

1

Abstract As event-based middleware is currently being applied
for application component integration in a range of application
domains, a variety of event services have been proposed to
address different application requirements. This paper presents a
survey of existing event systems structured as a taxonomy of
distributed event-based programming systems. A taxonomy is a
classification that allows different examples of some generic type
to be systematically arranged in groups or categorised according
to established criteria. The taxonomy presented in this paper is
structured as a hierarchy of the properties of a distributed event-
based programming system and may be used as a framework to
describe a distributed event-based programming system
according to its properties. Our taxonomy identifies a set of
fundamental properties of event-based programming systems and
categorises them according to the event model and event service
criteria. The event service is further classified according to its
organisation and interaction model, as well as other functional
and non-functional features.

Index Terms Distributed Event-Based Programming, Event
Model, Event Taxonomy.

I. INTRODUCTION

The event-based communication model represents an
emerging paradigm for asynchronously interconnecting the
components that comprise an application in a potentially
distributed and heterogeneous environment, and has recently
become widely used in application areas such as large-scale
internet services [1] and mobile programming environments
[2], [3], which are central to the vision of ubiquitous
computing [4], [5].

The event-based communication model is particularly useful
in centralised and distributed applications that require one or
more application components to react to a change in the state
of another application component as it provides a one-to-many
or many-to-many communication pattern [6-9]. Event-based
communication is essentially asynchronous [10], [11] which
results in a less tightly coupled communication relationship
between application components compared to the traditional
request/response communication model. Since it features
anonymity, it is well suited for applications consisting of a
possibly large number of anonymously interacting

components, without having to rely on centralised control.
Such communities of cooperating components are exploited in
distributed systems where independent application components
establish communication relationships dynamically over time
in an unpredictable fashion.

Event-based middleware is currently being applied for
application component integration in many application
domains including finance, telecommunications, smart
environments, multimedia, avionics, health care, and
entertainment [1, 2, 12-19]. Moreover, with the widespread
deployment and use of wireless technology, where
communication relationships amongst heterogeneous
application components [10] are established very dynamically
during the lifetime of the components, event-based middleware
will become even more prevalent as it addresses important
application requirements of the wireless and hence mobile
computing domain, including avoidance of long-lasting and
hence potentially expensive connections, hiding of
communication latency due to decoupled interaction phases,
omission of centralised control, and heterogeneity. Both
mobility and wireless networking represent key enabling
technologies underlying the vision of ubiquitous computing,
where interconnected computers will be embedded in a wide
range of appliances ranging in size from door locks to vehicle
controllers performing tasks, such as automatically opening
doors and routing vehicles to their intended destinations, on
behalf of their human users. The notion of dynamically
inaugurating communication relationships among application
components without relying on centralised control is central to
addressing the needs of a scalable system, representing the
ability to accommodate growth in a potentially large-scale
distributed environment.

Currently, event services are omnipresent in applications
ranging from small-scale, centralised to large-scale, highly
distributed systems. On one hand, they are exploited to
interconnect individual components of applications such as
graphical user interfaces [20], [21], disseminating user driven
and hence sporadic changes to the state of graphical
components to other components of the application that are
required to react to these changes. At the other extreme,
publishers of stock trading information may utilise a system

Taxonomy of Distributed Event-Based
Programming Systems

René Meier and Vinny Cahill

{rene.meier, vinny.cahill}@cs.tcd.ie
Distributed Systems Group,

Department of Computer Science,
Trinity College Dublin, Ireland.

2

with an event service to post the latest trading rates to a group
of brokers [12], [13] potentially located in different cities or
even countries. Smart environments often employ event-based
middleware to interconnect a large number of application
components ranging from light and door actuators and sensors
[16] to robotic vehicles moving within and between buildings.

As event-based middleware is exploited in a number of
applications in a range of domains, a variety of event services
have been proposed to address different application
requirements. This paper presents a survey of existing event
systems structured as a taxonomy of distributed event-based
programming systems. Generally, a taxonomy is a
classification that allows different examples of some generic
type to be systematically arranged in groups or categorised
according to established criteria [22]. The taxonomy presented
in this paper is structured as a hierarchy of the properties of a
distributed event-based programming system and may be used
as a framework to describe a distributed event-based
programming system, or simply an event system, according to
its properties.

The ultimate challenge of establishing a taxonomy is to
identify the criteria according to which the area of interest is
categorised and to arrange them systematically. Our taxonomy
identifies a set of fundamental properties of event systems and
categorises them according to the event model and event
service criteria introduced in section II. The latter is further
classified according to its organisation, interaction model, and
its functional and non-functional features. These properties
are then arranged in a hierarchical manner starting from the
root dimension of the taxonomy, which defines the relationship
between event system, event service and event model. Each
property is described providing corresponding terminology.

In addition to providing a means of describing an event
system, the taxonomy can be used to broadly summarise event
systems and the taxonomy terminology can be used in the
general discussion of event systems. Event systems can be
classified according to the same taxonomy terminology and
therefore, can easily be compared with each other or can be
matched against system requirements. The taxonomy may
serve as a basis for identifying the combination of the
properties of an event system required by a particular
application domain, simply by applying the taxonomy to a
number of existing event systems used in that particular
application domain and by extracting the common
combination of properties. This can be useful for the
requirements and design engineering of a novel event system.
Moreover, the taxonomy is expected to be utilised to identify
novel combinations of the properties of event systems and
hence, may serve as a basis for discovering potential research
issues to be addressed in future work.

