
 1 of 4

Abstract-This paper presents several cluster evaluation 
techniques for gene expression data analysis. Normalisation and 
validity aggregation strategies are proposed to improve the 
prediction of the number of relevant clusters. The effect of 
different intracluster and intercluster distances on this 
prediction process is studied. This approach is applied to a 
publicly released medulloblastomas tumour data set. The 
results suggest that it may represent an effective tool to support 
biomedical knowledge discovery tasks based on gene expression 
data.  
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I. INTRODUCTION 
 

Recent advances in DNA microarray technology, also 
known as gene chips, allow measuring the expression of 
thousands of genes in parallel and under multiple 
experimental conditions [1]. This technology is having a 
significant impact on genomic and post-genomic studies. 
Disease diagnosis, drug discovery and toxicological research 
benefit from the of microarray technology. A main step in 
the analysis of gene expression data is the detection of 
samples or genes with similar expression patterns. A number 
of data mining techniques have been applied to the analysis 
of gene expression data. Clustering is a fundamental 
approach to gene expression knowledge discovery [2, 3]. 
Solutions for the systematic evaluation of the quality of the 
clusters have been recently proposed [4, 5]. Moreover, the 
prediction of the correct number of clusters is a critical 
problem in unsupervised classification problems. Many 
clustering algorithms require the number of clusters given as 
an input parameter. Different cluster validity indices have 
been suggested to address this problem [6]. A cluster validity 
index indicates the quality of a resulting clustering process. 
Thus, the clustering partition that optimises the validity 
index under consideration is chosen as the best partition [4]. 
This paper presents cluster validity techniques for gene 
expression data analysis. Normalisation and validity 
aggregation strategies are proposed to improve the prediction 
of the number of relevant clusters. 
 
II. METHODOLOGY 
 

This section introduces the gene expression data, clustering 
and validation methods under consideration. Three validation 
methods were applied: the Silhouettes [7], the Dunn’s [8] 
and the Davies-Bouldin [9] indices, which have shown to be 
robust strategies for the prediction of optimal clustering 
partitions 

The data comprised 34 medulloblastoma tumour samples 
(9 desmoplastic medulloblastomas and 25 classic 
medulloblastomas) described by the expression levels of 140 
genes with suspected roles in these subtypes of cancer. These 
data were obtained from a study published by Pomeroy and 
co-workers [10]. They developed a classification system 
based on DNA microarray gene expression data to 
distinguish desmoplastic and classic medulloblastomas. It 
allowed the prediction of clinical outcomes in children with 
medulloblastomas on the basis of the expression profiles of 
their tumours at diagnosis [10]. The original data and 
experimental methods are available at 
http://www.genome.wi.mit.edu/MPR/CNS. 

The validation methods are illustrated using the K-Means 
algorithm, which has been applied to analyse expression 
profiles in several biomedical and systems biology studies 
[11]. This agglomerative clustering technique finds clusters 
in a set of unlabeled data based on the selection of the 
desired number of, K, classes. The performance of the K-
Means clustering algorithm may be improved by estimating 
the number of clusters represented in the data. For further 
information on the implementation and analysis of this 
algorithm the reader is referred to [12, 13]. The cluster 
validity techniques described here have also been illustrated 
using other clustering methods [14, 15]. 
 
1.1 Cluster validity techniques  
 
A. Silhouette method 
 

For a given cluster, Xj (j = 1,…, c), the silhouette technique 
assigns to the ith sample of Xj a quality measure, s(i) (i = 
1,…, m), known as the silhouette width.  This value is a 
confidence indicator on the membership of the ith sample in 
cluster Xj and it is defined as: 
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where a(i) is the average distance between the ith sample and 
all of the samples included in Xj; and b(i) is the minimum 
average distance between the ith sample and all of the 
samples clustered in Xk (k = 1,…, c; k ≠ j). From this formula 
it follows that s(i)  has a value between –1 and 1. 

