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1. INTRODUCTION: CLUSTERING AND GENOMIC 
EXPRESSION ANALYSIS 
 

The analysis of expression data is based on the idea that genes that are 
involved in a particular pathway, or respond to a common environmental 
stimulus, should be co-regulated and therefore should exhibit similar patterns 
of expression. Thus, a fundamental task is to identify groups of genes or 
samples showing similar expression patterns. 

Clustering may be defined as a process that aims to find partitions or 
groups of similar objects. It can be seen as an unsupervised recognition 
procedure whose products are known as clusters. In a genomic expression 
application, a cluster may consist of a number of samples (or genes) whose 
expression patterns are more similar than those belonging to other clusters.  
Figure 13.1 depicts a situation, in which two types of genes, each one 
associated with a different biological function, are clustered based on their 
expression profiles.  The clusters are represented by circles, and the genes that 
are linked to each cluster are depicted randomly within the correspondent 
circle. 
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Figure 13.1.  Clustering of genes according to their expression patterns 

Clustering has become a fundamental approach to analysing genomic 
expression data. It can support the identification of existing underlying 
relationships among a set of variables such as biological conditions or 
perturbations. Clustering may represent a basic tool not only for the 
classification of known categories, but also (and perhaps most importantly) 
for the discovery of relevant classes. The description and interpretation of its 
outcomes may also allow the detection of associations between samples or 
variables, the generation of rules for decision-making support and the 
evaluation of experimental models. In the expression domain it has provided 
the basis for novel clinical diagnostic and prognostic studies (Bittner et al., 
2000), and other applications using different model organisms (Ideker et al., 
2001). 

Several clustering methods have been proposed for expression analysis, 
and many other options will surely be applied in the future. Moreover, post-
genome scientists deal with highly complex and diverse biological problem 
domains. Therefore, it would not be reasonable to expect the existence of 
universal clustering solutions. This chapter provides an overview of the major 
types of clustering problems and techniques for genomic expression data. It 
focuses on crucial design and analytical aspects of the clustering process. We 
hope that this chapter will guide our readers to address questions such as: 
Which clustering strategy should I use? How many clusters should it find? Is 
this a good partition? Is there a better partition? 

Section 2 introduces important concepts for the effective application of 
clustering techniques. It overviews some of the major types of clustering 
algorithms for genomic expression data: their advantages, limitations and 
applications. It provides the reader with some important criteria for the 
selection of clustering methods. Section 3 approaches the systematic 
evaluation of clustering results based on their relevance and validity (both 
computational and biological). Two evaluation models will be presented: 
Cluster validity strategies based on the Dunn’s index, and the silhouette 
method. As a way of illustration these methods are implemented using two 
expression data sets, which were obtained from different clinical diagnostic 
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studies. The results demonstrate that such validity frameworks may represent 
a useful tool to support biomedical knowledge discovery. Section 4 concludes 
with a discussion of the results, future work and recommendations. 

 
2.  DESIGN PRINCIPLES FOR CLUSTERING 
STUDIES 
 

Typical clustering algorithms are based on the optimisation of a partition 
quality measure. Generally these measures are related to the following factors: 
a) the heterogeneity of the clusters, also known as the cluster cohesion or 
compactness; and b) their separation from the rest of the data, also known as 
cluster isolation. Thus, a basic clustering approach may aim to search for a 
partition that a) minimize intra-cluster distances, and b) maximize inter-
cluster distances. 

There are several types of metrics to assess the distance or similarity, 
between samples and between clusters (Everitt, 1993). A clustering algorithm 
commonly requires the data to be described by a matrix of values, xij (i = 1, 
…, m) (j = 1, …, n). Where xij refers to the value of the jth feature associated 
with the ith sample. In an expression data application xij may represent, for 
instance, the expression value of gene i during a perturbation j. 

Other techniques require a matrix of pairwise values, pij (i, j = 1, …, m), 
where pij represents the similarity (or disimilarity) value between the ith and 
jth objects to be clustered. In an expression data application pij may represent, 
for instance, the similarity or dissimilarity between the ith and jth genes under 
a biological condition. 

