
Interpretative Semantics for prialt-free

Handel-C

Andrew Butter�eld

December 20, 2001

Contents

1 Introduction 2

2 Reduced Abstract Syntax 3

2.1 Program (x9.3.17, p197) . 3

2.2 Declarations (x9.3.6, p189) . 4

2.3 Statements (x9.3.16, pp196{7) . 4

2.4 prialt Cases (x9.3.16, p197) . 4

2.5 Expressions (x9.3.15, pp194{5) 5

2.6 Identi�er (x9.3.1, p186) . 5

2.7 Abstract Syntax Summary . 6

3 Explicit Environment Abstract Syntax 6

3.1 Trees . 7

3.1.1 Tree Type . 7

3.1.2 Tree Access Functions . 7

3.2 Tree Cursors . 7

3.2.1 Tree Cursor Type . 7

3.2.2 Manipulating Tree Cursors 7

3.2.3 Tree Lookup . 8

3.3 Tree Environments . 8

3.3.1 Cursor-Tagged Identi�ers 8

3.3.2 Tree Environment Type 8

3.3.3 Tree Environment Lookup/Update 8

3.3.4 Tree Environment Key Lookup 8

3.4 Variable Data and Channel States 8

3.5 Explicit Environment Syntax . 9

3.5.1 Statements revisited . 9

3.5.2 prialt Cases revisited . 9

1

3.5.3 Expression revisited . 10

3.5.4 Abstract Syntax Tree revisited 10

3.5.5 Program revisited . 10

3.6 Build the Explicit Environment Tree 11

3.6.1 Converting Prg . 11

3.6.2 Converting InitDecl . 11

3.6.3 Converting Decl . 11

3.6.4 Converting Stmt . 12

3.6.5 Converting PCase . 13

3.7 Explicit Environment Syntax Summary 14

4 Control Flow (Interpretative) Semantics 15

4.1 Introduction . 15

4.2 Running the Program . 15

4.3 The Clock Cycle . 16

4.3.1 Evaluating the RHS . 16

4.3.2 `Incrementing' Execution Pointers 17

4.4 Determining Next Execution Pointers 18

4.5 De�nitions of fstep and nxtep 18

4.5.1 The Seq Statement . 20

4.5.2 The If Statement . 21

4.5.3 The Whl Statement . 23

4.5.4 The Par Statement . 24

4.5.5 The Brk Statement . 26

4.5.6 The Pri Statement . 27

4.6 De�nition of resep . 28

4.6.1 De�nition of resep, without prialts 28

4.7 Full De�nitions of fstep and nxtep 28

4.7.1 Complete De�nition of fstep 29

4.7.2 Complete De�nition of nxtep 30

4.8 Auxilliary Functions . 30

5 Acknowledgments 31

1 Introduction

Handel-C [Emb] is a language developed by the Hardware Compilation Group

at Oxford's Computer Laboratory. It is a hybrid of C and CSP [Hoa90], de-

signed to target hardware implementations, speci�cally �eld-programmable gate

arrays (FPGAs) [PL91, SP93, BHP94, LKL+95]. The language can be viewed

as a pointer-free subset of C, augmented with a parallel construct and chan-

2

nel communication, as found in CSP. The type system has been modi�ed to

explicitly refer to the number of bits required to implement any given type.

The language targets synchronous hardware with a single master clock. All

assignments and channel communication events take one clock cycle, with all

updates synchronised with the clock edge marking the cycle end. All expression

and conditional evaluation (for selection, loops) is deemed to take `zero-time',

e�ectively being completed before the current clock cycle ends.

In order to facilitate work on a formal semantics for Handel-C, it was decided at

�rst to consider a subset only, namely the smallest subset that would catch all

the essential and potentially diÆcult aspects. After discussions with Ian Page,

a suitable subset of Handel-C was identi�ed. It includes channels, assignment,

conditional, one loop, and the parallel construct as well as shared variables. Key

omissions include types, macros, shared expressions, RAMs, ROMs, arrays and

the bus interface material, all of which can be handled fairly straightforwardly,

in semantic terms. Discussing requirements for a set of algebraic laws with

Jim Woodcock, in particular with respect to normal forms, it was decided to

include the `prioritised alternatives' construct (prialt) in the reduced syntax.

Another key motivation for having the prialt is that it is the only mechanism

for introducing non-blocking (or try-else-skip) synchronisations into programs.

This report presents an interpretive semantics of a prialt-free subset of the

Handel-C hardware compilation language. The language is presented here with

such a construct, but its semantics are not fully described at this point. This

is due in the main to the lack of clear documentation on the behaviour of

this construct, which will require some experimentation in order to be able

to elucidate an appropriate semantics. This has been left as a future task.

However, the semantics presented here has been de�ned with prialt in mind,

which explains why the semantics of communication appears more complicated

than it needs to be.

This document presents the semantics, but does not provide any formal or

informal validation. This will be the subject of another technical report.

In x2 we introduce the abstract syntax, which we the augment with an explicit

environment mapping in x3. Given these, in x4 we present the `control-ow' or
interpretive semantics.

2 Reduced Abstract Syntax

We present an abstract form of the reduced form of the Handel-C language, in

the form of an abstract data type capturing the essential syntactical structure.

This is based on chapter 9 of the Handel-C Language Reference Manual, v2.1

[Emb], as indicated in the section headings.

2.1 Program (x9.3.17, p197)

Prg ::= InitDecl
? �Decl

? � Stmnt

3

2.2 Declarations (x9.3.6, p189)

Identi�ers (Id) in this subset play three rôles, naming variables (Idv), channels

(Id c) and (builtin) operators (Ido). Even though these three uses are syntac-

tically distinguishable, allowing us to treat them as separate name spaces, we

prefer to keep one name-space for variables and channels, to avoid having to

carry distinct mappings around.

InitDecl ::= Id � Z

Local declarations have no initialisers.