When s(i) is close to 1, one may infer that the ith sample 
has been assigned to an appropriate cluster. When s(i) is 
close to zero, it suggests that the sample could also be 
assigned to the nearest neighbouring cluster, i.e. such a 
sample lies equally far away from both clusters. If s(i) is 
close to –1, one may argue that such a sample has been 
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“misclassified” [7]. Thus, for a given cluster, Xj, it is possible 
to calculate a cluster silhouette Sj, which characterises the 
heterogeneity and isolation properties of such a cluster. It is 
calculated as the sum of all samples’ silhouette widths in Xj. 
Moreover, for any partition, a global silhouette value or 
silhouette index, GSu, can be used as an effective validity 
index for a partition U.  

 

�
=

=
c

j
ju S

c
GS

1

1        (2) 

 
Furthermore, it has been demonstrated that equation (2) 

can be applied to estimate the “correct” number of clusters 
for partition U [7]. In this case the partition with the 
maximum silhouette index value is taken as the optimal 
partition. 

 
B. Dunn’s and Davies-Bouldin methods 
 
These indices aim to identify sets of clusters that are 

compact and well separated. For any partition U ↔ X: X1 
∪... Xi ∪… Xc, where Xi represents the ith cluster of such 
partition U, the Dunn‘s validation index, D, is defined as: 
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where δ(Xi, Xj) defines the intercluster distance between 
clusters Xi and Xj ; ∆(Xk) represents the intracluster distance 
(“diameter”) of cluster Xk, and c is the number of clusters of 
partition U. The main goal of this measure is to maximise 
intercluster distances whilst minimising intracluster 
distances. Thus, large values of Dunn’s validity index 
correspond to good cluster partitions. Therefore, the number 
of clusters that maximises D is taken as the optimal number 
of clusters, c.  

The Davies-Bouldin validation index, DB, is defined as: 
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where ∆(Xi), ∆(Xj) and δ(Xi, Xj) are defined as  above. In this 
case, small index values correspond to good clusters, that is 
to say, the clusters are compact and their centers are far away 
from each other. Therefore, the cluster configuration that 
minimizes DB is taken as the optimal number of clusters, c. 

Different methods may be used to calculate intercluster and 
intracluster distances [4, 5]. Six intercluster, δi, 1 ≤ i ≤ 6 
(single, complete, average, centroid, average of centroids 
linkage and Hausdorff metrics); and three intracluster, ∆j, 1 ≤ 

j ≤ 3 (complete, average and centroid diameters) distances 
are used for the implementation of the validity indices. 
Thirty-six indices based on equations (3) and (4) were 
calculated. These indices consist of different combinations of 

intercluster and intracluster distance methods. Thus, for 
example, D13, represents a Dunn’s index based on an 
intercluster distance, δ1, and an intracluster distance ∆3; and 
DB31, represents a Davies-Bouldin validity index based on an 
intercluster distance, δ3, and an intracluster distance ∆1.  

 It has been shown that using different 
intercluster/intracluster distance combinations may produce 
validation indices of different scale ranges [4]. Hence, those 
indices with higher values may have a stronger effect on the 
calculation of the average index values. This may result in a 
biased prediction of the optimal number of clusters. To 
overcome this problem the following normalisation 
technique has been applied. Given a cluster configuration 
consisting of c clusters, for any partition Uc ↔ X: X1 ∪...∪ 
Xc, the normalised Dunn’s indices - *

ijD , are calculated as:  
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where i reflects the selection of the intercluster distance 
calculation method (i = 1,…, 6), j is the selection of the 
intracluster distance calculation method (j = 1,..., 3), ( )cij UD  

is the value of a Dunn’s validity index, n is the number of 
partitions, ijDσ is the standard deviation of ( )cij UD  across 

all values of c. The normalised Davis-Bouldin indices may 
be calculated by equation (5) using the Davis-Bouldin index 
instead of the Dunn’s index. 
 
III. RESULTS 
 

The cluster validity methods have been implemented, using 
the well-known Euclidean distance between samples. Table I 
depicts the global silhouette values, GSu, for each partition, 
and the silhouette values, S, for each number of clusters, c, 
for c = 2 to c = 6. In this case c = 2 is suggested as the best 
clustering configuration for the examined data set. 

