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Abstract As event-based middleware is currently being applied 
for application component integration in a range of application 
domains, a variety of event services have been proposed to 
address different application requirements. This paper presents a 
survey of existing event systems structured as a taxonomy of 
distributed event-based programming systems. A taxonomy is a 
classification that allows different examples of some generic type 
to be systematically arranged in groups or categorised according 
to established criteria. The taxonomy presented in this paper is 
structured as a hierarchy of the properties of a distributed event-
based programming system and may be used as a framework to 
describe a distributed event-based programming system 
according to its properties. Our taxonomy identifies a set of 
fundamental properties of event-based programming systems and 
categorises them according to the event model and event service 
criteria. The event service is further classified according to its 
organisation and interaction model, as well as other functional 
and non-functional features. 
 

Index Terms Distributed Event-Based Programming, Event 
Model, Event Taxonomy. 

I. INTRODUCTION 

The event-based communication model represents an 
emerging paradigm for asynchronously interconnecting the 
components that comprise an application in a potentially 
distributed and heterogeneous environment, and has recently 
become widely used in application areas such as large-scale 
internet services [1] and mobile programming environments 
[2], [3], which are central to the vision of ubiquitous 
computing [4], [5]. 

The event-based communication model is particularly useful 
in centralised and distributed applications that require one or 
more application components to react to a change in the state 
of another application component as it provides a one-to-many 
or many-to-many communication pattern [6-9]. Event-based 
communication is essentially asynchronous [10], [11] which 
results in a less tightly coupled communication relationship 
between application components compared to the traditional 
request/response communication model. Since it features 
anonymity, it is well suited for applications consisting of a 
possibly large number of anonymously interacting 

 
 

components, without having to rely on centralised control. 
Such communities of cooperating components are exploited in 
distributed systems where independent application components 
establish communication relationships dynamically over time 
in an unpredictable fashion. 

Event-based middleware is currently being applied for 
application component integration in many application 
domains including finance, telecommunications, smart 
environments, multimedia, avionics, health care, and 
entertainment [1, 2, 12-19]. Moreover, with the widespread 
deployment and use of wireless technology, where 
communication relationships amongst heterogeneous 
application components [10] are established very dynamically 
during the lifetime of the components, event-based middleware 
will become even more prevalent as it addresses important 
application requirements of the wireless and hence mobile 
computing domain, including avoidance of long-lasting and 
hence potentially expensive connections, hiding of 
communication latency due to decoupled interaction phases, 
omission of centralised control, and heterogeneity. Both 
mobility and wireless networking represent key enabling 
technologies underlying the vision of ubiquitous computing, 
where interconnected computers will be embedded in a wide 
range of appliances ranging in size from door locks to vehicle 
controllers performing tasks, such as automatically opening 
doors and routing vehicles to their intended destinations, on 
behalf of their human users. The notion of dynamically 
inaugurating communication relationships among application 
components without relying on centralised control is central to 
addressing the needs of a scalable system, representing the 
ability to accommodate growth in a potentially large-scale 
distributed environment. 

Currently, event services are omnipresent in applications 
ranging from small-scale, centralised to large-scale, highly 
distributed systems. On one hand, they are exploited to 
interconnect individual components of applications such as 
graphical user interfaces [20], [21], disseminating user driven 
and hence sporadic changes to the state of graphical 
components to other components of the application that are 
required to react to these changes. At the other extreme, 
publishers of stock trading information may utilise a system 

Taxonomy of Distributed Event-Based 
Programming Systems 

René Meier and Vinny Cahill 
 

{rene.meier, vinny.cahill}@cs.tcd.ie 
Distributed Systems Group, 

Department of Computer Science, 
Trinity College Dublin, Ireland. 



 
 

2

with an event service to post the latest trading rates to a group 
of brokers [12], [13] potentially located in different cities or 
even countries. Smart environments often employ event-based 
middleware to interconnect a large number of application 
components ranging from light and door actuators and sensors 
[16] to robotic vehicles moving within and between buildings. 

As event-based middleware is exploited in a number of 
applications in a range of domains, a variety of event services 
have been proposed to address different application 
requirements. This paper presents a survey of existing event 
systems structured as a taxonomy of distributed event-based 
programming systems. Generally, a taxonomy is a 
classification that allows different examples of some generic 
type to be systematically arranged in groups or categorised 
according to established criteria [22]. The taxonomy presented 
in this paper is structured as a hierarchy of the properties of a 
distributed event-based programming system and may be used 
as a framework to describe a distributed event-based 
programming system, or simply an event system, according to 
its properties. 

The ultimate challenge of establishing a taxonomy is to 
identify the criteria according to which the area of interest is 
categorised and to arrange them systematically. Our taxonomy 
identifies a set of fundamental properties of event systems and 
categorises them according to the event model and event 
service criteria introduced in section II. The latter is further 
classified according to its organisation, interaction model, and 
its functional and non-functional features. These properties 
are then arranged in a hierarchical manner starting from the 
root dimension of the taxonomy, which defines the relationship 
between event system, event service and event model. Each 
property is described providing corresponding terminology. 