Decl ::= Var Id

j Chan Id

j ChIn Id

j ChOut Id

2.3 Statements (x9.3.16, pp196{7)

In Handel-C we have the usual assignment (Asg), sequencing (Seq), conditional

(If), looping (Whl) and jumping (Brk) constructs familiar to imperative lan-

guage programmers. From CSP, we obtain the parallel construct (Par) and

channel communication primitives for input (In) and output (Out). Speci�c to

Handel-C is the delay statement (Dly) which does nothing, but takes one full

clock-cycle to do it.

Stmnt ::= Seq Decl? Stmnt+

j Par Decl? Stmnt2+

j Asg Id Exprn

j In Id Id

j Out Id Exprn

j If Exprn Stmnt [Stmnt]

j Whl Exprn Stmnt

j Pri PCse?

j Brk jDly j Cont

The Cont (continue) statement is not in Handel-C, but is provided here as a

technical device to facilitate translation into the explicit environment syntax

form.

2.4 prialt Cases (x9.3.16, p197)

The prialt statement is a sequence of communication requests (Cin,Cout), each

with an associated statement that is executed afterwards, if the corresponding

communication succeeds. A prialt statement may have a �nal `default' clause,

4

which always succeeds

PCse ::= Cin Id Id Stmnt

j Cout Id Exprn Stmnt

j Default Stmnt

The ordering of the prialt clauses is signi�cant in that it assigns a priority to

each request.

2.5 Expressions (x9.3.15, pp194{5)

Handel-C has the usual range of expressions, as well as ones tailored more

closely to its hardware targeting rôle. However the details are not really of any

immediate interest here. Instead we simply assume a simple epxression grammar

built up from numbers (Num), variables (Var) and applications (App) of builtin

operators and functions

Exprn ::= Num Z

j Var Id

j App Id Exprn+

2.6 Identi�er (x9.3.1, p186)

Identi�ers are just a countable type with equality de�ned, typically represented

by character sequences

Id ::= A
+

5

2.7 Abstract Syntax Summary

Prg ::= InitDecl
? �Decl

? � Stmnt

InitDecl ::= Id � Z

Decl ::= Var Id

j Chan Id

j ChIn Id

j ChOut Id

Stmt ::= Seq Decl
?
Stmnt+

j Par Decl
?
Stmnt2+

j Asg Id Exprn

j In Id Id

j Out Id Exprn

j If Exprn Stmnt [Stmnt]

j Whl Exprn Stmnt

j Pri PCse?

j Brk jDly j Cont

PCse ::= Cin Idc Idv Stmnt

j Cout Idc Expr Stmnt

j Default Stmnt

Expr ::= Num Z

j Var Id

j App Id Expr+

Id ::= A
+

3 Explicit Environment Abstract Syntax

As all program variables are statically allocated (there are no function/procedure

call frames in Handel-C), we convert all declarations into an environment map-

ping, which maps tagged identi�ers to their values. The tags are tree cursors

(natural number sequences) that identify the point in the abstract syntax tree

where the declaration occurred.

6

3.1 Trees

3.1.1 Tree Type

We shall assume all trees are expressed in the general form

(a; �); T 2 Tree A b= A� (Tree A)
?

3.1.2 Tree Access Functions

We have functions to access the node (N), determine the number of sub-trees

(#) and to access the ith sub-tree (:i):

N : Tree A!A

N (a;) b= a

: Tree A! N

#(; �) b= len �

: : (Tree A)� N1 ! Tree A

pre-(T:i) b= i � # T

(; �):i b= � [i]

3.2 Tree Cursors

3.2.1 Tree Cursor Type

A tree cursor (TC) is a sequence of non-zero natural numbers:

� 2 TC b= N1
?

A tree cursor denotes the path to be followed from the root mode to the indicated

node, by identifying number of each successive sub-tree to be followed. An

empty sequence denotes the root, while a non-empty sequence gives the sub-

tree indices in reverse order. For example, the sequence h3; 5; 2i denotes the
3rd sub-tree of the 5th sub-tree of the 2nd sub-tree of the root. This reversal

is done to make the operations of moving to a parent or child simpler, in that

they can be directly expressed as head and tail operations.

3.2.2 Manipulating Tree Cursors

A Tree cursor can be modi�ed to refer to the parent or the ith child of the tree

node it denotes, provided, of course this is de�ned.

" : TC ! TC

pre-(� ") b= � 6= �

� " b= tl �

TC � N1 ! TC

� # i b= i : �

7

3.2.3 Tree Lookup

We can apply a cursor to a tree to �nd the relevant sub-tree node. This is only

de�ned if the cursor matches the tree structure:

() : Tree A! Cursor ! Tree A

pre-T (�) b= True

pre-(; �)(�_ hii) b= i � len � ^ pre-(� [i])(�)

T (�) b= T

(; �)(�_ hii) b= � [i](�)

3.3 Tree Environments

3.3.1 Cursor-Tagged Identi�ers

We tag identi�ers by pairing them with a tree cursor denoting the tree node

where the identi�er was declared:

CtId b= TC � Id

3.3.2 Tree Environment Type

A Tree Environment (TEnv V) is a (�nite) mapping from cursor tagged identi-

�ers to values drawn from type V :

� 2 TEnv V b= CtId ! V

3.3.3 Tree Environment Lookup/Update

As we are recording all identi�ers in the explicit syntax with cursor tags indicat-

ing their point of declaration, we can use simple map application and override

to achieve lookup and update.

3.3.4 Tree Environment Key Lookup

We need to take an identi�er tagged with its point of use, and look it up in the

environment in order to re-tag it with its point of declaration:

key : TEnv V ! CtId ! CtId

key[�](�; i) b= (�; i) 2 dom � ! (�; i) ; key[�](� "; i)

The use of this function in the sequel depends on variables being declared before

use, in the ordering resulting from an pre�x traversal of the syntax tree.