This taxonomy of distributed event-based programming
models is presented using both figures and corresponding text.
The figures outline the relationship among the fundamental
properties of event systems and define the terminology to
identify them. The text associated with each figure describes

the corresponding properties in detail. The figures that allow a
taxonomy user to easily trace paths through the hierarchy to
discover relevant properties are shown in the appendix of this
paper. In particular, the next section introduces the root
dimension of our taxonomy of distributed event-based
programming systems, which defines the relationship between
event system, event service, and event model. Sections III and
IV outline the event model and the event service dimension of
the taxonomy respectively, describing each identified event
system property in detail.

II. THE TAXONOMY

The root dimension of the taxonomy defines the relationship
between event system, event service and event model. These
terms are widely used throughout this paper and therefore, the
root dimension also defines the basic terminology of event-
based communication. The root dimension of the taxonomy is
depicted in Fig. 3, which illustrates that every event system has
both an event service and an event model. We define each of
these terms as follows:

• An event system is an application that uses an event

service to carry out event-based communication.
• An event service is middleware that implements an event

model, hence providing event-based communication to an
event system.

• An event model consists of a set of rules describing a
communication model that is based on events.

We differentiate between event service and event model in

order to capture the facts that an event model defines an
application-level view of an event service and that a range of
event services may implement a particular event model. Event
models reflect the different usages for which they are intended.
For example, the event model of the CORBA notification
service [23], specified by the Object Management Group
(OMG) as part of their Common Object Request Broker
Architecture (CORBA) [24], and the Java AWT delegation
event model [20], specified by Sun, differ substantially in their
goals leading to differences in the application programming
interfaces (APIs) that they provide.

The goal of the event model of the CORBA notification
service is to be extremely general-purpose and usable in
virtually any domain. Consequently, it supports a wide range
of features including typed and untyped event communication,
as well as filtering and administrative capabilities. Moreover, a
variety of quality of service properties, such as event
reliability, connection reliability, event priority, and event
delivery order, are supported to control the propagation
characteristics of events. This is reflected in a fairly large and
complex application programming interface (API). In contrast,
the Java AWT delegation event model is intended for small-
scale, centralised applications such as graphical user interfaces
and therefore omits many of the features of the CORBA event
model. This results in the API of the Java event model being

3

much simpler than that of the CORBA event model.
The CORBA event model also serves as an example of an

event model that was specified with the expectation of being
implemented by a range of event services, and potentially
being exploited in different application domains. The OMG
leaves open the implementation of their model and therefore,
leaves it to different vendors to provide implementations.
Consequently, the CORBA event model has been implemented
and extended by a number of commercial and academic
organisations [25], [6], [17].

The relationship between event system, event service and
event model are summarised from the event system’s
perspective in Fig. 1. Apart from depicting how an event
system uses an event service that implements a particular event
model, Fig. 1 also outlines how event system and service map
onto a transport mechanism and how applications use entities
as hooks into the event service. Entities are the components of
an application that produce and consume events, excluding
components of the event service. An entity may play the role
of either a producer or a consumer of events, or may act as
both a producer and a consumer of events.

III. EVENT MODEL DIMENSION

The event model defines the application view of an event
service. As shown in Fig. 4, we have identified three distinct
categories of event model, which are peer to peer, mediator,
and implicit.

A peer to peer event model allows consuming entities to
subscribe at specific named producing entities directly and
producing entities to deliver events to specific named
subscribed entities directly. The Java distributed event model
[26] serves as an example of a peer to peer event model.

Event models utilising a mediator allow consuming entities
to subscribe at a designated mediator and producing entities to
deliver events to the mediator, which then forwards them to the
subscribed entities.

The mediator sub-hierarchy explores the number and
functionality of mediators in the event model. We differentiate
between models utilising a single mediator and models
exploiting multiple mediators. The CORBA event model1 [27]
may use a single mediator, called event channel. Multiple
mediators are further divided into functionally equivalent and

1 The CORBA specification allows its event model to utilise a single or

multiple mediators. For the purpose of this example, we refer to a CORBA
event model utilising a single mediator.

non-functionally equivalent mediators. In the former, all
mediators are functionally equivalent. Thus, entities may
subscribe or deliver events to any one of them. In SIENA [28],
[29], the equivalent to a mediator is called event server.
SIENA may utilise a set of different event server topologies.
All but the centralised topology exploit multiple, functionally
equivalent event servers. When mediators are not functionally
equivalent, entities have to subscribe or deliver events to the
correct mediator. The CORBA event model2 may utilise
multiple event channels each propagating a different type of
event.

An implicit event model lets consuming entities subscribe
to particular event types rather than at another entity or a
mediator. Producing entities generate events of some type,
which are then delivered to the subscribed entities. The
Cambridge event model (CEM) [30] is based on an implicit
event model.