In addition to providing a means of describing an event 
system, the taxonomy can be used to broadly summarise event 
systems and the taxonomy terminology can be used in the 
general discussion of event systems. Event systems can be 
classified according to the same taxonomy terminology and 
therefore, can easily be compared with each other or can be 
matched against system requirements. The taxonomy may 
serve as a basis for identifying the combination of the 
properties of an event system required by a particular 
application domain, simply by applying the taxonomy to a 
number of existing event systems used in that particular 
application domain and by extracting the common 
combination of properties. This can be useful for the 
requirements and design engineering of a novel event system. 
Moreover, the taxonomy is expected to be utilised to identify 
novel combinations of the properties of event systems and 
hence, may serve as a basis for discovering potential research 
issues to be addressed in future work. 

This taxonomy of distributed event-based programming 
models is presented using both figures and corresponding text. 
The figures outline the relationship among the fundamental 
properties of event systems and define the terminology to 
identify them. The text associated with each figure describes 

the corresponding properties in detail. The figures that allow a 
taxonomy user to easily trace paths through the hierarchy to 
discover relevant properties are shown in the appendix of this 
paper. In particular, the next section introduces the root 
dimension of our taxonomy of distributed event-based 
programming systems, which defines the relationship between 
event system, event service, and event model. Sections III and 
IV outline the event model and the event service dimension of 
the taxonomy respectively, describing each identified event 
system property in detail. 

II. THE TAXONOMY 

The root dimension of the taxonomy defines the relationship 
between event system, event service and event model. These 
terms are widely used throughout this paper and therefore, the 
root dimension also defines the basic terminology of event-
based communication. The root dimension of the taxonomy is 
depicted in Fig. 3, which illustrates that every event system has 
both an event service and an event model. We define each of 
these terms as follows: 

 
• An event system is an application that uses an event 

service to carry out event-based communication. 
• An event service is middleware that implements an event 

model, hence providing event-based communication to an 
event system. 

• An event model consists of a set of rules describing a 
communication model that is based on events. 

 
We differentiate between event service and event model in 

order to capture the facts that an event model defines an 
application-level view of an event service and that a range of 
event services may implement a particular event model. Event 
models reflect the different usages for which they are intended. 
For example, the event model of the CORBA notification 
service [23], specified by the Object Management Group 
(OMG) as part of their Common Object Request Broker 
Architecture (CORBA) [24], and the Java AWT delegation 
event model [20], specified by Sun, differ substantially in their 
goals leading to differences in the application programming 
interfaces (APIs) that they provide. 

The goal of the event model of the CORBA notification 
service is to be extremely general-purpose and usable in 
virtually any domain. Consequently, it supports a wide range 
of features including typed and untyped event communication, 
as well as filtering and administrative capabilities. Moreover, a 
variety of quality of service properties, such as event 
reliability, connection reliability, event priority, and event 
delivery order, are supported to control the propagation 
characteristics of events. This is reflected in a fairly large and 
complex application programming interface (API). In contrast, 
the Java AWT delegation event model is intended for small-
scale, centralised applications such as graphical user interfaces 
and therefore omits many of the features of the CORBA event 
model. This results in the API of the Java event model being 
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much simpler than that of the CORBA event model. 
The CORBA event model also serves as an example of an 

event model that was specified with the expectation of being 
implemented by a range of event services, and potentially 
being exploited in different application domains. The OMG 
leaves open the implementation of their model and therefore, 
leaves it to different vendors to provide implementations. 
Consequently, the CORBA event model has been implemented 
and extended by a number of commercial and academic 
organisations [25], [6], [17]. 

The relationship between event system, event service and 
event model are summarised from the event system’s 
perspective in Fig. 1. Apart from depicting how an event 
system uses an event service that implements a particular event 
model, Fig. 1 also outlines how event system and service map 
onto a transport mechanism and how applications use entities 
as hooks into the event service. Entities are the components of 
an application that produce and consume events, excluding 
components of the event service. An entity may play the role 
of either a producer or a consumer of events, or may act as 
both a producer and a consumer of events. 

III. EVENT MODEL DIMENSION 

The event model defines the application view of an event 
service. As shown in Fig. 4, we have identified three distinct 
categories of event model, which are peer to peer, mediator, 
and implicit. 

A peer to peer event model allows consuming entities to 
subscribe at specific named producing entities directly and 
producing entities to deliver events to specific named 
subscribed entities directly. The Java distributed event model 
[26] serves as an example of a peer to peer event model. 

Event models utilising a mediator allow consuming entities 
to subscribe at a designated mediator and producing entities to 
deliver events to the mediator, which then forwards them to the 
subscribed entities. 

The mediator sub-hierarchy explores the number and 
functionality of mediators in the event model. We differentiate 
between models utilising a single mediator and models 
exploiting multiple mediators. The CORBA event model1 [27] 
may use a single mediator, called event channel. Multiple 
mediators are further divided into functionally equivalent and 

 
1 The CORBA specification allows its event model to utilise a single or 

multiple mediators. For the purpose of this example, we refer to a CORBA 
event model utilising a single mediator. 

non-functionally equivalent mediators. In the former, all 
mediators are functionally equivalent. Thus, entities may 
subscribe or deliver events to any one of them. In SIENA [28], 
[29], the equivalent to a mediator is called event server. 
SIENA may utilise a set of different event server topologies. 
All but the centralised topology exploit multiple, functionally 
equivalent event servers. When mediators are not functionally 
equivalent, entities have to subscribe or deliver events to the 
correct mediator. The CORBA event model2 may utilise 
multiple event channels each propagating a different type of 
event. 

