
Denotational Semantics for prialt-free Handel-C

Andrew Butter�eld

December 20, 2001

Contents

1 Introduction 2

2 Reduced Concrete Syntax 3

2.1 Language Rework Stage 1 . 4

2.2 Language Rework Stage 2 . 5

3 Semantic Domains Introduction 6

4 Basic Semantic Domains 7

4.1 Value Domains . 7

4.2 Identi�er Spaces . 7

4.3 Environments, Worlds and Changes 8

5 Main Semantic Domains 9

5.1 Choices . 9

5.2 Branching Choice Sequences . 9

5.3 Branching Sequence Operators 10

5.3.1 Atomic and sub-Atomic Events 10

5.4 Top Domain: Branching Sequence of Choices 11

5.4.1 Uniformity . 11

5.4.2 Event Combinator . 12

5.4.3 Useful Shorthands . 13

5.5 Pruning . 13

6 The Statement Semantics 14

6.1 Delay Semantics . 14

6.2 Assignment Semantics . 14

6.3 Sequencing Semantics . 14

6.4 Parallel Semantics . 15

6.5 Conditional Semantics . 15

1

6.6 While Semantics . 15

6.7 Request Semantics . 15

6.8 Release Semantics . 15

6.9 Channel Write Semantics . 16

6.10 Channel Read Semantics . 16

6.11 Prialt Semantics . 16

7 The Expression Semantics 16

7.1 Normal Expressions . 16

7.2 Wait Expression . 17

7.3 Select Expression . 17

7.4 Channel's Active Expression . 17

8 Resolving Communication Requests 17

8.1 Communication Resolution . 18

9 Some Examples 19

9.1 Parallel Interference . 19

9.2 Delayed Communication . 20

9.3 Factorial 3 . 23

9.4 Nested While (Pathological) . 24

10 Acknowledgments 26

A Alternative Formulation of BrTree 27

1 Introduction

Handel-C [Emb] is a language developed by the Hardware Compilation Group

at Oxford's Computer Laboratory. It is a hybrid of C and CSP [Hoa90], de-

signed to target hardware implementations, speci�cally �eld-programmable gate

arrays (FPGAs) [PL91, SP93, BHP94, LKL+95]. The language can be viewed

as a pointer-free subset of C, augmented with a parallel construct and chan-

nel communication, as found in CSP. The type system has been modi�ed to

explicitly refer to the number of bits required to implement any given type.

The language targets synchronous hardware with a single master clock. All

assignments and channel communication events take one clock cycle, with all

updates synchronised with the clock edge marking the cycle end. All expression

and conditional evaluation (for selection, loops) is deemed to take `zero-time',

e�ectively being completed before the current clock cycle ends.

In order to facilitate work on a formal semantics for Handel-C, it was decided at

�rst to consider a subset only, namely the smallest subset that would catch all

the essential and potentially diÆcult aspects. After discussions with Ian Page,

a suitable subset of Handel-C was identi�ed. It includes channels, assignment,

2

conditional, one loop, and the parallel construct as well as shared variables. Key

omissions include types, macros, shared expressions, RAMs, ROMs, arrays and

the bus interface material, all of which can be handled fairly straightforwardly,

in semantic terms. Discussing requirements for a set of algebraic laws with

Jim Woodcock, in particular with respect to normal forms, it was decided to

include the `prioritised alternatives' construct (prialt) in the reduced syntax.

Another key motivation for having the prialt is that it is the only mechanism

for introducing non-blocking (or try-else-skip) synchronisations into programs.

This report presents a denotational semantics of a prialt-free subset of the

Handel-C hardware compilation language. The language is presented here with

such a construct, but its semantics are not fully described at this point. This

is due in the main to the lack of clear documentation on the behaviour of

this construct, which will require some experimentation in order to be able

to elucidate an appropriate semantics. This has been left as a future task.

However, the semantics presented here has been de�ned with prialt in mind,

which explains why the semantics of communication appears more complicated

than it needs to be.

This document presents the semantics, but does not provide any formal or

informal validation. This will be the subject of another technical report.

Here we present a denotational semantics for Handel-C programs, inspired in

the main by material presented at a seminar on Concurrency, held in Carnegie-

Mellon University, in 1984 [BRW84].

2 Reduced Concrete Syntax

We initially start with a reduced and simpli�ed form of the concrete syntax of

Handel-C (see [Emb, x9] for details of the full syntax). We shall then trans-

form this language in two stages. The �rst stage gives the conditional and

communication statements a more uniform structure. The second stage breaks

all communication statements down into more fundamental components dealing

explicitly with requests, waits and data transfer.

In our reduced syntax we have variables and channel identi�ers, as well as

expressions which we do not de�ne further.

v 2 V Variables

c 2 C Channels

e; b 2 E Expressions

Communication statements are referred to as guards, because they only occur

as such in prialt statments, in our reduced language.

g 2 G ::= Guards

!? Self-Synch

j c!e Output

j c?v Input

Handel-C statements include the usual imperative language ones, plus parallel,

prialt and delay constructs. In order to be general, we allow delay statements

3

to specify an arbitrary number of clock cycles (including zero).

s 2 S ::= Statements

Æn Delay

j v := e Assignment

j s1; s2 Sequencing

j s1 k s2 Parallel

j b ! s1 ; s2 Conditional

j b � s While

j hg1 : s1; : : : ; gn : sni Prialt

We have a well-formedness constraint on prialts: all but the last guard must be

either input or output. Stand-alone communications statements are modelled as

singleton prialts, where we often write c!e or c?v instead of the strictly correct

form hc!e : Æ0i or hc?v; Æ0i. In pure programs, Self-Synch guards (!?) only occur

last in a pri-alt, and all delays are of the form Æ1.

2.1 Language Rework Stage 1

We are going to rework the language to add some new expression and state-

ment forms, including an n-way conditional, and labels for all communication

statements. We also admit `naked' guards directly as communication statements

We add in the notion of labels (for communication statements) and we extend

expressions to contain special (meta) builtin functions (w; s; e) to handle com-

munication events. The �rst two (w; s) have signature L! N and are used to

determine if the communication statement with the corresponding label has to

wait or which sub-statement has ben selected to execute, if appropriate. The

third (e) has signature C!Val and returns the value currently being transmit-

ted on the given channel.

