
Typing and Subtyping for an Object-Oriented
Process Algebra

Malcolm Tyrrell∗ and Andrew Butterfield
Dept. of Computer Science, Trinity College Dublin

February 18, 2002

Abstract

Oompa is an extension of the π-calculus which provides class-based
object-orientation in the style of the CORBA object model. This tech-
nical report supplements the earlier presentation of Oompa [TBD00]
by providing a sound type system with structural subtyping. The
classes and interfaces of class-based languages typically give rise to
highly inter-referential, and sometimes self-referential types. A key
feature of our system is that these types are transformed into a bound
recursive form independent of other definitions, and our subtyping
algorithm guarantees termination upon types of this form.

1 Introduction

Object-based distributed systems, such as CORBA [OMG98] systems, are
extremely complex and can contain instances of more than one software
paradigm. Consequently, an approach to modelling such a system should
not attempt to capture all of its behaviours — it should focus on certain
aspects and abstract away from others. We consider the interesting be-
haviours of object-based distributed systems to be at and above the level of
objects. Thus, the underlying mechanisms that provide the language-level
object-orientation are less of a concern. The CORBA object model provides
a standard view of such behaviour for the software entities participating
in a CORBA system. The formalism we provide embodies this approach
to object-orientation, allowing CORBA systems to be modelled simply and
naturally.

∗Supported by Enterprise Ireland Basic Research Grant No. SC/97/631

1

Our formalism is built upon the π-calculus [Mil99], augmenting it with
class-based object orientation. This technical report introduces a type system
for Oompa, and it is interesting to note that both the channel mechanisms
and the object-orientation present challenges. In the case of channels, we
need recursive types to provide sufficiently dynamic behaviour for the kinds
of systems we are modelling. In the case of objects, the typically inter-
referential nature of their types (as defined by interface and class definitions)
can lead to an infinite sequence of definition look-ups. These become serious
issues when it comes to subtyping, and a terminating algorithm requires a
careful approach.

In the style of [AC91], we introduce a notion of type tree and using an
algorithm based on [PS93] we can deal with types not involving definitions.
We deal with the issue of definitions by defining a function, similar to one
in [AC91], which can remove the dependency of types on definitions. Our
subtype algorithm is shown to be terminating and both complete and sound
relative to a tree semantics. As regards Oompa, the important result is that
an Oompa expression which passes our type safety system never commits a
type violation.

This technical report is structured into 8 sections. Following this intro-
ductory section, Section 2 presents the syntax and operational semantics of
our calculus, Oompa. Section 3 describes the basic type system. Section
4 considers Oompa type trees which are introduced to deal with recursive
types. In Section 5, we define a tree simulation between Oompa type trees
and introduce our subtyping algorithm, relating the two with soundness and
completeness results. In Section 6 we prove that our type safety system pre-
vents type violations using a notion of dynamic type safety. We relate our
work to others in Section 7 and discuss conclusions and future work in Sec-
tion 8. Appendix A contains some definitions we choose to leave out of the
main text.

2 The Oompa Calculus

The π-calculus provides a suitable starting point for modelling dynamic com-
municating systems. It supports concurrent processes, channel creation,
channel passing communication and is computationally powerful. However,
for modelling the behaviour we are interested in, it is too high-level in the
sense that its processes are much more abstract entities than CORBA ob-
jects, and too low-level in the sense that to model such objects would require
a lot of complexity.

Taking the π-calculus as a base, we introduce a calculus which has objects

2

whose method bodies contain π-calculus-like code. Like processes of the π-
calculus, a running method can fork, create channels and engage in channel-
based communication. Moreover, in our system they can perform operations
at the object level, by creating new objects, invoking methods and using
object state.

2.1 Relationship to the CORBA Object Model

Oompa is intended to model CORBA systems at the object level and above.
Consequently, we provide a calculus which embodies an approach close to
CORBA’s view of objects and avoid the complexity of dealing with encodings
of object behaviour later in our modelling work. The CORBA approach
to objects is called the CORBA Object Model [OMG98], and represents an
attempt to capture commonality across object systems and programming
languages. Consequently, it is very abstract and quite general.

The Object Model describes a system which contains data, code and ex-
ecution engines. The role of the execution engine is to interpret the code
and perform the described computation, possibly altering some of the data.
CORBA considers this process as the performance of a service, and perhaps
the most significant feature of the Object Model is that it provides a standard
way of requesting that these services be performed. Services are grouped into
objects and clients are given an interface which is a description of how to
make requests on the services offered by an object.

It is at this interface level that we choose to view CORBA systems, so
we bring the interfaces and static code together in the standard way —
we make our calculus class-based. Using a class-based calculus guarantees
syntactic and type conformance to the interface, and the relationship between
an interface and the objects which will implement it is much tighter in a
class-based system.

Similar to the CORBA concept of activation, upon invocation the code
gets copied from the body of its class and put in an agent which performs the
work. The calling agent stalls until the method it invoked replies with the re-
turn value. It also supports the most general activation policy CORBA spec-
ifies for objects: Multiple calls on the same object, even the same method,
can be serviced at once. Other policies can be implemented using a locking
approach based on π-calculus channels.

2.2 Syntax

The bodies of Oompa methods contain code, generated by a syntax for process
expressions similar to the polyadic π-calculus, extended with object primi-

3

tives and a typecase statement.

p : : = fork{p0} p1 fork
new c: ChT p0 create a new channel
c!〈v1, . . . vn〉 p0 send
c?(r1: T1, . . . rn: Tn) p0 receive
o.m!〈v1, . . . vn〉?(r1, . . . rm) p0 invoke a method
create o: C p0 create an object
a?r p0 access an attribute
a!v p0 update an attribute
typecase v: T {p0} else {p1} view v as a T
end stop

We will usually write code of the form q end as just q. Code is a static
description of behaviour, and is stored in a method definition, access to which
is via the method’s signature:

mdef : : = sig{p}

sig : : = m?(r1: T1, . . . rn: Tn)!〈d1: T
′
1, . . . dm: T ′

n′〉

Classes contain a list of attributes whose declarations are given by the syntax:

adecl : : = a: Attr{T}

So interfaces are a list of signatures and classes are a list of attributes decla-
rations and method definitions:

Idef : : = interface I {sig∗}

Cdef : : = class C {adecl∗ mdef∗}

The definitions of interfaces and classes are collected into the definition set :

Γ : : = (Idef | Cdef)∗

Upon method invocation, code is copied into an agent where the static
descriptions of behaviour in the code are interpreted by the Oompa system
as instructions.

g : : = nil no behaviour
o[p] executing code p from object o
(g1 | g2) parallel execution

4

The agent is labelled with the name of the object to which it belongs, which
permits it access to the object’s attributes.

Agents exist in a context given by a type dictionary, Φ, whose syntax is
given by

Φ : : = {tAss∗} tAss : : = v: T

and a state dictionary, ∆, whose syntax is given by

∆ : : = {oAss∗} oAss : : = o := {aAss∗} aAss : : = a 7→ v

An Oompa configuration is the triple consisting of an agent expression, g, a
type dictionary, Φ, and a state dictionary, ∆. We write it g{Φ

∆. Naturally,
an Oompa configuration depends on the definition set, so an Oompa system
is the quadruple Γ B g{Φ

∆.

2.3 Structural equivalence

The following seven rules of structural equivalence mean that “≡” is in fact
an equivalence relation, and that “|” forms an Abelian monoid.

g ≡ g
g1 ≡ g2 g2 ≡ g3

g1 ≡ g3

g1 ≡ g2

g2 ≡ g1

g1 ≡ g2

(g1 | g) ≡ (g2 | g)

(g1 | nil) ≡ g1 ((g1 | g2) | g3) ≡ (g1 | (g2 | g3)) (g1 | g2) ≡ (g2 | g1)

They essentially define a proof system that establishes the equivalence of
agents which differ in the grouping and ordering of their subagents, and the
presence of nils.

2.4 Operational Semantics

We give here the rules of the one-step operational semantics, three of which
are inference rules and the rest are axioms. The statements of the operational
semantics are of the form Γ B g{Φ

∆ −→ g′{Φ′

∆′ , i.e. a transition from one
Oompa configuration to another in the context of a definition set Γ.

Of the inference rules, the first two are Left and Right Equivalence which
entitle us swap structurally equivalent agent expressions. The third is Par-
allelism which allows us to talk about an agent’s behaviour in a context
containing other agents.

g ≡ g1 Γ B g{Φ
∆ −→ g′{Φ′

∆′

Γ B g1{Φ
∆ −→ g′{Φ′

∆′

g′ ≡ g1 Γ B g{Φ
∆ −→ g′{Φ′

∆′

Γ B g{Φ
∆ −→ g1{Φ′

∆′

Γ B g1{Φ
∆ −→ g′1{Φ′

∆′

Γ B (g1 | g2){Φ
∆ −→ (g′1 | g2){Φ′

∆′

5

The End axiom allows us to discard agents which have finished their work
(since end concludes any piece of code).

Γ B o[end]{Φ
∆ −→ nil{Φ

∆

The Fork axiom allows an agent to create a new agent from the same
object.

Γ B o[fork{p1} p2]{Φ
∆ −→ o[p1] | o[p2]{Φ

∆

The New Channel axiom allow an agent to create a new channel of a given
channel type. Unlike the π-calculus, this doesn’t operate as an restriction,
but involves the choosing of a completely new name for the channel, and
then its substitution into the code of the agent.

Γ B o[new c: ChT p]{Φ
∆ −→ o[p{|c

′
/c|}]{Φ∪{c′:ChT}

∆

where c′ is a new name.
The Communication axiom is a typed version of the π-calculus one. The

types do not affect the operation of the axiom, which substitutes the values
as long as the sequences have the same length, but are used for static type
checking.

Γ B
o1[c!〈v1, . . . vn〉 p1] |
o2[c?(r1: T1, . . . rn: Tn) p2]

{
Φ
∆

−→ o1[p1] |
o2[p2{|v1/r1, . . .

vn/rn|}]

{
Φ
∆

The Method Invocation axiom involves several steps. First the class of
the target object is looked up in the type dictionary, Φ. If it has a method of
the correct name, with input and output arities matching the call, then the
code of the method is copied into a new agent belonging to the target object,
and a new return channel is created. The input parameters and the special
values this and return are substituted for their actual values in the new
agent. The calling agent is blocked behind a receive on the return channel.

Γ B o[o1.m!〈v1, . . . vn〉?(s1, . . . sl) p]

{
Φ
∆

−→ o[r?(s1: T1, . . . sl: Tl) p] |
o1[p1{|v1/r1, . . .

vn/rn,
o1/this, r/return|}]

{
Φ′

∆

where r is a new name, o1’s class in Φ has a method whose signature is
m?(r1: S1, . . . rn: Sn)!〈d1: T1, . . . dl: Tl〉, and Φ′ = Φ ∪ {r: Chan〈T1, . . . Tl〉}.

6

The Object Creation axiom, like the New Channel axiom, involves the
choosing of a completely new name, which is added to the type dictionary.
The new object name is added to the state dictionary and substituted into
the code of the agent.

Γ B o[create o1: ClT p]{Φ
∆ −→ o[p{|o

′
1/o1|}]{

Φ∪{o′
1:ClT}

∆∪{o′
1=∅}

where o′1 is a new name.
The Attribute Access axiom applies when the object has a value assigned

to the attribute. In the cases where the side condition fails, we can think
of the non-application of this axiom as the agent blocking until an attribute
value becomes available. If there is a value, it is substituted into the code of
the agent in place of the formal parameter.

Γ B o[a?r p]{Φ
∆ −→ o[p{|v/r|}]{Φ

∆

where o ∈ Dom(∆), ∆(o)(a) is defined and ∆(o)(a) = v.
The Attribute Update axiom always applies, and overrides whatever value

the state dictionary has for the attribute (even if it doesn’t have one) with
the given value.

Γ B o[a!v p]{Φ
∆ −→ o[p]{Φ

∆′

where o ∈ Dom(∆), and ∆′(o1)(a1) = ∆(o1)(a1) if o1 6= o or a1 6= a and v
otherwise.

The Typecase axiom allows an agent to try to view a value as having a
different type. This is possible as all values are marked in the type dictionary
with their type and feasible as the subtyping system is terminating. Thus
the question of whether this assignment attempt succeeds can be resolved in
finite time.