Generally, the event model defines the manner in which an
event service is made visible to the application programmer. It
specifies the components of an event service to which the
application programmer is explicitly exposed and which are
used to subscribe to events and to propagate them.
Specifically, the event model classifies the means by which the
consuming entities of an application subscribe to the events in
which they are interested and the means by which an
application raises and delivers events, as well as the number
and location of the components involved. In the remainder of
this section, we present an example of each of the identified
event model categories outlining the manner in which an
application programmer uses their respective components. We
then conclude the section by discussing the identified
categories of event model.

The Java distributed event model allows a consumer, called
RemoteEventListener, to subscribe to events by invoking a
register method on a producer, called EventGenerator. The
simplified consumer application below shows how a
RemoteEventListener invokes the register method on an
explicitly named EventGenerator, passing a reference to itself
as a parameter. It is the RemoteEventListener’s responsibility
to retrieve the reference to the specific EventGenerator to
which it intends to register. The means to retrieve the reference
is not specified by the event model. The RemoteEventListener
also implements a notify method, the handler that will be
invoked by the EventGenerator when delivering a particular
instance of an event.
TheConsumerApplication {//the RemoteEventListener
 //subscribe to an explicit producer
 AnExplicitEventGeneratorRef = retrieveEventGeneratorRef();
 AnExplicitEventGeneratorRef.register(this);
 //handler to deliver an event
 notify(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

The producer application below shows a simplified version

2 The CORBA specification allows its event model to utilise a single or

multiple mediators. For the purpose of this example, we refer to a CORBA
event model utilising multiple mediators.

P

C

P/C

Producer Entity

Consumer Entity

Producer and Consumer Entity

Legend:
Event System

Event Service

Transport Mechanism

Event Model P/C
P

C

P

Fig. 1. Event System Overview.

4

of an EventGenerator. The EventGenerator implements the
register method through which a RemoteEventListener passes
its reference when subscribing. The EventGenerator invokes
the notify method on a subscribed RemoteEventListener using
the RemoteEventListener’s reference to deliver a particular
instance of an event.
TheProducerApplication {//the EventGenerator
 //register a consumer
 register(RemoteEventListenerRef) {
 SubscribedRemoteEventListenerRef=RemoteEventListenerRef;
 }
 //raising an event
 AnEventInstance = new Event(someParameters);
 SubscribedRemoteEventListenerRef.notify(AnEventInstance);
 }
}

Producers, called suppliers, and consumers exploiting the
CORBA event model register with the mediator, called event
channel, by obtaining interfaces to proxy objects, through
which instances of events are exchanged with the channel. In
order to do so, both consuming and supplying entities must
retrieve the reference to the explicitly named event channel
through which they intend to exchange events. Like the Java
distributed event model, the CORBA event model does not
specify the means to retrieve references to specific event
channels. The event channel uses administration objects to
maintain the connections to its entities and uses those
connections to propagate instances of events. The example
below shows a simplified version of an application creating a
specific event channel using a library called
EventChannelFactory.
TheEventChannel = EventChannelFactory.createEventChannel();

The following example outlines a simplified supplier and
consumer application. Both are assumed to have retrieved the
reference to the specific event channel to which they intend to
connect. In a similar fashion, both supplier and consumer
application obtain their respective proxy objects in order to
connect their supplier and consumer entity to the channel.
TheSupplierApplication {
 //connect a producer to an explicit event channel
 SupplierAdmin = TheEventChannel.forSuppliers();
 ProxyPushConsumer = SupplierAdmin.obtainPushConsumer();
 ProxyPushConsumer.connectPushSupplier(TheSupplier);
}

TheConumerApplication {
 //connect a consumer to an explicit event channel
 ConsumerAdmin = TheEventChannel.forConsumers();
 ProxyPushSupplier = ConsumerAdmin.obtainPushSupplier();
 ProxyPushSupplier.connectPushConsumer(TheConsumer);
}

The supplier entity raises events and pushes them to the
event channel by invoking the push method on the event
channel’s consumer proxy. The event channel then forwards
the events to all subscribed consumer entities by invoking the
push method on the explicit consumers in turn. Each consumer
must implement the push method, the handler that delivers
specific instances of events.
TheSupplier {
 //raising an event
 AnEventInstance = new Event(someParameters);
 ProxyPushConsumer.push(AnEventInstance);
}

TheConsumer {
 //handler to deliver an event
 push(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

CEM includes an Interface Definition Language (IDL3) that
enables producers to specify (declare) the type of event they
can notify and allows consumers to register with the types in
which they are interested. A pre-processor is used to translate
the IDL code, generating consumer and producer stubs for
marshalling and un-marshalling of method invocations. In
order to subscribe, a consumer creates an event template
representing the event type in which it is interested and then
invokes a local register method passing a consumer specific
parameter list that includes the template and a handler method
to be invoked on event delivery. The example below shows a
simplified version of the consumer side of an active badge
system. The event type of interest is specified as template,
which is then passed to the event service by invoking the
register method provided by a local library called EventClient,
along with the reference to the handler that delivers events is
also passed.
TheConsumer {
 //specify the type of event to which to subscribe
 template = Badge_Seen(B,S);
 EventClient.Register(EventHandler, template);
 //handler to deliver an event
 EventHandler(TheRemoteEventInstance);
 processAnEvent(TheRemoteEventInstance);
 }
}