` 2 L Labels

p 2 P ::= N Priorities

e 2 E Expressions

b 2 E
0 ::= E Extended Expr.

j w(`) Wait

j s(`) Select

j e(c) Expr

For statements, we allow guards outside prialts, for convenience, we change the

2-way conditional (if-then-else) to a n-way conditional (switch), and we add in

4

speci�c statements to request and release communication requests:

s 2 S ::= Statements

Æn Delay

j v := e Assignment

j g` Guards (excl. !?)

j s1; s2 Sequencing

j s1 k s2 Parallel

j e ! s1 ; : : : ; sn Conditional

j b � s While

j hg1 : s1; : : : ; gn : sni` Prialt

j <(`; p; g) Request

j 0(`) Release

2.2 Language Rework Stage 2

We now reduce the language to a restricted subset using the following rules,

which replace all communication statements, by a sequence involving issuing a

request, waiting for it to be granted, releasing any other associated requests,

and �nally performing the appropriate data transfer operation.

g` 7! <(`; 1; g); w(`) � Æ1; 0(`); Act(g)

hg1 : s1; : : : ; gn : sni` 7! <(`; 1; g1); : : : ;<(`; n; gn);

w(`) � Æ1;

s(`) ! 0(`); Act(g1); s1 ; : : : ;0(`); Act(gn); sn

where

Act(!?) b= Æ0

Act(c!e) b= Æ1

Act(c?v) b= v := e(c)

5

This results in the following reduced language, here presented in full:

v 2 V Variables

c 2 C Channels

` 2 L Labels

p 2 P ::= N Priorities

e 2 E Expressions

b 2 E
0 ::= E Extended Expr.

j w(`) Wait

j s(`) Select

j e(c) Expr

g 2 G ::= Guards

!? Self-Synch

j c!e Output

j c?v Input

s 2 S ::= Statements

Æn Delay

j v := e Assignment

j s1; s2 Sequencing

j s1 k s2 Parallel

j e ! s1 ; : : : ; sn Conditional

j b � s While

j <(`; p; g) Request

j 0(`) Release

The syntax as presented is a little too liberal. The only usage of the request and

release statements, and the extended expressions forms (w; s; e) is that which

is generated from the stage one language using the rules given above. This

language will form the basis for the denotational semantics.

3 Semantic Domains Introduction

Handel-C has parallelism, with global variables, and a very synchronous tim-

ing model, with assignments and communication events all synchronising with

a master clock signal. Many semantic approaches dealing with concurrency,

as exempli�ed by [BRW84] succeed by restricting the interplayy of the above

features. The obvious approaches to a denotational semantics, i.e taking the

denotational semantics of CSP [BR84] or occam [Ros84] and modifying them to

suit all rapidly fail, the key problem being the presence of both global variables

and concurrency. This makes the semantics of sequencing much more diÆcult

| we can't use the rule

[[s1; s2]]! = [[s2]]!0 where !0 = [[s1]]!

because a simultaneous assignments elsewhere might have changed some other

part of the environment. Also, most of the material in [BRW84] assumes an

interleaving semantics for concurrency, so that parallel threads are `woven' to-

gether. In [BRW84], there is a semantics given of TCCS, which has events

6

occurring simultaneously, but does not admit any global variables. However,

in Handel-C, we must deal with real concurrency, in the presence of a single

global update clock, with global variables. An idea from [Bro84] (Brooke's de-

scription of Plotkin/Hennessey Resumption Trees) is to de-couple post- and

pre-conditions. In Hoare notation, we replace

fPgS1fQgS2fRg

by

fPgS1fQgfQ
0gS2fRg

The change from fQg to fQ0g allows us to handle other changes made to the

environment by other execution threads.

What follows is a semantics, inspired by ideas from [BRW84], which resolves all

of these diÆculties.

4 Basic Semantic Domains

We �rst present the basic domains, used as building blocks for the more diÆcult

material.

4.1 Value Domains

Our basic domains include variable values, timestamps, and directed (commu-

nication) requests

Val b= Z[f?g Values

Time b= N Timestamps

DReq b= In V j Out E Directed Request

We also have channel states, which are either idle or active with an associated

expression, and we have request states which are a (selector number) paired

with (priority-ordered) sequences of channel/directed request pairs:

ChState b= Channel States

Idle Idle Channel

j Act E Active

ReqState b= N � (C �DReq)
?

Communication State

inv-ReqState(n; &) b= n 2 f0 : : :len &g

We shall refer to the union of all the above spaces as our datum space:

d 2 Datum b= Val [Time [DReq [ChState [ReqState

4.2 Identi�er Spaces

We have an identi�er space containing variable and channel names, commu-

nication statement labels and a timestamp identi�er (�). Given a Handel-C

7

programme, the total identi�er space is �xed and statically determined:

Id b= V [f�g [C [L Identi�er Space

pIds : S! SetId

pIds[[P]] b= f�g [sIds[[P]]

sIds : S!PId
sIds[[Æn]] b= ;

sIds[[v := e]] b= fvg [eIds[[e]]

sIds[[g`]] b= f`g [gIds[[g]]

sIds[[s1; s2]] b= sIds[[s1]] [sIds[[s2]]

sIds[[s1 k s2]] b= sIds[[s1]] [sIds[[s2]]

sIds[[b ! s1 ; s2]] b= eIds[[b]] [sIds[[s1]] [sIds[[s2]]

sIds[[b � s]] b= eIds[[b]] [sIds[[s]]

sIds[[hg1 : s1; : : : ; gn : sni`]] b= f`g
[([= Æ (gIds)

?
)hg1 : : : ; gni

[([= Æ (sIds)
?
)hs1; : : : ; sni

gIds : G!PId
gIds[[!?]] b= ;
gIds[[c!e]] b= fcg [eIds[[e]]

gIds[[c?v]] b= fc; vg

eIds : E!PId
eIds[[e]] b= vars in expression

4.3 Environments, Worlds and Changes

In practice we treat the execution environment as a single mapping from a

number of disjoint identi�er spaces to corresponding value spaces:

� 2 Env b= Id !Datum

inv-Env : Env ! B

inv-Env� b= 8[ok�](dom �)

where

ok�(i) b= (i 2 V ^ �(i) 2 Val)

_ (i = � ^ �(i) 2 Time)

_ (i 2 C ^ �(i) 2 ChState)

_ (i 2 L ^ �(i) 2 ReqState)

We view a program world map as a total environment over the program identi-

�ers, and a change map as a partial environment over the same

! 2Worldp b= pIds[[p]]!Datum

Æ 2 Change
p

b= pIds[[p]]
m
! Datum

8

The initial world is one which maps all variables to ?, time to zero, all channels

to idle, and labels to (0;�):

!0 : Worldp

!0 b= (t= Æ ival? Æ pIds)[[p]]

where

ival(i) b= i = � ! f� 7! 0g

i 2 V ! fi 7!?g

i 2 C ! fi 7! Idleg

i 2 L ! fi 7! (0;�)g

5 Main Semantic Domains

5.1 Choices

We shall introduce the notion of choice, as a mapping from the world to changes

to the world:

� 2 Choice b= World ! Change

5.2 Branching Choice Sequences

We shall model semantics as a branching sequence of choices | this is inspired

by the resumption semantics of Plotkin and Hennessy in LNCS 197, as described

by Stephen Brookes. We de�ne a branching sequence of As as either nil, a cons

of an A and a branching sequence, or a split into several sequences. The splitting

is mediated by a split parameter S which resolves to a natural number:

� 2 BrSeq A S b= Nil

j Cons A (BrSeq A S)

j Split S (BrSeq A S)
?