Γ B o[typecase v: T {p0} else {p1}]{Φ
∆ −→ o[pi]{Φ

∆

where i = 0 if Γ, Φ ` v: T and 1 otherwise.

2.4.1 Initial System Convention

In order to populate our system with agents, we introduce a convention that
allows us to mark a number of methods to be invoked at “system start”.
Say {C1, . . . Cn} are those classes in the definition set, Γ, which have a
method with signature main?()!〈〉 and no attributes. Say that their bod-
ies are p1, . . . pn and no pi uses either this or return. Say Φ0 is a type
dictionary with no object types, and dummyi are new object names. Then

Γ B dummy1[p1] | . . . | dummyn[pn]{Φ0

∅

is an initial system. We will sometimes use the notation gΓ to denote the
agent of this Oompa system.

7

2.4.2 The “=⇒” Relation

We generalise the one-step system to its reflexive transitive closure “=⇒”,
which allows us to reason about sequences of behaviour. This is generated
by the inference system with the following rules:

Γ B g{Φ
∆ =⇒ g{Φ

∆

Γ B g1{Φ1
∆1

=⇒ g2{Φ2
∆2

Γ B g2{Φ2
∆2

−→ g3{Φ3
∆3

Γ B g1{Φ1
∆1

=⇒ g3{Φ3
∆3

3 Types and Type Safety

The operational semantics are defined in terms of pattern matching, and
make no use of the type decorations in the Oompa syntax. Consequently,
they will permit behaviours we never intended and do not want. These
behaviours fall into two main groups.

An example of the first is when an agent performs an invocation on an
object which doesn’t possess a matching method. This “stalls the system”
in the sense that no rules of the operational semantics will apply. This is an
example of the “round hole/square peg” class of type error — a square peg
will not fit in a round hole.

An example of the second is when an agent assigns a value interpreted
as an address to an attribute intended for first names. This involves the
propagation of bad data, and is at least as serious as the first type. We
might consider this the “round hole/finger” class of type error — a finger
may actually fit in a hole, but it may then get stuck or electrocuted.

We deal with most of these misbehaviours using a form of type assignment
system. We introduce types which describe the values a context can accept,
and the contexts a value can be used in. We decorate the underlying syntax
with these types1, expressing our intended uses of the various elements of
our system. In terms of these types, we formalise a notion of type violation,
which describes the kind of misbehaviour we have been discussing.

Next, we provide a type safety system which tests an Oompa expression
to see if it will commit a type violation. This last step is a form of type
assignment where Oompa expressions which pass the test can be thought to
be assigned the type “okay”. Lastly, we exclude from study those expressions
which fail this test. Currently, the efficiency of the algorithms and inference
systems discussed in this technical report are not a primary concern.

1As we do not currently offer a type inference algorithm, these types must always be
present.

8

3.1 Syntax of Types

The types are generated by the following syntax. First we have Primitive
Types for which we list here Long and Char. For the present work, we consider
these as sets of atomic constants, e.g. 10, ‘a’, etc.

PrT : : = Long | Char

Next we have Channel Types, which are typed according to the arity of
the tuples they can carry, the types of the values and the direction in which
they can be used. While a channel itself is always bidirectional, a user of the
channel may only have read or write access to it.

ChT : : = Chan〈T1, . . . Tn〉 | InCh〈T1, . . . Tn〉 | OuCh〈T1, . . . Tn〉

Interface types type objects according to the signature types of the meth-
ods that the objects support. Signature types depend on the type of values
accepted and returned by the method, and the methods name.

InT : : = Intf{SgT1, . . . SgTn} SgT : : = m?(T1, . . . Tn)!〈T ′
1, . . . T

′
m〉

Guarded types are non-primitive types which have an outermost type-
constructor. In our system they are either interface types or channel types.
We introduce explicit recursive types using the rec operator, and restrict
recursion to guarded types. Value types, the types of entities that can act
as values, can therefore be primitive types, guarded types, type variables or
recursive types.

T : : = PrT | GrT | t | rec t.GrT GrT : : = InT | ChT

Note that in rec t.T occurrences of t are bound in T . α-substitution of bound
variable names must be used to avoid prevent capture when substituting into
a recursive type of this form.

The two non-value types in the system are signature types and attribute
types, which label attributes with the type of values they can hold.

AtT : : = Attr{T}

The presence of the type constructor Attr{·} prevents the system from con-
fusing attribute names and the values they hold. For example, an attempt
to send an attribute name, as in c!〈a〉, will not type check.

9

3.2 The Typing System

The typing system is a proof system that establishes typing judgements of
the form Γ, Φ ` v: T where Γ is a definition set, Φ is a type dictionary, v is
some value or variable of the system and T is some type of the system. The
statement can be read as “v is a T in the context Γ,Φ.”

There are three rules of the typing system. The first two are Introduction
and Literal Introduction.

Γ, Φ ∪ {v: T} ` v: T Γ, Φ ` `P : P

where v is a variable and `P is a literal of primitive type P . The third is
Subtyping which uses the subtyping system defined in Section 5.

Γ ` T1 ≤ T2 Γ, Φ ` v: T1

Γ, Φ ` v: T2

3.3 Type Violations

In terms of the types we have just defined, we formalise the notion of type
violation. The idea is to decide the uses of a value which are not compatible
with that value’s type. Our choice of these determines the properties we
expect of the type system.

Definition: In an Oompa system, Γ B g{Φ
∆, an agent o[p] ∈ g, is type

violating if any of the following conditions hold:

• Feature Mismatch: The agent attempts to use a feature which doesn’t
exist by:

– invoking a method, m, of an object, o′. o′: C ∈ Φ, and p begins
o′.m!〈v1, . . . vn〉?(r1, . . . rm), but either C is not a class or C’s def-
inition in Γ has no method m.

– accessing an attribute, a, that o doesn’t possess. So o: C ∈ Φ, and
p begins a?r, but C’s definition in Γ has no attribute a.

– updating an attribute, a, that o doesn’t possess. So o: C ∈ Φ, and
p begins a!v, but C’s definition in Γ has no attribute a.

• Arity Mismatch: The agent attempts to use a tuple of the wrong length
by:

– receiving on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ, but p begins
c?(r1: T

′
1, . . . rm: T ′

m) where n 6= m.

10

– sending on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ, but p begins
c!〈v1, . . . vm〉 where n 6= m.

– invoking a method, m, of an object, o′. So o′: C ∈ Φ and C’s defi-
nition in Γ gives m the signature type m?(T1, . . . Tn)!〈T ′

1, . . . T
′
m〉.

However, p begins o′.m!〈v1, . . . vj〉?(r1, . . . rk) where either j 6= n
or k 6= m.

• Value Mismatch: The agent attempts to use a value which is of the
wrong type by:

– sending on a channel, c. So c: Chan〈T1, . . . Tn〉 ∈ Φ and p begins
c!〈v1, . . . vn〉 but for some i, we have Γ, Φ 0 vi: Ti.

– invoking a method, m, of an object, o′. So o′: C ∈ Φ, C’s definition
in Γ gives m the signature type m?(T1, . . . Tn)!〈T ′

1, . . . T
′
m〉, and p

begins o′.m!〈v1, . . . vn〉?(r1, . . . rm). However, for some i, we have
Γ, Φ 0 vi: Ti.

– updating an attribute, a. So o: C ∈ Φ, C’s definition in Γ gives a
the type Attr{T}, and p begins a!v. However, Γ, Φ 0 v: T .

A system, Γ B g{Φ
∆, is type violating if any agent in g is type violating. It is

useful to note that type violations are only associated with channel, method
or attribute use.

Another situation we must beware of is where an agent attempts to create
an object of a type that is not a class. This is certainly an error, but we
choose not to call this a type violation as it does not actually represent the
misuse of a value. We enable our type system to detect these errors at the
cause, even though it would detect any invocation on such an object as a
type violation.

3.4 Type Safety

The Type Safety System is a proof system that establishes type safety judge-
ments of the form Γ, Φ ` x where Γ is the class library, Φ is a type dictionary
and x is some Oompa expression. We are saying that x is well-behaved in the
context of Γ and Φ. An alternative approach (used, for example, in [PS93])
gives an okay type to all expressions which are well-behaved in this way, e.g.
Γ, Φ ` x: okay or Γ, Φ ` x: ◦. The difference is essentially notational, and we
prefer the more concise form as used, for example, in [San96].

11

3.4.1 Type Safety of Code

We start with rules for establishing the type-safety of a piece of code. There
are ten rules, each rule being concerned with a single code primitive, a fact
that we use later on to prove results about the type safety system. The first
four rules deal with ends, forking, and channel and object creation.

Γ, Φ ` end
Γ, Φ ` p0 Γ, Φ ` p1

Γ, Φ ` fork{p0} p1

Γ, Φ ∪ {c: ChT} ` p
Γ, Φ ` new c: ChT p

Γ, Φ ∪ {o: C} ` p
Γ, Φ ` create o: C p

where the fourth rule requires that C is defined as a class in Γ.
The rules for sending and receiving with channels are straightforward.

Γ, Φ ` c: OuCh〈T1, . . . Tn〉 Γ, Φ ` v1: T1 · · ·Γ, Φ ` vn: Tn Γ, Φ ` p
Γ, Φ ` c!〈v1, . . . vn〉 p

Γ, Φ ` c: InCh〈T1, . . . Tn〉 Γ, Φ ∪ {r1: T1, . . . rn: Tn} ` p
Γ, Φ ` c?(r1: T1, . . . rn: Tn) p

The rule for checking method invocation requires the introduction of a
new channel variable r. This separates the invocation from the return of
values, as in the operational semantics, and facilitates convenient proofs later
on. Γ, Φ ` o: Intf{m?(T1, . . . Tn)!〈T ′

1 . . . T ′
n′〉}

Γ, Φ ` v1: T1 · · · Γ, Φ ` vn: Tn

Γ, Φ ∪ {r: Chan〈T ′
1, . . . T

′
n′〉} ` r?(r1: T

′
1, . . . rn′ : T ′

n′)p

Γ, Φ ` o.m!〈v1, . . . vn〉?(r1, . . . rn′) p

where r is not in Φ.
The attribute access and update rules are straightforward.

Γ, Φ ` a: Attr{T} Γ, Φ ∪ {r: T} ` p
Γ, Φ ` a?r p

Γ, Φ ` a: Attr{T} Γ, Φ ` v: T Γ, Φ ` p
Γ, Φ ` a!v p

The rule for typecase requires both continuations to be type-safe, where
Φ † {v: T} means that v: T ′ is replaced in Φ by v: T .

Γ, Φ † {v: T} ` p0 Γ, Φ ` p1

Γ, Φ ` typecase v: T {p0} else {p1}

where v: T ′ ∈ Φ for some T ′.

12

3.4.2 Type Safety of Definitions

A method definition is type safe if its code will be type safe in the context of
an invocation, e.g. when there are given input values, and a return channel.

Γ, Φ ∪ {r1: T1, . . . rn: Tn, return: OuCh〈T ′
1, . . . T

′
n′〉} ` p

Γ, Φ ` m?(r1: T1, . . . rn: Tn)!〈d1: T
′
1, . . . dm: T ′

n′〉{p}

Type checking a class entails checking the method definitions in the con-
text of that class, i.e. with the attributes and special value this of the
appropriate type. Γ, Φ ∪ {a1: AtT1, . . . an: AtTn, this: C} ` mdef1

...
Γ, Φ ∪ {a1: AtT1, . . . an: AtTn, this: C} ` mdefm

Γ, Φ ` class C { a1: AtT1 . . . an: AtTn mdef1 . . . mdefm }

We can now type check the definition set in a context consisting of some
type dictionary Φ. We need to check that all the class definitions in the
system are type safe with respect to each other.

Γ, Φ ` Cdef1 · · · Γ, Φ ` Cdefn

Φ ` Γ

where Cdef1 . . . Cdefn are all the class definitions in Γ.

4 Oompa Type Trees

Although we introduced a recursive type form into our syntax of types, we
have not motivated it yet. There are two different ways in which a non-
recursive type system would be insufficient for our purposes. Firstly, without
recursive types our channels would be limited to carrying “simpler” values.
This severely limits a system’s dynamic behaviour, as the most complex
channel types in the system would have to form a static infrastructure —
there are no channels which could be used to transmit their names.