An implicit event model lets consuming entities subscribe 
to particular event types rather than at another entity or a 
mediator. Producing entities generate events of some type, 
which are then delivered to the subscribed entities. The 
Cambridge event model (CEM) [30] is based on an implicit 
event model. 

Generally, the event model defines the manner in which an 
event service is made visible to the application programmer. It 
specifies the components of an event service to which the 
application programmer is explicitly exposed and which are 
used to subscribe to events and to propagate them. 
Specifically, the event model classifies the means by which the 
consuming entities of an application subscribe to the events in 
which they are interested and the means by which an 
application raises and delivers events, as well as the number 
and location of the components involved. In the remainder of 
this section, we present an example of each of the identified 
event model categories outlining the manner in which an 
application programmer uses their respective components. We 
then conclude the section by discussing the identified 
categories of event model. 

The Java distributed event model allows a consumer, called 
RemoteEventListener, to subscribe to events by invoking a 
register method on a producer, called EventGenerator. The 
simplified consumer application below shows how a 
RemoteEventListener invokes the register method on an 
explicitly named EventGenerator, passing a reference to itself 
as a parameter. It is the RemoteEventListener’s responsibility 
to retrieve the reference to the specific EventGenerator to 
which it intends to register. The means to retrieve the reference 
is not specified by the event model. The RemoteEventListener 
also implements a notify method, the handler that will be 
invoked by the EventGenerator when delivering a particular 
instance of an event. 
TheConsumerApplication {//the RemoteEventListener 
  //subscribe to an explicit producer 
  AnExplicitEventGeneratorRef = retrieveEventGeneratorRef(); 
  AnExplicitEventGeneratorRef.register(this); 
  //handler to deliver an event 
  notify(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 

The producer application below shows a simplified version 

 
2 The CORBA specification allows its event model to utilise a single or 

multiple mediators. For the purpose of this example, we refer to a CORBA 
event model utilising multiple mediators. 
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of an EventGenerator. The EventGenerator implements the 
register method through which a RemoteEventListener passes 
its reference when subscribing. The EventGenerator invokes 
the notify method on a subscribed RemoteEventListener using 
the RemoteEventListener’s reference to deliver a particular 
instance of an event. 
TheProducerApplication {//the EventGenerator 
  //register a consumer 
  register(RemoteEventListenerRef) { 
    SubscribedRemoteEventListenerRef=RemoteEventListenerRef; 
  } 
  //raising an event 
  AnEventInstance = new Event(someParameters); 
  SubscribedRemoteEventListenerRef.notify(AnEventInstance); 
  } 
} 

Producers, called suppliers, and consumers exploiting the 
CORBA event model register with the mediator, called event 
channel, by obtaining interfaces to proxy objects, through 
which instances of events are exchanged with the channel. In 
order to do so, both consuming and supplying entities must 
retrieve the reference to the explicitly named event channel 
through which they intend to exchange events. Like the Java 
distributed event model, the CORBA event model does not 
specify the means to retrieve references to specific event 
channels. The event channel uses administration objects to 
maintain the connections to its entities and uses those 
connections to propagate instances of events. The example 
below shows a simplified version of an application creating a 
specific event channel using a library called 
EventChannelFactory. 
TheEventChannel = EventChannelFactory.createEventChannel(); 

The following example outlines a simplified supplier and 
consumer application. Both are assumed to have retrieved the 
reference to the specific event channel to which they intend to 
connect. In a similar fashion, both supplier and consumer 
application obtain their respective proxy objects in order to 
connect their supplier and consumer entity to the channel. 
TheSupplierApplication { 
  //connect a producer to an explicit event channel 
  SupplierAdmin = TheEventChannel.forSuppliers(); 
  ProxyPushConsumer = SupplierAdmin.obtainPushConsumer(); 
  ProxyPushConsumer.connectPushSupplier(TheSupplier); 
} 

TheConumerApplication { 
  //connect a consumer to an explicit event channel 
  ConsumerAdmin = TheEventChannel.forConsumers(); 
  ProxyPushSupplier = ConsumerAdmin.obtainPushSupplier(); 
  ProxyPushSupplier.connectPushConsumer(TheConsumer); 
} 

The supplier entity raises events and pushes them to the 
event channel by invoking the push method on the event 
channel’s consumer proxy. The event channel then forwards 
the events to all subscribed consumer entities by invoking the 
push method on the explicit consumers in turn. Each consumer 
must implement the push method, the handler that delivers 
specific instances of events. 
TheSupplier { 
  //raising an event 
  AnEventInstance = new Event(someParameters); 
  ProxyPushConsumer.push(AnEventInstance); 
} 

TheConsumer { 
  //handler to deliver an event 
  push(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 

CEM includes an Interface Definition Language (IDL3) that 
enables producers to specify (declare) the type of event they 
can notify and allows consumers to register with the types in 
which they are interested. A pre-processor is used to translate 
the IDL code, generating consumer and producer stubs for 
marshalling and un-marshalling of method invocations. In 
order to subscribe, a consumer creates an event template 
representing the event type in which it is interested and then 
invokes a local register method passing a consumer specific 
parameter list that includes the template and a handler method 
to be invoked on event delivery. The example below shows a 
simplified version of the consumer side of an active badge 
system. The event type of interest is specified as template, 
which is then passed to the event service by invoking the 
register method provided by a local library called EventClient, 
along with the reference to the handler that delivers events is 
also passed. 
TheConsumer { 
  //specify the type of event to which to subscribe 
  template = Badge_Seen(B,S); 
  EventClient.Register(EventHandler, template); 
  //handler to deliver an event 
  EventHandler(TheRemoteEventInstance); 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 