3.4 Variable Data and Channel States

We need to de�ne the data values and the channel states that our semantics will

need. Ordinary variables simply have a data value, whereas channel variables

8

have channel states, as well as pointers to the reading and writing statements

and channel data values

ValState ::= Val Data

j Chan ChState TC TC

j InCh ChState TC

j OutCh ChState TC

j Stop j Go

We will use null (root) tree cursors here to denote a null value, rather than the

root. This makes sense because the tree root (entire program) can never be a

channel statement. A channel's state is either idle, or waiting for either input

or output, or ready:

ChState b= Idle jWait j Input jOutput jReady jError

Data values (Data) are currently integers, extended with an unknown value (?):

Data b= Z[f?g

We shall de�ne our program environment (Env) to be a ValState tagged envi-

ronment:

Env b= TEnv ValState

3.5 Explicit Environment Syntax

We are going to replace an abstract syntax based on Prg by one based on a new

syntax tree based on a reworked de�nition of Stmnt .

3.5.1 Statements revisited

We discard any declarations (to be replaced by a single tree environment) and

the sub-tree components, tag all identi�ers, and introduce a continue and gen-

eralised delay statements:

Stmt ::= Seq jPar

j Asg CtId Expr

j In CtId CtId

j Out CtId Expr

j If Expr

j Whl Expr

j Pri

j Brk jCont

j Dly N

3.5.2 prialt Cases revisited

The prialt cases now become sequential statements whose �rst sub-statement

is the synchronisation statement.

9

3.5.3 Expression revisited

We rede�ne expressions to use CtIds intead of Ids:

Expr ::= Num Z

j Var CtId

j App CtId Expr+

We can de�ne the evaluation of an expression in a given environment as

() : Expr ! Env !Data

�(Num n) b= n

�(Var v) b= n where (Val n) = �(v)

�(App f �) b= [[f]] Æ �?�

We have overloaded the map application notation. Which is meant is determined

by the type of the operand, if an expression, it is what has just been de�ned, if

a tagged identi�er, it is regular map lookup. Here [[f]] gives the �xed meaning

of f which is builtin.

3.5.4 Abstract Syntax Tree revisited

We then de�ne our new abstract syntax as a tree over Stmt with an invariant

that restricts the length (` = #T) of the sub-tree sequence:

StmtT b= Tree Stmt

inv-StmtT Seq b= ` > 0

inv-StmtT Par b= ` > 1

inv-StmtT (If) b= ` 2 1; 2

inv-StmtT (Whl) b= ` = 1

inv-StmtT Pri b= ` > 0

inv-StmtT T b= ` = 0

Not shown here is that fact that the invariant is applied recursively to all sub-

trees.

3.5.5 Program revisited

Our new program representation is a new abstract syntax tree coupled with a

tree environment:

Prog b= StmtT � Env

Note that a program is now any statement with an associated environment. Note

also that strictly speaking we need an invariant that states that all cursors in

the domain of the environment (as tags) must be compatible with the statement

tree. By compatible, we mean that they refer to actual tree nodes, and being

fully pedantic, that they only indicate Seq or Par nodes, as these are the only

ones to have declarations in the original Handel-C.

10

3.6 Build the Explicit Environment Tree

We need to convert a program from Prg to Prog form. We do this by creating an

initial environment, and traversing the original tree with a cursor tracking our

position, converting declarations to tagged environment entries, and building

the new tree.

3.6.1 Converting Prg

We use the program's declarations to build an initial environment, tagged with

the null (root) cursor. The program main statement becomes the sole sub-tree

of a (top-level) Seq node:

cnvPrg : Prg ! Prog

cnvPrg({; Æ; s0) b= cnvStmt(h1i; �0)s0

where�0 = cnvInitDecls { y cnvDecls[�]Æ

3.6.2 Converting InitDecl

Initial Declarations simply become mappings from root-tagged identi�ers to

their initial values:

cnvInitDecl : InitDecl ! Env

cnvInitDecl(v; i0) b= f(�; v) 7! (Val i0)g

cnvInitDecls : InitDecl? ! Env

cnvInitDecls � b= �

cnvInitDecls(i : {) b= (cnvInitDecl i) y (cnvInitDecls {)

Note that later declarations supersede earlier ones. In Handel-C multiple decla-

rations of the same identi�er in the same scope are illegal, so this is not an issue.

We simply take this approach using override to keep the semantics simple.

3.6.3 Converting Decl

cnvDecl : TC ! Decl ! Env

cnvDecl[�](Var0 v) b= f(�; v) 7! Val ?g

cnvDecl[�](Chan0 c) b= f(�; c) 7! Chan Idle � �g

cnvDecl[�](ChIn0 c) b= f(�; c) 7! ChIn Idle �g

cnvDecl[�](ChOut0 c) b= f(�; c) 7! ChOut Idle �g

cnvDecls : TC ! Decl? ! Env

cnvDecls[�]� b= �

cnvDecls[�](d : Æ) b= (cnvDecl[�]d) y (cnvDecls[�]Æ)