Some basic measures for heterogeneity or compactness assessment are the 
sum of squares, L1 measures, intra-cluster diameter metrics and the sum of 
distances (Everitt, 1993). Isolation may be measured by, for example, 
calculating the minimum distance between clusters, or the sum of 
dissimilarities between samples in a particular cluster and samples belonging 
to other clusters. The reader is referred to (Hansen and Jaumard, 1997) for a 
more detailed description on heterogeneity and isolation measures for 
clustering processes.  

The second part of this section will introduce relevant clustering systems 
for expression data applications. This overview addresses three major types of 
clustering systems: a) hierarchical clustering, b) techniques based on iterative 
relocation, and c) adaptive solutions and other advances. 
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2.1 Key Clustering Approaches For Expression Data 
 
2.1.1 Hierarchical Clustering 
 

Hierarchical clustering is perhaps the best-known clustering method for 
expression data analyses. Chapter 14 discusses its implementation and 
applications in more detail. The main objective of this technique is to produce 
a tree like structure in which the nodes represent subsets of an expression data 
set. Thus, expression samples are joined to form groups, which are further 
joined until a single hierarchical tree (also known as dendrogram) is 
produced. There are different versions of hierarchical clustering, which 
depend, for example, on the metric used to assess the separation between 
clusters. 

Several studies on the molecular classification of cancers and biological 
modelling have been based on this type of algorithms. Pioneering studies 
include an investigation by Eisen et al. (1998), which found that hierarchical 
clustering may be used to group genes of known similar function in 
Saccharomyces cerevisiae. Dhanasekaran et al. (2001) illustrates how 
dendrograms can reveal the variation in gene expression pattern between 
distinct pools of normal prostate samples. Perou et al. (2000) measured the 
variation in the expression of 1,753 genes in 84 experimental breast cancer 
samples “before and after” chemotherapy. This study shows how these 
patterns provide a distinctive molecular portrait of each tumour. Moreover, 
the tumours could be classified into subtypes based on the differences of their 
gene expression patterns.  
 
2.1.2 Models Based On Iterative Relocation 
 

This type of clustering algorithms involves a number of “learning” steps 
to search for an optimal partition of samples. Such processes may require: a) 
the specification of an initial partition of objects into a number of classes; b) 
the specification of a number of clustering parameters to implement the search 
process and assess the adequacy of its outcomes; c) a set of procedures to 
transform the structure or composition of a partition; and d) a repetitive 
sequence of such transformation procedures. 

Some techniques included in this category are the k-means or c-means 
algorithms, and the Kohonen Self-organising Map (SOM). The k-means 
method categorises samples into a fixed number (k) of clusters, but it requires 
a priori knowledge on the number of clusters representing the expression data 
under study. SOMs have been applied to analyse expression profiles in 
several biomedical and systems biology studies (Quackenbush, 2001). This is 
a clustering approach based on hypothetical neural structures called feature 
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maps, which are adapted by the effect of the input expression samples to be 
classified. Thus, users may use SOMs to find and visualise clusters of similar 
expression patterns. The SOM-based model was one of the first machine 
learning techniques used to illustrate the molecular classification of cancer. 
Golub and colleagues (1999) reported a model to discover the distinction 
between acute myeloid leukaemia and acute lymphoblastic leukaemia. To 
illustrate the value of SOMs Tamayo and coworkers applied it to 
hematopoietic differentiation data (Tamayo et al., 1999). In this research 
SOMs organized samples into biologically relevant clusters that suggest, for 
example, genes involved in differentiation therapy used in the treatment of 
leukemia. Ideker and colleagues (2001) used SOMs to support an integrated 
approach to building and refining a cellular pathway model. Based on this 
method they identified a number of mRNAs responding to key perturbations 
of the yeast galactose-utilization pathway. Chapter 15 illustrates the 
application of SOMs in expression data. 
 