Before generating events, a producer specifies the types of 
event it produces using IDL declarations. In order to propagate 
an event of a specific type, a producer instantiates the 
corresponding event and calls a local signal method to send it 
to the subscribed consumers. The example below shows a 
simplified version of the producer side of an active badge 
system. The producer declares the type of event it produces 
and raised a specific instance of that event type by invoking 
the Signal method provided by a local library, called 
EventServer. Note, invoking the signal method causes the 
event service to deliver the event to the consumer by invoking 
its event handler. 
TheProducer { 
  //specify the type of event that will be produced 
  EventTypeName : INTERFACE = 
    Seen : EVENTCLASS [badge : BadgeId; 
                       sensor: SensorId]; 
  END. 
  //raising an event 
  e = Badge_Seen(17, 29); 
  EventServer.Signal(e); 
} 

In summary, an event system exploiting either a peer to peer 
or a mediator-based event model allows its entities to interact 
by invoking remote methods directly on each other or on one 
or more mediators respectively, whereas entities of an event 
system with an implicit event model interact by subscribing 
and delivering events locally using event types. 

Significantly, these approaches differ in the way identifiers 
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to the components exposed to the application programmer are 
obtained and maintained. Peer to peer and mediator-based 
event models require the application programmer to obtain 
identifiers to explicitly named producers and mediators 
respectively, usually by means of exploiting a lookup table or 
a naming service, and to maintain them. Every consumer of an 
event system utilising a peer to peer based event model is 
required to obtain the identifier of each producer in which it is 
interested, i.e., the application programmer must ensure a 
consumer subscribes to the correct set of producers, and to 
maintain these identifiers during their lifetime. Similarly, 
entities of an event system utilising a mediator-based event 
model need to acquire the identifiers of the mediators 
involved, i.e., the application programmer must track the 
identifiers to the mediators to which a specific entity needs to 
connect. However, mediator-based event models are likely to 
obtain and maintain a smaller number of different identifiers 
compared to peer to peer based event models. There are likely 
to be significantly fewer mediators in an event system than 
producers and their quantity is unlikely to change over time4, 
certainly compared to the number of producers as they may be 
created frequently providing services for a limited period of 
time. Therefore, the number of the components explicitly 
exposed to the application programmer is expected to be 
significantly smaller in a mediator-based event model 
compared to a peer to peer based event model. In contrast, the 
application programmer in an event system utilising an implicit 
event model is not required to acquire any identifiers to 
entities or mediators at all. The application programmer does 
not need to explicitly identify the producers with which a 
consumer needs to communicate as consumers subscribe to 
producers transparently using event types. This requires a 
more sophisticated event service as it is its responsibility to 
located peers, to maintain the corresponding identifiers, and to 
map event types to identifiers. 

Most significantly, the event model exploited by an event 
system affects one of the main concepts of event-based 
communications, namely the anonymity among the entities in 
the system. The means by which consuming entities subscribe 
to the events in which they are interested and by which events 
are propagated and delivered influences the degree of 
anonymity among them. The peer to peer approach permits 
specific named entities to interact directly with each other. 
Consequently, entities are not anonymous to each other. 
Mediator-based event models, where entities register with one 
or more mediators, provide a degree of anonymity where 
entities are anonymous to each other but known to the 
mediator(s). The implicit approach allows entities to interact 
transparently exploiting event types. Hence, entities are 
anonymous to each other but known by the event service that 
implements the mapping of event types to entities. 

                                                                                                     
3 The IDL of the Cambridge event model is different from the IDL 

specified by the OMG, but has similar functionality. 
4 In the absence of failure, an event system may exploit a single mediator 

whose reference does not change during the lifetime of the system. 

IV. EVENT SERVICE DIMENSION 

The event service dimension deals with the classification of 
the properties of an event service. As Fig. 5 shows, we divide 
the properties of an event service into three distinct categories. 
The organisation sub tree focuses on the distribution of the 
entities and the middleware of an event system and on the 
fashion in which the components that comprise an event 
service cooperate. The interaction model defines the 
communication path over which producing and consuming 
entities communicate with each other. The feature sub 
hierarchy addresses the other functional and non-functional 
features proposed by an event service. 

A. Organisation 
The organisation sub tree classifies an event service as 

either centralised or distributed according to the location of the 
event system’s entities. These two sub categories are further 
divided exploring the location of the event service middleware. 
The possible organisation of an event service is summarised in 
Fig. 6. 

The entities of an event system can be either centralised or 
distributed according to their location. The entities of an event 
system are centralised if they only reside in the same address 
space on the same physical machine. In contrast, if the entities 
of an event system are distributed they may be located in 
different address spaces possibly on different physical 
machines. 

Whether the entities of an event system are centralised or 
distributed, the middleware can be either collocated or 
separated. 