Second, in a object-oriented system like Oompa, interface types will often
be found to be inter-referential. For example, the following two interfaces
have this inter-dependency:

interface A interface B

{ {

m?()!<d:B> m?()!<d:A>

} }

13

Consequently, we acknowledge these two kinds of recursion in our type
system. The first kind we consider to be explicit recursion and consists of
the use of the rec operator. For example, the type rec t.Chan〈Long, t〉,
which advertises its recursivity. The second kind is a consequence of using a
class or interface name in a type position. Where we have a class or interface
definition which uses other class or interface names (possibly including its
own) we will must allow for the possibility of inter-dependency. Where there
is this inter-dependency, we will consider it to be implicit recursion.

Once we allow these recurring structures into the system, we must be
concerned for whether our type system meaningfully describes these objects.
Therefore, we make the following distinction: The mathematical objects
which encode the dependencies of the type system are (possibly) infinite
trees. We will consider a syntactic type to be a description of a tree, and
consider the set of Oompa type trees to be a model of the syntax of types.

Of particular use is the expansion function, defined in Section 4.2. This
allows us to replace implicit recursion in types with explicit recursion using
the rec operator, and removes the dependency of syntactic types on the
definition set. We verify that this syntactic transformation preserves the
interpretation in the tree semantics.

4.1 Building Trees from Types

The nodes on an Oompa type tree are labelled with symbols from the fol-
lowing ranked alphabet. The superscript of the symbols denotes the number
of children the node it labels should have, and the symbols corresponding to
signature types carry a method name.

{Long0, Char0}
L = ∪ {Sig2(m) | m ∈ Id}

∪ {Intfn, Chann, InChn, OuChn, InParamn, OutParamn | n ∈ W}

We use the symbol W for the whole numbers2 (i.e. W = {0} ∪ N) and we
will use ln to stand for a general member of L.

We can descend a tree from its root by specifying, at each stage, the child
we next want to visit as “the ith child from the left”. Therefore, we can view
a sequence of natural numbers as a path through a tree and represent trees as
partial functions from paths to the label on the node reached by that path.
Using the notation ↓ to mean “is defined”, πσ for the concatenation of π and
σ and Λ for the empty sequence, we thus define an Oompa type tree, A, to
be a partial function from N∗ to L, which satisfies the following conditions:

2We take the view that the natural numbers are the counting numbers 1, 2, . . .

14

• A(Λ) ↓

• A(πσ) ↓ =⇒ A(π) ↓

• A(π) = ln =⇒ A(πj) ↓ where j ≤ n

• A(π) = Intfn =⇒ A(πj) = Sig2(m) where j ≤ n and
if A(πi) = Sig2(m′) for i 6= j then m 6= m′

• A(πj) = Sig2(m) =⇒ A(π) = Intfn, some n ∈ W such that n ≥ j

• A(π) = Sig2(m) =⇒ A(π1) = InParamn, some n ∈ W and

A(π2) = OutParamn′
, some n′ ∈ W

• A(πj) = InParamn =⇒ A(π) = Sig2(m), some m

• A(πj) = OutParamn =⇒ A(π) = Sig2(m), some m

Notice that type trees do not use type variables, so they are independent
of the definition set. Thus, when we build the type tree of a type, we will
recursively look-up the corresponding definition for each type variable and
expand it into the tree.

We define the look-up function eΓ(·) to perform this operation of looking-
up and expanding definitions as:

eΓ(t) = Intf{sig−1 , . . . sig−n }

if Γ contains either an interface of the form

interface t {sig1 . . . sign}

or a class of the form

class t {adecl∗ sig1{p1} . . . sign{pn}}

where sig− is the signature sig with all its parameter names removed. This
simple syntactic step gives the signature type of the signature.

We now define the recursive function, TreeΓ, which takes an Oompa type
in the context of the definition set Γ and gives its corresponding Oompa type
tree. The free type variables in the type are completely expanded using the

15

eΓ(·) function repeatedly.

TreeΓ(Long)(Λ) = Long0

TreeΓ(Char)(Λ) = Char0

TreeΓ(Chan〈T1, . . . Tn〉)(Λ) = Chann

TreeΓ(Chan〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)
TreeΓ(InCh〈T1, . . . Tn〉)(Λ) = InChn

TreeΓ(InCh〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)
TreeΓ(OuCh〈T1, . . . Tn〉)(Λ) = OuChn

TreeΓ(OuCh〈T1, . . . Tn〉)(iπ) = TreeΓ(Ti)(π)
TreeΓ(Intf{SgT1, . . . SgTn})(Λ) = Intfn

TreeΓ(Intf{SgT1, . . . SgTn})(iπ) = TreeΓ(SgTi)(π)
TreeΓ(m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉)(Λ) = Sig2(m)

TreeΓ(m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉)(1) = InParamn

TreeΓ(m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉)(2) = OutParamn

TreeΓ(m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉)(1iπ) = TreeΓ(Ti)(π)

TreeΓ(m?(T1, . . . Tn)!〈T ′
1, . . . T

′
n′〉)(2iπ) = TreeΓ(T ′

i)(π)

TreeΓ(rec t.T)(π) = TreeΓ(T{|rec t.T/t|})(π)
TreeΓ(t)(π) = TreeΓ(eΓ(t))(π)

The function is undefined in all other cases. Substitution on types is defined
in Appendix A.

If our trees capture the relationships in the type system then we can now
interpret our syntactic types as representing trees and hence encoding the
necessary information.

4.2 Expanding Definitions

We introduce the expansion function, E∅
Γ(·), that completely expands an

Oompa type so that it no longer depends on the definition set. It does this
by converting implicit recursion, which is due to recursive look-ups, into
explicit recursion, which uses the rec operator. E∅

Γ(·) is just a specific case
of the recursive function EV

Γ (·) which looks-up all the variables it encounters

16

other that those in V .

EV
Γ (Long) = Long

EV
Γ (Char) = Char

EV
Γ (Chan〈T1, . . . Tn〉) = Chan〈EV

Γ (T1), . . . E
V
Γ (Tn)〉

EV
Γ (InCh〈T1, . . . Tn〉) = InCh〈EV

Γ (T1), . . . E
V
Γ (Tn)〉

EV
Γ (OuCh〈T1, . . . Tn〉) = OuCh〈EV

Γ (T1), . . . E
V
Γ (Tn)〉

EV
Γ (Intf{SgT1, . . . SgTn}) = Intf{EV

Γ (SgT1), . . . E
V
Γ (SgTn)}

EV
Γ (m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉)

= m?(EV
Γ (T1), . . . E

V
Γ (Tn))!〈EV

Γ (T ′
1), . . . E

V
Γ (T ′

n′)〉

EV
Γ (t) =

{
t if t ∈ V

rec t.E
V ∪{t}
Γ (eΓ(t)) otherwise

EV
Γ (rec t.T) = rec t.E

V ∪{t}
Γ (T)

In the last of these cases, we must be careful to avoid inappropriate variable
capture. We use α-substitutability to rename t different to any other name
in the system before applying this step of the expansion function.

We can view the definition set as a set of simultaneous equations, and
the expansion function as an algorithm for solving them for a particular type
variable. As an example, consider the interfaces defined at the beginning of
this section. If we apply the expansion function to A we get:

E∅
Γ(A) = rec A.Intf{m?()!〈rec B.Intf{m?()!〈A〉}〉}

Lemma 4.1 EV
Γ (T) is finite and can be calculated with finite applications of

the look-up function eΓ(·) for any finite Γ, T and V .

Proof: Consider the evaluation as a tree, where an application of the ex-
pansion function labels the nodes. Consider such a node EV ′

Γ (T ′). Let
SubTerms[T] give the set of proper subterms of a type T 3. We use the
tuple (#V ′, #SubTerms[T′]) as a metric, with the following ordering:

(t1, t2) ≤ (t′1, t
′
2) if t1 ≥ t′1 or t1 = t′1 and t2 ≤ t′2

As we move down through the tree, either the first argument grows or it
stays the same and the second shrinks. The first argument is bounded above
by #V plus the number of occurrences of variables in Γ, which is certainly
finite. The second is bounded below by 0. �

We also define a recursive function which, for a given n, is like TreeΓ(·)
except that it only performs n recursive unfoldings and definition look-ups.

3Not the same as the function Sub[·] defined in Section 5.3

17

We augment the language L with the symbol “⊥0”, and label nodes with
this symbol at the point where an nth unfolding or look-up would previously
occur. The different cases are as follows:

Tree0
Γ(rec t.T)(Λ) = ⊥0 Treen+1

Γ (rec t.T)(π) = Treen
Γ(T{|rec t.T/t|}))

Tree0
Γ(t)(Λ) = ⊥0 Treen+1

Γ (t)(π) = Treen
Γ(eΓ(t))(π)

Lemma 4.2 TreeΓ(T)(π) = Treen
Γ(T)(π) for all n > |π|

Proof: We use induction on the length of π. The base cases are when π = Λ.
Consider the structure of T . The base cases for the guarded types and the
case for signature types are all the same, since TreeΓ(T) and Treen

Γ(T) are
the same on these types.

Say T = t, some variable. Then, since n > 0 we have:

TreeΓ(t)(Λ) = TreeΓ(eΓ(t))(Λ)

Treen
Γ(t)(Λ) = Treen−1

Γ (eΓ(t))(Λ)

In this case both will equal to Intfm, as that will be the outermost type
constructor of eΓ(t).

Say T = rec t.T ′. Then T ′ is guarded and since n > 0 we have:

TreeΓ(rec t.T ′)(Λ) = TreeΓ(T ′{|rec t.T ′
/t|})(Λ)

Treen
Γ(rec t.T ′)(Λ) = Treen−1

Γ (T ′{|rec t.T ′
/t|})(Λ)

These will be the same, as the two functions are the same on guarded types,
giving us the result in this case.

The inductive cases occur when π = iπ′. Again we consider the structure
of T .

Say T = t, some variable. Then if eΓ(t) has signature types SgT1, . . . SgTk

where k ≥ i we have

TreeΓ(t)(π) = TreeΓ(eΓ(t))(iπ′) = TreeΓ(SgTi)(π
′)

Treen
Γ(t)(π) = Treen−1

Γ (eΓ(t))(iπ′) = Treen−1
Γ (SgTi)(π

′)

In this case they are equal by the inductive hypothesis. In the case where
eΓ(t) has less than i signatures both are undefined.

Say T = rec t.T ′ and T ′ has immediate subterms T1, . . . Tk where k ≥ i.
Then T ′ is guarded and

TreeΓ(rec t.T ′)(π) = TreeΓ(T ′{|rec t.T ′
/t|})(iπ′)

= TreeΓ(Ti{|rec t.T ′
/t|})(π′)

18

Treen
Γ(rec t.T ′)(π) = Treen−1

Γ (T ′{|rec t.T ′
/t|})(iπ′)

= Treen−1
Γ (Ti{|rec t.T ′

/t|})(π′)

and these are equal by the inductive hypothesis. In the case where T ′ has
less than i immediate subterms both are undefined.

The guarded cases and the case for signature types are all the same. Say
T is some guarded type with immediate subterms T1, . . . Tk where k ≥ i.
Then

TreeΓ(T)(iπ′) = TreeΓ(Ti)(π
′)

Treen
Γ(T)(iπ′) = Treen−1

Γ (Ti)(π
′)

These are the same by the induction hypothesis. In the case where T has
less than i immediate subterms both are undefined. �

We now introduce a notion of equivalence between two types, based on
the equalities of their trees. We say Γ |= A = B if and only if TreeΓ(A) =
TreeΓ(B). The next result validates the expansion function, by showing that
the type it generates is equivalent to the first, in the context Γ.

Theorem 4.3 Γ |= S = E∅
Γ(S)

Proof: We have to prove

TreeΓ(S) = TreeΓ(E∅
Γ(S))

We prove this by showing that for any n and set of variables V ,

Treen
Γ(S) = Treen

Γ(EV
Γ (S))

by induction on n. The theorem statement follows from Lemma 4.2, since
for any argument sequence π we can pick n = |π|+ 1 and V = ∅.