2.1.3 Adaptive Systems And Other Advances  
 

Some of these clustering solutions, unlike the methods introduced in 
Section 2.1.2, may not require the specification of an initial partition or 
knowledge on the underlying class structure. That is the case of some 
adaptations of the original SOM, such as Growing Cell Structures (GCS), 
which has been applied for the discovery of relevant expression patterns in 
biomedical studies (Azuaje, 2001a). Chapter 15 introduces the design and 
application of GCS-based clustering models. 

Recent advances for expression data analysis include Biclustering, which 
consists of a one-step process to find direct correlations between a subset of 
features (genes or perturbations) and a subset of samples (genes or tissues) 
(Cheng and Church, 2000). From a biological perspective this is a useful 
approach because it allows the simultaneous clustering of genes and 
conditions, as well as the representation of multiple-cluster membership. 

Other contributions have demonstrated how a supervised neural network 
can be used to perform automatic clustering or discovery of classes. A model 
based on a supervised neural network called Simplified Fuzzy ARTMAP 
(Kasuba, 1993) has been used to recognise relevant expression patterns for the 
classification of lymphomas (Azuaje, 2001b). From a user’s point of view this 
type of models also offers a number of computational advantages. For 
example, the user only needs to specify a single clustering parameter, and the 
clustering process can be executed with a single processing iteration.  

 
 
 



Azuaje F, and N. Bolshakova. “Clustering Genome Expression Data: Design and Evaluation Principles”, in Understanding and Using Microarray Analysis Techniques: A 
Practical Guide, Berrar D, Dubitzky W and Granzow M, editors, London: Springer Verlag, 2002. 

 
 

2.2 Basic Criteria For The Selection Of Clustering 
Techniques 

 
Even when one would not expect the development of universal clustering 

solutions for genomic expression data, it is important to understand 
fundamental factors that may influence the choice and performance of the 
most appropriate technique. This section provides readers with basic criteria 
to select clustering techniques. These guidelines address questions such as: 
Which clustering algorithm should I use? Should I apply an alternative 
solution? How can results be improved by using different methods? This 
discussion does not intend to offer a formal framework for the selection of 
clustering algorithms, but to highlight important dimensions that may have to 
be taken into account for improving the quality of clustering-based studies.  

Choosing “the best” algorithm for a particular problem may represent a 
challenging task. There are multiple clustering techniques that can be used to 
analyse expression data. Advantages and limitations may depend on factors 
such as the statistical nature of the data, pre-processing procedures, number of 
features etc. Moreover, it is not uncommon to observe inconsistent results 
when different clustering methods are tested on a particular data set. In order 
to make an appropriate choice is important to have a good understanding of: 

 
a) the problem domain under study, and 
b) the clustering options available. 

 
Knowledge on the underlying biological problem may allow a scientist to 

choose a tool that satisfies certain requirements, such as the capacity to detect 
overlapping classes. Knowledge on the mathematical properties or processing 
dynamics of a clustering technique may significantly support the selection 
process. How does this algorithm represent similarity (or dissimilarity)?, how 
much relevance does it assign to cluster heterogeneity?, how does it 
implement the process of measuring cluster isolation?. Answers to these 
questions may indicate crucial directions for the selection of an adequate 
clustering algorithm. 

Empirical studies have defined several mathematical criteria of 
acceptability (Fisher and Van Ness, 1971). For example, there may be 
clustering algorithms that are capable of guaranteeing the generation of 
partitions whose cluster structures do not intersect. Such algorithms may be 
called convex admissible. There are algorithms capable of generating partition 
results that are insensitive to the duplication of data samples. These 
techniques may be called point proportion admissible. Other clustering 
algorithms may be known as monotone admissible or noise-tolerant if their 
clustering outcomes are not affected by monotone transformations on the data. 
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It has been demonstrated, for instance, that both single-linkage and complete-
linkage hierarchical clustering should be characterised as non-convex 
admissible, point proportion admissible and monotone admissible. The reader 
is referred to Fisher and Van Ness (1971) for a review on these and other 
mathematical criteria of acceptability. 