Collocated Middleware. The event service is collocated 
with the entities, it resides only in the same address space(s) on 
the same physical machine(s). As illustrated in Fig. 7, the 
organisation of a centralised event service with collocated 
middleware results in both the entities and the middleware 
being located exclusively in the same address space. No part 
of the event system resides outside the implicit single address 
space. This organisation may be used for small-scale 
applications consisting of a relatively small number of entities 
such as graphical user interfaces. For example, the Java AWT 
delegation event model is implemented by the Java Virtual 
Machine (JVM) to connect the graphical components of an 
application sharing their address space with the middleware. 
Another event service that may be used in a similar fashion is 
provided by the C# programming language [21]. In contrast, 
the organisation of a distributed event service with collocated 
middleware results in the middleware being distributed with 
the entities, each entity using the part of the middleware that is 
local to it. Fig. 8 shows the organisation of a distributed event 
service with collocated middleware, which may include an 
arbitrary number of address spaces. This organisation has been 
adopted by CEM and by mSECO [7], an event service 
implementing the ECO event model [31]. mSECO is 
implemented as a library that is collocated with each entity. 
Notably, mSECO is exclusively located in the same address 



 
 

6

spaces as the entities. However, the address spaces in which 
the entities reside may or may not be located on different 
physical machines. 

Separated Middleware. The event service is at least 
partially located in one or more separate address spaces 
possibly on different physical machines. 

We divide separated middleware into two categories 
depending on the partitioning of the middleware. Fig. 9 depicts 
an event service with separated single middleware, whose 
entities are centralised and whose middleware is located on a 
single machine. This organisation results in exactly two 
separate address spaces, one including the entities and the 
other containing the middleware. Notably, the two address 
spaces may reside on the same or on two different physical 
machines. Fig. 10 illustrates an event service with separated 
single middleware, whose entities are distributed and whose 
middleware is located on a single machine. This organisation 
may involve a large number of address spaces and possibly 
physical machines, depending on the location of the entities’ 
and the middleware’s address spaces. However, all address 
spaces may reside on a single physical machine. The CORBA 
event service utilising a single event channel5 serves as an 
example of such an organisation. Its entities typically reside in 
different address spaces distributed over multiple physical 
machines using an event channel located on another machine. 
However, the address space in which the event channel resides 
may be located on the same physical machine as some of the 
entities’ address spaces. 

Fig. 11 and Fig. 12 show an event service with separated 
multiple middleware, whose middleware is distributed over a 
set of cooperating address spaces possibly on different 
physical machines, for a centralised and a distributed 
organisation respectively. Fig. 12 also illustrates that some of 
the middleware’s address spaces may be located on the same 
machine as some of the entities. This also applies for 
centralised entities with separated multiple middleware. We 
admit the possibility of an organisation of centralised entities 
with separated multiple middleware although we cannot 
provide an example for such an organisation. However, 
SIENA uses an organisation as shown in Fig. 12. SIENA 
proposes a set of middleware topologies, called server 
topologies, of which all but the centralised topology use 
middleware that is distributed over a set of cooperating 
machines. 

The organisation adopted by an event service has a major 
impact on issues related to the scalability of a system, its 
behaviour in the presence of failed components, and on the 
mechanism for communication between entities and the 
middleware. Traditionally, approaches containing centralised 
middleware components are more likely to experience 
performance bottlenecks with increasing scale and tend to 
suffer more in the presence of failures than distributed 

 
5 The CORBA event service may utilise one or more event channels. For 

the purpose of this example, we refer to a CORBA event service utilising a 
single event channel. 

approaches. The use of middleware located in multiple address 
spaces allows the distribution of the communication load 
reducing the risk of performance bottlenecks. Instead of 
having middleware located in a single address space handling 
all the communication between the entities in an event system, 
middleware distributed over multiple address spaces may 
divide the load. Exploiting middleware distributed over 
multiple address spaces also avoids potential single points of 
failure in the system. For example, if the middleware in the 
organisations illustrated in Fig. 7, Fig. 9, and Fig. 10 fails none 
of the entities in the corresponding systems will be able to 
communicate. In contrast, a middleware component failing in 
one of the organisations depicted in Fig. 8, Fig. 11, and Fig. 12 
has a less devastating effect on an event system allowing the 
entities to communicate even in the presence of failure. 
Significantly, this depends on the middleware being located in 
multiple address spaces and not on the distribution of the 
entities in a system. 

The organisation of an event service also affects the 
mechanism through which entities communicate with the 
middleware. Approaches where entities and middleware reside 
in different address spaces distributed over different physical 
machines require a mechanism that supports communication 
across the boundaries of address spaces and network 
connections. A much simpler inter-process communication 
mechanism may be sufficient for organisation where entities 
and middleware reside in different address spaces on the same 
physical machine. Entities and middleware sharing an address 
space may communicate using a programming language 
specific mechanism such as procedure call and method 
invocation. 

B. Interaction Model 
The interaction sub tree classifies an event service according 

to the interaction model used by the event system. Generally, 
the interaction model defines the communication path over 
which event communication between producing and 
consuming entities takes place. It defines the number of 
intermediate middleware components involved and the manner 
in which intermediates cooperate to route events from 
producers to consumers. Compared to the organisation model, 
which focuses on the distribution of the entities and the 
middleware of an event system describing the static view of an 
event service, the interaction model describes the information 
flow in a event system. Hence, it describes the dynamic aspect 
of an event service. 

As Fig. 13 depicts, we divide the interaction model into two 
main categories, namely intermediate and no intermediate, 
exploring whether and how many intermediate middleware 
components an event passes through. 

