Recent advances in storage area network (SAN)
technology have prompted some research into the
use of SAN architectures for multimedia servers [6].
One approach is to provide a cluster of front-end
streaming nodes with access to shared SAN stor-
age devices, such as disks or RAID storage sys-
tems. This solution, however, merely moves scala-
bility and availability problems from the front-end
server nodes to the SAN storage devices, since each
storage device or RAID storage system has only
limited bandwidth capacity for supplying multime-

dia streams. A solution to the problem of scala-
bility and availability that can be applied to server
clusters with locally attached storage may also be
applied to SAN architectures. In addition, the high
cost of SAN storage means there is still a need for
multimedia servers based on server-attached stor-
age.

Server striping is an approach that has received a
lot of attention in the past. It is conceptually sim-
ilar to RAID-0 [10] — multimedia files are divided
into equal size blocks, which are distributed among
server nodes in a pre-defined order, as illustrated in
figure 1. In the context of video-on-demand, servers
using this technique are often classified as paral-
lel video servers [7]. Server level striping achieves
implicit load-balancing across server nodes, while
only storing a single copy of each file. Load balanc-
ing between server nodes is required to maximise
server utilisation and minimise the probability that
a client request is blocked [9]. The degree of node
interdependence caused by server striping is high,
however, because each node only stores part of any
file and server nodes need to be used in parallel to
supply a single multimedia stream.

Node interdependence has several disadvantages.
First, the reconstruction of a single stream from
striped blocks can be expensive, particularly if the
reconstruction needs to be performed at the server.
Secondly, as nodes are added to a parallel multime-
dia server, the existing content needs to be redis-
tributed to take advantage of the additional storage
and bandwidth capacity. Scalability is further hin-
dered by the inability of many server architectures
to handle heterogeneous server nodes. For exam-
ple, Microsoft’s Tiger Video Fileserver described
in [1] requires that each server node has an identi-
cal hardware configuration. Finally, since each file
is distributed across all server nodes, the failure of
any node will lead to the loss of all streams, unless
redundant data is stored [14].

We argue that partial, selective replication of
content is a more suitable technique for distribut-
ing multimedia content among nodes in clustered
multimedia servers. Client demand for individual
streams is either continuously or periodically eval-
uated and this information is used to assign a sub-
set of the available multimedia files to each server
node, thereby partitioning the files. Some files may
be replicated on multiple nodes to facilitate load-
balancing, satisfy client demand or provide fault-
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Figure 1: Server striping

tolerance. Since the popularity of each multimedia
file can change over time, the assignment of files to
nodes must be periodically reevaluated. Since each
node can independently supply streams to clients,
the degree of node interdependence is minimal.
This allows a cluster to be formed from nodes with
varying storage and bandwidth capacities, unlike
servers based on striping. In addition, nodes can be
added to or removed from the server cluster with-
out causing the redistribution of all server content.
Although partial replication requires more storage
capacity than server striping, the additional cost is
predictable and is minimised by replication policies
such as the Dynamic RePacking policy described in
this paper. The benefit of this additional storage
cost is increased scalability and graceful degrada-
tion of service when nodes fail.

In the following section, we describe some exist-
ing dynamic replication policies.

2.1 Related Work

The DASD Dancing scheme [13] performs load-
balancing by determining the most suitable node
to supply a new stream and reassigning existing
streams to different nodes when necessary. Related
to this scheme, and of most relevance to our re-
search, is the scheme used to assign multimedia files
to nodes. The assignment begins by determining
the required number of copies of each file. Files are
then assigned to nodes in order to increase the abil-
ity of the server to transfer existing streams from
one node to another. Finally, static load-balancing
is performed, based on the expected demand for

individual files, using those files for which only a
single copy is required. This does not, however, re-
sult in accurate static load-balancing based on the
estimated demand for the multimedia files.