The split parameter always resolves to a number (it is total in some sense) and

that number is always in the range 0 : : : n, where n is the number of branches.

How S is instantiated will be explained shortly. We shall adopt the following

shorthands in the sequel:

Longhand Shorthand

Nil �

Cons a � a : �

a : b : c : � ha; b; ci

a : � a| if no ambiguity arises

Split s h�1; �2; : : : ; �ni s(�1j�2j : : : j�n)

In passing we note that, given a special value 1 2 S which always resolves to

1, we can assert the following equivalence between a 1-way branch and its sole

constituent sequence:

1(�) �= �

9

These does admit an alternative formulation, explained later | the resulting

notation is more clumsy, but the operator de�nitions are simpler and it might

be easier to use those to prove important (meta-)properties.

5.3 Branching Sequence Operators

We de�ne two operators on branching sequences.

The �rst is a generalisation of sequence concatenation (z):

z : BrSeq A S � BrSeq A S! BrSeq A S

� z � b= �

� z � b= �

a : �1 z �2 b= a : (�1 z �2)

s(�1j : : : j�n) z � b= s(�1 z �j : : : j�n z �)

The key feature to note here is that concatenation left-distributes through

branching.

The second is a form of interleaving (()).

5.3.1 Atomic and sub-Atomic Events

Here we are going to distinguish between two types of elements of A | atomic

elements denoted a
0 (with a prime) and sub-atomic elements denoted simply by

a (without a prime). Later, we show how we actually distinguish these events.

The idea is that the sequencing captures events spaced by clock ticks, these

being the atomic events. The prime signi�es the `tick' of the clock. However,

there are various decision-making events that occur with a �ner granularity -

these are the sub-atomic events. Sub-atomic events always occupy the �rst part

of a clock cycle and all are complete before the end of the cycle. Atomic events

take all of the cycle to complete and always end at the clock edge denoting

the end of the cycle. The split parameter (s 2 S) behaves somewhat like a

sub-atomic event. Our interleaving therefore gives sub-atomic events a form of

priority over atomic ones:

() : BrSeq A S � BrSeq A S! BrSeq A S

� () � b= �

� () � b= �

a : �1 () b : �2 b= a t b : (�1 () �2)

a : �1 () �2 b= a : (�1 () �2)

�1 () b : �2 b= b : (�1 () �2)

a
0 : �1 () b

0 : �2 b= a
0 t b

0 : (�1 () �2)

a
0 : � () s(�1j : : : j�n) b= s(a0 : � () �1j : : : ja

0 : � () �n)

s(�1j : : : j�n) () b
0 : � b= s(�1 () b

0 : �j : : : j�n () b
0 : �)

s(�1j : : : j�m) () t(&1j : : : j&n) b= s�n t(�1 () &1j : : : j�1 () &n

: : :

j�m () &1j : : : j�m () &n)

10

Note that the clauses in the de�nition of () above must be tried in the order

shown. We assume a means (t) of combining both sub-atomic and atomic

events, which is associative. By s�K t as a split parameter we mean one that

returns the \ K-index product" of what the two individual parameter s and t

return. This is de�ned as:

0�K j = 0 = i�K 0 i�K j = K(i� 1) + j

This goes with an intuition that a split parameter produces a number 1 : : : n

which selects the split branch to follow. However we also allow for a split

parameter to return 0, used to signal either error conditions, or a state in which

outside intervention is required, as in external communication events.

It is worth noting that atomic events distribute through splits, whereas sub-

atomic events never do so. This is because sub-atomic events preceding the

split parameter (itself a sub-atomic event, remember) must continue to precede

it in any interleaving. We also point out that this operator is commutative: In

the context in which these branching sequences are used, we shall �nd that the

following laws will always apply, even though they are not a consequence of the

de�nition above:

�1 () �2 = �2 () �1

s(�1j : : : j�n) () s(&1j : : : j&n) = s(�1 () &1j : : : j�n () &n)

5.4 Top Domain: Branching Sequence of Choices

We are going to model our semantics domain (M) as a branch sequence of

choices, where the split parameter is a (total) function from a world to a natural

number:

s 2WSplit b= World ! N

M b= BrSeq Choice WSplit

We shall always arrange things that the split parameter of an n-way split always

returns a number in the range 1 : : : n.

5.4.1 Uniformity

We can de�ne a choice as uniform if the domain of the resulting change is always

the same, regardless of the world:

isUniform : Choice ! B

isUniform � b= 8!1; !2 2World � dom �(!1) = dom �(!2)

All choices generated by our semantics will be uniform, and uniformity will be

conserved by all operators we employ that act on choices or changes, either

inherently, or by the way in which we use them.

An atomic event is a uniform choice that, for all worlds, returns a change that

increases the time value by one. As we only ever increase time by one, we shall

11

recognise this by observing if the time identi�er is in the domain of the change

map:

isAtomic : Choice ! B

isAtomic � b= isUniform � ^ 8! 2World � � 2 dom �(!)

A sub-atomic event is a uniform choice that does not change the time value in

any world | we observe this by noting the absence of the time identi�er in the

map. Our semantics never introduces the time identi�er in a choice unless there

is a time increase.

isSubAtomic : Choice ! B

isSubAtomic � b= isUniform � ^ 8! 2World � � =2 dom �(!)

Given an assumption of uniformity, we can come up with a simple eÆcient way

of determining atomicity:

atomicityOf : Choice !fSubAtomic;Atomicg

atomicityOf � b= � 2 dom �(!0) ! Atomic ; SubAtomic

We simply use the initial world as a representative input to the choice and look

at the resulting change !

5.4.2 Event Combinator

We need to de�ne the event (choice!) combining operator t.

t : Choice � Choice ! Choice

�1 t �2 b= �! � �1(!)] �2(!)