No Intermediate. The communication path over which 
event communication between producing and consuming 
entities takes place does not include intermediate middleware 
components. Producer and consumer entities communicate 
with each other through the middleware collocated with each 
entity. As Fig. 14 illustrates, events that are routed from 
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producers to consumers pass through the respective collocated 
middleware, but not through any intermediate middleware 
component. 

Intermediate. The communication path over which event 
communication between producing and consuming entities 
takes place includes at least one intermediate middleware 
component. Events that are routed from producers to 
consumers pass through one or more intermediate middleware 
components. 

The intermediate interaction model is divided into two sub 
categories according to the number of intermediate 
middleware components in the communication path over 
which event communication between producing and 
consuming entities takes place. In the centralised 
intermediate model, the communication path between 
producing and consuming entities includes a single 
intermediate middleware component. In contrast, the 
distributed intermediate involves two or more intermediates 
through which events are routed from producers to consumers. 
Fig. 15 depicts the distributed intermediate interaction model 
outlining a communication path that includes two distributed 
intermediates. 

Both centralised and distributed intermediates can be 
divided further. We classify centralised intermediates 
according to their number as an event service may exploit a 
single or multiple centralised intermediates. 

All communication paths between producing and consuming 
entities may include the same single centralised intermediate. 
An event system using this interaction model includes exactly 
one centralised intermediate. In contrast, an event system may 
exploit multiple centralised intermediates. Producers and 
consumers may be divided into groups and all communication 
paths between the producing and the consuming entities of 
each group may include a centralised intermediate that is 
exclusive to the group. This results in an event system using 
several centralised intermediates, the number of which 
corresponds to the number of entity groups. The use of 
multiple centralised intermediates may be motivated by groups 
of entities, each of which sharing a common interest. The 
common interest of an individual group may be expressed by a 
specific type of event that is exclusively handled by a 
particular centralised intermediate. For example, the CORBA 
event service may utilise multiple centralised intermediates 
implemented as event channels. Each channel may handle a 
specific type of event exclusively. Producing and consuming 
entities intending to communicate using a specific event type 
connect to the corresponding event channel, therefore defining 
the communication path over which event communication 
takes place. Alternatively, the CORBA event service may 
utilise a single centralised intermediate implemented as a 
single event channel through which all events are routed. Fig. 
16 and Fig. 17 illustrate the single centralised intermediate and 
the multiple centralised intermediate interaction model 
respectively. Fig. 17 shows two groups of entities, each 
comprising of a producer and a consumer exclusively using a 

single centralised intermediate through which events are 
routed. The communication path associated with one group is 
outlined as solid arrows and the communication path 
associated with the other is depicted as dashed arrows. 

We classify distributed intermediates as partitioned or 
cooperative according to the fashion in which intermediates 
cooperate to route events from producing to consuming 
entities. 

Generally, the distributed intermediate interaction model 
includes two or more intermediate middleware components in 
the communication path between consumers and producers. 
An event service implementing the partitioned distributed 
intermediate interaction model consists of one or more 
independent groups of intermediates, each group handling a 
specific type of event exclusively. Entities sharing a common 
interest need to connect to the correct group of intermediates, 
they need to connect to the group that handles the type of 
event that corresponds to their common interest. The CORBA 
event model specification proposes to chain different 
implementations of event channels, acting as a group of 
partitioned distributed intermediates, in order to combine non-
functional features supported by individual event channels. 

In contrast, cooperative distributed intermediates do not 
form independent groups; all intermediates cooperate to route 
events from consumers to producers. Entities connect to the 
most convenient, i.e., physically closest, intermediate. Each 
intermediate manages the events of the entities physically 
connected to it and cooperates with other intermediates to 
route them to remote entities. Cooperative distributed 
intermediates cooperate with each other either in a 
hierarchical or in a non-hierarchical manner. JEDI [32] 
proposes a hierarchical structure of cooperative distributed 
intermediates, called dispatching servers. Dispatching servers 
are interconnected in a tree topology through which events are 
routed. Entities may connect to any dispatching server, each of 
them forwards the events it receives from the producing 
entities connected to it to its parent and to its descendants to 
route them to all interested consumers. SIENA describes four 
different topologies of cooperative distributed intermediates. 
One of them serves as an additional example of hierarchical 
cooperative distributed intermediates, another two, namely the 
acyclic and the generic peer to peer topology, illustrate an 
example of non-hierarchical cooperative distributed 
intermediates. 

We sub divide the interaction model that does not include 
intermediate middleware components into three categories 
according to the means by which entities address each other. 
These interaction models are called point to point, named, and 
implicit. 

Producer and consumer entities may communicate directly 
with each other in a point to point fashion, using explicit 
entity addresses, which are provided by the application. The 
middleware uses explicit entity addresses and a unicast 
communication pattern when routing events from producing to 
consuming entities. The Java distributed event model allows 
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producers to route events to the subscribed consumers using 
the explicit consumer address provided by the application. 

Producer and consumer entities may communicate directly 
with each other using a name service to map event 
descriptions, such as event types, to entity addresses provided 
by the application. The middleware uses either a unicast or a 
multicast communication pattern to route events from a 
producer to the interested consumers. uSECO [7] uses an name 
service, called Application Instance Repository (AIR), to 
resolve the addresses of the entities that are interested in a 
specific event type and a unicast communication pattern to 
route events. 

Producer and consumer entities may communicate directly 
with each other using an implicit means to map event 
descriptions to entity addresses provided by the application. 
The middleware uses a multicast communication pattern when 
routing events from producers to consumers. mSECO, a 
multicast version of the uSECO event service, does not rely on 
an AIR since it uses an implicit means to map events to the 
multicast addresses representing the interested consumers. 