The bandwidth to space ratio (BSR) policy de-
scribed in [5] aims to balance the ratio of used stor-
age to used bandwidth across server nodes. In con-
trast, we assign files to nodes to balance expected
bandwidth utilisation, and only consider storage
capacity as a constraint to this assignment.

A load management policy for multimedia
servers, which takes into account server resources
other than network and storage bandwidth, is de-
scribed in [12]. Like our policy, this policy period-
ically performs predictive placement of files based
on estimated demand. The scheme used to allo-
cate files to nodes, however, begins by allocating
the most popular file (or the file that will generate
the most revenue) first, which may result in the file
being stored in only one location. Intuitively, this
decreases the ability of the server to perform dy-
namic load-balancing when assigning new requests
to nodes. The ability of this policy to adapt to
gradual changes in popularity has not been exam-
ined.

All of the above dynamic replication policies as-
sume the existence of data describing the relative
demand for each file. In contrast, in this paper, we
describe in detail how we estimate the relative de-
mand for each file. The accuracy of this estimation
is reflected in our simulation results.

The dynamic segment replication (DSR) scheme
[4] divides multimedia files into fixed size segments
and performs replication of the segments when the



load on a node exceeds some threshold. DSR may
be used as a secondary “on-line” replication scheme
to allow a server to quickly adapt to unexpectedly
high demand for particular files. This use of DSR to
complement other replication policies is described
in [5]. Such an approach would also complement
our Dynamic RePacking policy.

The threshold-based replication policy described
in [3] does not attempt to periodically find a suit-
able assignment of files to nodes. Instead, each time
a new stream is started, the server evaluates the
unused resources available for supplying streams
of the requested file. If this value is below some
threshold, an additional replica of the file is created
on the node that is currently least loaded. The dis-
advantage of threshold-based schemes is that ex-
pensive replication is delayed until server load is
high, reducing the number of requests that can be
accepted by the server. The threshold-based repli-
cation scheme that we have simulated results in al-
most full utilisation of any available storage capac-
ity, which may not be desirable. We have simulated
this threshold-based policy to compare it with our
own Dynamic RePacking policy and our results are
presented in section 4.

3 Dynamic RePacking

Dynamic replication policies can be described in
three parts: evaluation of the demand for each file,
assignment of the files to server nodes and dynamic
assignment of client requests to nodes as they ar-
rive.

3.1 Demand evaluation

Usually information about the demand for indi-
vidual files will not be available from an external
source, and needs to be evaluated by the server.
When evaluating the demand for a file, several vari-
ables need to be considered:

Server load Changes in overall server utilisation
may occur on a short-term basis (e.g. be-
tween morning and evening). Usually a dy-
namic replication policy should ignore these
fluctuations and only respond to longer-term
changes in the relative demand for files, for ex-
ample, over several days. For this reason, we

define the demand, D;, for a file i as the pro-
portion of server bandwidth required to sup-
ply the average number of concurrent streams
of that file over a given period, which is inde-
pendent of the actual load on the server. The
bandwidth of the server is the sum of the band-
widths of its individual nodes, where a node’s
bandwidth is the maximum cumulative stream
bit-rate that can be supplied by the node.

File popularity The relative popularity of indi-
vidual multimedia files will change over time,
often decreasing as files become older, result-
ing in changes in the relative demand, D;, of
files. The server should adapt quickly to these
changes.

Stream duration The average duration of
streams of different files may vary and our
definition of demand takes this into account by
evaluating the average number of concurrent
streams of each file.

Bit-rate The multimedia files stored on a server
will usually have different bit-rates, depending
for example on the media type (video, audio,
etc.) and the level of compression used. Again,
our definition of demand takes bit-rate into ac-
count.