We need to de�ne the behaviour of], which acts on changes. We note that

for disjoint portions of the domains we simply extend, but for intersecting parts

of the domains we need to take special action, which may include assigning an

error result:

] : Change � Change ! Change

Æ1] Æ2 b= /�[Æ2]Æ1 t (/[Æ2]Æ1]
0
/[Æ1]Æ2) t /�[Æ1]Æ2

Simultaneous assignments to program variables are errors, as are attempts to

give time di�erent values, give active channel states with di�erent expressions, or

combine request states with non-zero selector values. Request states combine

by concatenating the sequences, except if the second has a null sequence, in

which case it overrides the �rst:

]0 : Change � Change ! Change

fv 7! e1g]
0 fv 7! e2g b= fv 7! ?g

f� 7! t1g]
0 f� 7! t2g b= f� 7! (t1 = t2 ! t1 ; ?)g

fc 7! Act e1g]
0 fc 7! Act e2g b= fc 7! ?g

fc 7! Act e1g]
0 fc 7! Idleg b= fc 7! Act e1g

fc 7! Idleg]0 fc 7! Act e2g b= fc 7! Act e2g

fc 7! Idleg]0 fc 7! Idleg b= fc 7! Idleg

f` 7! (n; �)g]0 f` 7! (0;�)g b= f` 7! (0;�)g

f` 7! (n1; �1)g]
0 f` 7! (n2; �2)g b= f` 7! (n1 + n2 = 0 ! (n1; �1

_
�2) ; ?)g

12

We need to show the following propositions, assuming that no errors occur:

8[isUniform]f�1; �2g) isUniform(�1 t �2)

8[isAtomic]f�1; �2g) isAtomic(�1 t �2)

8[isSubAtomic]f�1; �2g) isSubAtomic(�1 t �2)

5.4.3 Useful Shorthands

Most of our choices will be of the form:

�! � f: : : ; v 7! [[e]]!; : : :g

with atomic choices containing a timestep:

�! � f: : : ; � 7! !(�) + 1; : : :g

We shall adopt the following shorthands: (i) we omit the �! � , it being under-

stood as always present, (ii) we denote expression evaluation by e rather than

[[e]]! or �! � [[e]]!, and (iii) we omit the timestamp `maplet' and instead add a

`tick-mark' to the map expression. We also use � to denote the empty choice.

We can summarise the shorthands as follows:

Longhand Shorthand

�! � f: : : ; v 7! [[e]]!; : : :g f: : : ; v 7! e; : : :g

�! � f: : : ; � 7! !(�) + 1; : : :g f: : : ; : : :g0

�! � � �

�! � f� 7! !(�) + 1g �
0

[[e]]! e

�! � [[e]]! e

We shall also use � and �
0 to denote arbitrary subatomic and atomic choices

respectively.

5.5 Pruning

Given a program we will be able to compute the corresponding branch tree

for that program. We can then take that sequence, and an initial world, and

proceed to `prune' the branches, to obtain a sequence of worlds, e�ectively being

the synchronous trace of the program execution. If we have a closed program

(no channels to outside), this resolves to such a sequence for the whole program.

If we have an open program, we can only produce a world sequence up to the

�rst external channel request. Then we must also return the remaining branch

sequence. At this point we need to use knowledge about the world to determine

what happens next. We shall also interpret the occurence of an error (?) at any

13

stage as a form of external event, aborting any further pruning at that point:

prune : World !M!World
? �M

prune[!]� b= (�;�)

prune[!](� : �) b= let $ = ! y !(�) in

? 2 rng $! (h$i; �) ; prune[$]�

prune[!](�0 : �) b= let $ = ! y !(�) in

let (
;�) = prune[$]� in

? 2 rng $! (h$i; �) ; ($:
;�)

prune[!](s(�1j : : : j�n)) b= let i = s(!) in

i = 0 ! (�; s(�1j : : : j�n)) ; prune[!]�i

This pruning function provides a context in which some key properties can be

demonstrated. For example, the following property was stated earlier

s(�1j : : : j�n) () s(&1j : : : j&n) = s(�1 () &1j : : : j�n () &n)

By saying this is true \in a certain context", what we actually meant is that

pruning either side w.r.t. an arbitrary world always gives the same result:

8! 2World

� prune[!](s(�1j : : : j�n) () s(&1j : : : j&n)) = prune[!](s(�1 () &1j : : : j�n () &n))

6 The Statement Semantics

We are now �nally in a position to give the denotational semantics of the state-

ments of Handel-C. We map statements to branching sequences:

[[]] : S!M

We now present the details for each statement.

6.1 Delay Semantics

The delay statement simply waits n clock ticks, while doing nothing else in the

meantime.

[[Æ0]] b= �

[[Æn]] b= �
0 : [[Æn�1]]

6.2 Assignment Semantics

Assignment is very traditional and takes exactly one cycle

[[v := e]] b= fv 7! eg0

6.3 Sequencing Semantics

Sequencing in the program becomes branching sequence concatenation:

[[s1; s2]] b= [[s1]] z [[s2]]

14

6.4 Parallel Semantics

Parallelism in the program becomes branching sequence interleaving:

[[s1 k s2]] b= [[s1]] () [[s2]]

6.5 Conditional Semantics

We don't try to resolve conditionals now, we simply take all possible options,

i.e produce an n-way branch point.

[[e ! s1 ; : : : ; sn]] b= e([[s1]] j : : : j [[sn]])

6.6 While Semantics

As is typical for imperative languages, we give the while-loop semantics using

�xpoints:

[[b � s]] b= fixW(b([[s]] z W j �))

This basically gives an in�nite tree at this point as we have

W = b([[s]]zW j �)

= b([[s]]zb([[s]]zW j �) j �)

= b([[s]]zb([[s]]zb([[s]]zW j �) j �) j �)

= : : :

Pruning will produce a �nite sequence if the program actually terminates.

6.7 Request Semantics

We rely on the fact that requests for a communications statement are made in

order of priority, so that we do not need to explicitly mention priority.

[[<(`; p; c; d)]] b= f` 7! (0; h(c; d)i)g

The]0 operator takes care of assembling the properly sequenced communication

state.

6.8 Release Semantics

We release communication requests by simply returning back to the state with

no requests:

[[0(`)]] b= f` 7! (0;�)g

Again the]0 operator takes care of ensuring that a release doesn't simply append
the empty request list.

The following statements are strictly speaking not in our restricted language,

but they can be given immediate semantics via their translation into the reduced

language:

15

g` 7! <(`; 1; g); w(`) � Æ1; 0(`); Act(g)

hg1 : s1; : : : ; gn : sni` 7! <(`; 1; g1); : : : ;<(`; n; gn);

w(`) � Æ1;

s(`) ! 0(`); Act(g1); s1 ; : : : ;0(`); Act(gn); sn

where

Act(!?) b= Æ0

Act(c!e) b= Æ1

Act(c?v) b= v := e(c)

6.9 Channel Write Semantics

[[c!e`]] b= [[<(`; 1; c; !e); w(`) � Æ1; 0(`); Æ1]]

6.10 Channel Read Semantics

[[c?v`]] b= [[<(`; 1; c; ?v); w(`) � Æ1; 0(`); v := e(c)]]

6.11 Prialt Semantics

[[hg1 : s1; : : : ; gn : sni`]] b= [[<(`; 1; g1); : : : ;<(`; n; gn);

w(`) � Æ1;

s(`) ! 0(`); Act(g1); s1 ; : : : ;0(`); Act(gn); sn]]

7 The Expression Semantics

We also need to give the denotational semantics to the expressions of Handel-C.