11

3.6.4 Converting Stmt

We convert a statement on a case-by-case basis:

cnvStmt : TC � Env ! Stmnt ! StmtT � Env

cnvStmt[�; �](Seq Æ �)

b= let �0 = � t cnvDecls[�]Æ

in let (�; �00) = cnvStmts[�; �0]� in ((Seq; �); �00)

cnvStmt[�; �](Par Æ �)

b= let �0 = � t cnvDecls[�]Æ t f(�; t) 7! Val 0g

in let (�; �00) = cnvStmts[�; �0]� in ((Par; �); �00)

cnvStmt[�; �](Asg v e)

b= ((Asg (key[�](�; v)) e;�); �)

cnvStmt[�; �](In c v)

b= ((In (key[�](�; c)) (key[�](�; v));�); �)

cnvStmt[�; �](Out c e)

b= ((Out (key[�](�; c)) e;�); �)

cnvStmt[�; �](If e s1 s2)

b= let (T1; �1) = cnvIxStmt[�; �](1; s1)

in let (T2; �2) = cnvIxStmt[�; �](2; s2) in ((If e; hT1; T2i); �1 [�2)

cnvStmt[�; �](If e s)

b= let (T 0; �0) = cnvIxStmt[�; �](1; s) in ((If e; hT 0i); �0)

cnvStmt[�; �](Whl e s)

b= let (T 0; �0) = cnvIxStmt[�; �](1; s) in ((Whl e; hT 0i); �0)

cnvStmt[�; �](Pri $)

b= let (� 0; �0) = cnvStmts[�; �](cnvPCase[�]
?
$)

in ((Pri; � 0); �0 t f(�; s) 7! Stopg)

cnvStmt[�; �](Brk)

b= ((Brk;�); �)

cnvStmt[�; �](Dly)

b= ((Dly 1;�); �)

cnvStmt[�; �](Cont)

b= ((Cont;�); �)

We provide a form for converting the ith sub-statement directly | this is used

above, as well as below for handling sequences of sub-statements:

cnvIxStmt : TC � Env ! N1 � Stmnt ! StmtT � Env

cnvIxStmt[�; �](i; s) b= cnvStmt[i : �; �]s

Converting statement sequences simply involves generating appropriate indices

and then zipping these with the statements, mapping indexed conversion across

12

and unzipping to get the result:

cnvStmts : TC � Env ! Stmnt+! StmtT+ � Env

cnvStmts[�; �]� b= (�; �0)

where

{ = h1 : : : len �i

(�; %) = (unzip Æ (cnvIxStmt[�; �]
?
Æ zip)({; �)

�0 = [=%

3.6.5 Converting PCase

Converting prialt cases mainly involves stripping out the statements and con-

verting the channel information to statements and returning those contained in

a sequential compound statement

cnvPCase : TC ! PCse ! Stmnt

cnvPCase[�](Cin c v s) b= Seq � hIn (key[�](�; c)) (key[�](�; v)); si

cnvPCase[�](Cout c e s) b= Seq � hOut (key[�](�; c)) e; si

cnvPCase[�](Default s) b= Seq � hCont; si

13

3.7 Explicit Environment Syntax Summary

Prog b= StmtT � Env

StmtT b= Tree Stmt

inv-StmtT Seq b= ` > 0

inv-StmtT Par b= ` > 1

inv-StmtT (If) b= ` 2 0; 1

inv-StmtT (Whl) b= ` = 1

inv-StmtT Pri b= ` > 0

inv-StmtT T b= ` = 0

Stmt ::= Seq j Par

j Asg CtId Expr

j In CtId CtId

j Out CtId Expr

j If Expr

j Whl Expr

j Pri

j Brk jCont

j Dly N

Expr ::= Num Z

j Var CtId

j App CtId Expr+

Id ::= A
+

Env b= CtId ! ValState

ValState ::= Val Data

j Chan ChState TC TC

j InCh ChState TC

j OutCh ChState TC

j Stop j Go

Data b= Z[f?g

ChState b= Idle jWait j Input jOutput jReady jError

14

4 Control Flow (Interpretative) Semantics

4.1 Introduction

We shall model control ow by the notion of \program counters" or \execution

pointers" which are simply tree cursors. In general, because of the parallelism,

we will have a set of active execution pointers. If this set becomes empty,

then the program has terminated. Program execution involves three conceptual

phases:

� Execution Pointer Setup The execution pointers are updated to point to

the next set of atomic statements to be executed. This phase starts and

ends with pointers pointing only at atomic statements. Pointers may

indicate composite statements during this process. This phase is in fact

split into two sub-phases. The prialt and communication statements

require global knowledge to be fully handled, so the second phase, is used

to �nalise things once all the other active atomic statements have been

identi�ed.

� Right-hand Side evaluation The right-hand side expressions of all the se-

lected assignments and channel statements are evaluated.

� Left-hand Side Assignment The left-hand variables and channel contents

are then simultaneously updated.

These three phases comprise one clock cycle. The third phase coincides with

the assignment clock edge.

4.2 Running the Program

We take a program, termination predicate and (initial) environment, determine

the �rst execution pointers and then repeatedly cycle, until there are either

no more execution pointers, or the termination predicate returns true. The

program state is the current set of execution pointers and the environment:

�; (K; �) 2 PState = PTC � Env

The termination predicate is over program state:

0 2 TermPred b= PState ! B

We return the program state at the time of termination.

cfBeh : TermPred ! Prog ! PState

cfBehStart0(T; �0) b= repeat cycle (fstep
T
(�)�) 00

where

0
0(K; �) b= 0(K; �) _K = ;

The most useful purpose for the predicate is to allow either `single-stepping'

or stopping at external (observable) communications events. Such a stopped

15

program can be restarted by:

cfBehResume : TermPred ! StmtT ! PState ! PState

pre-cfBehResume0[T](K; �) b= K 6= ;

cfBehResume0[T](K; �) b= repeat cycle (K; �) 00

where

0
0(K; �) b= 0(K; �) _K = ;

The precondition is not strictly necessary as cycle acts like an identity function

if K is empty.

4.3 The Clock Cycle

We take the program, environment and set of execution pointers and return

a modi�ed environment and set of next execution pointers. We carry out the

three phases in the order: evaluate rhs, assign lhs, and determine next execution

pointers:

cycle : StmtT ! PState ! PState

cycle
T
(K; �) b= let �r = evalRhsT;�[�]K in

let �c = evalCommsT;�[�]� in

let �l = � y (�r t �c) in

incExePtrsT (K; �l)

The reason for this ordering is that we call cycle with an initial set of execution

pointers.