Before generating events, a producer specifies the types of
event it produces using IDL declarations. In order to propagate
an event of a specific type, a producer instantiates the
corresponding event and calls a local signal method to send it
to the subscribed consumers. The example below shows a
simplified version of the producer side of an active badge
system. The producer declares the type of event it produces
and raised a specific instance of that event type by invoking
the Signal method provided by a local library, called
EventServer. Note, invoking the signal method causes the
event service to deliver the event to the consumer by invoking
its event handler.
TheProducer {
 //specify the type of event that will be produced
 EventTypeName : INTERFACE =
 Seen : EVENTCLASS [badge : BadgeId;
 sensor: SensorId];
 END.
 //raising an event
 e = Badge_Seen(17, 29);
 EventServer.Signal(e);
}

In summary, an event system exploiting either a peer to peer
or a mediator-based event model allows its entities to interact
by invoking remote methods directly on each other or on one
or more mediators respectively, whereas entities of an event
system with an implicit event model interact by subscribing
and delivering events locally using event types.

Significantly, these approaches differ in the way identifiers

5

to the components exposed to the application programmer are
obtained and maintained. Peer to peer and mediator-based
event models require the application programmer to obtain
identifiers to explicitly named producers and mediators
respectively, usually by means of exploiting a lookup table or
a naming service, and to maintain them. Every consumer of an
event system utilising a peer to peer based event model is
required to obtain the identifier of each producer in which it is
interested, i.e., the application programmer must ensure a
consumer subscribes to the correct set of producers, and to
maintain these identifiers during their lifetime. Similarly,
entities of an event system utilising a mediator-based event
model need to acquire the identifiers of the mediators
involved, i.e., the application programmer must track the
identifiers to the mediators to which a specific entity needs to
connect. However, mediator-based event models are likely to
obtain and maintain a smaller number of different identifiers
compared to peer to peer based event models. There are likely
to be significantly fewer mediators in an event system than
producers and their quantity is unlikely to change over time4,
certainly compared to the number of producers as they may be
created frequently providing services for a limited period of
time. Therefore, the number of the components explicitly
exposed to the application programmer is expected to be
significantly smaller in a mediator-based event model
compared to a peer to peer based event model. In contrast, the
application programmer in an event system utilising an implicit
event model is not required to acquire any identifiers to
entities or mediators at all. The application programmer does
not need to explicitly identify the producers with which a
consumer needs to communicate as consumers subscribe to
producers transparently using event types. This requires a
more sophisticated event service as it is its responsibility to
located peers, to maintain the corresponding identifiers, and to
map event types to identifiers.

Most significantly, the event model exploited by an event
system affects one of the main concepts of event-based
communications, namely the anonymity among the entities in
the system. The means by which consuming entities subscribe
to the events in which they are interested and by which events
are propagated and delivered influences the degree of
anonymity among them. The peer to peer approach permits
specific named entities to interact directly with each other.
Consequently, entities are not anonymous to each other.
Mediator-based event models, where entities register with one
or more mediators, provide a degree of anonymity where
entities are anonymous to each other but known to the
mediator(s). The implicit approach allows entities to interact
transparently exploiting event types. Hence, entities are
anonymous to each other but known by the event service that
implements the mapping of event types to entities.

3 The IDL of the Cambridge event model is different from the IDL

specified by the OMG, but has similar functionality.
4 In the absence of failure, an event system may exploit a single mediator

whose reference does not change during the lifetime of the system.

IV. EVENT SERVICE DIMENSION

The event service dimension deals with the classification of
the properties of an event service. As Fig. 5 shows, we divide
the properties of an event service into three distinct categories.
The organisation sub tree focuses on the distribution of the
entities and the middleware of an event system and on the
fashion in which the components that comprise an event
service cooperate. The interaction model defines the
communication path over which producing and consuming
entities communicate with each other. The feature sub
hierarchy addresses the other functional and non-functional
features proposed by an event service.

A. Organisation
The organisation sub tree classifies an event service as

either centralised or distributed according to the location of the
event system’s entities. These two sub categories are further
divided exploring the location of the event service middleware.
The possible organisation of an event service is summarised in
Fig. 6.

The entities of an event system can be either centralised or
distributed according to their location. The entities of an event
system are centralised if they only reside in the same address
space on the same physical machine. In contrast, if the entities
of an event system are distributed they may be located in
different address spaces possibly on different physical
machines.

Whether the entities of an event system are centralised or
distributed, the middleware can be either collocated or
separated.