To evaluate the demand for a file, the Dynamic
RePacking policy needs to calculate the average
number of concurrent streams of the file, over a
period of time of length 7. This value, L;, for a file
i, can be calculated by applying Little’s formula [8]
as follows:

Ly =X\ W, (1)

The arrival rate, A;, can be calculated by divid-
ing the number of requests for the file, received
over a period (R;), by the length of the period (7).
Similarly, the average stream duration, W;, can be
calculated by dividing the total time spent steam-
ing the file, (Q;), by the number of requests (R;).
Substituting for A; and W; in equation 1 gives the
following formula for evaluating L;:

-% ©)

To calculate D; for each file, L; is scaled by the
bandwidth, B;, required to supply a single stream

L;



of the file. The following formula can then be used
to express the demand for a file as the proportion
of server bandwidth required by the file:

D, — Qi * B; (3)
i K—1
k=0 (Qk * Bk)

where K is the number of files stored on the
server. Note that the constant measurement period
7 cancels in the above equation. Thus, the only
measurement required to evaluate the demand for
each file is the cumulative duration of all streams of
each file, Q);, over the period 7. The value of D; for
each file can be used at the end of each period as the
input to the file placement algorithm. To obtain an
average value for D; over a longer period, a “sliding
window” approach is used (Figure 2). The demand
for the file is calculated as described above, and
the demand for the last T" measurement periods is
saved. The average demand over the measurement

window, D; is evaluated as follows:

D, = =0 (Diu *w1)

L T w

where D, ; is the demand for file ¢ during period

t and t = 0 is the most recent period. Multiplying

each term by w; can be used to give more weight

to more recent measurements. Alternatively, values

of D; may be extrapolated to obtain an estimated
value for D;.

(4)

3.2 File assignment

In this section, we describe the Dynamic RePacking
file assignment algorithm. Our algorithm is a devel-
opment of the MMPacking algorithm [11] referred
to in section 2.1. MMPacking has several attractive
properties, which we believe make it a good start-
ing point for the development of a file assignment
algorithm for large clustered multimedia servers.

e The packing algorithm causes the most de-
manding files to have the most replicas. In-
tuitively, this allows greater flexibility when
assigning client requests to nodes to perform
load-balancing, since a large proportion of re-
quests will be for files that are assigned to more
than one node.

e A combination of high and low demand files
are assigned to each node, reducing the impact

of node failures and fluctuations from expected
demand.

e The algorithm assigns at most % + 1 files to
each node. Assuming the average size of the
files stored on a node is the same for all nodes,
it is possible to estimate the minimum storage
capacity required by MMPacking.

MMPacking, however, needs to be modified be-
fore we can use it in a clustered multimedia server.
We begin by providing an overview of the orig-
inal MMPacking algorithm, but instead of using
the popularity of files to determine their placement,
we use the demand, D;, as described above. This
modification allows the server to handle files with
different bit-rates and different average stream du-
rations. Consider a distributed multimedia server
with N nodes, Sy, -, Sny_1, which stores K mul-
timedia files, My, -+, Mg_1. Each file M; has de-
mand D;. It is assumed that K > N and that
each node has the same bandwidth. Initially, the
files are sorted in ascending order of demand. Files
are removed from the beginning of the file list and
assigned to server nodes in a round-robin fashion,
as illustrated in Figure 3(a). The cumulative de-
mand for a node is the sum of the demand for each
file assigned to that node. If after assigning a file
to a node, the cumulative demand of the node ex-
ceeds 1/N, then the demand for the last file placed
on the node is adjusted so the cumulative demand
of the node is equal to 1/N. A new replica file with
the shortfall in demand is added to the beginning of
the file list and the algorithm proceeds to the next
node. Finally, if after assigning a replica file to a
node the cumulative demand for the node is less
than 1/N, then the algorithm continues by assign-
ing the next file to the same node (Figure 3(b)).
A final assignment of files to nodes is illustrated in
Figure 3(c). When all files have been assigned, the
cumulative demand of each node will be 1/N.