4.3.1 Evaluating the RHS

For assignments we simply evaluate the rhs in the current environment and set

the variable to that value in the new environment:

evalRhs : StmtT � Env ! Env !PTC ! Env

evalRhsT;�[�
0]; b= �0

evalRhsT;�[�
0](K [f�g) b= evalRhsT;�[�

0 y �00]K

where

�00 b= T (�) = (Asg v e) ! fv 7! Val �(e)g ; �

For communication statements we simply evaluate the output rhs in the current

environment and set the input variable to that value in the new environment.

We work through the environment, rather than the execution pointers because

16

we need to pick up both statements for each channel:

evalComms

: StmtT � Env ! Env ! Env ! Env

evalCommsT;�[�
0]�

b= �0

evalCommsT;�[�
0](� t fc 7! sg)

b= evalCommsT;�[�
0 y �00]�

where

�00 b= stateOf�(c) = Ready ! evalComm[T; �](�(c)) ; �

evalComm

: StmtT � Env ! ValStateEnv

evalComm[T; �](Chan Ready �i �o)

b= let (Out e) = �1(T (�o))

and (In v) = �1(T (�i)) in

� y fv 7! Val �(e)g

4.3.2 `Incrementing' Execution Pointers

We apply nxtep to all existing pointers to get new ones, factor out the com-

munication pointers, use resep to resolve them, and merge the outcome back

in:

incExePtrs : StmtT ! PState! PState

incExePtrsT (K; �) b= let (K 0; �0) = foldNxtT (;; �
0)K 0 in

let (Ka;Kp) = (/�[PT]K
0; /[PT]K

0) in

let(Kc; �
00) = resep

T
(�0)Kp in

(Ka [Kc; �
00)

where

PT (�) b= �1(T (�)) = Pri

_ �1(T (�)) = (In)

_ �1(T (�)) = (Out)

This function simply applies nxtep to a set of execution pointers, passing the

environment between them.

foldNxt : StmtT ! PState!PTC ! PState

foldNxtT (K; �); b= (K; �)

foldNxtT (Ka; �)(Kp t f�g) b= foldNxtT (Ka [K 0; �0)Kp

where

(K 0; �0) = nxtep
T
(�)�

This function is de�ned recursively over sets, so it is potentially non-deterministic.

We need to show it actually is a function. The key to such a proof is that multi-

ple execution pointers only result for Par statements, and their sole interaction

17

is to increment and decrement the thread count for the Par statement (x4.5.4),
in a manner that is independent of the order in which each thread is created or

destroyed.

4.4 Determining Next Execution Pointers

The process of computing the next execution pointers involves the following

functions:

� fstep (first execution point) | given an execution pointer pointing to

a statement, this identi�es the �rst atomic statements to be executed

in that statement, relative to the current state of the environment. In

general it may return zero, one, or more pointers, as well as modifying the

environment (or that portion of it which deals with synchronisation). For

Pri statements, it returns a pointer to the statement itself, and not an

atomic sub-statement.

� nxtep (next execution point) | given an execution pointer pointing to a

statement, this seeks to identify the next atomic statement to be executed,

by looking at the parent of the current statement. As above, it will refer

to the current environment, and it may return zero, one, or more pointers,

and a modi�ed environment.

� resep (resolve communication execution points) | given execution pointer

for all active communication statements, it determines, by looking at the

state of the channels involved, which are going to execute.

The function fstep is applied to the program (root statement) at the beginning

to establish the �rst execution points. The �rst phase simply applies nxtep to

every current execution point, then applies resep to all selected communication

statements, and combines the results.

4.5 De�nitions of fstep and nxtep

We shall start by giving a general overview of the function signatures and their

�rst activity at the top-level. Then we present the behaviour for each statement

type on a case by case basis.

Both functions take a program tree, environment, and execution pointer as

arguments. Both return a set of execution pointers and an environment as

results:

fstep : StmtT ! Env ! TC ! PState

nxtep : StmtT ! Env ! TC ! PState

The program tree (T) is a �xed parameter, designating the entire program, and

does not change.

The fstep function uses the execution pointer to lookup the current statement

for case analysis. If the statement is atomic or a prialt then we are done, and we

18

return that execution pointer. With the prialt we also set it's status to Stop

fstep
T
(�)�

b= case T (�)

(Asg ;�)! (f�g; �)

(Dly;�)! (f�g; �)

(In ;�)! (f�g; �)

(Out ;�)! (f�g; �)

(Pri;)! (f�g; � y f(�; s) 7! Stopg)

...

The other statement types will be dealt with below on a case-by-case basis. We

shall use the form

fstep
T
(�)� where T (�) = : : :

to denote the cases concerned.

The nxtep function uses part of the execution pointer to lookup the current

statement's parent for case analysis, except for communications statements,

discussed shortly. If the execution pointer is empty, then we are asking for the

next statement after the program as a whole, so we respond with an empty

pointer set, signalling program termination:

nxtep
T
(�)� b= (;; �)

Otherwise, we determine if we have a communication statement that is blocked,

in which case we return their execution pointers. Otherwise, we do case analysis

on the parent, which must therefore be composite:

nxtep
T
(�)(i : �)

b= case T (i : �)

(In c v;�) j stateOf(�(i : �; c)) = Input

! (fi : �g; �)

(Out c e;�) j stateOf(�(i : �; c)) = Output

! (fi : �g; �)

(Pri; �) j �(i : �; s) = Stop

! (fi : �g; �)

otherwise! case T (�)

...

The function stateOf is :

stateOf : ValState! ChState

stateOf(Chan s) b= s

stateOf(InCh s) b= s

stateOf(OutCh s) b= s

19

The remaining statement types will be dealt with below on a case-by-case basis.

We shall use the form

nxtep
T
(�)(i : �) where T (�) = : : :

to denote the cases concerned.

All the cases involve the composite statements. In general we assume that

sub-statements are numbered 1 to N where N is the length of their sequence

(N = len �).