C. Features 
As illustrated in Fig. 18, the feature sub hierarchy addresses 

the other functional and non-functional features provided by an 
event service. We omit the discussion of this part of our 
taxonomy due to the limited space. 

ACKNOWLEDGMENT 

The work described in this paper was partly supported by 
the Irish Higher Education Authority's Programme for 
Research in Third Level Institutions cycle 0 (1998-2001) and 
by the Future and Emerging Technologies programme of the 
Commission of the European Union under research contract 
IST-2000-26031 (CORTEX - CO-operating Real-time 
senTient objects: architecture and EXperimental evaluation). 

REFERENCES 
[1] D. Chambers, G. Lyons, and J. Duggan, “Design of Virtual Store using 

Distributed Object Technology,” in Proceedings of the 5th International 
Symposium on Software Engineering for Parallel and Distributed 
Systems (PDSE/ICSE2000). Limerick, Ireland: IEEE Computer Society, 
2000, pp. 66-75. 

[2] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, 
and A. Hopper, “Implementing a Sentient Computing System,” IEEE 
Computer, vol. 34, pp. 50-56, 2001. 

[3] H. Muller and C. Randell, “An Event-Driven Sensor Architecture for 
Low Power Wearables,” in Proceedings of the Workshop on Software 
Engineering for Wearable and Pervasive Computing 
(SEWPC/ICSE2000). Limerick, Ireland: IEEE Computer Society, 2000, 
pp. 39-41. 

[4] M. Weiser, “Ubiquitous Computing,” IEEE Hot Topics, vol. 26, pp. 71-
72, 1993. 

[5] A. Dearle, “Towards Ubiquitous Environments for Mobile Users,” IEEE 
Internet Computing, vol. 2, pp. 22-32, 1998. 

[6] J. Orvalho, L. Figueiredo, and F. Boavida, “Evaluating Light-weight 
Reliable Multicast Protocol Extensions to the CORBA Event Service,” 
in Proceedings of the 3rd International Enterprise Distributed Object 
Computing Conference (EDOC'99). University of Mannheim, Germany, 
1999. 

[7] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, “Filtering and 
Scalability in the ECO Distributed Event Model,” in Proceedings of the 

5th International Symposium on Software Engineering for Parallel and 
Distributed Systems (PDSE/ICSE2000). Limerick, Ireland: IEEE 
Computer Society, 2000, pp. 83-95. 

[8] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and 
D. Sturman, “An Efficient Multicast Protocol for Content-Based 
Publish-Subscribe Systems,” in Proceedings of the 19th International 
Conference on Distributed Computing Systems (ICDCS'99). Austin, TX, 
USA, 1999. 

[9] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. 
Sturman, “Exploiting IP Multicast in Content-Based Publish-Subscribe 
Systems,” in Proceedings of IFIP/ACM International Conference on 
Distributed Processing (Middleware 2000). New York, USA: Springer-
Verlag, 2000, pp. 185-207. 

[10] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems, 
Concepts and Design, Third ed: Pearson Education Limited, 2001. 

[11] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, 
and M. Spiteri, “Generic Support for Distributed Applications,” IEEE 
Computer, vol. 33, pp. 68-76, 2000. 

[12] M. Erzberger and M. Altherr, “Every Dad Needs a Mom - Message-
Oriented Middleware,” SoftWired AG, White Paper 1999. 

[13] S. Maffeis, “Developing Publish/Subscribe Applications with iBus,” 
SoftWired AG, White Paper 1999. 

[14] C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Architecture,” 
in Proceedings of the 4th USENIX Conference on Object-Oriented 
Technologies and Systems (COOTS). Santa Fe, New Mexico, USA, 
1998, pp. 117-131. 

[15] A. Hopper, A. Harter, and T. Blackie, “The Active Badge System,” in 
Proceedings of the Conference on Human Factors in Computing 
Systems (INTERCHI'93). Amsterdam, The Netherlands, 1993. 

[16] S. J. Kang, S. H. Park, and J. H. Park, “ROOM-BRIDGE: A Vertically 
Configurable Network Architecture and Real-Time Middleware for 
Interoperability between Ubiquitous Consumer Devices in Home,” in 
Proceedings of the IFIP/ACM International Conference on Distributed 
Systems Platforms (Middleware2001). Heidelberg, Germany: Springer-
Verlag, 2001, pp. 232-251. 

[17] T. Harrison, D. Levine, and D. Schmidt, “The Design and Performance 
of a Real-Time CORBA Event Service,” in Proceedings of the 1997 
Conference on Object- Oriented Programming Systems, Languages and 
Applications (OOPSLA). Atlanta, Georgia, USA: ACM Press, 1997, pp. 
184-200. 

[18] J. Bacon, K. Moody, and W. Yao, “Access Control and Trust in the use 
of Widely Distributed Services,” in Proceedings of the IFIP/ACM 
International Conference on Distributed Systems Platforms 
(Middleware2001). Heidelberg, Germany: Springer-Verlag, 2001, pp. 
295-310. 

[19] K. O'Connell, V. Cahill, A. Condon, S. McGerty, G. Starovic, and B. 
Tangney, “The VOID Shell: A Toolkit for The Development of 
Distributed Video Games and Virtual Worlds,” in Proceedings of the 
Workshop on Simulation and Interaction in Virtual Environments. 
University of Iowa, Iowa City, USA, 1995, pp. 172-177. 