We map expressions to datum values:

[[]] : E!World !Datum

We now present the details for key expressions:

7.1 Normal Expressions

[[e]]! b= traditionaly expression evaluation

y: in order to allow uniform handling of conditionals of any arity, we represent

the boolean values True and False by the numbers 1 and 2 respectively. We

do not use 1 and 0, as might be expected, for reasons which are both practical

(everything works better our way) and theoretical (booleans are not numbers,

even in any abstract sense).

16

7.2 Wait Expression

We �rst look at the world and resolve all the various requests for communication

by determining which communications statements (as indicated by their labels)

have become ready to execute:

[[w(`)]]! b= let $ = resolve(!)

in �1($(`)) = 0

Note, as for basic expressions, if the value looked up is zero (i.e the wait condition

is true) then the number returned here is 1, otherwise 2 is returned.

7.3 Select Expression

The result of this is only a valid selector if the given communication statement

has been resolved as ready to execute.

[[s(`)]]! b= let $ = resolve(!)

in �1($(`))

7.4 Channel's Active Expression

The value of this expression is only de�ned if the channel is in the active state,

in which case the expression is evaluated and returned

[[e(c)]]! b= case !(c)

Idle ! ?

Act e ! e

8 Resolving Communication Requests

The question of how communication requests get resolved is not handled here.

The Handel-C language reference manual is not very clear on this point, and so

the resolution of this issue has been left to another technical report. We need

to capture the resolution by the following function:

resolve :World !World

It looks at all the communication states, works out which ones should be active,

and marks them so by changing the entry

f` 7! (0; �)g

to the entry

f` 7! (s; �)g

where s 2 f1 : : : ng designates which request is going to be serviced. We don't

bother recording the results of this resolution in the world, simply because

all selected communication statements proceed to release their requests before

actually doing the communication action itself.

17

8.1 Communication Resolution

The problem can be stated most clearly as follows (in a form which is slightly

di�erent to that used in the semantics):

Given a map of requests

� 2 L! (C �DReq)
?

return a map of selections

& 2 L! N

that satis�es the following requirements:

� a selection number is returned for every label:

dom & = dom �

� For every label, selection values are either zero to signify non-selection, or

else are an index into the request sequence

8` : dom & � &(`) 2 f 0 : : :len �(`)g

� A label gets a non-zero selection value only if the selected request has been

matched up with a complementary request associated with another label

&(`) > 0)

9`0 : dom & � `
0 6= `

^ &(`0) > 0

^ compReq(�(`)[&(`)] ; �(`0)[&(`0)])

Complementary requests have the same channel and opposite direction:

compReq : (C �DReq)2 ! B

compReq((c; In v); (c;Out e)) b= True

compReq((c;Out e); (c; In v)) b= True

compReq((c1; d1)(c2; d2)) b= False

� Any non-zero selection number associated with a given label identi�es a

channel. Any given channel is identi�ed in this manner either exactly

twice, or not at all. If so identi�ed twice, the two instances must be

complementary

8c 2 ([= Æ P(elems Æ �1
?) Æ rng)�

� :9` � &(`) > 0 ^ �1(�[&(`)]) = c

_ 9`1; `2 �

&(`1) > 0 ^ �1(�[&(`1)]) = c

^ &(`2) > 0 ^ �1(�[&(`2)]) = c

^ :9` � (` =2 f`1; `2g ^ &(`) > 0 ^ �1(�[&(`)]) = c)

18

� The sequencing of requests denotes priorities | the resolution should en-

deavour to respect these priorities. Each prialt induces an ordering on

channels. When combined for all active prialts, these should resolve into

a global ordering. However, certain prialt con�gurations are outlawed at

compile time, usually with a reference to \combinatorial cycles". These

involve cyclic dependencies between the labelled requests and their prior-

ities. For example, the following is
agged as illegal at compile-time

ha?v1 : s1; b!e2 : s2i`1 k hb?v3 : s3; a!e4 : s4i`2

which would result in the following request map

f `1 7! h(a; In v1); (b;Out e2)i; `2 7! h(b; In v3); (a;Out e4)i g

9 Some Examples

We present worked out semantics for some examples, some straightforward, the

others pathological. In well-behaved examples, we will use a simpli�ed version

of prune (prn) which has no error handling and returns a world sequence only:

prn : World !M!World?

prn[!]� b= �

prn[!](� : �) b= prune[! y !(�)]�

prn[!](�0 : �) b= let $ = ! y !(�) in $: prn[$]�

prn[!](s(�1j : : : j�n)) b= let i = s(!) in prune[!]�i

9.1 Parallel Interference

Here we have two threads sharing global variables:

x := 1;x := x+ y k y := 2; y := y � x;

The initial world is easily computed to be as

!0 = f� 7! 0; x 7!?; y 7!?g

To keep things compact we shall de�ne the following shorthands:

a
0
b= fx 7! 1g0 b

0
b= fy 7! 2g0 c

0
b= fx 7! x+ yg0 d

0
b= fy 7! y � xg0

Our semantics immediately gives:

prn[!0][[x := 1;x := x+ y k y := 2; y := y � x;]]

= hparallel semanticsi
prn[!0]([[x := 1;x := x+ y]] () [[y := 2; y := y � x;]])

= hsequential semanticsi
prn[!0](([[x := 1]] z [[x := x+ y]]) () ([[y := 2]] z [[y := y � x;]]))

= hassignment semantics, shorthandi
prn[!0]((ha

0i z hc0i) () (hb0i z hd0i))
= hdefn. of z, using cons formi

19

prn[!0]((a
0 : c0 : �) () (b0 : d0 : �))

= hdefn. of (), using cons formi
prn[!0](a

0 t b
0 : c0 t d

0 : �)

= hdefn. of t, longhand formi
prn[!0](fx 7! 1; y 7! 2g0 : fx 7! x+ y; y 7! y � xg0 : �)

= hdefn. of prni
!1 : prn[!1](fx 7! x+ y; y 7! y � xg0 : �)

where !1 = f� 7! 1; x 7! 1; y 7! 2g
= hdefn. of prni

!1 : !2 : prn[!1]�

where !2 = f� 7! 2; x 7! 3; y 7! 1g
= hdefn. of prni

h!1; !2i
= hexpand outi

hf� 7! 1; x 7! 1; y 7! 2g; f� 7! 2; x 7! 3; y 7! 1gi

Which is as expected !