Several algorithms indirectly assume that the cluster structure of the data 
under consideration exhibits particular characteristics. For instance, the k-
means algorithm assumes that the shape of the clusters is spherical; and 
single-linkage hierarchical clustering assumes that the clusters are well 
separated. Unfortunately, this type of knowledge may not always be available 
in an expression data study. In this situation a solution may be to test a 
number of techniques on related data sets, which have previously been 
classified (a reference data set). Thus, a user may choose a clustering method 
if it produced consistent categorisation results in relation to such reference 
data set. 

Specific user requirements may also influence a selection decision. For 
example, a scientist may be interested in observing direct relationships 
between classes and subclasses in a data partition. In this case, a hierarchical 
clustering approach may represent a basic solution. But in some studies 
hierarchical clustering results could be difficult to visualise because of the 
number of samples and features involved. Thus, for instance, a SOM may be 
considered to guide an exploratory analysis of the data. 

In general the application of two or more clustering techniques may 
provide the basis for the synthesis of accurate and reliable results. A scientist 
may be more confident about the clustering experiments if very similar results 
are obtained by using different techniques. This approach may also include 
the implementation of voting strategies, consensus classifications, clustering 
fusion techniques and statistical measures of consistency (Everitt, 1993).  
 
3. CLUSTER VALIDITY AND EVALUATION 
FRAMEWORKS FOR EXPRESSION DATA 
 

Several clustering techniques have been applied to the analysis of 
expression data, but fewer approaches to the evaluation and validation of 
clustering results have been studied. 

Once a clustering algorithm has been selected and applied scientists may 
deal with questions such as: Which is the best data partition?, which clusters 
should we consider for further analysis?, what is the right number of clusters?. 

Answering those questions may represent a complex and time-consuming 
task. However, it has been shown that a robust strategy may consist of 
estimating the correct number of clusters based on validity indices (Azuaje, 
2002a). 
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Such indices evaluate a measure, Q(U), of quality of a partition, U, into c 
clusters. Thus, the main goal is to identify the partition of c clusters for which 
Q(U) is optimal. 

Two such cluster validity approaches are introduced and tested on 
expression data sets: The Dunn’s based indices (Bezdek and Pal, 1998) and 
the silhouette method (Rousseeuw, 1987). 

 
3.1 Assessing Cluster Quality With Dunn’s Validity Indices 
 

This index aims at identifying sets of clusters that are compact and well 
separated. For any partition U ↔ X: X1 ∪... Xi ∪… Xc, where Xi represents the 
ith cluster of such partition, the Dunn‘s validation index, V, is defined as: 
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δ(Xi,Xj) defines the distance between clusters Xi and Xj (intercluster 

distance); ∆(Xk) represents the intracluster distance of cluster Xk; and c is the 
number of clusters of partition U. The main goal of this measure is to 
maximise intercluster distances whilst minimising intracluster distances. 
Thus, large values of V correspond to good clusters. Therefore, the number of 
clusters that maximises V is taken as the optimal number of clusters, c 
(Bezdek and Pal, 1998). 