We now describe our Dynamic RePacking pack-
ing algorithm as a series of developments to MM-
Packing. The first development allows the algo-
rithm to handle nodes with varying bandwidth ca-
pacities and is based on the following property of
the MMPacking algorithm. After assigning a file to
a node, assignment continues with the next node,
which will always have either the same or smaller
cumulative demand as the current node (after as-
signing the file). This was shown to be true for
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Figure 3: Illustration of original MMPacking algorithm with four nodes and 14 files. Files My3 and M4

have been replicated.

MMPacking by observing that the cumulative de-
mand for nodes, after round [ of file placements,
has the following property:

CH<Ci<- <Oy <G < ()

where C! is the cumulative demand for node n
after a file has been assigned during round I. (As
described above, the cumulative demand of a node
is the sum of the demand for each file assigned
to the node.) This property holds true because
files are assigned to nodes in ascending order of de-
mand. As described above, a desirable property
of MMPacking is that replication only occurs for
the most popular files. If the original MMPack-
ing algorithm was applied to nodes with different
bandwidths, replication may be forced for files that
could still be placed, without replication, on other
nodes. Conversely, popular files that would usually
be replicated many times may be replicated less. To
avoid this our algorithm assigns files in the follow-
ing manner. Initially, we calculate for each node, j,
a target cumulative demand, G, which represents

the bandwidth of the node as a proportion of the
total server bandwidth:

B

J
Yoo Ba

where Bj is the bandwidth of node j. We define
the target shortfall, H }, of a node j as the difference
between the cumulative demand of the node — after

a file has been assigned to the node during round [
— and the target cumulative demand of the node:

(6)

J

H' =G;-C! (7)

Server nodes are sorted in descending order of
target shortfall, H jl-, thus maintaining the property
described by equation 5. Assignment begins in the
same manner as MMPacking. If after assigning a
file to a node the target shortfall is still greater than
the shortfall for the next node (from the previous
round of assignments), then the current round of
assignments ends prematurely and the algorithm
begins a new round, starting with the first node.
This is illustrated in Figures 4(b) to (d), where files



are repeatedly assigned to Sy until the shortfall of
the node is less than the shortfall on S;. Formally,
the current round [ of assignments ends with node
j if either of the following conditions holds true:

l -1 .
H]->HjJr17 0<j<N-2
or
j=N-1 (8)

Otherwise, file assignment continues as for MM-
Packing. When every file has been assigned, the
target shortfall of each node will be zero. This al-
gorithm produces the same result as MMPacking if
every node has the same bandwidth. Otherwise, if
nodes have different bandwidths, load-balancing is
still performed but nodes with higher bandwidths
will store more files.

The main aim of the Dynamic RePacking algo-
rithm is to reduce the cost of adapting the server
to changes in the demand for individual files, the
number of nodes in the server or the number of
files to be stored. Each invocation of the original
MMPacking algorithm is independent of the pre-
vious one, which could potentially result in every
file being moved from one node to another. The
cost of this reorganisation makes MMPacking im-
practical in many environments. To reduce this
cost, Dynamic RePacking attempts to re-pack files
where they were previously stored. Previously, the
file with the lowest demand was assigned to a node.
This time, however, the file with the lowest demand
currently stored on the node is reassigned to the
node. If no suitable file exists, the file with the
lowest demand is selected as before. To allow the
algorithm to pack nodes with the most bandwidth
first, the nodes need to be resorted by decreasing
target shortfall, Gé-, every time we start round [+ 1
of allocations (Figure 4(f)). The algorithm then
proceeds as before.

Pseudo-code for the algorithm, as described so
far, is shown in Figure 5. The SelectFile(...)
and NextNode(...) procedures select the object
to be packed and the next node to proceed with, as
described above.