4.5.1 The Seq Statement

The �rst execution point of a sequential statement is that of its �rst sub-

statement:

fstep
T
(�)� where T (�) = (Seq; hs1; : : : ; sNi)

b= fstep
T
(�)(1 : �)

Pictorially, we go from

fstep) � :: Seq

���������������

�� ����������������

(1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

to

� :: Seq

�����������������

�� ���������������

fstep) (1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

The next execution point of a child of a sequence statement is the �rst of the

next child in sequence, if any more remain. If we are starting from the last child

then we look to the sequence's own parent:

nxtep
T
(�)(i : �) where T (�) = (Seq; hs1; : : : ; sNi)

b= i < N ! fstep
T
(�)(i+ 1 : �)

i = N ! nxtep
T
(�)�

For all but the last child we go from

� :: Seq

�����������������

�� �����������������

����������������������������������

(1 : �) :: s1 : : : nxtep) (i : �) :: si (i+ 1 : �) :: si+1 : : : (N : �) :: sN

to

� :: Seq

��������������

�� �����������������

��������������������������������������

(1 : �) :: s1 : : : (i : �) :: si fstep) (i+ 1 : �) :: si+1 : : : (N : �) :: sN

20

For the last child we go from

� :: Seq

���������������

�� ������������������

(1 : �) :: s1 : : : (i : �) :: si : : : nxtep) (N : �) :: sN

to

nxtep) � :: Seq

���������������

�� ����������������

(1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

4.5.2 The If Statement

The �rst execution point of an if-statement depends on the current value of the

condition and is the �rst execution point of the appropriate sub-statement:

fstep
T
(�)� where T (�) = (If c; hst sei)

b= �(c) ! fstep
T
(�)(1 : �)

:�(c) ! fstep
T
(�)(2 : �)

Pictorially, we go from

fstep) � :: If True

����������������

��														

(1 : �) :: st (2 : �) :: se

to

� :: If True

�����������������

��

fstep) (1 : �) :: st (2 : �) :: se

and from

fstep) � :: If False

����������������

��														

(1 : �) :: st (2 : �) :: se

to

� :: If False

��������������

�����������������

(1 : �) :: st fstep) (2 : �) :: se

21

The �rst execution point of an if-statement with no else-statement depends on

the current value of the condition and is the �rst execution point of the then-

statement if true, otherwise we look for the next statement after the if:

fstep
T
(�)� where T (�) = (If c; hsti)

b= �(c) ! fstep
T
(�)(1 : �)

:�(c) ! nxtep
T
(�)�

Pictorially, we go from

fstep) � :: If True

��
(1 : �) :: st

to

� :: If True

��
fstep) (1 : �) :: st

and from

fstep) � :: If False

��
(1 : �) :: st

to

nxtep) � :: If False

��
(1 : �) :: st

The next execution point of a child of an if-statement is the next point of the

parent itself, (regardless of the presence/absence of the else statement):

nxtep
T
(�)(i : �) where T (�) = (If c; �)

b= nxtep
T
(�)�

We go from

� :: If c

		������������

��������������

(1 : �) :: st (nxtep) [(2 : �) :: se]

to

nxtep) � :: If c

���������������

���������������

(1 : �) :: st [(2 : �) :: se]

22

4.5.3 The Whl Statement

The �rst execution point of an while-statement depends on the current value of

the condition. If true, it is the �rst execution point of the body. If false, it is

the next execution point after the while-statement.

fstep
T
(�)� where T (�) = (Whl c; hsbi)

b= �(c) ! fstep
T
(�)(1 : �)

:�(c) ! nxtep
T
(�)�

Pictorially, we go from

fstep) � :: Whl True

��
(1 : �) :: sb

to

� :: Whl True

��
fstep) (1 : �) :: sb

and from

fstep) � :: Whl False

��
(1 : �) :: sb

to

nxtep) � :: Whl False

��
(1 : �) :: sb

The next execution point of the child of an while-statement is the �rst execution

point of that child if the condition is true, otherwise it is the next execution

point of the parent itself:

nxtep
T
(�)(1 : �) where T (�) = (Whl c; hsbi)

b= �[c] ! fstep
T
(�)(1 : �)

:�[c] ! nxtep
T
(�)�

We go from

� :: Whl True

��
nxttep) (1 : �) :: sb

23

to

� :: Whl True

��
fstep) (1 : �) :: sb

and from

� :: Whl False

��
nxttep) (1 : �) :: sb

to

nxtep) � :: Whl True

��
(1 : �) :: sb

The semantics for theWhl statement displays potentially divergent behaviour.

If we have a fragment of syntax of the form (annotated with cursors):

� :: (Whl True; h1 : � :: (Whl False; �)i)

and we try to compute ftsep
T
(�)� we obtain:

ftsep
T
(�)�

= hOuter Whl condition is Truei
ftsep

T
(�)(1 : �)

= hInner Whl condition is Falsei
nxtep

T
(�)(1 : �)

= hOuter Whl condition is Truei
fstep

T
(�)(1 : �)

= hInner Whl condition is Falsei
nxtep

T
(�)(1 : �)

...

We get an in�nite regress ! This is not a disaster, as we have captured an aspect

of Handel-C's own behaviour. Handel-C cannot generate the combinatorial logic

to compute the next statement in this case. It reports a \combinatorial cycle"

at this point. Handel-C issues this as a warning, and then �xes the problem by

putting a Dly statement in parallel with the inner while loop. This breaks the

conbinatorial cycle, and allows the fstep and nxtep functions to terminate.

4.5.4 The Par Statement

The parallel statement is quite complex because (i) we produce multiple threads

of execution, each with its own execution pointer, and (ii) we need to keep track

of which threads have terminated, as the parallel construct terminates only when

all the threads have done so. We use the environment, indexed by a special

identi�er (t) tagged with the execution pointer for the parallel construct itself,

24

to store the number of outstanding threads. As control passes into the Par,

the relevant call to fstep updates the environment to reect the fact that N
threads have been started. As each thread terminates, this value is decremented

by the corresponding call to nxtep. This is the reason that these functions need

to return an environment value.