In this study eighteen validity indices based on equation (1) were 
compared. These indices consist of different combinations of intercluster and 
intracluster distance techniques. Six intercluster distances, δi, 1 ≤ i ≤ 6; and 3 
intracluster distances, ∆j, 1 ≤ j ≤ 3 were implemented. Thus, for example, V13, 
represents a validity index based on an intercluster distance, δ1, and an 
intracluster distance ∆3. The mathematical definitions of these intercluster and 
intracluster distances are described in Tables 13.1 and 13.2 respectively. 
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Table 13.1. Intercluster distances used to implement the Dunn’s index.  S and T are clusters 
from partition U; d(x,y) defines the distance between any two samples, x and y, belonging to S 
and T respectively; S and Tprovide the number of samples included in clusters S and T 
respectively. 
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Table 13.2. Intracluster distances used to implement the Dunn’s index.  S is a cluster from 
partition U; d(x,y) defines the distance between any two samples, x and y, belonging to S; S 
represents the number of samples included in cluster S. 
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As a way of illustration, this validation process is tested on expression 
data from a study on the molecular classification of lymphomas. Clustering is 
performed using the SOM algorithm. The expression levels from a number of 
genes with suspected roles in processes relevant in diffuse large B-cell 
lymphoma (DLBCL) were used as the features for the automatic clustering of 
a number of B-cell samples. The data consisted of 63 cases (45 DLBCL and 
18 normal) described by the expression levels of 23 genes. These data were 
obtained from an investigation published by Alizadeh and colleagues (2000), 
who identified subgroups of DLBCL based on the analysis of the patterns 
generated by a specialized cDNA microarray technique. A key goal of this 
study was to distinguish two categories of DLBCL: Germinal Centre B-like 
DLBCL (GC B-like DLBCL) (22 samples) and Activated B-like DLBCL (23 
samples) (Alizadehn et al., 2000). The full data and experimental methods are 
available on the Web site of Alizadeh et al. (http://llmpp.nih.gov/lymphoma). 

Table 13.3 shows the values of the 18 validity indices and the average 
index at each number of clusters, c, for c = 2 to c = 6. The shaded entries 
correspond to the highest values of the indices, and d(x,y) was calculated 
using the Euclidean distance. Fifteen of the indices indicated the correct value 
c = 2 while the remaining favour c = 5. 

An examination of these partitions confirms that the case c = 2 represents 
the most appropriate prediction from a biomedical point of view. This 
partition accurately allows the identification of the two DLBCL subtypes: GC 
B-like and activated B-like. Table 13.4 describes the clusters obtained using 
the optimal value c = 2. Cluster 1 may be referred to as the cluster 
representing activated B-like DLBCL, while Cluster 2 recognises the subclass 
GC B-like DLBCL. 

A more robust way to predict the optimal value for c may consist of: a) 
implementing a voting procedure, or b) calculating the average index value 
for each cluster configuration. Table 13.3 indicates that based on such criteria 
the best partition consist of two clusters. 
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Table 13.3. Predicting the correct number of clusters: Validity indices for expression clusters 
originating from B-cells. The entries represent the Dunn’s values using 3 types of intracluster 
measures and 6 types of intercluster measures. Shaded entries represent the optimal number of 
clusters, c, predicted by each index. 
 

Validity 
index 

c = 2  c = 3  c = 4  c = 5  c = 6  

V11 0.29 0.29 0.29 0.31 0.26 
V21 1.46 0.98 0.77 0.86 0.69 
V31 0.72 0.60 0.53 0.54 0.50 
V41 0.50 0.37 0.30 0.30 0.27 
V51 0.62 0.50 0.45 0.44 0.41 
V61 0.83 0.71 0.58 0.62 0.52 
V12 0.51 0.51 0.51 0.52 0.45 
V22 2.57 1.76 1.36 1.47 1.20 
V32 1.27 1.08 0.94 0.93 0.87 
V42 0.88 0.66 0.54 0.51 0.47 
V52 1.09 0.90 0.79 0.76 0.71 
V62 1.47 1.27 1.02 1.05 0.91 
V13 0.37 0.37 0.37 0.38 0.34 
V23 1.86 1.28 0.99 1.08 0.90 
V33 0.92 0.79 0.69 0.68 0.65 
V43 0.64 0.48 0.39 0.37 0.35 
V53 0.79 0.66 0.58 0.56 0.54 
V63 1.06 0.93 0.75 0.77 0.68 

Average 0.99 0.79 0.66 0.68 0.60 
 

 
Table 13.4. A relevant partition for a study on lymphoma data. 