It may be desirable to create at least one replica
of some or all files for fault-tolerance, and we briefly
describe how this may be done. Packing is per-
formed in two phases. An initial test pack deter-
mines the unallocated storage capacity after pack-

ing without additional replicas. Files are assigned
additional replicas in decreasing order of demand
until each file reaches the desired minimum number
of replicas or until all unallocated storage capacity
has been used. The Dynamic RePacking algorithm
is again used to determine the final assignment of
files to nodes, creating the desired number of ad-
ditional replicas for each file. If, when assigning
a file to a node, the demand for the file will be
entirely satisfied but the file has not reached its re-
quired minimum number of replicas, then only % of
the remaining unsatisfied demand for the file is as-
signed to the current node, where P is the number
of replicas that are still to be created.

Like the original MMPacking algorithm, the al-
gorithm described above can be “blocked” on a par-
ticular node if there is insufficient storage capacity
to store the assigned file. Dynamic RePacking han-
dles this situation by packing the most demanding
files at the expense of the least demanding ones,
thus reducing the imbalance between storage and
bandwidth utilisation. If at any stage during the
execution of the algorithm there is insufficient stor-
age capacity to assign a file to a node, we repeat-
edly remove the least demanding file from the node
until sufficient storage capacity is available. The
removed files are added to a wvictim list and the
algorithm continues. If the combined demand for
the files that need to be removed from a node is
greater than or equal to the demand for the file be-
ing placed, then the removal is abandoned and the
procedure is repeated for the next file in the file
list, which will have a higher demand. If no file can
be placed, we proceed to the next node. The files
on the victim list will have relatively low demand
and can be assigned to nodes later, without causing
any significant load imbalance.

3.3 Service assignment

As client requests arrive, they are simply assigned
to the least-utilised node with a copy of the re-
quested file. An enhancement of the policy might
attempt to move existing streams from one node
to another, in a similar way to the DASD Dancing
policy [13].
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files.SortUp(Q);
ndIdx = 0;
while(files.Count > 0) {
if (ndIdx == 0)
nodes . SortDown() ;

if (nodes[ndIdx].TargetShortfall > 0)
{
fileIdx = SelectFile(ndIdx);

allocation = Min(nodes[ndIdx].TargetShortfall, files[fileIdx].Demand) ;

PackFile(ndIdx, fileldx);

nodes [ndIdx] .TargetShortfall -= allocation;
files[fileIdx] .Demand -= allocation;

if (1files[fileIdx].IsReplica || nodes[ndIdx].TargetShortfall == 0)

ndIdx = NextNode(ndIdx);

if (files[fileIdx] .Demand == 0)
files.Remove (objIdx)
else
files.SortUp();
}
else
ndIdx = NextNode(ndIdx);

Figure 5: Basic Dynamic RePacking algorithm

4 Simulation

We have developed a discrete event simulation to
evaluate the performance of the Dynamic RePack-
ing policy for various server configurations. We
have also simulated the MMPacking algorithm,
upon which our policy is based, and the threshold-
based replication policy described in [3] for com-
parison. A framework was developed for the simu-
lation of different replication policies. This frame-
work defines those server characteristics that are
common to each server simulation. For example,
the allocation of server resources to client streams
and file replication streams, the generation of client
requests and the mechanism for adding or remov-
ing copies of a file is the same for the three policies
that we have simulated. Thus, each simulation dif-
fers only in the way the demand for each file is
estimated and in the assignment of files to nodes.

Request inter-arrival times are generated from an
exponential distribution whose mean varies on a pe-
riodic basis, representing variations in overall server
load (for example, between morning and evening)
between 0.4 (lightly loaded) and 1.0 (fully loaded).
Individual objects are requested with a frequency
determined by a Zipf distribution with the param-
eter § = 0, as used by Chou et al[3], so object i is
requested with probability P(i):

=7k ©)
i(Z553)

where K is the number of multimedia objects
available on the server. In addition, the populari-
ties of the objects are “shuffled” periodically, again
using the same technique as Chou et al. to sim-
ulate a gradual shifting of popularity between ob-
jects. The probability of requesting object 4 during
period ¢’ is based on the probability distribution
during the previous period ¢, as follows, assuming
K is even:

Diya(t) ifiisevenand 0 <i< K —2
, pr(t) ifi=K-2
Pit) =0 p (1) ifiisoddand1<i<K 1
p(t)  ifi=1

(10)

We have simulated two types of server configu-

ration, one with identical nodes supplying streams

of files with identical bit-rates, sizes and playback

times (homogeneous configuration), and another

with different nodes and files (heterogeneous con-
figuration).