Collocated Middleware. The event service is collocated
with the entities, it resides only in the same address space(s) on
the same physical machine(s). As illustrated in Fig. 7, the
organisation of a centralised event service with collocated
middleware results in both the entities and the middleware
being located exclusively in the same address space. No part
of the event system resides outside the implicit single address
space. This organisation may be used for small-scale
applications consisting of a relatively small number of entities
such as graphical user interfaces. For example, the Java AWT
delegation event model is implemented by the Java Virtual
Machine (JVM) to connect the graphical components of an
application sharing their address space with the middleware.
Another event service that may be used in a similar fashion is
provided by the C# programming language [21]. In contrast,
the organisation of a distributed event service with collocated
middleware results in the middleware being distributed with
the entities, each entity using the part of the middleware that is
local to it. Fig. 8 shows the organisation of a distributed event
service with collocated middleware, which may include an
arbitrary number of address spaces. This organisation has been
adopted by CEM and by mSECO [7], an event service
implementing the ECO event model [31]. mSECO is
implemented as a library that is collocated with each entity.
Notably, mSECO is exclusively located in the same address

6

spaces as the entities. However, the address spaces in which
the entities reside may or may not be located on different
physical machines.

Separated Middleware. The event service is at least
partially located in one or more separate address spaces
possibly on different physical machines.

We divide separated middleware into two categories
depending on the partitioning of the middleware. Fig. 9 depicts
an event service with separated single middleware, whose
entities are centralised and whose middleware is located on a
single machine. This organisation results in exactly two
separate address spaces, one including the entities and the
other containing the middleware. Notably, the two address
spaces may reside on the same or on two different physical
machines. Fig. 10 illustrates an event service with separated
single middleware, whose entities are distributed and whose
middleware is located on a single machine. This organisation
may involve a large number of address spaces and possibly
physical machines, depending on the location of the entities’
and the middleware’s address spaces. However, all address
spaces may reside on a single physical machine. The CORBA
event service utilising a single event channel5 serves as an
example of such an organisation. Its entities typically reside in
different address spaces distributed over multiple physical
machines using an event channel located on another machine.
However, the address space in which the event channel resides
may be located on the same physical machine as some of the
entities’ address spaces.

Fig. 11 and Fig. 12 show an event service with separated
multiple middleware, whose middleware is distributed over a
set of cooperating address spaces possibly on different
physical machines, for a centralised and a distributed
organisation respectively. Fig. 12 also illustrates that some of
the middleware’s address spaces may be located on the same
machine as some of the entities. This also applies for
centralised entities with separated multiple middleware. We
admit the possibility of an organisation of centralised entities
with separated multiple middleware although we cannot
provide an example for such an organisation. However,
SIENA uses an organisation as shown in Fig. 12. SIENA
proposes a set of middleware topologies, called server
topologies, of which all but the centralised topology use
middleware that is distributed over a set of cooperating
machines.

The organisation adopted by an event service has a major
impact on issues related to the scalability of a system, its
behaviour in the presence of failed components, and on the
mechanism for communication between entities and the
middleware. Traditionally, approaches containing centralised
middleware components are more likely to experience
performance bottlenecks with increasing scale and tend to
suffer more in the presence of failures than distributed

5 The CORBA event service may utilise one or more event channels. For

the purpose of this example, we refer to a CORBA event service utilising a
single event channel.

approaches. The use of middleware located in multiple address
spaces allows the distribution of the communication load
reducing the risk of performance bottlenecks. Instead of
having middleware located in a single address space handling
all the communication between the entities in an event system,
middleware distributed over multiple address spaces may
divide the load. Exploiting middleware distributed over
multiple address spaces also avoids potential single points of
failure in the system. For example, if the middleware in the
organisations illustrated in Fig. 7, Fig. 9, and Fig. 10 fails none
of the entities in the corresponding systems will be able to
communicate. In contrast, a middleware component failing in
one of the organisations depicted in Fig. 8, Fig. 11, and Fig. 12
has a less devastating effect on an event system allowing the
entities to communicate even in the presence of failure.
Significantly, this depends on the middleware being located in
multiple address spaces and not on the distribution of the
entities in a system.

The organisation of an event service also affects the
mechanism through which entities communicate with the
middleware. Approaches where entities and middleware reside
in different address spaces distributed over different physical
machines require a mechanism that supports communication
across the boundaries of address spaces and network
connections. A much simpler inter-process communication
mechanism may be sufficient for organisation where entities
and middleware reside in different address spaces on the same
physical machine. Entities and middleware sharing an address
space may communicate using a programming language
specific mechanism such as procedure call and method
invocation.

B. Interaction Model
The interaction sub tree classifies an event service according

to the interaction model used by the event system. Generally,
the interaction model defines the communication path over
which event communication between producing and
consuming entities takes place. It defines the number of
intermediate middleware components involved and the manner
in which intermediates cooperate to route events from
producers to consumers. Compared to the organisation model,
which focuses on the distribution of the entities and the
middleware of an event system describing the static view of an
event service, the interaction model describes the information
flow in a event system. Hence, it describes the dynamic aspect
of an event service.

As Fig. 13 depicts, we divide the interaction model into two
main categories, namely intermediate and no intermediate,
exploring whether and how many intermediate middleware
components an event passes through.

No Intermediate. The communication path over which
event communication between producing and consuming
entities takes place does not include intermediate middleware
components. Producer and consumer entities communicate
with each other through the middleware collocated with each
entity. As Fig. 14 illustrates, events that are routed from

7

producers to consumers pass through the respective collocated
middleware, but not through any intermediate middleware
component.

Intermediate. The communication path over which event
communication between producing and consuming entities
takes place includes at least one intermediate middleware
component. Events that are routed from producers to
consumers pass through one or more intermediate middleware
components.