9.2 Delayed Communication

Here we have two threads communicating with each other, but where one side

has to wait:

x := 5; c!x1 k c?y2; y := y + 1

The initial world is

f� 7! 0; x 7!?; y 7!?; c 7! Idle; 1 7! (0;�); 2 7! (0;�)g

At this point, we shall introduce the following shorthands:

x50 b= fx 7! 5g0

c1 b= f1 7! (0; h(c; !x)i)g r1 b= f1 7! (0;�)g

c2 b= f2 7! (0; h(c; ?y)i)g r2 b= f2 7! (0;�)g

ye
0
b= fy 7! e(c)g0 y10 b= fy 7! y + 1g0

We compute the semantics as:

prn[!0][[x := 5; c!x1 k c?y2; y := y + 1]]

= hsemantics of ki
prn[!0]([[x := 5; c!x1]] () [[c?y2; y := y + 1]])

= hsemantics of ;i
prn[!0](([[x := 5]] z [[c!x1]]) () ([[c?y2]] z [[y := y + 1]]))

= hsemantics of :=i
prn[!0]((x5

0 z [[c!x1]]) () ([[c?y2]] z y1
0))

= hsemantics of c!x1i
prn[!0]((x5

0 z [[<(1; 1; c; !x); w(1) � Æ1; 0(1); Æ1]]) () ([[c?y2]] z y1
0))

= hsemantics of c?y2i
prn[!0]((x5

0 z [[<(1; 1; c; !x); w(1) � Æ1; 0(1); Æ1]])
()([[<(2; 1; c; ?y); w(2) � Æ1; 0(2); y := e(c)]] z y10))

= hsemantics of ;, assoc. of zi

20

prn[!0]((x5
0 z [[<(1; 1; c; !x)]] z [[w(1) � Æ1]] z [[0(1)]] z [[Æ1]])

()([[<(2; 1; c; ?y)]] z [[w(2) � Æ1]] z [[0(2)]] z [[y := e(c))]] z y10))
= hsemantics of Æ1 and :=i

prn[!0](x5
0 z [[<(1; 1; c; !x)]] z [[w(1) � Æ1]] z [[0(1)]] z �

0)

()([[<(2; 1; c; ?y)]] z [[w(2) � Æ1]] z [[0(2)]] z ye
0) z y10))

= hsemantics of 0i
prn[!0](x5

0 z [[<(1; 1; c; !x)]] z [[w(1) � Æ1]] z r1 z �
0)

()([[<(2; 1; c; ?y)]] z [[w(2) � Æ1]] z r2 z ye
0 z y10))

= hsemantics of <i
prn[!0]((x5

0 z c1 z [[w(1) � Æ1]] z r1 z �
0)

()(c2 z [[w(2) � Æ1]] z r2 z ye
0 z y10))

= hsemantics of b � s and Æ1i
prn[!0]((x5

0 z c1 z fixU (w(1)(�
0 z U j �)) z r1 z �0)

()(c2 z fixV(w(2)(�
0 z V j �)) z r2 z ye0 z y10))

= hintroduce where-clausesi
prn[!0]((x5

0 z c1 z U z r1 z �0) () (c2 z V z r2 z ye0 z y10))
where U = fixU (w(1)(�

0 z U j �))

where V = fixV(w(2)(�
0 z V j �))

= hdefn. of zi
prn[!0]((x5

0 : c1 : U z r1 : �0) () (c2 : V z r2 : ye0 : y10))
= hdefn. of ()i

prn[!0](c2 : ((x5
0 : c1 : U z r1 : �0) () (V z r2 : ye0 : y10)))

= hunfold Vi
prn[!0](c2 : ((x5

0 : c1 : U z r1 : �0) () (w(2)(�0 z V j �) z r2 : ye0 : y10)))

= hdefn of zi
prn[!0](c2 : ((x5

0 : c1 : U z r1 : �0)
() (w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10)))

= hdefn of ()i
prn[!0](c2 : w(2)((x5

0 : c1 : U z r1 : �0) () (�0 : V z r2 : ye0 : y10)

j (x50 : c1 : U z r1 : �0) () (� : r2 : ye0 : y10)))
= hdefn of prni

prn[!10]w(2)((x5
0 : c1 : U z r1 : �0) () (�0 : V z r2 : ye0 : y10)

j (x50 : c1 : U z r1 : �0) () (� : r2 : ye0 : y10))
where !10 = !0 y f2 7! (0; h(c; ?y)i)g

= hdefn of prni
let i = w(2)!10 in

prn[!10](h (x5
0 : c1 : U z r1 : �0) () (�0 : V z r2 : ye0 : y10)

; (x50 : c1 : U z r1 : �0) () (� : r2 : ye0 : y10) i[i])
= hChannel c is not ready, i = 1i

prn[!10]((x5
0 : c1 : U z r1 : �0) () (�0 : V z r2 : ye0 : y10))

= hdefn of ()i
prn[!10](x5

0 t �
0 : ((c1 : U z r1 : �0) () (V z r2 : ye0 : y10)))

= hdefn of t,]i
prn[!10](x5

0 : ((c1 : U z r1 : �0) () (V z r2 : ye0 : y10)))
= hdefn of prni

!1 : prn[!1]((c1 : U z r1 : �
0) () (V z r2 : ye0 : y10))

where !1 = !
1
0 y f� 7! 1; x 7! 5g

= hunfold Vi
!1 : prn[!1]((c1 : U z r1 : �

0) () (w(2)(�0 z V j �) z r2 : ye0 : y10))

21

= hdefn of zi
!1 : prn[!1]((c1 : U z r1 : �

0)

()(w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10)))

= hdefn of ()i
!1 : prn[!1](c1 : ((U z r1 : �0)

()(w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10))))

= hdefn of prni
!1 : prn[!

1
1]((U z r1 : �0)

()(w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10))))

where !11 = !1 y f1 7! (0; h(c; !x)i)g
= hunfold Ui

!1 : prn[!
1
1]((w(1)(�

0 z U j �) z r1 : �0)

()(w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10))))

= hdefn of zi
!1 : prn[!

1
1]((w(1)(�

0 z U z r1 : �0 j � : r1 : �0))

()(w(2)(�0 : V z r2 : ye0 : y10 j � : r2 : ye0 : y10))))

= hdefn of ()i
!1 : prn[!

1
1](w(1)�2 w(2) (�

0 z U z r1 : �0 () �0 : V z r2 : ye0 : y10

j �0 z U z r1 : �0 () � : r2 : ye0 : y10

j � : r1 : �0 () �0 : V z r2 : ye0 : y10

j � : r1 : �0 () � : r2 : ye0 : y10))
= hcommunication on c enabled i; j = 2 and 2�2 2 = 4i

!1 : prn[!
1
1](� : r1 : �

0 () � : r2 : ye0 : y10)

= hdefn of ()i
!1 : prn[!