A technical diÆculty could arise here. Some of the sub-statements in the parallel

construct could be while-loops with false guards. These will not run and will

terminate immediately, so decrementing the thread count. Indeed, if all the

bodies are such while-loops, the count will be set to N , then decremented N
times as the calls to fstep turn into calls to nxtep, �nally resulting in nxtep

being called on the Par itself ! The key point is that the environment needs to

be chained among the N calls to fstep for each thread. We cannot simply do

the calls `in parallel'.

We introduce an auxiliary function fstpar which applies fstep to a sequence

of statements, and manages the environment threading. The sequence is simply

denoted by the number of statements remaining to be processed:

fstpar : StmtT ! PState! TC ! N !PTC � Env

fstpar
T
(P; �)� 0 b= (P; �)

fstpar
T
(P; �)� (i+ 1) b= let (P 0; �0) = fstep

T
(�)(i+ 1 : �)

in fstpar
T
(P [P 0; �0)� i

A property we need to check is that the interference between the N applications

of fstep is well-behaved.

The �rst execution point of a parallel statement is that of all its sub-statements:

fstep
T
(�)� where T (�) = (Par; hs1; : : : ; sN i)

b= fstpar
T
(;; � y f(�; t) 7! Val Ng)� N

Pictorially, we go from

fstep) � :: Par(0)

����������������

�� ��														

(1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

to

� :: Par(N)

��

�� ��������������������

fstep) (1 : �) :: s1 : : : fstep) (i : �) :: si : : : fstep) (N : �) :: sN

Note that fstep should never be applied to a Par with outstanding threads.

This denotes a serious failure of the semantics, as any given Handel-C statement

only has one live instance at any point in time. In e�ect we have a pre-condition:

pre fstep
T
(�)� where T (�) = (Par; hs1; : : : ; sN i)

b= k 2 dom �) �(k) = Val 0

where k = (�; t)

25

The next execution point of a child of a parallel statement depends on whether

or not any other threads remain executing. The parallel construct's thread

count is decremented. If there are still outstanding threads we simply discard

the execution point, and return the modi�ed environment. If that was the last

thread, then we seek the next statement after the parallel construct:

nxtep
T
(�)(i : �) where T (�) = (Par; hs1; : : : ; sN i)

b= let �0 = �	 fk 7! 1g in

�0(k) > 0 ! (;; �0)

�0(k) = 0 ! nxtep
T
(�0)�

where k = (�; t)

When there are other threads remaining we go from

� :: Par(t+ 1)

����������������

�� �����������������

(1 : �) :: s1 : : : nxtep) (i : �) :: si : : : (N : �) :: sN

to

� :: Par(t)

��������������

�� ��

(1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

When there are no other threads remaining we go from

� :: Par(1)

����������������

�� �����������������

(1 : �) :: s1 : : : nxtep) (i : �) :: si : : : (N : �) :: sN

to

nxtep) � :: Par(0)

�����������������

�� �����������������

(1 : �) :: s1 : : : (i : �) :: si : : : (N : �) :: sN

4.5.5 The Brk Statement

The Break statement simply jumps to the �rst statement after the most im-

mediately enclosing while-loop, or pri-alt construct. In our reduced abstract

syntax, we don't have explicit breaks in pri-alt, so we view them here as only

occuring inside while-loops. While technically an atomic statement, it is treated

26

here as composite one. It is called by fstep, but not by nxtep:

fstep
T
(�)� where T (�) = (Brk;�)

b= nxtep
T
(�)(brkT�)

where

brk : TC ! TC

brk � b= �

brk(i : �) b= T (i : �) = (Whl : : :) ! nxtep
T
(�)�

! brk �

Pictorially, we go from

� :: Whl

��
...

��

(no Whl here)

fstep) j :� : (i : �) :: Brk

to

nxtep) � :: Whl

��
...

��

(no Whl here)

j :� : (i : �) :: Brk

4.5.6 The Pri Statement

The e�ect of fstep on the prialt has already been covered. The next statement

for a prialt sub-statement is simply the next statement for the prialt itself:

nxtep
T
(�)(i : �) where T (�) = (Pri; hc1; : : : ; cNi)

b= nxtep
T
(�)�

Pictorially, we go from

� :: Pri

������������������

�� ������������������

(1 : �) :: c1 : : : nxtep) (i : �) :: ci : : : : : : (N : �) :: cN

to

nxtep) � :: Pri

����������������

�� ��														

(1 : �) :: c1 : : : (i : �) :: ci : : : : : : (N : �) :: cN

27

4.6 De�nition of resep

The resep function, handles the prialt and communication constructs. Unlike,

the other functions, it is given a set of execution pointers denoting all the

currently \live" prialts and input and output statements.

resep : StmtT ! Env !PTC ! PState

pre-resep
T
(�)K b= 8[isCommT]K

isComm : Stmt ! TC ! B

isCommT (�) b= case T (�)

(In ;�) ! True

(Out ;�) ! True

(Pri ;) ! True

s ! False

It determines which cases in these will become active, if any. A prialt without

a default clause can itself be blocked, in the same way as is possible for the com-

munications statements. If a prialt is blocked we return a pointer to the whole

construct. When a prialt alternative is selected, the relevant communications

statement is executed. The associated statements are executed in subsequent

clock cycles.

4.6.1 De�nition of resep, without prialts

We now give a de�nition of resep that does not cater for Pri. This means in

e�ect that it changes nothing, as the only statments we expect to handle are

atomic communication statements which are already handled.

resep : StmtT ! Env !PTC ! PState

resep
T
(�)K b= (K; �)

4.7 Full De�nitions of fstep and nxtep

The de�nitions of fstep and nxtep are distributed throughout the preceding

text. Here we gather them together in one place.