The base case is where n = 0. We use another induction on the con-
struction of S. If S = Long, or S = Char, then EV

Γ (S) = S. The trees are
obviously the same in these cases.

If S = t, there are two sub cases: Firstly, if t ∈ V then EV
Γ (S) = S, and

again the trees are the same. If t /∈ V then EV
Γ (t) = rec t.E

V ∪{t}
Γ (eΓ(t)). But

then, given π, we have that Tree0
Γ(t)(π) and Tree0

Γ(rec t.E
V ∪{t}
Γ (eΓ(t)))(π)

are either both ⊥0 if π = Λ or both undefined. Thus the trees are the same.
If S = rec t.T , then EV

Γ (S) = rec t.E
V ∪{t}
Γ (T) and, given π, we have that

Tree0
Γ(rec t.T)(π) and Tree0

Γ(rec t.E
V ∪{t}
Γ (T))(π) are either both ⊥0 if π = Λ

or both undefined. So the trees are the same.

19

If S = Chan〈T1, . . . Tn〉, then EV
Γ (S) = Chan〈EV

Γ (T1) . . . EV
Γ (Tn)〉. The

trees are the same since:

Tree0
Γ(S)(Λ) = Chann

Tree0
Γ(EV

Γ (S))(Λ) = Chann

Tree0
Γ(S)(iπ) = Tree0

Γ(Ti)(π)
Tree0

Γ(EV
Γ (S))(iπ) = Tree0

Γ(EV
Γ (Ti))(π)

The last two are equal by the local inductive hypothesis. The other inductive
cases for S are like this channel case.

We now consider the cases when n > 0. Again, we use another induction
on the construction of S. If S = Long, or S = Char then S = EV

Γ (S), so the
trees must be the same. Note that we won’t be able to use the local inductive
hypothesis in the cases for S = t and S = rec t.T . The main inductive
hypothesis will be sufficient. If S = t and t ∈ V then since EV

Γ (t) = t, the
trees are the same.

If S = t where t /∈ V , then

EV
Γ (S) = EV

Γ (t) = rec t.E
V ∪{t}
Γ (eΓ(t))

and

Treen
Γ(rec t.E

V ∪{t}
Γ (eΓ(t))) = Treen−1

Γ (E
V ∪{t}
Γ (eΓ(t)){|rec t.E

V ∪{t}
Γ (eΓ(t))/t|})

Also
Treen

Γ(t) = Treen−1
Γ (eΓ(t))

= Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)))

by the induction hypothesis.
Therefore, it will be sufficient to show that the following two trees are

equal:

Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)){|rec t.E

V ∪{t}
Γ (eΓ(t))/t|})

Treen−1
Γ (E

V ∪{t}
Γ (eΓ(t)))

It is easy to see that the only place they could differ is at the subtrees where
E

V ∪{t}
Γ (eΓ(t)) has a free occurrence of t. For one such occurrence the two

subtrees will have the form:

Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (eΓ(t)))

Treen−1−m
Γ (t)

for some m ≥ 0 (m will be the number of rec operators we have passed
through). We rely on the convention that bound variables are renamed to

20

guarantee that none of the free variables of rec t.E
V ∪{t}
Γ (eΓ(t)) will be cap-

tured when it is substituted into E
V ∪{t}
Γ (eΓ(t)). Thus, no substitution gener-

ated when the Tree function encounters the rec operator will apply to it.
This justifies the form of the first subtree above.

By the induction hypothesis applied to the second subtree:

Treen−1−m
Γ (t) = Treen−1−m

Γ (E
V ∪{t}
Γ (t))

= Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (eΓ(t)))

Thus, these subtrees are the same. Thus the main trees must be equal.
Say S = rec t.T , and use the variable convention to make sure that

t is chosen different to any other name in the system. Then EV
Γ (S) =

rec t.E
V ∪{t}
Γ (T) and

Treen
Γ(EV

Γ (S)) = Treen
Γ(rec t.E

V ∪{t}
Γ (T))

= Treen−1
Γ (E

V ∪{t}
Γ (T){|rec t.E

V ∪{t}
Γ (T)/t|})

Also by the main inductive hypothesis,

Treen
Γ(rec t.T) = Treen−1

Γ (T{|rec t.T/t|})
= Treen−1

Γ (E
V ∪{t}
Γ (T{|rec t.T/t|}))

Therefore, it will be sufficient to show that the following two trees are
equal:

Treen−1
Γ (E

V ∪{t}
Γ (T){|rec t.E

V ∪{t}
Γ (T)/t|})

Treen−1
Γ (E

V ∪{t}
Γ (T{|rec t.T/t|}))

These trees will have the same “upper structure”, and they could only differ
at the subtrees where T has free variables. There are two cases.

Consider an occurrence of t in T . The subtrees at this point will have the
form

Treen−1−m
Γ (rec t.E

V ∪{t}
Γ (T))

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (rec t.T))

for some m ≥ 0 and set of variables U . Again, we rely on the convention that
bound variables are renamed to guarantee that none of the free variables of
rec t.T are captured when it is substituted into T . Thus, no substitution
generated when the Tree function encounters the rec operator will apply to
it.

The first subtree is equal to

Treen−1−m
Γ (EV

Γ (rec t.T))

21

and by the inductive hypothesis twice this is equal to

Treen−1−m
Γ (rec t.T) = Treen−1−m

Γ (E
V ∪U∪{t}
Γ (rec t.T))

Thus in this case, the subtrees are the same.
Next, consider an occurrence of s in T , where s 6= t. The subtrees at this

point will be

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (s)ρ1 . . . ρk)

Treen−1−m
Γ (E

V ∪U∪{t}
Γ (s){|rec t.E

V ∪{t}
Γ (T)/t|}ρ1 . . . ρk)

where ρ1 . . . ρk are substitutions generated when the Tree function encounters
the rec operator. As t was chosen different from any other name, the
extra substitution in the second subtree can be dropped — it won’t apply to
anything. Thus, these subtrees are the same, and hence the main trees are
the same.

Say S = Intf{SgT1, . . . SgTm}. Then

EV
Γ (S) = Intf{EV

Γ (SgT1), . . . E
V
Γ (SgTm)}

The trees are the same, since:

Treen
Γ(S)(Λ) = Intfm

Treen
Γ(EV

Γ (S))(Λ) = Intfm

Treen
Γ(S)(iπ) = Treen

Γ(SgTi)(π)
Treen

Γ(EV
Γ (S))(iπ) = Treen

Γ(EV
Γ (SgTi))(π)

The last two are equal by the local inductive hypothesis. The other inductive
cases for S are all like this one, so we’re done. �

5 The Subtyping System

We are using Oompa type trees to encode the dependencies in the type
system. Therefore, it is appropriate to consider subtyping with respect to the
trees. We introduce a relation between Oompa type trees that captures the
notion of subtype. As the trees are possibly infinite structures, the relation
is a simulation which compares the structure of trees in terms of the labelling
and subtrees. We then introduce an algorithm which operates on types which
is terminating. We prove that the algorithm is sound and complete with
respect to the tree simulation.

22

5.1 Tree Simulation

A relation R between Oompa type trees is an Oompa tree simulation if
(A, B) ∈ R implies:

• If B(Λ) = Long0 then A(Λ) = Long0.

• If B(Λ) = Char0 then A(Λ) = Char0.

• If B(Λ) = Chann then A(Λ) = Chann and for each 0 ≤ i < n both
(A(i), B(i)) ∈ R and (B(i), A(i)) ∈ R.

• If B(Λ) = InChn then A(Λ) = InChn or Chann, and for each 0 ≤ i < n,
(A(i), B(i)) ∈ R.

• If B(Λ) = OuChn then A(Λ) = OuChn or Chann, and for each 0 ≤ i <
n, (B(i), A(i)) ∈ R.

• If B(Λ) = Intfn then A(Λ) = Intfm where m ≥ n, and there exists
an injective function f : [1..n] → [1..m] such that for each 0 ≤ i <
n, (A(f(i)), B(i)) ∈ R.

• If B(Λ) = Sig2(m) then A(Λ) = Sig2(m) and for each 0 ≤ i < 2,
(A(i), B(i)) ∈ R

• If B(Λ) = InParamn then A(Λ) = InParamn and for each 0 ≤ i < n,
(B(i), A(i)) ∈ R.

• If B(Λ) = OutParamn then A(Λ) = OutParamn and for each 0 ≤ i < n,
(A(i), B(i)) ∈ R.

We use the notation A ≤tr B to indicate that (A, B) ∈ R for some tree
simulation R. For two types S and T , we use the notation Γ |= S ≤ T if
and only if TreeΓ(S) ≤tr TreeΓ(T). As usual, the intended interpretation of
Γ |= S ≤ T is that an entity of type S will do when an entity of type T is
required.

5.2 The Subtyping Algorithm

We now define the algorithm which establishes the subtype relationship be-
tween two closed types, i.e. types which contain no free type variable.

Definition: The subtyping algorithm is a proof system whose statements
have the form Σ à S ≤ T , where S and T are closed types and Σ is a set of
assumptions, which have the form U1 ≤ U2. The proof system is considered

23

an algorithm by putting an order on the rules — when more than one are
applicable, choose the first as they are presented.

The two axioms of the system are Reflexivity and Assumption:

Σ à T ≤ T Σ ∪ {S ≤ T} à S ≤ T

Next we have the rules for Channel Subtyping. We use the two-way judge-
ments to indicate that judgements in both directions are premises.

Σ à S1 ≶ T1 · · · Σ à Sn ≶ Tn

Σ à Chan〈S1, . . . Sn〉 ≤ Chan〈T1, . . . Tn〉

Σ à S1 ≤ T1 · · · Σ à Sn ≤ Tn

Σ à InCh〈S1, . . . Sn〉 ≤ InCh〈T1, . . . Tn〉
Σ à S1 ≤ T1 · · · Σ à Sn ≤ Tn

Σ à Chan〈S1, . . . Sn〉 ≤ InCh〈T1, . . . Tn〉
Σ à T1 ≤ S1 · · · Σ à Tn ≤ Sn

Σ à OuCh〈S1, . . . Sn〉 ≤ OuCh〈T1, . . . Tn〉
Σ à T1 ≤ S1 · · · Σ à Tn ≤ Sn

Σ à Chan〈S1, . . . Sn〉 ≤ OuCh〈T1, . . . Tn〉
The rule for Signature Subtyping is as follows:

Σ à T1 ≤ S1 · · · Σ à Tn ≤ Sn

Σ à S ′
1 ≤ T ′

1 · · · Σ à S ′
n′ ≤ T ′

n′

Σ à m?(S1, . . . Sn)!〈S ′
1, . . . S

′
n′〉 ≤ m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉

The rule for Interface Subtyping is:

Σ à SgTf(1) ≤ SgT′
1 · · · Σ à SgTf(n) ≤ SgT′

n

Σ à
Intf{SgT1, . . . SgTn, SgTn+1, . . . SgTn+m}
≤ Intf{SgT′

1, . . . SgT′
n}

if there is such an injective function, f , from [1..n] to [1..(n + m)].
There are two rules for explicitly recursive types. If the premise can be

proved with the antecedent as an assumption, then we conclude that the
antecedent is true. The two rules are Left Recursive Subtyping and Right
Recursive Subtyping.

Σ ∪ {rec s.S ≤ T} à S{|rec s.S/s|} ≤ T
Σ à rec s.S ≤ T

Σ ∪ {S ≤ rec t.T} à S ≤ T{|rec t.T/t|}
Σ à S ≤ rec t.T

24

We extend the subtyping algorithm to all Oompa types by using the
expansion function to close types. We write Γ ` S ≤ T if and only if
∅ à E∅

Γ(S) ≤ E∅
Γ(T) is provable from the subtyping algorithm.

The subtyping algorithm is called terminating if any application of the
algorithm to a pair of types generates a finite proof tree. It is called sound
if Γ ` S ≤ T implies Γ |= S ≤ T , and complete if Γ |= S ≤ T implies
Γ ` S ≤ T . As we shall see, the subtyping algorithm has all these three
properties. This means we can use the algorithm applied to two Oompa
types to establish the simulation relationship between the Oompa type trees
they represent.