1
1](� t � : (r1 : �0 () r2 : ye0 : y10)

= hdefn of t,]i
!1 : prn[!

1
1](� : (r1 : �

0 () r2 : ye0 : y10))

= hdefn of prn,! y � = �i
!1 : prn[!

1
1](r1 : �

0 () r2 : ye0 : y10)

= hdefn of ()i
!1 : prn[!

1
1](r1 t r2 : (�0 () ye0 : y10))

= hdefn of ti
!1 : prn[!

2
1](�

0 () ye0 : y10)

where !21 = !
1
1 y f1 7! (0;�); 1 7! (0;�)g

= hdefn of ()i

!1 : prn[!
2
1](�

0 t ye
0 : (� () y10))

= hdefn of ti
!1 : prn[!

2
1](ye

0 : (� () y10))

= hdefn of prni
!1 : !2 : prn[!2](� () y10)

where !2 = !
2
1 y f� 7! 2; y 7! e(c)g

= he(c) is the expression y which evals to 5.i

!1 : !2 : prn[!2](� () y10)

where !2 = !
2
1 y fy 7! 5g

= hdefn. of ()i
!1 : !2prn[!2](y1

0)

= hdefn. of prn,y + 1 = 6i

!1 : !2 : !3prn[!3]�

22

where !3 = !2 y f� 7! 3; y 7! 6g
= hdefn. of prni

!1 : !2 : !3 : �

= hexpand outi
hf� 7! 1; x 7! 5; y 7!?; c 7! Idle; 1 7! (0;�); 2 7! (0; h(c; ?y)i)g
; f� 7! 2; x 7! 5; y 7! 5; c 7! Idle; 1 7! (0;�); 2 7! (0;�g
; f� 7! 3; x 7! 5; y 7! 6; c 7! Idle; 1 7! (0;�; 2 7! (0;�gi

We get the correct result, but we have glossed over how the communication was

resolved and the channel c was mapped to idle throughout. This needs �xing.

9.3 Factorial 3

The program

(f := 1 k x := 3); (x > 1) � (f := f � x; k x := x� 1)

has initial world

!0 = f� 7! 0; f 7!?; x 7!?g

and shorthands:

f10 b= ff 7! 1g0 x30 b= fx 7! 3g0

fx
0
b= ff 7! f � xg0 xd

0
b= fx 7! x� 1g0

fxd
0
b= ff 7! f � x; x 7! x� 1g0

with semantics:

prn[!0][[(f := 1 k x := 3); (x > 1) � (f := f � x; k x := x� 1)]]

= hsemantics of ; and k, shorthandsi
prn[!0]((f1

0 () x30) z [[(x > 1) � (f := f � x; k x := x� 1)]])

= hdefn of ();ti
prn[!0]((f1

0 t x30) : [[(x > 1) � (f := f � x; k x := x� 1)]])

= hdefn of prn;]i
!1 : prn[!1][[(x > 1) � (f := f � x; k x := x� 1)]]

where !1 = f� 7! 1; f 7! 1; x 7! 3g
= hdefn of b � si

!1 : prn[!1](fixW(x > 1)([[f := f � x; k x := x� 1]] z W j �))

= huse where-clausei
!1 : prn[!1]W
whereW = (x > 1)([[f := f � x; k x := x� 1]] z W j �)

= hsemantics of k, defn of ()i
!1 : prn[!1]W
whereW = (x > 1)((fx0 t xd

0) z W j �)

= hdefn of t;]; zi
!1 : prn[!1]W
whereW = (x > 1)(fxd0 :W j �)

= hunfold of Wi
!1 : prn[!1]((x > 1)(fxd0 :W j �))

= hdefn of prn, x > 1 = True(1)i

23

!1 : prn[!1](fxd
0 :W)

= hdefn of prn, f � x = 1 � 3, x� 1 = 3� 1i
!1 : !2 : prn[!2](W)

where !2 = f� 7! 2; f 7! 3; x 7! 2g
= hunfold of Wi

!1 : !2 : prn[!2]((x > 1)(fxd0 :W j �))

= hdefn of prn, x > 1 = True(1)i
!1 : !2 : prn[!2](fxd

0 :W)

= hdefn of prn, f � x = 3 � 2, x� 1 = 2� 1i
!1 : !2 : !3 : prn[!3](W)

where !3 = f� 7! 3; f 7! 6; x 7! 1g
= hunfold of Wi

!1 : !2 : !3prn[!3]((x > 1)(fxd0 :W j �))

= hdefn of prn, x > 1 = False(2)i
!1 : !2 : !3prn[!3](�)

= hdefn of prni
!1 : !2 : !3prn[!

1
3]�

where !13 = !3 y � = !3

= hdefn of prni
hf� 7! 1; f 7! 1; x 7! 3g
; f� 7! 2; f 7! 3; x 7! 2g
; f� 7! 3; f 7! 6; x 7! 1gi

We see factorial 3 computed as expected !

9.4 Nested While (Pathological)

Consider the program

True � (False � s)

where True and False will evaluate to 2 and 1 respectively. We obtain a very

simple initial world:

!0 = f� 7! 0g

We compute the semantics as:

prn[!0][[True � (False � s)]]
= hsemantics of b � si

prn[!0](fixU (True([[False � s]] z U j �)))
= hsemantics of b � si

prn[!0](fixU (True(fixV(False([[s]] z V j �)) z U j �))) (A)

= hproperty of �xpoint (twice)i
prn[!0](U) (B)

where U = True(V z U j �)
where V = False([[s]] z V j �)

= h�xpoint fold for Ui
prn[!0](True(V z U j �))

= hdefn. of prunei
prn[!0](V z U)

= h�xpoint fold for Vi
prn[!0](False([[s]] z V j �) z U)

24

= hdefn. of prunei
prn[!0](� z U)

= hdefn. of zi
prn[!0](� : U)

= hdefn. of prunei
prn[!0](U) (B0)

At this point we observe the circularity emerging (B) : : : (B0).