[20] Sun Microsystems Inc., Java AWT: Delegation Event Model: Sun 
Microsystems Inc., 1997. 

[21] Microsoft Corporation, C# Language Specification, Version 0.28: 
Microsoft Corporation, 2001. 

[22] B. Martin, C. Pedersen, and J. Bedford-Roberts, “An Object-Based 
Taxonomy for Distributed Computing Systems,” IEEE Computer, vol. 
24, pp. 17-27, 1991. 

[23] Object Management Group, CORBAservices: Common Object Services 
Specification - Notification Service Specification, Version 1.0: Object 
Management Group, 2000. 

[24] Object Management Group, The Common Object Request Broker: 
Architecture and Specification, Revision 2.2: Object Management 
Group, 1995. 

[25] Iona Technologies, “Orbix 3 Product Family,” Iona Technologies, White 
Paper April 1999. 

[26] Sun Microsystems Inc., Java Distributed Event Specification: Sun 
Microsystems Inc., 1998. 

[27] Object Management Group, CORBAservices: Common Object Services 
Specification - Event Service Specification: Object Management Group, 
1995. 

[28] A. Carzaniga, “Architectures for an Event Notification Service Scalable 
to Wide-area Networks,” : Politecnico di Milano, Italy, 1998. 



 
 

9

[29] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design of a Scalable Event 
Notification Service: Interface and Architecture,” Dept. of Computer 
Science, University of Colorado, USA, Technical Report CU-CS-863-
98, August 1998. 

[30] J. Bacon, J. Bates, R. Hayton, and K. Moody, “Using Events to Build 
Distributed Applications,” in Proceedings of the Second International 
Workshop on Services in Distributed and Networked Environments 
(SDNE'95). Whistler, British Columbia, Canada, 1995, pp. 148-155. 

[31] G. Starovic, V. Cahill, and B. Tangney, “An Event Based Object Model 
for Distributed Programming,” in Proceedings of the International 
Conference on Object Oriented Information System. London, UK: 
Springer-Verlag, 1995, pp. 72-86. 

[32] G. Cugola, E. Di Nitto, and A. Fuggetta, “Exploiting an Event-Based 
Infrastructure to Develop Complex Distributed Systems,” in 
Proceedings of the 20th International Conference on Software 
Engineering (ICSE'98). Kyoto, Japan, 1998. 



 
 

10

APPENDIX 

The figures that allow a taxonomy user to easily trace paths 
through the hierarchy to discover relevant properties are 
depicted in this section. As summarised in Fig. 2, the figures 
consist of nodes, one of which is the root node and some of 
which are leaves. Nodes are connected by directed paths. The 
directed paths are represented by a set of arrows describing the 
nature of the paths leaving a specific node. A set of dashed 
arrows leaving a specific node indicates that exactly one path 
has to be chosen when tracing through that node. Solid arrows 
indicate that at least one path has to be chosen, whereas 
double lined arrows indicate that all possible paths need to be 
selected. In order to apply the taxonomy to an event system, 
starting from the root node, a taxonomy user traces paths 
through the hierarchy selecting the connections that most 
accurately describe the event system until each selected path 
reaches a leave. The terms associated with the nodes along a 
path describe a property of the event system. 

For example, Fig. 18 shows that the features of an event 
service include both functional and non-functional features by 
using double lined arrows to describe the paths between the 
nodes. Hence, when tracing trough the features node all paths, 
i.e., both of them, must be selected to describe the 
corresponding properties of the event system. Fig. 4 depicts 
that an event model can be characterised as either peer to peer, 
mediator or implicit. The dashed arrows connecting the nodes, 
which imply that exactly one path has to be chosen, illustrate 
this. 
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Fig. 2.  Taxonomy Legend. 
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Fig. 4.  Event Model Dimension. 
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Fig. 6.  Event Service Organisation. 
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Fig. 7.  Centralised Event Service with Collocated Middleware. 
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Fig. 8.  Distributed Event Service with Collocated Middleware. 
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Fig. 9.  Centralised Event Service with Separated Single Middleware. 
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Fig. 10.  Distributed Event Service with Separated Single Middleware. 
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Fig. 11.  Centralised Event Service with Separated Multiple Middleware. 
 
 

 

 
 
 
 

Machine 

Addr. 
Space 

 
 
 
 

Machine 

Addr. 
Space 

 
 
 
 

Addr. 
Space 

M 

 
 
 
 

Machine 

Addr. 
Space 

 
 
 
 

Machine 

Addr. 
Space 

 
 
 
 

Machine 

Addr. 
Space 

M 

P 

C 

P 

C 

 
 
Fig. 12.  Distributed Event Service with Separated Multiple Middleware. 



 
 

12

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

Functional 

Event 
Type 

Non Functional 

Features 

Event Propagation 
Model 

Event 
Filter 

QoS Mobility Ordering Fault Tolerance Composite 
Events 

 
Fig. 18.  Event Service Features. 
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Fig. 16.  Single Centralised Intermediate. 
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Fig. 17.  Multiple Centralised Intermediate. 
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Fig. 13.  Event Service Interaction Model. 
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Fig. 14.  No Intermediate. 
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Fig. 15.  Distributed Intermediate. 