5.3 Termination

We need the following technical construction to facilitate some of our proofs.
We define a function Sub[·], which gives the set of subterms of a closed type
including recursive unfoldings:

Sub[Chan〈T1, . . . Tn〉] = {Chan〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . . Sub[Tn]

Sub[InCh〈T1, . . . Tn〉] = {InCh〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . . Sub[Tn]

Sub[OuCh〈T1, . . . Tn〉] = {OuCh〈T1, . . . Tn〉}
∪ Sub[T1] ∪ . . . Sub[Tn]

Sub[Intf{SgT1, . . . SgTn}] = {Intf{SgT1, . . . SgTn}}
∪ Sub[SgT1] ∪ . . . Sub[SgTn]

Sub[m?(S1, . . . Sn)!〈T1, . . . Tn′〉] = {m?(S1, . . . Sn)!〈T1, . . . Tn′〉}
∪ Sub[S1] ∪ . . . Sub[Sn]
∪ Sub[T1] ∪ . . . Sub[Tn′]

Sub[rec t.T] = {rec t.T}
∪ {S{|rec t.T/t|} | S ∈ Sub[T]}

We also use Sub[S, T] to represent Sub[S] ∪ Sub[T].

Lemma 5.1 For a finite closed type T , Sub[T] is finite

Proof: Sub[T] can have no more elements than the distinct subterms of T .
�

Theorem 5.2 (Termination) The subtyping algorithm is terminating.

Proof: Consider the algorithm applied to à S ≤ T where S and T are
closed. Consider a node in the proof tree Σ à S ′ ≤ T ′. We claim that this
node satisfies the following three properties:

25

1. S ′ and T ′ are in Sub[S, T].

2. For every assumption U1 ≤ U2 ∈ Σ, both U1 and U2 are in Sub[S, T].

3. No assumption occurs in Σ more than once.

These properties clearly hold for the root node. We show that if the current
goal node satisfies them, then so do the premises.

In the cases of Reflexivity and Assumption there are no premises. Con-
sider the Chan-InCh rule. S = Chan〈S1, . . . Sn〉 ∈ Sub[S, T] so by the defini-
tion of Sub[·], S1, . . . Sn ∈ Sub[S, T], and T = InCh〈T1, . . . Tn〉 ∈ Sub[S, T],
so T1, . . . Tn ∈ Sub[S, T]. This means that the first property holds for all the
premises. This rule adds no new assumptions, so the second and third prop-
erty hold. The cases for the other channel subtyping rules and the interface
and signature subtyping rules are the same.

Consider the right-recursive subtyping rule. S ′ was in Sub[S, T] as it

is one of the types in the antecedent. T ′{|rec t.T ′
/t|} is in Sub[S, T], since

rec t.T ′ is. Thus the first property holds. The second property comes from
the fact that the added assumption is exactly the antecedent, so both it’s
elements are in Sub[S, T]. The third property comes from the fact that if we
added an assumption which was already there, it would have contradicted
the algorithm order, which stipulates that the Assumption rule be attempted
before the Right Recursive rule. The left recursive rule can be dealt with
similarly.

We now associate a measure with each node. Let

M(Σ à S ≤ T) = (n, m)

where n is the number of assumptions in Σ and m is the maximum nesting
of brackets in either S or T . We say that (n, m) > (n′, m′) if n < n′ or else
n = n′ and m > m′.

It is easy to see that at any application of the rules, the measure of any
of the premises is less than that of the antecedent. The assumption and
reflexivity rules don’t generate any new premises, the recursion rules add an
assumption and the other rules all reduce the maximum nesting of brackets in
their types. The measure of a goal cannot decrease for ever, as the number of
assumptions is bounded by (#Sub[S, T])2, and the second component must
stay greater than zero. Thus the algorithm must terminate. �

5.4 Completeness

In this section we need another technical construction. Call the subtype-
algorithm statement Σ à S ≤ T sound if

26

• Tree(S) ≤tr Tree(T)

• Tree(U1) ≤tr Tree(U2) for each U1 ≤ U2 ∈ Σ.

Lemma 5.3 If a statement, Σ à S ≤ T , is sound, then it matches the
antecedent of one of the rules of the subtyping algorithm, and the premises
of the rule are all sound.

Proof: Let Σ à S ≤ T be a sound statement. If S = T then the reflexivity
rule applies and there are no premises. If S ≤ T ∈ Σ then the assumption
rule applies and there are no premises.

Suppose S ≤ T /∈ Σ. Say neither S nor T are of recursive form. Since the
statement is sound, Tree(S) ≤tr Tree(T), so there is some tree simulation R
such that (Tree(S), Tree(T)) ∈ R. For this to be the case, R must satisfy
the conditions of a tree simulation, and we consider those conditions as they
apply to Tree(T)(Λ).

If T = Long, then Tree(T)(Λ) = Long0, and hence Tree(S)(Λ) = Long0,
so S = Long. Therefore, S = T and we have dealt with this case above.

We pick T = InCh〈T1, . . . Tn〉 as an example of the other non-recursive
cases. They can all be tackled in a similar way. If T = InCh〈T1, . . . Tn〉, then
Tree(T)(Λ) = InChn. Hence, by the definition of Oompa tree simulation,
either Tree(S)(Λ) = InChn or Tree(S)(Λ) = Chann. It follows that S is
either InCh〈S1, . . . Sn〉 or Chan〈S1, . . . Sn〉, and that Tree(Si) = Tree(S)(i) ≤tr

Tree(T)(i) = Tree(Ti). Either the InCh-InCh or the Chan-InCh rule rule will
match Γ à S ≤ T , and the premises will all have the form Σ à Si ≤ Ti. Σ
is the same as for the antecedent, so the premises are sound as required.

Suppose one of S or T is of recursive form, say S = rec s.S ′. This rule

has one premise, of the form Σ∪ {S ≤ T} à S ′{|rec s.S ′
/s|} ≤ T . The new

assumption, S ≤ T , has Tree(S) ≤tr Tree(T) since the original judgement

was sound. Also, Tree(rec s.S ′) = Tree(S ′{|rec s.S ′
/s|}), and the right hand

side of the judgements, T , hasn’t changed, so the trees of the premise types
are still the same. Thus the premise is sound. �

Lemma 5.4 Say S and T are closed types, and Tree(S) ≤tr Tree(T). Then

à S ≤ T .

Proof: If Tree(T) ≤tr Tree(S) then à S ≤ T is sound. The algorithm
cannot return false on a sound statement since, by Lemma 5.3, any premises
of any sound statement are also sound, and hence matched by a rule. Since
the algorithm is terminating by Theorem 5.2, it must return true. �

Theorem 5.5 (Completeness) If Γ |= S ≤ T then Γ ` S ≤ T .

27

Proof: Γ |= S ≤ T means TreeΓ(S) ≤tr TreeΓ(T). But by Theorem 4.3,

Tree(E∅
Γ(S)) = TreeΓ(S) ≤tr TreeΓ(T) = Tree(E∅

Γ(T))

Both of E∅
Γ(S) and E∅

Γ(T) are closed, so by the Lemma 5.4, the algorithm
will affirm à E∅

Γ(S) ≤ E∅
Γ(T) which is what Γ ` S ≤ T means. �

5.5 Soundness

The following lemma describes a property usually called weakening.

Lemma 5.6 Σ à S ≤ T implies Σ ∪ Σ′
à S ≤ T .

Proof: This is obvious after an inspection of the rules. �

Lemma 5.7

1. Suppose à rec s.S ≤ T and (rec s.S ≤ T) /∈ Σ . Then

Σ ∪ {rec s.S ≤ T} à U1 ≤ U2 implies Σ à U1 ≤ U2

2. Suppose à S ≤ rec t.T and (S ≤ rec t.T) /∈ Σ . Then

Σ ∪ {S ≤ rec t.T} à U1 ≤ U2 implies Σ à U1 ≤ U2

Proof: We only prove this for the first case. Use induction on the length of
a derivation of Σ ∪ {rec s.S ≤ T} à U1 ≤ U2.

Say the last rule used was Assumption. There are two cases. If U1 ≤ U2 ∈
Σ, then the rule still applies with the smaller premise Σ. Say U1 = rec s.S
and U2 = T . Now, we know à rec s.S ≤ T , so using the Lemma 5.6 we
have Σ à rec s.S ≤ T .

In the cases where the last rule is not assumption, the premises are all of
the form Σ′ ∪ {rec s.S ≤ T} à U ′

1 ≤ U ′
2. Any assumption added in Σ′ not

in Σ will definitely not be rec s.S ≤ T , therefore rec s.S ≤ T /∈ Σ′. Thus
the induction hypothesis applies to the premise, giving us Σ′

à U ′
1 ≤ U ′

2.
The last rule will still apply, giving us Σ à U1 ≤ U2 as required. �

Lemma 5.8

1. If à rec s.S ≤ T then à S{|rec s.S/s|} ≤ T

2. If à S ≤ rec t.T and S isn’t of recursive form, then à S ≤
T{|rec t.T/t|}

28

3. If à rec s.S ≤ rec t.T then à S{|rec s.S/s|} ≤ T{|rec t.T/T |}

Proof: 1. Consider the last rule used in à rec s.S ≤ T . It is either
Reflexivity or Left Recursion and we consider the Reflexivity case first,
so T = rec s.S. Also by Reflexivity, we have

{S{|rec s.S/s|} ≤ rec s.T} à S{|rec s.S/s|} ≤ S{|rec s.S/s|}

Using the Right Recursion rule, this gives us

à S{|rec s.S/s|} ≤ rec s.S

as required in this case.

Next we consider the case where the last rule used was Left Recursion.
So, the tree had the form:

{rec s.S ≤ T} à S{|rec s.S/s|} ≤ T

à rec s.S ≤ T

We can use Lemma 5.7 to remove the assumption from the antecedent,

giving us à S{|rec s.S/s|} ≤ T as required in this case.

2. Similarly to part 1, the two cases which can apply are Reflexivity and
Right Recursion, and they can be dealt with in the same way. The
extra condition on this case, means we can avoid considering the case
where the last rule was Left Recursion.

3. We use part 1 and then part 2 to give the result.
�

Lemma 5.9 If S and T are closed and guarded types such that à S ≤ T ,
then Tree(S) ≤tr Tree(T).

Proof: Let

R = {(Tree(S), Tree(T))| à S ≤ T where S and T are guarded}

We claim that R is a tree simulation.
Assume (Tree(S), Tree(T)) ∈ R. We go through the conditions of what it

means to be a tree simulation, depending on the construction of T . Say that
T = Chan〈T1, . . . Tn〉. Then Tree(T)(Λ) = Chann. The only rules that could
establish à S ≤ T is either Reflexivity or the Channel-Channel subtyping

29

rule. The first case is obvious, the second means that S = Chan〈S1, . . . Sn〉.
Thus Tree(S)(Λ) = Chann.

For R to work, we need both

(Tree(S)(i), Tree(T)(i)) ∈ R
(Tree(T)(i), Tree(S)(i)) ∈ R

Now Tree(S)(i) = Tree(Si) and Tree(T)(i) = Tree(Ti). The premises of the
rule give us à Si ≤ Ti and à Ti ≤ Si. By Lemma 5.8 we can unfold Si

and Ti into guarded terms S ′
i and T ′

i such that à S ′
i ≤ T ′

i . à S ′
i ≤ T ′

i and

à T ′
i ≤ S ′

i, so (Tree(S ′
i), Tree(T ′

i)) ∈ R and (Tree(T ′
i), Tree(S ′

i)) ∈ R. By
the definition of the Tree function, unfolding a type doesn’t affect it’s tree,
so we have (Tree(S)(i), Tree(T)(i)) ∈ R and (Tree(T)(i), Tree(S)(i)) ∈ R.
This gives us this case.

Since S and T are guarded the other cases are all very similar to the one
given. �

Theorem 5.10 (Soundness) If Γ ` S ≤ T then Γ |= S ≤ T .

Proof: Γ ` S ≤ T means à E∅
Γ(S) ≤ E∅

Γ(T). E∅
Γ(S) and E∅

Γ(T) are closed
and by Lemma 5.8 we can unfold them to give guarded types S ′ and T ′ such
that à S ′ ≤ T ′. By Lemma 5.9, this gives us Tree(S ′) ≤tr Tree(T ′).