The intermediate interaction model is divided into two sub
categories according to the number of intermediate
middleware components in the communication path over
which event communication between producing and
consuming entities takes place. In the centralised
intermediate model, the communication path between
producing and consuming entities includes a single
intermediate middleware component. In contrast, the
distributed intermediate involves two or more intermediates
through which events are routed from producers to consumers.
Fig. 15 depicts the distributed intermediate interaction model
outlining a communication path that includes two distributed
intermediates.

Both centralised and distributed intermediates can be
divided further. We classify centralised intermediates
according to their number as an event service may exploit a
single or multiple centralised intermediates.

All communication paths between producing and consuming
entities may include the same single centralised intermediate.
An event system using this interaction model includes exactly
one centralised intermediate. In contrast, an event system may
exploit multiple centralised intermediates. Producers and
consumers may be divided into groups and all communication
paths between the producing and the consuming entities of
each group may include a centralised intermediate that is
exclusive to the group. This results in an event system using
several centralised intermediates, the number of which
corresponds to the number of entity groups. The use of
multiple centralised intermediates may be motivated by groups
of entities, each of which sharing a common interest. The
common interest of an individual group may be expressed by a
specific type of event that is exclusively handled by a
particular centralised intermediate. For example, the CORBA
event service may utilise multiple centralised intermediates
implemented as event channels. Each channel may handle a
specific type of event exclusively. Producing and consuming
entities intending to communicate using a specific event type
connect to the corresponding event channel, therefore defining
the communication path over which event communication
takes place. Alternatively, the CORBA event service may
utilise a single centralised intermediate implemented as a
single event channel through which all events are routed. Fig.
16 and Fig. 17 illustrate the single centralised intermediate and
the multiple centralised intermediate interaction model
respectively. Fig. 17 shows two groups of entities, each
comprising of a producer and a consumer exclusively using a

single centralised intermediate through which events are
routed. The communication path associated with one group is
outlined as solid arrows and the communication path
associated with the other is depicted as dashed arrows.

We classify distributed intermediates as partitioned or
cooperative according to the fashion in which intermediates
cooperate to route events from producing to consuming
entities.

Generally, the distributed intermediate interaction model
includes two or more intermediate middleware components in
the communication path between consumers and producers.
An event service implementing the partitioned distributed
intermediate interaction model consists of one or more
independent groups of intermediates, each group handling a
specific type of event exclusively. Entities sharing a common
interest need to connect to the correct group of intermediates,
they need to connect to the group that handles the type of
event that corresponds to their common interest. The CORBA
event model specification proposes to chain different
implementations of event channels, acting as a group of
partitioned distributed intermediates, in order to combine non-
functional features supported by individual event channels.

In contrast, cooperative distributed intermediates do not
form independent groups; all intermediates cooperate to route
events from consumers to producers. Entities connect to the
most convenient, i.e., physically closest, intermediate. Each
intermediate manages the events of the entities physically
connected to it and cooperates with other intermediates to
route them to remote entities. Cooperative distributed
intermediates cooperate with each other either in a
hierarchical or in a non-hierarchical manner. JEDI [32]
proposes a hierarchical structure of cooperative distributed
intermediates, called dispatching servers. Dispatching servers
are interconnected in a tree topology through which events are
routed. Entities may connect to any dispatching server, each of
them forwards the events it receives from the producing
entities connected to it to its parent and to its descendants to
route them to all interested consumers. SIENA describes four
different topologies of cooperative distributed intermediates.
One of them serves as an additional example of hierarchical
cooperative distributed intermediates, another two, namely the
acyclic and the generic peer to peer topology, illustrate an
example of non-hierarchical cooperative distributed
intermediates.

We sub divide the interaction model that does not include
intermediate middleware components into three categories
according to the means by which entities address each other.
These interaction models are called point to point, named, and
implicit.

Producer and consumer entities may communicate directly
with each other in a point to point fashion, using explicit
entity addresses, which are provided by the application. The
middleware uses explicit entity addresses and a unicast
communication pattern when routing events from producing to
consuming entities. The Java distributed event model allows

8

producers to route events to the subscribed consumers using
the explicit consumer address provided by the application.

Producer and consumer entities may communicate directly
with each other using a name service to map event
descriptions, such as event types, to entity addresses provided
by the application. The middleware uses either a unicast or a
multicast communication pattern to route events from a
producer to the interested consumers. uSECO [7] uses an name
service, called Application Instance Repository (AIR), to
resolve the addresses of the entities that are interested in a
specific event type and a unicast communication pattern to
route events.

Producer and consumer entities may communicate directly
with each other using an implicit means to map event
descriptions to entity addresses provided by the application.
The middleware uses a multicast communication pattern when
routing events from producers to consumers. mSECO, a
multicast version of the uSECO event service, does not rely on
an AIR since it uses an implicit means to map events to the
multicast addresses representing the interested consumers.

C. Features
As illustrated in Fig. 18, the feature sub hierarchy addresses

the other functional and non-functional features provided by an
event service. We omit the discussion of this part of our
taxonomy due to the limited space.