4.1 Homogeneous configuration

To evaluate the scalability of each of the simu-
lated policies, we have simulated server configu-
rations with numbers of nodes ranging from 4 to
32. Two scale-out scenarios were examined. In
the first scenario, the cumulative server bandwidth
was increased while keeping the cumulative stor-
age capacity of the server constant. For example,
in a server configuration with 8 nodes, each node
had the same bandwidth but half the storage ca-
pacity as those in a server with only 4 nodes. In
the second scale-out scenario, both the cumulative
bandwidth and storage capacities of the server were
increased. For example, the nodes in a configura-
tion with 8 nodes were identical to those in a con-
figuration with only 4 nodes. In this second sce-
nario, the number of files stored was also increased
in proportion to the cumulative storage capacity
of the server. In each scenario, we measured the
proportion of client requests that were accepted im-
mediately by the server, the average number of files
that needed to be moved or replicated between suc-
cessive “shuffles” of file popularity and the propor-
tion of available server storage capacity used by the
replication policy. The simulation parameters are
shown in Table 1 and the results are summarised
in Figures 6 and 7.

In both scenarios, and in contrast with the
other policies, the acceptance rate of the Dynamic
RePacking policy is consistently over 98% for all
simulated server configurations. One of the main
aims of the Dynamic RePacking policy is to reduce
the cost of adapting the server to changes in de-
mand for individual files, thereby decreasing the
workload on server nodes. Our results show that
the rate of replication and movement of files for
Dynamic RePacking is significantly lower than that
for MMPacking. Although threshold based replica-
tion achieves an even lower rate of replication and
movement, this is due to the full storage capacity
utilisation that results from this policy, prevent-
ing replicas from being created in a timely fash-
ion. In contrast, the Dynamic RePacking policy
uses between 84% and 91% of the available storage
in scale-out scenario 1 and between 86% and 88%
in scenario 2. In both cases, the minimum propor-
tion of storage capacity required to store a single
copy of each file is 83.3%. This is the same as the
storage cost for a server based on striping (without
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redundancy) rather than replication. Our results
show that, for server configurations with up to 32
nodes, Dynamic RePacking uses less than 9% more
storage than a server based on striping. (Using
server-attached storage technology, this represents
an additional cost of less than €1000 per terabyte
at 2002 prices.) In most cases, MMPacking uses
a higher proportion of server storage capacity due
to excessive movement of files, which much exist in
two locations while they are moved. In scenario 1
with four nodes, however, there is insufficient band-
width to move files to their assigned nodes, leading
to under-utilisation of storage capacity and a low
client acceptance rate.

It has been shown [11] that the original MMPack-
ing algorithm will replicate no more than N — 1
files, where N is the number of nodes in the server,
with no more than one replica on each node. If all
nodes in a server have identical storage capacities,
the minimum storage requirement for the server is
K + N files. This does not, however, take into ac-
count the additional space required to allow files
to be moved from one node to another. Our re-
sults suggest that K 4+ 2N is a more realistic mini-
mum storage capacity for heterogeneous servers us-
ing Dynamic RePacking and our results also show
that the average storage utilisation for Dynamic
RePacking does not exceed this value.

In summary, for heterogenous configurations,
Dynamic RePacking achieves a higher acceptance
rate, while using less storage than the other simu-
lated policies.