Now, by the definition of the Tree function, unfolding doesn’t affect trees,
so Theorem 4.3 gives us TreeΓ(S) ≤tr TreeΓ(T), which is what Γ |= S ≤ T
means. �

6 The Validity of the Type Safety System

We need to show that if a definition set passes our type safety test, then the
systems which develop from its initial system never commit a type violation.
This is usually called the soundness of a type system. In order to talk
meaningfully about a system behaving according to the type system, it is
useful to have a concept of the state of the type system “at run time”. We
augment the type safety system with rules that allow us to state that an
Oompa system is obeying the type discipline. We call this the dynamic
typing system.

We use this concept to validate our type safety system. We show that a
type safe definition set gives rise to a dynamically type safe initial system. We
also show that dynamic type safety is preserved by the operational semantics.
The main result follows from observing that dynamically type safe systems
are not committing a type violation.

30

This technique is called subject reduction [WF91], which considers “each
intermediate state of a program is itself a program [. . .]. Thus, proving type
soundness reduces to proving that well-typed programs yield only well-typed
results.” There are two details to consider when applying this approach to
Oompa. First, our programs are written in static definitions, which are type
checked, and our Oompa systems are not of the same form (this is why we
will need a separate dynamic type safety system). Second, it is not useful to
consider a process calculus reducing to a result, so we merely require all the
systems arrived at by the operational semantics to be dynamically type safe.

We introduce an abbreviation to help with the readability of the proofs
of the following theorems. Every object o given a type in the type dictionary
must be given a class type. Say o: C ∈ Φ, and say C’s definition in Γ is

class C {a1: AtT1, . . . an: AtTn, mdef∗}

Then we let Atto be the set of attribute typings of o’s class, i.e.

Atto = {a1: AtT1, . . . an: AtTn}

6.1 Dynamic Type Safety

Given an Oompa system Γ B g{Φ
∆, we use the notation Γ d̀ g{Φ

∆ to mean that
the system is type safe in a dynamic sense, i.e. all values in the system are
being used appropriately. To speak about the type safety of agent code (as
opposed to static method code) we need to modify the original type safety
system slightly to take account of variable naming issues. The rules that
have changed are New Channel, Create, Receive and Attribute Access:

Γ, Φ ∪ {c′: ChT} d̀ p{|c
′
/c|}

Γ, Φ d̀ new c: ChT p
Γ, Φ ∪ {o′: C} d̀ p{|o

′
/o|}

Γ, Φ d̀ create o: C p

Γ, Φ ` c: InCh〈T1, . . . Tn〉 Γ, Φ ∪ {r′1: T1, . . . r
′
n: Tn} d̀ p{|r

′
1/r1 . . . r

′
n/rn|}

Γ, Φ d̀ c?(r1: T1, . . . rn: Tn) p

Γ, Φ ` a: Attr{T} Γ, Φ ∪ {r′: T} d̀ p{|r
′
/r|}

Γ, Φ d̀ a?r p

where in the Create rule C is defined as a class in Γ.
The dynamic type safety of an Oompa system is defined in terms of its

parts, as follows:

• We say Γ d̀ g{Φ
∆ if and only if Γ, Φ d̀ g and Γ, Φ d̀ ∆

31

• We say Γ, Φ d̀ g if and only if g = nil or g = o1[p1] | . . . on[pn] and
Γ, Φ d̀ oi[pi] for all i.

• We say Γ, Φ d̀ o[p] if and only if Φ(o) = C for some class C such that

class C {a1: AtT1 · · · an: AtTn mdef ∗} ∈ Γ

and Γ, Φ ∪ {a1: AtT1 . . . an: AtTn} d̀ p

• We say Γ, Φ d̀ ∆ if and only if for all o ∈ Dom(∆) we have Φ(o) = C
for some class C such that

class C {a1: Attr{T1} · · · an: Attr{Tn} mdef ∗} ∈ Γ

and for all a ∈ Dom(∆(o)) we have a = ai for some i and Γ, Φ `
o(a): Ti

The key property of dynamic type safety is that a Oompa system which is
dynamically type safe is clearly not type violating.

Lemma 6.1 If Γ d̀ g{Φ
∆ then Γ B g{Φ

∆ isn’t type violating.

Proof: Say o[p] is an agent in g. We know Γ d̀ g{Φ
∆, so Γ, Φ d̀ g and therefore

Γ, Φ d̀ o[p]. We consider the form of o[p]. Say that o[p] is invoking a method
m of an object o′, i.e. p = o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p′. Thus we have

Γ, Φ ∪ Atto d̀ o′.m!〈v1, . . . vn〉?(r1, . . . rn′) p′

By the rules of the dynamic type safety system, this means that we must
have Γ, Φ ∪ Atto ` o′: Intf{m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉} and for each 0 ≤

i ≤ n, Γ, Φ ∪ Atto ` vi: Ti, since they are premises for the rule for checking
invocations.

Now from the first statement, we can conclude that o′’s class in Φ must
have a method m with signature type m?(S1, . . . Sn)!〈S ′

1 . . . S ′
n′〉, and by the

rules of the typing system, we will have that Γ, Φ ` Ti ≤ Si. Thus the agent
cannot be performing a feature or arity mismatch. Using the Subtyping rule
of the typing system, we have

Γ ` Ti ≤ Si Γ, Φ ∪ Atto ` vi: Ti

Γ, Φ ∪ Atto ` vi: Si

Hence the agent isn’t performing a value mismatch. This means that the
agent isn’t type violating.

32

The cases for Send and Receive are similar. Next, we consider Attribute
Update. Say o[p] is updating an attribute a, i.e. p = a!v p′. Thus we have

Γ, Φ ∪ Atto d̀ a!v p′

By the rules of the dynamic type safety system, we must have Γ, Φ∪Atto `
a: Attr{T} and Γ, Φ∪Atto ` v: T . Thus, we know that o’s class must have
an attribute a of type Attr{T}. Thus the agent isn’t performing either a
feature mismatch, or a value mismatch.

The case for Attribute Access is similar. It follows that no agent in the
system is type violating, so Γ B g{Φ

∆ isn’t type violating. �

Lemma 6.2 If Γ, Φ ` p then Γ, Φ d̀ p.

Proof: A proof tree in the static type safety system is also a proof tree in the
dynamic type safety system. In each of the four rules which have changed,
we can use an identity substitution to justify instances of their standard form
in the dynamic type safety system. �

Another important property is that the initial system of a statically type
safe definition set is dynamically type safe.

Lemma 6.3 If Φ0 ` Γ then Γ d̀ gΓ{Φ0

∅ .

Proof: We know that the state is fine, since it is empty. We have to consider
the initial agents. Now g = dummy1[p1] | . . . dummyn[pn] and Ci has no
attributes, by the requirements for the initial system. Also, pi doesn’t use
return. Since Φ0 ` Γ, we know Γ, Φ0 ` Ci for all i. Thus, Γ, Φ0 ` main def
where main def is the method definition of the main method of Ci. Hence
Γ, Φ0 ` pi, and by Lemma 6.2 we have Γ, Φ0 d̀ pi. Since the class Ci has
no attributes Attdummyi

= ∅ giving us Γ, Φ0 d̀ dummyi[pi]. Thus Γ, Φ0 d̀ gΓ, so

Γ d̀ gΓ{Φ0

∅ . �

6.2 Preservation of Dynamic Type Safety

We know that a dynamically type safe system is not type violating, and we
know that a statically type safe definition set starts out dynamically type
safe. To guarantee that a statically type safe definition set won’t become
type violating, it is sufficient to show that the operational semantics preserve
dynamic type safety.

First, however, we need to prove certain properties of the dynamic type
safety system.

33

Lemma 6.4

1. Weaken: If we have Γ, Φ d̀ p and Φ ∩ Φ′ = ∅, then Γ, Φ ∪ Φ′
d̀ p.

2. Strengthen: If we have Γ, Φ ∪ Φ′
d̀ p and none of the variables in Φ′

occur in p, then Γ, Φ d̀ p.

3. Switch: If Γ, Φ ∪ {v: T} d̀ p and Γ, Φ ` v′: T , then Γ, Φ ∪
{v: T} d̀ p{|v

′
/v|}.

4. Rename: If Γ, Φ ∪ {v: T} d̀ p then Γ, Φ ∪ {v′: T} d̀ p{|v
′
/v|} for new v′.

5. Weaken 2: If Γ, Φ∪{v: T} d̀ p and Γ ` T ′ ≤ T then Γ, Φ∪{v: T ′} d̀ p.

Proof: Cases 1–3 can be proved by a standard inductive argument on the
structure of proof trees.

Case 4 is proved in terms of the first three. Say Γ, Φ ∪ {v: T} d̀ p then
Γ, Φ ∪ {v: T} ∪ {v′: T} d̀ p by Weaken. Γ, Φ ∪ {v: T} ∪ {v′: T} ` v′: T

by Assumption, so Γ, Φ ∪ {v: T} ∪ {v′: T} d̀ p{|v
′
/v|} by Switch and Γ, Φ ∪

{v′: T} d̀ p{|v
′
/v|} by Strengthen.

Case 5 is proved in terms of the first four. Say Γ, Φ ∪ {v: T} d̀ p and
Γ ` T ′ ≤ T . Then Γ, Φ ∪ {v: T} ∪ {v′: T ′} d̀ p for some new v′ by Weaken.
By Assumption, we have Γ, Φ∪ {v: T} ∪ {v′: T ′} ` v′: T ′ and by Subtyping,
we have Γ, Φ ∪ {v: T} ∪ {v′: T ′} ` v′: T . We use Switch to give us Γ, Φ ∪
{v: T}∪{v′: T ′} d̀ p{|v

′
/v|}. Next, Strengthen to Γ, Φ∪{v′: T ′} d̀ p{|v

′
/v|} and

Rename v′ back to v to give Γ, Φ ∪ {v: T ′} d̀ p. �

Lemma 6.5 If we have Γ, Φ d̀ ∆ and Φ ∩ Φ′ = ∅, then Γ, Φ ∪ Φ′
d̀ ∆.

Proof: Trivial.

Theorem 6.6 If Φ0 ` Γ and Γ d̀ g{Φ
∆ and Γ B g{Φ

∆ −→ g′{Φ′

∆′ then Γ d̀ g′{Φ′

∆′

Proof: We use induction on the derivation of Γ B g{Φ
∆ −→ g′{Φ′

∆′ . We
consider the last rule used in this derivation. First, we deal with the inductive
cases.

34

Left Equivalence

Consider the case where the last rule used was Left Equivalence. Then the
tree is structured as follows:

g′′ ≡ g

...

Γ B g′′{Φ
∆ −→ g′{Φ′

∆′

Γ B g{Φ
∆ −→ g′{Φ′

∆′

The equivalence of g and g′′ means that they differ only in the reordering and
regrouping of their constituent agents. This reordering and regrouping will
not affect type safety, so we have Γ d̀ g′′{Φ

∆. Thus, the inductive hypothesis
applies to the right-hand subtree, giving us Γ d̀ g′{Φ′

∆′ , as required.

Right Equivalence

If the last rule used was Right Equivalence, then the tree is structured like:

g′′ ≡ g′

...

Γ B g{Φ
∆ −→ g′′{Φ′

∆′

Γ B g{Φ
∆ −→ g′{Φ′

∆′

The induction hypothesis will apply to the right-hand subtree, giving us
Γ d̀ g′′{Φ′

∆′ . However, by the equivalence of g′′ and g′, we have Γ d̀ g′{Φ′
∆ .

Parallelism

If the last rule used was Parallelism then the tree has the structure:
...

Γ B g1{Φ
∆ −→ g′1{Φ′

∆′

Γ B (g1 | g2){Φ
∆ −→ (g′1 | g2){Φ′

∆′

where g = (g1 | g2) and g′ = (g′1 | g2). By the premise of the theorem,
we have Γ d̀ (g1 | g2){Φ

∆ giving us Γ, Φ d̀ (g1 | g2) and Γ, Φ d̀ ∆. So we have
Γ, Φ d̀ g1 and Γ, Φ d̀ g2. Thus the inductive hypothesis applies to the subtree,
giving us Γ d̀ g′1{Φ′

∆′ . Therefore Γ, Φ′
d̀ g′1 and Γ, Φ′

d̀ ∆′. The type dictionary,
Φ, is only enlarged by the operational semantics, so we can use Lemma 6.4,
case 1, to weaken Γ, Φ d̀ g2 to give us Γ, Φ′

d̀ g2. Hence Γ, Φ′
d̀ (g′1 | g2). Thus

we have Γ d̀ g′{Φ′

∆′ as required.