 
Cluster Description 

1 
(Activated B-like DLBCL) 

23 samples belonging to subtype Activated B-like DLBCL,  
1 sample belonging to subtype GC B-like DLBCL 

9 Normal samples 
2 

(GC B-like DLBCL) 
21 samples belonging to subtype GC B-like DLBCL 

9 Normal samples 
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Table 13.5. Validity indices for expression clusters originating from a study on DLBCL. The 
entries represent the average Dunn’s values based on the distances shown in Tables 13.1 and 
13.2, and using three measures for d(x,y). Shaded entries represent the optimal number of 
clusters, c, predicted by each method.  E.dist.: Euclidean distance; M.dist.: Manhattan distance; 
C.dist.: Chebychev distance. 
 

Index 
based on c = 2  c = 3  c = 4  c = 5  c = 6  

E.dist. 0.99 0.79 0.66 0.68 0.60 
M.dist. 1.57 1.21 1.02 1.04 0.92 
C.dist. 0.97 0.79 0.70 0.69 0.63 

 
The results shown in Table 13.3 were obtained when d(x,y) was 

calculated using the well-known Euclidean distance (Tables 13.1 and 13.2). 
However there are several ways to define d(x,y) such as the Manhattan and 
Chebychev metrics (Everitt, 1993). Therefore, an important problem is to 
know how the choice of d(x,y) may influence the prediction process. Table 
13.5 summarises the effects of three measures, d(x,y), on the calculation of the 
Dunn’s cluster validity indices. This analysis suggests that the estimation of 
the optimal partition is not sensitive to the type of metric, d(x,y), 
implemented. 
 
3.2 Assessing Cluster Validity With Silhouettes 
 

For a given cluster, Xj (j = 1,…, c), this method assigns to each sample of 
Xj a quality measure, s(i) (i = 1,…, m), known as the silhouette width. The 
silhouette width is a confidence indicator on the membership of the ith sample 
in cluster Xj.  

The silhouette width for the ith sample in cluster Xj is defined as: 
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where d(i, Xk) is the average distance between the ith sample and all of the 
samples clustered in Xk; and ‘min’ represents the minimum value of d(i, Xk) (k 
= 1,…, c; k ≠ j). It is easily seen from (2) that ( ) 11 ≤≤− is . 

When a s(i) is close to 1, one may infer that the ith sample has been 
“well-clustered”, i.e. it was assigned to an appropriate cluster. When a s(i) is 
close to zero, it suggests that the ith sample could also be assigned to the 
nearest neighbouring cluster, i.e. such a sample lies equally far away from 
both clusters. If s(i) is close to –1, one may argue that such a sample has been 
“misclassified”. 

Thus, for a given cluster, Xj (j = 1,…, c), it is possible to calculate a 
cluster silhouette Sj, which characterises the heterogeneity and isolation 
properties of such a cluster: 
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It has been shown that for any partition U ↔ X: X1 ∪... Xi ∪… Xc, a 
global silhouette value, GSu, can be used as an effective validity index for U 
(Rousseeuw, 1987).  
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Furthermore, it has been demonstrated that equation (4) can be applied to 
estimate the most appropriate number of clusters for U. In this case the 
partition with the maximum Su is taken as the optimal partition.  

By way of example, this technique is tested on expression data originating 
from a study on the molecular classification of leukemias (Golub et al., 1999). 
Clustering is again performed using SOM. The analysed data consisted of 38 
bone marrow samples: 27 acute lymphoblastic leukemia (ALL) and 11 acute 
myeloid leukemia (AML), whose original descriptions and experimental 
protocols can be found on the MIT Whitehead Institute Web site 
(http://www.genome.wi.mit.edu/MPR). 
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Table 13.6. Silhouette values for expression clusters originating from leukemia samples. The 
entries represent the global silhouette values, GSu, for each partition, and the silhouette values, 
S, for each cluster defining a partition. Shaded entries highlight the optimal number of clusters, 
c, predicted by this method. 
 

c GSu S1 S2 S3 S4 S5 S6 

2 0.43 0.17 0.57         

3 0.14 0.11 0.35 0.11       

4 0.25 0.15 0.31 0.31 0.26     

5 0.19 0.07 0.45 0.23 0.23 0.21   

6 0.23 0.28 0.23 0.28 0.42 0.14 0.14 
 
Table 13.6 shows the global silhouette values, GSu, for each partition, and 

the silhouette values, S, at each number of clusters, c, for c = 2 to c = 6. The 
shaded entries correspond to the optimal values for this validation method. It 
predicts c = 2 as the best clustering configuration. Table 13.7 describes the 
clusters obtained using c = 2, which adequately distinguish ALL from AML 
samples. 