Another development, from (A), is to exploit the fact that the selection guards

are constant, to simplify the semantics and work from there. (Note that this

assumes that such changes are sound w.r.t the prune operation.)

prn[!0](fixU (True(fixV(False([[s]] z V j �)) z U j �))) (A)

= h[[True]]=1i
prn[!0](fixU (fixV(False([[s]] z V j �)) z U))

= h[[False]]=2i
prn[!0](fixU (fixV(�) z U))

= h�xpoint of constant functioni
prn[!0](fixU (� z U))

= hdefn. of zi
prn[!0](fixU (� : U))

= h�xpoint propertyi
prn[!0]U
where U = � : U

= h�xpoint foldi
prn[!0](� : U)

= h�xpoint foldi
prn[!0](� : � : U)

= h�xpoint foldi
prn[!0](� : � : � : U)

With a �xpoint expression fixW(E(W)) we obtain the following rule

W = E(W) = E(E(W)) = : : :

If the expression E(w) is constant, independent of w, i.e E(w) = K we get

W = E(W) = K

We see with either approach that the recursion unfolds into an in�nite series of

sub-atomic null events | in e�ect we get in�nite sub-atomic stuttering. The

pruning operator cannot help, as it simply consumes the sub-atomic event � at

the head without ever advancing the clock.

However, the program just mentioned is not legal, is spotted by the compiler

and is �xed, e�ectively by putting the body of the while-loop in parallel with

an (atomic) delay. This ensures that any loop body,if executed, always takes

one clock cycle. So the actual program is

True � ((False � s) k Æ1)

with the same initial world (!0 = f� 7! 0g). Note that the inner-loops body is

also similarly treated, but we can assume it is subsumed into s here. We then

compute the semantics as before:

25

prn[!0][[True � ((False � s) k Æ1)]]
= hsemantics of b � si

prn[!0](fixU (True([[(False � s) k Æ1]] z U j �)))
= hsemantics of ki

prn[!0](fixU (True(([[(False � s)]] () [[Æ1]]) z U j �)))
= hsemantics of Æ1i

prn[!0](fixU (True(([[(False � s)]] () �
0) z U j �)))

= hsemantics of b � si
prn[!0](fixU (True((fixV(False([[s]] z V j �)) () �

0) z U j �)))
= hproperty of �xpoint (twice)i

prn[!0](U) (A)

where U = True((V () �0) z U j �)
where V = False([[s]] z V j �)

= h�xpoint fold for Ui
prn[!0](True((V () �0) z U j �))

= hdefn. of prunei
prn[!0]((V () �0) z U)

= h�xpoint fold for Vi
prn[!0]((False([[s]] z V j �) () �

0) z U)
= hdefn. of ()i

prn[!0](False([[s]] z V () �0 j � () �0) z U)
= hdefn. of zi

prn[!0](False(([[s]] z V () �0) z U j (� () �0) z U))
= hdefn. of prunei

prn[!0]((� () �
0) z U)

= hdefn. of ()i
prn[!0]((� : �

0) z U)
= hdefn. of prunei

prn[!0](�
0 z U)

= hdefn. of z (several)i
prn[!0](�

0 : U) (A0)

= hrewrite using (A); (A0)i
prn[!0](�

0 : �0 : U)
= hrewrite using (A); (A0)i

prn[!0](�
0 : �0 : �0 : U)

We can see the outcome is an in�nite series of atomic delay events, each taking

one clock cycle, as expected.

10 Acknowledgments

We would like to thank Jim Woodcock and Alistair McEwan for their many

helpful discussions and comments, as well as Ian Page for his help in identifying

the key parts of the language. We would also like to thank the Dean of Research

of Trinity College Dublin for his support.

26

A Alternative Formulation of BrTree

As this branches at every level, even if there is only one branch in places, we

call the a branch tree rather than sequence:

� 2 BrTree A S b= Nil

j Split A S (BrTree A S)
?

Longhand Shorthand

Nil �

Split a s h�1; �2; : : : ; �ni a : s(�1j�2j : : : j�n)

z : BrTree A S � BrTree A S! BrTree A S

� z � b= �

� z � b= �

a : s(�1j : : : j�n) z � b= a : s(�1 z �j : : : j�n z �)

() : BrTree A S � BrTree A S! BrTree A S

� () � b= �

� () � b= �

a : s(�1j : : : j�m) () b : t(&1j : : : j&n)

b= (a t b) : s�n t(�1 () &1j : : : j�1 () &n

: : :

j�m () &1j : : : j�m () &n)

a : s(�1j : : : j�m) () b
0 : t(&1j : : : j&n)

b= a : 1(b0 : s�n t(�1 () &1j : : : j�1 () &n

: : :

j�m () &1j : : : j�m () &n))

a
0 : s(�1j : : : j�m) () b : t(&1j : : : j&n)

b= b : 1(a0 : s�n t(�1 () &1j : : : j�1 () &n

: : :

j�m () &1j : : : j�m () &n))

a
0 : s(�1j : : : j�m) () b

0 : t(&1j : : : j&n)

b= (a0 t b
0) : s�n t(�1 () &1j : : : j�1 () &n

: : :

j�m () &1j : : : j�m () &n)

References

[BHP94] J. P. Bowen, He Jifeng, and I. Page. Hardware compilation. In J. P.

Bowen, editor, Towards Veri�ed Systems, volume 2 of Real-Time

Safety Critical Systems, chapter 10, pages 193{207. Elsevier, 1994.

27

[BR84] S. D. Brookes and A. W. Roscoe. An Improved Failures Model for

Communicating Processes. In Brookes et al. [BRW84].

[Bro84] S. D. Brookes. On the Axiomatic Treatment of Concurrency. In

Brookes et al. [BRW84].

[BRW84] S. D. Brookes, A. W. Roscoe, and G. Winskel, editors. Seminar

on Concurrency, volume 197 of LNCS. Carnegie-Mellon University,

Pittsburgh, PA, Springer-Verlag, July 1984.

[Emb] Embedded Solutions Ltd. (now Celoxica Ltd.). Handel-C Language

Reference Manual, v2.1.

[Hoa90] C.A.R. Hoare. Communicating Sequential Processes. Intl. Series in

Computer Science. Prentice Hall, 1990.

[LKL+95] Adrian Lawrence, Andrew Kay, Wayne Luk, Toshio Nomura, and

Ian Page. Using recon�gurable hardware to speed up product de-

velopment and performance. In Will Moore and Wayne Luk, ed-

itors, Field-Programmable Logic and Applications, pages 111{119.

Springer-Verlag, Berlin, August/September 1995. Proceedings of the

5th International Workshop on Field-Programmable Logic and Ap-

plications, FPL 1995. Lecture Notes in Computer Science 975.

[PL91] I. Page and W. Luk. Compiling Occam into �eld-programmable gate

arrays. In W. Moore and W. Luk, editors, FPGAs, Oxford Work-

shop on Field Programmable Logic and Applications, pages 271{283.

Abingdon EE&CS Books, 15 Harcourt Way, Abingdon OX14 1NV,

UK, 1991.

[Ros84] A. W. Roscoe. Denotational Semantics for occam. In Brookes et al.

[BRW84].

[SP93] M. Spivey and I. Page. How to design hardware with Handel. Tech-

nical report, Oxford University Hardware Compilation Group, De-

cember 1993.

28