End

Next we consider the axioms of which End is the first. This case is trivial as
nil is a type safe agent, and the state remains unchanged.

35

Fork

Next we consider Fork, which has the structure

Γ B o[fork{p1} p2]{Φ
∆ −→ o[p1] | o[p2]{Φ

∆

By the premise of the theorem Γ d̀ o[fork{p1}p2]{Φ
∆ so Γ, Φ d̀ o[fork{p1}p2]

and Γ, Φ d̀ ∆. From the former we have Γ, Φ ∪ Atto d̀ fork{p1}p2. In order
for this to be a theorem in the dynamic type safety system, the proof tree
must have the following structure:

...
Γ, Φ ∪ Atto d̀ p1

...
Γ, Φ ∪ Atto d̀ p2

Γ, Φ ∪ Atto d̀ fork{p1}p2

Therefore Γ, Φ d̀ o[p1] and Γ, Φ d̀ o[p2] and thus Γ, Φ d̀ (o[p1] | o[p2]) The state
remains unchanged, so Γ d̀ (o[p1] | o[p2]){Φ

∆, as required.

New Channel

The next axiom to consider is New Channel. This axiom has the form

Γ B o[new c: ChT p]{Φ
∆ −→ o[p{|c

′
/c|}]{Φ∪{c′:ChT}

∆

where c′ is the new channel name “chosen” by the axiom. By the premise
of the theorem, we have Γ d̀ o[new c: ChT p]{Φ

∆, so Γ, Φ d̀ o[new c: ChT p],
and Γ, Φ d̀ ∆. Thus we have Γ, Φ ∪ Atto d̀ new c: ChT p. The dynamic

type safety system gives us Γ, Φ ∪ Atto ∪ {c′′: ChT} d̀ p{|c
′′
/c|}. By Lemma

6.4, case 4, we can use a different new name, so we pick c′, giving us

Γ, Φ ∪ Atto ∪ {c′: ChT} d̀ p{|c
′
/c|}. Then Γ, Φ ∪ {c′: ChT} d̀ o[p{|c

′
/c|}]. We

can weaken Γ, Φ d̀ ∆ to give Γ, Φ ∪ {c′: ChT} d̀ ∆ by Lemma 6.5. Hence

Γ d̀ o[p{|c
′
/c|}]{Φ∪{c′:ChT}

∆ as required.

Communication

The next axiom we consider is Communication. This axiom has the structure:

Γ B
o1[c!〈v1, . . . vn〉 p1] |
o2[c?(r1: T1, . . . rn: Tn) p2]

{
Φ
∆

−→ o1[p1] |
o2[p2{|v1/r1, . . .

vn/rn|}]

{
Φ
∆

36

By the premise of the theorem, we have

Γ d̀ o1[c!〈v1, . . . vn〉 p1] | o2[c?(r1: T1, . . . rn: Tn) p2]{Φ
∆

so we must have both

Γ, Φ ∪ Atto1 d̀ c!〈v1, . . . vn〉 p1

Γ, Φ ∪ Atto2 d̀ c?(r1: T1, . . . rn: Tn) p2

The first of these, by the laws of dynamic type safety, gives us Γ, Φ∪Atto1 `
c: OuCh〈S1 . . . Sn〉 and Γ, Φ ∪ Atto1 ` vi: Si, and the second gives us Γ, Φ ∪
Atto2 ` c: InCh〈T1 . . . Tn〉. The only way we could assign these two types to
c in the typing system would be if Γ ` Si ≤ Ti so we also have Γ, Φ∪Atto1 `
vi: Ti using the Subtyping rule of the typing system.

The proof tree of Γ, Φ∪Atto2 d̀ c?(r1: T1, . . . rn: Tn) p2 has a right subtree

which concludes Γ, Φ∪Atto2 ∪ {r′1: T1 . . . r′n: Tn} d̀ p2{|r
′
1/r1 . . . r

′
n/rn|}. Then,

since the vi have suitable typings in Φ, we can apply Lemma 6.4, case 3 and
case 2 to use the vi instead of the ri to give Γ, Φ∪Atto2 d̀ p2{|v1/r1 . . . vn/rn|}.
Thus Γ, Φ d̀ o2[p2{|v1/r1 . . . vn/rn|}].

Also, Γ, Φ ∪ Atto1 d̀ c!〈v1, . . . vn〉 p1 has a right subtree which concludes
Γ, Φ ∪ Atto1 d̀ p1 so Γ, Φ d̀ o1[p1]. Using this and the above result, gives us
Γ, Φ d̀ o1[p1] | o2[p2{|v1/r1 . . . vn/rn|}]. The state remains unchanged, so we
have Γ d̀ o1[p1] | o2[p2{|v1/r1 . . . vn/rn|}]{Φ

∆ as required.

Method Invocation

The next axiom is Method Invocation. This axiom has the form:

Γ B o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p]

{
Φ
∆

−→ o[r?(s1: T1, . . . sn: Tn) p] |
o1[p1{|v1/r1, . . .

vl/rl,
o1/this, r/return|}]

{
Φ′

∆

where Φ′ = Φ∪{r: Chan〈T1, . . . Tn〉}, and r is the return channel “chosen” by
the axiom. The main premise gives us Γ d̀ o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p]{Φ

∆,
so Γ, Φ d̀ o[o1.m!〈v1, . . . vl〉?(s1, . . . sn) p], and hence we have

Γ, Φ ∪ Atto d̀ o1.m!〈v1, . . . vl〉?(s1, . . . sn) p

From this, we can conclude the following three facts:

Γ, Φ ∪ Atto ` o1: Intf{m?(S1, . . . Sn)!〈S ′
1, . . . S

′
l〉} (A)

Γ, Φ ∪ Atto ∪ {r′: Chan〈S ′
1 . . . S ′

n〉} d̀ r′?(s1: S
′
1, . . . sn: S ′

n) p (B)
Γ, Φ ∪ Atto ` vi: Si (C)

37

Now o1: C ∈ Φ and the fact that the Method Invocation axiom applied means
that C must have a method with a signature of the form

m?(r1: U
′
1 . . . rl: U

′
l)!〈y1: T1 . . . yn: Tn〉

By (A), using the subtyping system, we know that

Γ ` m?(U ′
1 . . . U ′

l)!〈T1 . . . Tn〉 ≤ m?(S1, . . . Sn)!〈S ′
1, . . . S

′
l〉

which means that Γ ` Si ≤ U ′
i and Γ ` Ti ≤ S ′

i.
By (B), using the dynamic type safety rule for receive, we have

Γ, Φ ∪ Atto ∪ {r′: Chan〈S ′
1 . . . S ′

n〉} ∪ {s′1: S ′
1 . . . s′n: S ′

n} d̀ p{|s
′
1/s1 . . . s

′
n/sn|}

By using Lemma 6.4, case 2, we can remove r′’s typing from the context,

to give Γ, Φ ∪ Atto ∪ {s′1: S ′
1 . . . s′n: S ′

n} d̀ p{|s
′
1/s1 . . . s

′
n/sn|}. We can now use

Lemma 6.4, case 5, to strengthen the typings of the s′i, giving us Γ, Φ∪Atto∪
{s′1: T1 . . . s′n: Tn} d̀ p{|s

′
1/s1 . . . s

′
n/sn|}. Now use Lemma 6.4, case 1, to give

us Γ, Φ ∪ Atto ∪ {r: Chan〈T1 . . . Tn〉} ∪ {s′1: T1 . . . s′n: Tn} d̀ p{|s
′
1/s1 . . . s

′
n/sn|}

from which, using the rules of the dynamic typing system, we can con-
clude Γ, Φ ∪ Atto ∪ {r: Chan〈T1 . . . Tn〉} d̀ r?(s1: T1 . . . sn: Tn) p. Thus Γ, Φ ∪
{r: Chan〈T1 . . . Tn〉} d̀ o[r?(s1: T1 . . . sn: Tn) p].

By (C) we know that {vi: Ui} ∈ Φ and that Γ ` Ui ≤ Si, so by transitivity
Γ ` Ui ≤ U ′

i . Now we know that o1 has a method with a signature
m?(r1: U

′
1 . . . rl: U

′
l)!〈y1: T1 . . . yn: Tn〉 and if it has code p1, we know that

Γ, Φ0 ∪ {r1: U
′
1 . . . rl: U

′
l} ∪ {return: OuCh〈T1 . . . Tn〉} ∪ {this: C} ` p1

We bring this into the dynamic type safety system and apply Lemma 6.4 to
give

Γ, Φ0 ∪ {v1: U1 . . . vl: Ul} ∪ {r: Chan〈T1 . . . Tn〉} ∪ {o1: C}
d̀ p1{|v1/r1 . . . vl/rl,

r/return, o1/this|}

and again

Γ, Φ ∪ Atto ∪ {r: Chan〈T1 . . . Tn〉} d̀ p1{|v1/r1 . . . vl/rl,
r/return, o1/this|}

Thus

Γ, Φ ∪ {r: Chan〈T1 . . . Tn〉} d̀ o1[p1{|v1/r1 . . . vl/rl,
r/return, o1/this|}]

Putting and the earlier fact together, we have

Γ, Φ ∪ {r: Chan〈T1 . . . Tn〉} d̀
o[r?(s1: T1 . . . sn: Tn) p] |
o1[p1{|v1/r1 . . . vl/rl,

r/return, o1/this|}]

The state hasn’t changed, so we have Γ d̀ g′{Φ′

∆′ as required.

38

Object Creation

Next we have Object Creation, which has the following structure:

Γ B o[create o1: C p]

{
Φ
∆

−→ o[p{|o
′
1/o1|}]

{
Φ ∪ {o′1: C}
∆ ∪ {o′1 = ∅}

where o′1 is the new object name “chosen” by the axiom. From the main
premise of the theorem we have Γ d̀ o[create o1: C p]{Φ

∆ which gives us both
Γ, Φ d̀ o[create o1: C p] and Γ, Φ d̀ ∆. So Γ, Φ ∪ Atto d̀ create o1: C p. This

implies that Γ, Φ ∪ Atto ∪ {o′′1: C} d̀ p{|o
′′
1/o1|}. So by Lemma 6.4, case

4, we can use o′1 instead o′′1 to give Γ, Φ ∪ Atto ∪ {o′1: C} d̀ p{|o
′
1/o1|} so

Γ, Φ ∪ {o′1: C} d̀ o[p{|o
′
1/o1|}]. The addition of the empty assignment to the

typing state, will not affect it’s dynamic type safety, so we have:

Γ d̀ o[p{|o
′
1/o1|}]{

Φ∪{o′
1:C}

∆∪{o′
1=∅}

as required.

Attribute Access

Now we consider Attribute Access. This axiom has the form:

Γ B o[a?r p]{Φ
∆ −→ p{|v/r|}{Φ

∆

where v = ∆(o)(a). The premise of the theorem gives us Γ d̀ o[a?r p]{Φ
∆ so

we have Γ, Φ d̀ o[a?r p] and Γ, Φ d̀ ∆ . From the first statement, we can infer
Γ, Φ ∪ Atto d̀ a?r p. By the rules of the dynamic type system, this implies

Γ, Φ ∪ Atto ` a: Attr{T} and Γ, Φ ∪ Atto ∪ {r′: T} d̀ p{|r
′
/r|} . Since the

state is dynamically type safe, we have Γ, Φ ∪ Atto ∪ {r′: T} ` v: T . Then
by Lemma 6.4, case 3 and case 2, Γ, Φ ∪Atto d̀ p{|v/r|}. So Γ, Φ d̀ o[p{|v/r|}].
Thus Γ d̀ o[p{|v/r|}]{Φ

∆ as required

Attribute Update

Next, Attribute Update which has the form:

Γ B o[a!v p]{Φ
∆ −→ o[p]{Φ

∆′

where o ∈ Dom(∆), and ∆′(o1)(a1) = ∆(o1)(a1) if o1 6= o or a1 6= a and v
otherwise. The premise of the theorem gives us: Γ d̀ o[a!v p]{Φ

∆ from which

39

we deduce Γ, Φ d̀ o[a!v p] and Γ, Φ d̀ ∆ . From the first of these we get Γ, Φ∪
Atto d̀ a!v p. By the rules of the dynamic typing system, this gives us Γ, Φ∪
Atto ` v: T , Γ, Φ ∪ Atto ` a: Attr{T} and Γ, Φ ∪ Atto d̀ p . This last
point gives us Γ, Φ d̀ o[p]. Considering state, we can see that Γ, Φ d̀ ∆′, since
v is appropriately typed. This, with the above dynamic agent type safety
statement, gives us Γ d̀ o[p]{Φ

∆′ As required.