 
Table 13.7. An optimal partition of leukemia samples which distinguishes ALL from AML 
samples. 

 
Cluster Description 

1 
(AML class) 

11 AML samples 
2 ALL samples 

2 
(ALL class) 

 
25 ALL samples 

 
Table 13.6 suggests that the partition consisting of 4 clusters may also be 

considered as a useful partition, because it generates the second highest GSu. 
An examination of such a partition confirms that it represents relevant 
information relating to the detection of the ALL subclasses, B-cell and T-cell, 
as demonstrated by Golub and colleagues (1999). The composition of this 
alternative partition is described in Table 13.8. 
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Table 13.8. Predicting appropriate partitions in a leukemia study: distinction of subtypes of 
ALL samples. 

 

Cluster Description 
1 

(AML class) 
10 AML samples 

2 
(Unlabeled class) 

2 B-ALL samples 
1 T-ALL samples 

1 AML sample 
3 

(T-ALL subclass) 
7 T-ALL samples 
2 B-ALL samples 

4 
(B-ALL subclass) 

15 B-ALL samples 

 
The results shown in Table 13.6 were obtained using the well-known 

Euclidean distance. Alternative measures include, for example, the Manhattan 
and the Chebychev metrics. Table 13.9 summarises the effects of three 
distance measures on the calculation of the highest global silhouette values, 
GSu. These results indicate that the estimation of the optimal partition is not 
sensitive to the type of distance metric chosen to implement equation (2).  

 
Table 13.9. Prediction of the optimal partition based on silhouettes and different distance 
metrics for leukaemia data. The entries represent the global silhouette values, GSu, for each 
partition. Shaded entries highlight the optimal number of clusters, c, predicted by each method. 
E.dist.: Euclidean distance; M.dist.: Manhattan distance; C.dist.: Chebychev distance. 
 

GSu 
based on c = 2  c = 3  c = 4  c = 5  c = 6  

E.dist. 0.43 0.14 0.25 0.19 0.23 
M.dist. 0.43 0.14 0.25 0.19 0.23 
C.dist. 0.43 0.14 0.25 0.19 0.23 
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4. CONCLUSIONS 
 

This chapter has introduced key aspects of clustering systems for genomic 
expression data. An overview of the major types of clustering approaches, 
problems and design criteria was presented. It addressed the evaluation of 
clustering results and the prediction of optimal partitions. This problem, 
which has not traditionally received adequate attention from the expression 
research community, is crucial for the implementation of advanced clustering-
based studies. A cluster evaluation framework may have a major impact on 
the generation of relevant and valid results. This paper shows how it may also 
support or guide biomedical knowledge discovery tasks.  The clustering and 
validation techniques presented in this chapter may be applied to expression 
data of higher sample and feature set dimensionality.   

A general approach to developing clustering applications may consist of 
the comparison, synthesis and validation of results obtained from different 
algorithms. For instance, in the case of hierarchical clustering there are tools 
that can support the combination of results into consensus trees (Bremer, 
1990). However, additional methods will be required to automatically 
compare different partitions based on validation indices and/or graphical 
representations. 

Other problems that deserve further research are the development of 
clustering techniques based on the direct correlation between subsets of 
samples and features, multiple-membership clustering, and context-oriented 
visual tools for clustering support (Azuaje, 2002b). Furthermore there is the 
need to improve, adapt and expand the use of statistical techniques to assess 
uncertainty and significance in genomic expression experiments. 
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