ACKNOWLEDGMENT

The work described in this paper was partly supported by
the Irish Higher Education Authority's Programme for
Research in Third Level Institutions cycle 0 (1998-2001) and
by the Future and Emerging Technologies programme of the
Commission of the European Union under research contract
IST-2000-26031 (CORTEX - CO-operating Real-time
senTient objects: architecture and EXperimental evaluation).

REFERENCES
[1] D. Chambers, G. Lyons, and J. Duggan, “Design of Virtual Store using

Distributed Object Technology,” in Proceedings of the 5th International
Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE/ICSE2000). Limerick, Ireland: IEEE Computer Society,
2000, pp. 66-75.

[2] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward,
and A. Hopper, “Implementing a Sentient Computing System,” IEEE
Computer, vol. 34, pp. 50-56, 2001.

[3] H. Muller and C. Randell, “An Event-Driven Sensor Architecture for
Low Power Wearables,” in Proceedings of the Workshop on Software
Engineering for Wearable and Pervasive Computing
(SEWPC/ICSE2000). Limerick, Ireland: IEEE Computer Society, 2000,
pp. 39-41.

[4] M. Weiser, “Ubiquitous Computing,” IEEE Hot Topics, vol. 26, pp. 71-
72, 1993.

[5] A. Dearle, “Towards Ubiquitous Environments for Mobile Users,” IEEE
Internet Computing, vol. 2, pp. 22-32, 1998.

[6] J. Orvalho, L. Figueiredo, and F. Boavida, “Evaluating Light-weight
Reliable Multicast Protocol Extensions to the CORBA Event Service,”
in Proceedings of the 3rd International Enterprise Distributed Object
Computing Conference (EDOC'99). University of Mannheim, Germany,
1999.

[7] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, “Filtering and
Scalability in the ECO Distributed Event Model,” in Proceedings of the

5th International Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE/ICSE2000). Limerick, Ireland: IEEE
Computer Society, 2000, pp. 83-95.

[8] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and
D. Sturman, “An Efficient Multicast Protocol for Content-Based
Publish-Subscribe Systems,” in Proceedings of the 19th International
Conference on Distributed Computing Systems (ICDCS'99). Austin, TX,
USA, 1999.

[9] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D.
Sturman, “Exploiting IP Multicast in Content-Based Publish-Subscribe
Systems,” in Proceedings of IFIP/ACM International Conference on
Distributed Processing (Middleware 2000). New York, USA: Springer-
Verlag, 2000, pp. 185-207.

[10] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems,
Concepts and Design, Third ed: Pearson Education Limited, 2001.

[11] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel,
and M. Spiteri, “Generic Support for Distributed Applications,” IEEE
Computer, vol. 33, pp. 68-76, 2000.

[12] M. Erzberger and M. Altherr, “Every Dad Needs a Mom - Message-
Oriented Middleware,” SoftWired AG, White Paper 1999.

[13] S. Maffeis, “Developing Publish/Subscribe Applications with iBus,”
SoftWired AG, White Paper 1999.

[14] C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Architecture,”
in Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS). Santa Fe, New Mexico, USA,
1998, pp. 117-131.

[15] A. Hopper, A. Harter, and T. Blackie, “The Active Badge System,” in
Proceedings of the Conference on Human Factors in Computing
Systems (INTERCHI'93). Amsterdam, The Netherlands, 1993.

[16] S. J. Kang, S. H. Park, and J. H. Park, “ROOM-BRIDGE: A Vertically
Configurable Network Architecture and Real-Time Middleware for
Interoperability between Ubiquitous Consumer Devices in Home,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware2001). Heidelberg, Germany: Springer-
Verlag, 2001, pp. 232-251.

[17] T. Harrison, D. Levine, and D. Schmidt, “The Design and Performance
of a Real-Time CORBA Event Service,” in Proceedings of the 1997
Conference on Object- Oriented Programming Systems, Languages and
Applications (OOPSLA). Atlanta, Georgia, USA: ACM Press, 1997, pp.
184-200.

[18] J. Bacon, K. Moody, and W. Yao, “Access Control and Trust in the use
of Widely Distributed Services,” in Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware2001). Heidelberg, Germany: Springer-Verlag, 2001, pp.
295-310.

[19] K. O'Connell, V. Cahill, A. Condon, S. McGerty, G. Starovic, and B.
Tangney, “The VOID Shell: A Toolkit for The Development of
Distributed Video Games and Virtual Worlds,” in Proceedings of the
Workshop on Simulation and Interaction in Virtual Environments.
University of Iowa, Iowa City, USA, 1995, pp. 172-177.

[20] Sun Microsystems Inc., Java AWT: Delegation Event Model: Sun
Microsystems Inc., 1997.

[21] Microsoft Corporation, C# Language Specification, Version 0.28:
Microsoft Corporation, 2001.

[22] B. Martin, C. Pedersen, and J. Bedford-Roberts, “An Object-Based
Taxonomy for Distributed Computing Systems,” IEEE Computer, vol.
24, pp. 17-27, 1991.

[23] Object Management Group, CORBAservices: Common Object Services
Specification - Notification Service Specification, Version 1.0: Object
Management Group, 2000.

[24] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Revision 2.2: Object Management
Group, 1995.