28

4.7.1 Complete De�nition of fstep

pre fstep
T
(�)�

b= � 2 dom T

^

case T (�)

(Par;)! k 2 dom � ^ �(k) = Val 0

where k = (�; t)

otherwise! True

fstep
T
(�)�

b= case T (�)

(Seq;)! fstep
T
(�)(1 : �)

(Par; �)! fstpar
T
(;; � y f(�; t) 7! Val ng) � n

where n = len �

(Asg ;�)! (f�g; �)

(In ;�)! (f�g; �)

(Out ;�)! (f�g; �)

(If c; hst; sei) j �(c)! fstep
T
(�)(1 : �)

(If c; hst; sei) j :�(c)! fstep
T
(�)(2 : �)

(If c; hsti) j �(c)! fstep
T
(�)(1 : �)

(If c; hsti) j :�(c)! nxtep
T
(�)�

(Whl c;) j �(c)! fstep
T
(�)(1 : �)

(Whl c;) j :�(c)! nxtep
T
(�)�

(Pri;)! (f�g; � y f(�; s) 7! Stopg)

(Brk;�)! nxtep
T
(�)(brkT�)

(Dly;�)! (f�g; �)

fstpar : StmtT ! PState! TC ! N !PTC � Env

fstpar
T
(P; �)� 0 b= (P; �)

fstpar
T
(P; �)� (i+ 1) b= let (P 0; �0) = fstep

T
(�)(i+ 1 : �)

in fstpar
T
(P [P 0; �0)� i

brk : TC ! TC

brk � b= �

brk(i : �) b= T (i : �) = (Whl : : :) ! nxtep
T
(�)�

! brk �

29

4.7.2 Complete De�nition of nxtep

nxtep
T
(�)(i : �)

b= case T (i : �)

(In c v;�) j stateOf(�(i : �; c)) = Input! (fi : �g; �)

(Out c e;�) j stateOf(�(i : �; c)) = Output! (fi : �g; �)

(Pri; �) j �(i : �; s) = Stop! (fi : �g; �)

otherwise

case T (�)

(Seq; �) j i < len � ! fstep
T
(�)(i+ 1 : �)

(Seq; �) j i = len � ! nxtep
T
(�)�

(If ; �)! nxtep
T
(�)�

(Whl c;) j �(c)! fstep
T
(�)(1 : �)

(Whl c;) j :�(c)! nxtep
T
(�)�

(Par; hs1; : : : ; sN i) j �
0(k) > 0! (;; �0)

where k = (�; t) and �0 = �	 fk 7! 1g

(Par; hs1; : : : ; sN i) j �
0(k) = 0! nxtep

T
(�0)�

where k = (�; t) and �0 = �	 fk 7! 1g

(Pri;)! nxtep
T
(�)�

4.8 Auxilliary Functions

We set channel state to waiting for output when we have a input statement

using an idle channel:

setOutWait : TC !ValState! ValState

setOutWait[�i](Chan Idle � � d) b= (Chan OutWait �i � d)

setOutWait[�i](OutCh Idle � d) b= (OutCh OutWait �i d)

We set channel state to waiting for input when we have a output statement

using an idle channel:

setInWait : TC !ValState! ValState

setInWait[�o](Chan Idle � � d) b= (Chan InWait � �0 d)

setInWait[�o](OutCh Idle � d) b= (OutCh InWait �o d)

We set channel state to ready when we have an input statement using a channel

waiting for input:

setInReady : TC ! ValState!ValState

setInReady[�i](Chan InWait � �o d) b= (Chan Ready �i �o d)

We also set channel state to ready when we have an output statement using a

channel waiting for output:

setOutReady : TC !ValState! ValState

setOutReady[�o](Chan OutWait �i � d) b= (Chan Ready �i �o d)

30

We also set channel state to ready when we have both input and output state-

ments using a channel waiting for output:

setReady : (TC)2 ! ValState!ValState

setReady[�i; �o](Chan OutWait � � d) b= (Chan Ready �i �o d)

5 Acknowledgments

We would like to thank Jim Woodcock and Alistair McEwan for their many

helpful discussions and comments, as well as Ian Page for his help in identifying

the key parts of the language. We would also like to thank the Dean of Research

of Trinity College Dublin for his support.

References

[BHP94] J. P. Bowen, He Jifeng, and I. Page. Hardware compilation. In J. P.

Bowen, editor, Towards Veri�ed Systems, volume 2 of Real-Time

Safety Critical Systems, chapter 10, pages 193{207. Elsevier, 1994.

[Emb] Embedded Solutions Ltd. (now Celoxica Ltd.). Handel-C Language

Reference Manual, v2.1.

[Hoa90] C.A.R. Hoare. Communicating Sequential Processes. Intl. Series in

Computer Science. Prentice Hall, 1990.

[LKL+95] Adrian Lawrence, Andrew Kay, Wayne Luk, Toshio Nomura, and

Ian Page. Using recon�gurable hardware to speed up product de-

velopment and performance. In Will Moore and Wayne Luk, ed-

itors, Field-Programmable Logic and Applications, pages 111{119.

Springer-Verlag, Berlin, August/September 1995. Proceedings of the

5th International Workshop on Field-Programmable Logic and Ap-

plications, FPL 1995. Lecture Notes in Computer Science 975.

[PL91] I. Page and W. Luk. Compiling Occam into �eld-programmable gate

arrays. In W. Moore and W. Luk, editors, FPGAs, Oxford Work-

shop on Field Programmable Logic and Applications, pages 271{283.

Abingdon EE&CS Books, 15 Harcourt Way, Abingdon OX14 1NV,

UK, 1991.

[SP93] M. Spivey and I. Page. How to design hardware with Handel. Tech-

nical report, Oxford University Hardware Compilation Group, De-

cember 1993.

31