4.2 Heterogeneous configuration

We have repeated the second experiment described
above (scaling both bandwidth and storage capac-
ity) for heterogeneous server configurations. Each
node had a bandwidth chosen at random and a stor-
age capacity that was proportional to its bandwidth
and each file had a bit-rate and size that were also
chosen at random. The playback time for each file
was proportional to its size and inversely propor-
tional to its bandwidth. The parameters are shown
in Table 2 and the results are summarised in Figure
8. (The MMPacking algorithm was not simulated
since is cannot handle heterogeneous server config-
urations. Addressing this limitation was one of the
goals of the Dynamic RePacking policy.)

The results show that the Dynamic RePack-



Scale-out Scenario 1

Scale-out Scenario 2

Number of nodes (N) 4,8,12,...,32 4,8,12,...,32
Number of files (K) 400 25N

File size (units) 10 10

File bit-rate (units) 1 1

Node storage (units) 4800/N 300

Node bandwidth (units) | 160 160

Evaluation period

Number of periods

7 (Dynamic RePacking)
87 (MMPacking)

8 (Dynamic RePacking)
1 (MMPacking)

7 (Dynamic RePacking)
87 (MMPacking)

8 (Dynamic RePacking)
1 (MMPacking)

Stream duration T/2 T/2
Simulation time 6007 6007
Shuffle period 241 241
Server load 04...1.0 0.4...1.0

Table 1: Parameters for simulation of homogeneous server configuration.
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Figure 6: Scale-out Scenario 1 — Adding nodes to increase the cumulative server bandwidth while
maintaining a constant cumulative server storage capacity
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Stream duration

Simulation time
Shuffle period
Server load

File bit-rate (units)
Node storage (units)
Node bandwidth (units)
Evaluation period
Number of periods

Number of nodes (N)
Number of files (K)

1,8,12,...,32
25N

1...15

1...5

160. ..320
100

-
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TXsize
15X bit—rate
6001
241

0.4...1.0

Figure 7: Scale-out Scenario 2 — Adding nodes to increase both the cumulative server bandwidth and

cumulative server storage capacity, while also increasing the number of files stored

Table 2: Parameters for simulation of heterogeneous server configuration.
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ing algorithm achieves a higher acceptance rate
than threshold-based replication for heterogeneous
server configurations, at the expense of a higher
rate of file movement. As for homogeneous server
configurations, however, the low rate of file move-
ment for threshold-based replication may be ex-
plained by the high level of storage utilisation
(100% compared with 88.7% for the Dynamic
RePacking policy) which restricts replication and
reduces the acceptance rate. For a configuration
with 32 nodes Dynamic RePacking creates almost
80 new replicas every shuffle period. Given the
long period between successive popularity shuffles,
however, this frequency of replication is acceptable.
The acceptance rates for heterogeneous server con-
figurations are also slightly lower than those for the
equivalent homogeneous configurations shown in
Figure 7 and the rate of file movement and replica-
tion and the storage utilisation are slightly higher,
indicating the cost of deviating from homogeneous
server configurations.

5 Conclusions and Future

Work

In this paper, we began by explaining our moti-
vation for using dynamic replication of content to
provide scalability and availability in clustered mul-
timedia servers. Although there have been recent
advances in storage technology, we believe that, re-
gardless of the storage architecture used, selective
replication of content based on client demand is still
required to allow clustered multimedia servers to
provide terabytes of content to thousands of clients.

We have described in detail the Dynamic
RePacking policy. The policy is based on the MM-
Packing algorithm [11], but has been modified to
handle nodes with varying storage and bandwidth
capacities and titles with varying bit-rates and
sizes, and to reduce the cost of adapting to changes
in client behaviour. We have developed a discrete
event simulation to compare the performance of
Dynamic RePacking with that of MMPacking and
a threshold-based replication policy. Our results in-
dicate that Dynamic RePacking achieves a higher
client acceptance rate than either of the other two
replication policies, while utilising a lower propor-
tion of the available storage capacity.
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A prototype clustered multimedia server that
uses the Dynamic RePacking policy is currently
under development. The results of the work de-
scribed in this paper indicate that policy will allow
the server to scale easily, while requiring little user
intervention.
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