[25] Iona Technologies, “Orbix 3 Product Family,” Iona Technologies, White
Paper April 1999.

[26] Sun Microsystems Inc., Java Distributed Event Specification: Sun
Microsystems Inc., 1998.

[27] Object Management Group, CORBAservices: Common Object Services
Specification - Event Service Specification: Object Management Group,
1995.

[28] A. Carzaniga, “Architectures for an Event Notification Service Scalable
to Wide-area Networks,” : Politecnico di Milano, Italy, 1998.

9

[29] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design of a Scalable Event
Notification Service: Interface and Architecture,” Dept. of Computer
Science, University of Colorado, USA, Technical Report CU-CS-863-
98, August 1998.

[30] J. Bacon, J. Bates, R. Hayton, and K. Moody, “Using Events to Build
Distributed Applications,” in Proceedings of the Second International
Workshop on Services in Distributed and Networked Environments
(SDNE'95). Whistler, British Columbia, Canada, 1995, pp. 148-155.

[31] G. Starovic, V. Cahill, and B. Tangney, “An Event Based Object Model
for Distributed Programming,” in Proceedings of the International
Conference on Object Oriented Information System. London, UK:
Springer-Verlag, 1995, pp. 72-86.

[32] G. Cugola, E. Di Nitto, and A. Fuggetta, “Exploiting an Event-Based
Infrastructure to Develop Complex Distributed Systems,” in
Proceedings of the 20th International Conference on Software
Engineering (ICSE'98). Kyoto, Japan, 1998.

10

APPENDIX

The figures that allow a taxonomy user to easily trace paths
through the hierarchy to discover relevant properties are
depicted in this section. As summarised in Fig. 2, the figures
consist of nodes, one of which is the root node and some of
which are leaves. Nodes are connected by directed paths. The
directed paths are represented by a set of arrows describing the
nature of the paths leaving a specific node. A set of dashed
arrows leaving a specific node indicates that exactly one path
has to be chosen when tracing through that node. Solid arrows
indicate that at least one path has to be chosen, whereas
double lined arrows indicate that all possible paths need to be
selected. In order to apply the taxonomy to an event system,
starting from the root node, a taxonomy user traces paths
through the hierarchy selecting the connections that most
accurately describe the event system until each selected path
reaches a leave. The terms associated with the nodes along a
path describe a property of the event system.

For example, Fig. 18 shows that the features of an event
service include both functional and non-functional features by
using double lined arrows to describe the paths between the
nodes. Hence, when tracing trough the features node all paths,
i.e., both of them, must be selected to describe the
corresponding properties of the event system. Fig. 4 depicts
that an event model can be characterised as either peer to peer,
mediator or implicit. The dashed arrows connecting the nodes,
which imply that exactly one path has to be chosen, illustrate
this.

1

Select all

Select exactly one

Select at least one

Leave

Node

Fig. 2. Taxonomy Legend.

Event System

Event Service Event Model

Fig. 3. Taxonomy Root Dimension.

Event Model

Implicit Mediator Peer to Peer

Multiple Single

Non Functionally
Equivalent

Functionally
Equivalent

Fig. 4. Event Model Dimension.

Event Service

Interaction Model Organisation Features

Fig. 5. Event Service Dimension.

Centralised

Separated
Middleware

Collocated
Middleware

Multiple Single

Separated
Middleware

Multiple Single

Collocated
Middleware

Distributed

Organisation

Fig. 6. Event Service Organisation.

11

Address Space

Machine

Address Space

M

Legend:

M

Producer Entity

Consumer Entity

Middleware

Communication

P

C

P

C

P

C

Fig. 7. Centralised Event Service with Collocated Middleware.

Machine

Addr.
Space

Machine

Addr.
Space

M M

Machine

Addr.
Space

M

Machine

Addr.
Space

M

P C

P C

Fig. 8. Distributed Event Service with Collocated Middleware.

Address Space

Machine

Address Space
Address Space

Address Space

M

P

C

P

C

Fig. 9. Centralised Event Service with Separated Single Middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

P

C

P

C

Fig. 10. Distributed Event Service with Separated Single Middleware.

Address
Space

Machine

Addr. Space

Address
Space

Machine

Addr. Space

M

P C

P C

Address
Space

Machine

Addr. Space

M

Fig. 11. Centralised Event Service with Separated Multiple Middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

P

C

P

C

Fig. 12. Distributed Event Service with Separated Multiple Middleware.

12

Functional

Event
Type

Non Functional

Features

Event Propagation
Model

Event
Filter

QoS Mobility Ordering Fault Tolerance Composite
Events

Fig. 18. Event Service Features.

Event Service

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Fig. 16. Single Centralised Intermediate.

Application

Event Service

C

Application

Event Service

P

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Fig. 17. Multiple Centralised Intermediate.

Intermediate

Distributed
Intermediate

Partitioned

Implicit Named Point to Point

No Intermediate

Interaction Model

Cooperative

Non Hierarchical Hierarchical

Multiple Single

Centralised
Intermediate

Fig. 13. Event Service Interaction Model.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Fig. 14. No Intermediate.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Fig. 15. Distributed Intermediate.