Typecase

Lastly, we consider Typecase. This axiom has the form:

Γ B o[typecase v: T {p0} else {p1}]
{

Φ
∆

−→ o[pi]

{
Φ
∆

By the main premise of the theorem Γ d̀ o[typecase v: T {p0} else {p1}]{Φ
∆.

This gives us Γ, Φ d̀ o[typecase v: T {p0} else {p1}] and thus

Γ, Φ ∪ Atto d̀ typecase v: T {p0} else {p1}

Now by the dynamic typing system rules, we know that Φ = Φ′∪{v: T ′}, for
some Φ′, and from the above statement, we have both Γ, Φ′∪Atto∪{v: T} d̀ p0

and Γ, Φ′ ∪ Atto ∪ {v: T ′} d̀ p1.
Say that Γ, Φ ` v: T . Then Γ ` T ′ ≤ T , and we can use Lemma 6.4, case

5, to weaken the first of the above two statements to give Γ, Φ∪Atto d̀ p0 from
which I can deduce Γ, Φ d̀ o[p0]. In the other case, we have Γ, Φ ∪ Atto d̀ p1

anyway, from which we deduce Γ, Φ d̀ o[p1]. The state is unchanged by this
axiom, so which ever case applies (call it i), we have Γ d̀ o[pi]{Φ

∆ as required.
That was the last of the axioms, so we’re done. �

Theorem 6.7 (Type Safety) If Φ0 ` Γ and Γ B gΓ{Φ0

∅ =⇒ g{Φ
∆ then

Γ B g{Φ
∆ is not type violating.

Proof: This follows from Lemma 6.3 and Theorem 6.6, using an obvious
inductive argument on the derivation of Γ B gΓ{Φ0

∅ =⇒ g{Φ
∆ �

7 Comparison with Other Work

We have built our type system using recursive types and upon a π-calculus
core, so we have taken the type system of [PS93] as a basis for our work.

40

This presents a type system for the π-calculus with recursive channel types
and which is statically type checkable. Thus this type system is similar to
the subset of ours where primitive types and interface types are dropped.
Our proof of the termination, soundness and completeness of our subtyping
system is based directly upon their technique.

For a formal definition of trees we choose an approach based on the defi-
nitions in [AC91], which considers recursive function types. This paper also
contains a counterpart to our expansion function, E∅

Γ(t). A system of regular
equations, like our set of definitions, can be converted into recursive types.
This process, like ours, is validated with respect to trees.

While Oompa, with concurrency and channels, has quite different seman-
tics, the type systems of the various object calculi considered by Abadi and
Cardelli in [AC96] can be related to the one we are using. In particular, the
type system of the language Ob1<:µ with typecase seems similar, as it uses
recursion to bind object self-references. Their choice of using object-based
languages where methods can be updated increases the expressive power of
their language, but has the side effect that some seemingly desirable sub-
type relationships cannot be established. Within their system methods can
be made non-writable, and then (like Oompa) these subtype relationships
can be derived. Although predominantly object-based, class structures for
some of their languages are given. However, class and interface definitions are
used informally, and no equivalent notion to our expansion is described. This
means there is no explicit way of dealing with inter-referential definitions in
the context of subtyping.

Another system which bears similarity to Oompa is TyCO (Typed Con-
current Objects) [Vas94]. Objects are primitive in TyCO, but class-like en-
tities may be defined using a “let” construction. A corresponding notion of
subclassing can similarly be defined. TyCO doesn’t have an explicit subtyp-
ing system, but a similar effect is achieved by making the rule which type
checks invocation apply to any object which has an appropriate method of
the correct arity. Thus an object of one type may stand for an object of
another as the receiver of an invocation.

A number of approaches to the typing and subtyping of object systems are
considered in the literature. Four approaches are compared in [BCP97]. One
uses recursion to deal with interface types and is similar to our approach to
typing objects. The other approaches use existential types or a combination
of existential and recursive types.

The approach to subtyping object languages using existential types to
bind object self-references rather than recursive types, is illustrated in [PT92].
The advantage is put forward as a simplification of the underlying theory. In
fact, the existential quantifier can be encoded using a universal quantifier,

41

which seems an obvious simplification in languages with polymorphism where
the universal quantifier is already present. Due to the presence of recursive
channel types and the absence of this kind of polymorphism in our system,
however, it seems desirable to use the recursive quantifiers for dealing with
self-references. Abadi and Cardelli [AC96] use a combination of recursive
and existential operators to give what they call the self quantifier. This has
interesting subclassing properties.

8 Conclusions and Future Work

This technical report has given a formal definition of our Oompa calculus. We
have provided its syntax and its operational semantics, and given it a type
system which can statically check a set of definitions for type correctness. We
have presented a technique for converting inter-referential interface types into
recursively bound closed types, and our subtyping algorithm is terminating
upon these. We used a form of subject reduction to show that our type
system is sound, that is, a type checked definition set never leads to an agent
which attempts a type violation.

The next step in the development of Oompa will be to develop support for
reasoning. In process algebras, the usual approach is to define bisimulations,
but Oompa objects have internal state which should make the defining of
an appropriate bisimulation particularly interesting. This reasoning is also
relevant to the issue of object substitutability, which is very important in
modern distributed object systems, where objects encounter each other at
run time. A good example is the CORBAservices specification [Obj97], which
describes a Trader service which attempts to match suitable CORBA objects
to requests. Any implementation of such a trader will need to have some
notion of substitutability.

As defined in this report, Oompa is a very simple calculus, and is not
intended to be a full programming language. However, there is much that
could be added to increase its usability in this regard. Subclassing could
easily be added, although the usual problems will need to be dealt with (e.g.
name clashes). A syntax for expressions, e.g. v + 5, would make the design
of Oompa “programs” much easier. Currently, this sort of calculation must
be done at either the π-calculus channel level, or the object interface level.

42

A Free Variables and Substitution

In this appendix, we provide the definitions for substitution on code and
types and functions for finding their free variables.

The Set of Free Variables of Code

FV (end) = ∅
FV (fork{p0} p1) = FV (p0) ∪ FV (p1)

FV (new c: ChT p0) = FV (p0)− {c}
FV (c!〈v1, . . . vn〉 p0) = FV (p0) ∪ {c, v1, . . . vn}

FV (c?(r1: T1, . . . rn: Tn) p0) = (FV (p0)− {r1, . . . rn}) ∪ {c}
FV (o.m!〈v1, . . . vn〉?(r1, . . . rm) p0) = (FV (p0)− {r1, . . . rm})

∪ {o, v1, . . . vn}
FV (create o: ClT p0) = FV (p0)− {o}

FV (a?r p0) = FV (p0)− {r}
FV (a!v p0) = FV (p0) ∪ {v}

FV (typecase v: T {p0} else {p1}) = {v} ∪ FV (p0) ∪ FV (p1)

Substitution on Code

end ρ = end

fork{p0} p1 ρ = fork{(p0 ρ)} (p1 ρ)
(new c: ChT p0) ρ = new c: ChT (p0 ρ′)

where ρ′ = ρ− {c}.
(c!〈v1, . . . vn〉 p0) ρ = (c ρ)!〈(v1 ρ), . . . (vn ρ)〉 (p0 ρ)

(c?(r1: T1, . . . rn: Tn) p0) ρ = (c ρ)?(r1: T1, . . . rn: Tn) (p0 ρ′)
where ρ′ = ρ− {r1, . . . rn}.

(o.m!〈v1 . . . vn〉?(r1 . . . rm) p0) ρ = (o ρ).m!〈(v1 ρ) . . . (vn ρ)〉?(r1 . . . rm)
(p0 ρ′)

where ρ′ = ρ− {r1, . . . rm}.
(create o: ClT p0) ρ = create o: ClT (p0 ρ′)

where ρ′ = ρ− {o}.
(a?r p0) ρ = a?r (p0 ρ′)

where ρ′ = ρ− {r}.
(a!v p0) ρ = a!(v ρ) (p0 ρ)

(typecase v: T {p0} else {p1})ρ = typecase (vρ): T {p0ρ} else {p1ρ}

43

The Set of Free Types Variables of a Type

FTV (Long) = ∅
FTV (Char) = ∅

FTV (Intf{SgT1, . . . SgTn}) = FTV (SgT1) ∪ . . .FTV (SgTn)
FTV (m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉) = FTV (T1) ∪ . . .FTV (Tn)

∪FTV (T ′
1) ∪ . . .FTV (T ′

n′)
FTV (Chan〈T1, . . . Tn〉) = FTV (T1) . . .FTV (Tn)
FTV (InCh〈T1, . . . Tn〉) = FTV (T1) . . .FTV (Tn)
FTV (OuCh〈T1, . . . Tn〉) = FTV (T1) . . .FTV (Tn)

FTV (rec t.T) = FTV (T)− {t}
FTV (t) = {t}

Substitution on Types

Long ρ = Long

Char ρ = Char

Intf{SgT1, . . . SgTn} ρ = Intf{(SgT1 ρ), . . . (SgTn ρ)}
m?(T1, . . . Tn)!〈T ′

1, . . . T
′
n′〉 ρ = m?((T1 ρ), . . . (Tn ρ))!〈(T ′

1 ρ), . . . (T ′
n′ ρ)〉

Chan〈T1, . . . Tn〉 ρ = Chan〈(T1 ρ), . . . (Tn ρ)〉
InCh〈T1, . . . Tn〉 ρ = InCh〈(T1 ρ), . . . (Tn ρ)〉
OuCh〈T1, . . . Tn〉 ρ = OuCh〈(T1 ρ), . . . (Tn ρ)〉

In the case of recursive types, we assume that α-substitution is used to ensure
that variable capture does not occur. We don’t consider the issues here.

(rec t.T) ρ = rec t′.(T{|t
′
/t|} ρ)

References

[AC91] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.
In ACM-SIGPLAN ACM-SIGACT, editor, Conference Record of
the 18th Annual ACM Symposium on Principles of Programming
Languages (POPL ’91), pages 104–118, Orlando, FL, USA, Jan-
uary 1991. ACM Press.

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag, 1996.

44

[BCP97] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Compar-
ing object encodings. In Theoretical Aspects of Computer Software
(TACS), Sendai, Japan, September 1997. An earlier version was
presented as an invited lecture at the Third International Work-
shop on Foundations of Object Oriented Languages (FOOL 3),
July 1996.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-
calculus. Cambridge University Press, 1999.

[Obj97] The Object Management Group. CORBAservices: Common Ob-
ject Services Specification, November 1997.

[OMG98] OMG. CORBA 2.2 Specification, February 1998.

[PS93] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Proceedings, Eighth Annual IEEE Symposium
on Logic in Computer Science, pages 376–385, Montreal, Canada,
19–23 June 1993. IEEE Computer Society Press.

[PT92] Benjamin C. Pierce and David N. Turner. Simple type-theoretic
foundations for object-oriented programming. Technical report,
Department of Computer Science, University of Edinburgh, Edin-
burgh, U.K., August 1992.

[San96] Davide Sangiorgi. An interpretation of typed objects into typed
π-calculus. Technical Report RR-3000, Inria, Institut National de
Recherche en Informatique et en Automatique, 1996.

[TBD00] Malcolm Tyrrell, Andrew Butterfield, and Alexis Donnelly. Oo-
motivated process algebra: A calculus for corba-like systems. In
Third Workshop in Rigorous Object-Oriented Methods, York, Eng-
land, January 2000.

[Vas94] V. T. Vasconcelos. Typed concurrent objects. Lecture Notes in
Computer Science, 821, 1994.

[WF91] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Technical Report COMP TR91-160, Department
of Computer Science, Rice University, Houston, Texas, April 1991.

45