 
TABLE I  

GLOBAL SILHOUETTE VALUES FOR EACH PARTITION, GSu, AND THE SILHOUETTE 
VALUES, S, FOR EACH CLUSTER DEFINING A PARTITION 

c GSu S1 S2 S3 S4 S5 S6 
2 0.31 0.42 0.16     
3 0.25 0.25 0.13 0.36    
4 0.26 0.18 0.23 0.38 0.23   
5 0.29 0.31 0.21 0.37 0.22 0.27  
6 0.19 0.22 0.60 0.01 0.56 0.14 0.33 

 

The normalised values of the eighteen Dunn’s and Davies-
Bouldin validity indices and their average indices at each 
number of clusters, c, for c = 2 to c = 6 are shown in Tables 
II and III respectively. An examination of these results 
indicates that c = 2 represents the most appropriate partition 
for the data under analysis. 
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TABLE II 
NORMALISED DUNN’S VALUES USING 3 TYPES OF INTRACLUSTER MEASURES AND 
6 TYPES OF INTERCLUSTER MEASURES 

Validity 
index 

c = 2 c = 3 c = 4 c = 5 c = 6 

D11 1.17 0.37 -1.50 0.32 -0.36 
D21 1.71 -0.07 -0.22 -0.64 -0.78 
D31 1.70 0.03 -0.30 -0.67 -0.76 
D41 1.62 0.17 -0.23 -0.59 -0.97 
D51 1.70 0.05 -0.34 -0.76 -0.65 
D61 1.77 -0.57 -0.21 -0.59 -0.40 
D12 1.37 0.46 -1.18 0.05 -0.71 
D22 1.69 -0.02 -0.19 -0.64 -0.84 
D32 1.66 0.11 -0.24 -0.66 -0.86 
D42 1.60 0.20 -0.20 -0.60 -1.00 
D52 1.66 0.12 -0.27 -0.73 -0.78 
D62 1.76 -0.42 -0.17 -0.60 -0.57 
D13 1.25 0.20 -1.50 0.31 -0.27 
D23 1.72 -0.15 -0.17 -0.65 -0.75 
D33 1.72 -0.08 -0.24 -0.69 -0.71 
D43 1.65 0.08 -0.18 -0.61 -0.94 
D53 1.72 -0.07 -0.28 -0.78 -0.60 
D63 1.75 -0.64 -0.16 -0.60 -0.35 

Average 1.62 -0.01 -0.42 -0.51 -0.68 
 
 

TABLE III. 
NORMALISED DAVIES-BOULDIN VALUES USING 3 TYPES OF INTRACLUSTER 
MEASURES AND 6 TYPES OF INTERCLUSTER MEASURES 

Validity 
index 

c = 2 c = 3 c = 4 c = 5 c = 6 

DB11 0.94 0.33 0.86 -1.13 -1.00 
DB21 -1.64 -0.26 0.49 0.60 0.80 
DB31 -0.03 1.03 0.85 -1.42 -0.43 
DB41 -1.54 0.52 0.99 -0.43 0.46 
DB51 -0.19 1.06 1.00 -0.78 -1.11 
DB61 -1.49 1.23 0.26 0.31 -0.32 
DB12 0.60 -0.25 1.29 -1.36 -0.28 
DB22 -1.33 -0.46 -0.07 0.55 1.31 
DB32 -1.07 -0.55 -0.07 0.10 1.59 
DB42 -1.34 -0.45 0.15 0.25 1.39 
DB52 -1.33 -0.51 0.14 0.33 1.36 
DB62 -1.70 0.38 -0.05 0.55 0.81 
DB13 0.93 0.11 1.00 -1.13 -0.92 
DB23 -1.51 -0.31 0.03 0.77 1.01 
DB33 -1.52 -0.11 0.93 -0.17 0.88 
DB43 -1.65 -0.11 0.69 0.22 0.86 
DB53 -1.38 0.32 1.25 0.36 -0.55 
DB63 -1.66 0.99 0.09 0.50 0.09 

Average -0.94 0.16 0.55 -0.10 0.33 
 
Another approach to estimate the optimal partition consists 

of the implementation of an aggregation method based on a 
weighed voting strategy.  An example is shown in Table IV 
based on the Dunn’s indices. This table was obtained from 
Table II by replacing the index values by weighed votes, 
whose values range from 1 to 5. Thus, for example, D11 
represents the highest index value and suggests the partition 
c = 2 as the optimal partition, hence its weighed vote is equal 
to 5. On the other hand D11 represents the smallest index 
value for partition c =4, hence its weighed vote is equal to 1. 
The average weighed vote for each cluster partition confirms 
that c = 2 represents the most appropriate prediction.  

 
 
 

 

TABLE IV.  
PREDICTING THE CORRECT NUMBER OF CLUSTERS BY WEIGHED VOTING 
TECHNIQUE. THE ENTRIES REPRESENT VOTE VALUES BASED ON DUNN’S 
VALIDATION INDEX USING 3 TYPES OF INTRACLUSTER AND 6 TYPES OF 
INTERCLUSTER MEASURES 

Validity 
index 

c = 2 c = 3 c = 4 c = 5 c = 6 

D11 5 4 1 3 2 
D21 5 4 3 2 1 
D31 5 4 3 2 1 
D41 5 4 3 2 1 
D51 5 4 3 1 2 
D61 5 2 4 1 3 
D12 5 4 1 3 2 
D22 5 4 3 2 1 
D32 5 4 3 2 1 
D42 5 4 3 2 1 
D52 5 4 3 2 1 
D62 5 3 4 1 2 
D13 5 3 1 4 2 
D23 5 4 3 2 1 
D33 5 4 3 2 1 
D43 5 4 3 2 1 
D53 5 4 3 1 2 
D63 5 1 4 2 3 

Average 5.00 3.61 2.83 2.00 1.56 
 
This voting strategy may also be applied to fuse the results 

originating from different validation methods. An example is 
depicted in the Table V for three validation techniques. This 
table was obtained from Tables I-III by calculating the 
average weighed vote for each technique. Thus, after 
computing all validity indices, the average weighed vote for 
each cluster partition has been calculated, and c = 2 is 
suggested as the optimal partition.  
 
TABLE V.  

PREDICTING THE CORRECT NUMBER OF CLUSTERS FOR MEDULLOBLASTOMAS 
DATA BY AGGREGATION OF MULTIPLE VALIDATION METHODS 

Validation 
technique 

c = 2 c = 3 c = 4 c = 5 c = 6 

Silhouette 5.00 2.00 3.00 4.00 1.00 
Dunn’s 5.00 3.61 2.83 2.00 1.56 

Davies-Bouldin 4.22 2.89 2.33 3.06 2.50 
Average 4.74 2.83 2.72 3.02 1.69 

 
The applied validation techniques confirm that the partition 

consisting of two clusters represents the most appropriate 
representation for the data set under consideration. This 
result also supports the choice of 140 genes (from the set of 
7129 genes) as responsible for the desmoplastic and classic 
medulloblastomas distinction reported by Pomeroy and 
colleagues.  
 
IV. DISCUSSION AND CONCLUSION 
 

Several clustering techniques have been proposed to 
support the analysis of gene expression data. Cluster validity 
indices represent useful tools to guide unsupervised data 
analysis. They are particularly relevant for the estimation of 
robust clustering partitions in different applications, which 
may require the definition of the number of clusters 
beforehand. In this research three validation indices were 
applied to a desmoplastic and classic medulloblastomas data 
set, using different intracluster and intercluster distances. 
The combination of these methods may be used for cluster 
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evaluation tasks. It has been shown how these methods may 
support the prediction of the optimal cluster partition. The 
results also suggest that the normalisation of index values 
and a voting strategy may improve the prediction procedure. 
The normalisation scheme may represent a more robust 
mechanism to predict the correct number of clusters. 
Moreover, it highlights subtle differences between index 
values originating from different clustering configurations. 
The advantage of a weighed voting approach lies in an 
aggregation of multiple validation methods in order to 
improve the estimation of the most adequate clustering 
partition. This validation framework has been successfully 
tested on other data sets and clustering techniques such as 
the Kohonen Self-Organising Map algorithm [15]. 

These results suggest that a systematic validation approach 
may significantly support genome expression analyses for 
knowledge discovery applications. Current and future work 
include the comparison, combination and estimation of 
results obtained from different clustering algorithms, and the 
analysis of more complex data sets.  
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