

Mobile RMI: Supporting Remote Access to Java Server Objects on
Mobile Hosts

Tom Wall
Broadcom Eireann Research Ltd.

Dublin, Ireland
tom.wall@broadcom.ie

Vinny Cahill
Department of Computer Science

University of Dublin, Trinity College
vinny.cahill@cs.tcd.ie

Abstract

Java Remote Method Invocation (RMI) is a

specification for building distributed object-oriented
applications. RMI was designed primarily for use in
conventional, wired computing environments and
provides no mechanisms to allow objects hosted by
mobile, wireless-enabled computers to interact with other
RMI objects. Mobile devices regularly change their point
of connection to the Internet making the task of correctly
locating and invoking methods on the hosted RMI server
objects difficult. The nature of wireless communication
also means that the TCP/IP connections used to access
these RMI objects are frequently broken, potentially
resulting in data being lost and leaving the two
communicating parties in inconsistent states.

This paper outlines an architecture that supports such
mobile RMI objects and describes an implementation of
this architecture and its performance. This architecture
provides mobility support in the form of two main
components. The first is a session layer component that
provides the low-level support services required to
maintain transport connections in a mobile environment.
The second is an application layer component that uses
application-level proxies to address the difficulties of
invoking methods on mobile RMI servers.

1. Introduction

The market for portable computing devices continues
to grow at an astonishing rate, a fact well illustrated by
the huge market penetration achieved by cellular mobile
phones. Such phones, when enabled to use the Wireless
Access Protocol (WAP) standard, provide the user with a
simple yet effective means of communicating with certain
fixed network based services. Continuing advances in
mobile device and wireless communications technologies
are greatly improving the processing, networking, data
storage, and display capabilities of affordable Personal
Digital Assistants (PDAs). Soon, PDA users will have at
their disposal devices capable of interacting with shared

software services of types currently available only to
users on wired networks. Ideally, these services will be
continually and transparently available even when the
PDA user is roaming across different sections of the
wireless network and even in the face of degradation of
the wireless network coverage.

Such services require some form of middleware to
allow physically separate software components to
communicate with one another and co-ordinate their
actions. Commonly used forms of middleware include
distributed object technologies such as those
implementing the Common Object Request Broker
Architecture (CORBA) standard and Java Remote
Method Invocation (RMI). These systems are designed to
allow a programmer to build complex distributed systems
without much knowledge of the underlying low-level
networking details.

However, designing distributed object-oriented
software for mobile environments presents challenges not
encountered while designing for traditional wired
systems. The inherent characteristics of mobile computing
can essentially be divided into three main considerations:
wireless communication, mobility and device portability
[1]. Methods of wireless communication are typically
much less efficient than wired communication due to
environmental interference, low bandwidth and limited
range of carrier signals and the associated increases in
error and loss rates. Mobility of devices introduces added
complexity to the system due to the difficulty of locating
a mobile host with no fixed address and communicating
effectively with that device as it moves from one point of
connection to the wired network to another. Portability
considerations restrict the weight and size of mobile
devices and hence their computing, power and display
capabilities.

The mobility addressed in this paper is of the host or
terminal, not the mobility of software objects or code.
Although Java does allow objects to migrate between Java
Virtual Machines (JVMs), the problems that are solved by
the design proposed in this paper are related only to host
mobility and the corresponding physical change in the

network address of the hosted objects. While sections of
the design do involve the movement of Java code from
one JVM to another this should not be confused with the
mobility of the client or server objects on the mobile host.
These objects do not change the JVM in which they are
executed.

1.1 RMI

Java RMI [2] is a specification from Sun Microsystems

that allows Java objects to invoke methods on objects in
other address spaces while preserving the semantics of
local method invocations. RMI uses sockets as the
communication mechanism between the two JVMs but
abstracts the communication interface to the level of a
method invocation, hiding the complexities of socket
protocols from the programmer. This results in a much
simpler and more intuitive means of building complex
client-server systems.

An important feature of RMI, and one that most
distinguishes it from other RPC-like implementations is
its dynamic code loading ability. This allows a JVM to
download the implementation of a particular class when
required, for example when passed as a parameter to an
RMI call or returned as a result of such a call. Another
RMI feature known as serialization allows for the member
data of a Java object to be to be turned into a stream of
bytes to allow it to be transmitted (via whatever transport
protocol is being used) to another JVM. This ability for
code and objects to move between address spaces is
fundamental to the design and operation of RMI.

In RMI any server that wishes to be able to export code
sets a codebase property which is tagged onto serialised
objects and indicates to clients where a class file for the
object can be found. The codebase generally points to a
directory or Java archive (.JAR) file that is serviced by a
HTTP server. A client receiving a serialized object will
try to reconstitute it and will load the relevant class file
from the specified codebase. In addition to its dynamic
code loading capabilities, RMI provides mechanisms for
distributed garbage collection, server replication and
activation of remote objects to service requests [3].

As with most other conventional RPC
implementations, RMI assumes that both communicating
parties have fixed addresses and that the transport
connections that are used by RMI do not break frequently.
Both of these assumptions do not hold true in a mobile
computing environment. This paper presents a design to
allow RMI client or server objects to reside on a mobile
host which changes its point of connection to the Internet
and which uses an unreliable wireless transport
connection to interact with other RMI objects. This design

is based on the Architecture for Location Independent
CORBA Environments (ALICE) [4]. ALICE addresses
similar mobility concerns in the Common Object Request
Broker Architecture (CORBA) [5]. ALICE provides
support for CORBA objects on mobile hosts to interact
transparently with other CORBA objects without the need
for a centralised location register to monitor the location
of the hosts. The ALICE model takes a combined session
layer and application layer approach to solve the problems
of mobile CORBA objects.

1.2 Roadmap

The rest of this paper describes the technical details of
our solution to RMI object mobility. Section 2 discusses
related work in the field of host mobility. The various
components of the ALICE architecture, their operation
and functions are presented in Section 3. Section 4
outlines the differences between RMI and CORBA and
the required changes to the ALICE architecture to allow
for mobile RMI server objects and then a design for
mobile RMI. Section 5 presents the results of performance
tests carried out on the design. Finally, section 6 presents
the conclusions of the paper and some proposals for future
work.

2. Approaches to Host Mobility

The problems associated with mobility can be
approached in many different ways and solved at different
layers of the protocol stack. Perhaps the most widely
known method of handling host mobility is Mobile IP.
Mobile IP [6] modifies the Internet Protocol (IP) to allow
applications to be mobility transparent and allows for
seamless roaming of mobile hosts. This network layer
approach does however require that all involved parties
use the new network protocol. Mobile IP also requires
every mobile host to have a single Home Agent that keeps
track of the mobile host’s current location and routes
packets addressed to the mobile node to that location.
Although route optimisation improvements to the protocol
have reduced the communication latency involved
somewhat, Mobile IP still presents an element of routing
indirection and, in the form of the home agent, requires a
centralised location register. Mobile IP also does not
address the fundamental problems of maintaining wireless
connections to the mobile host as ALICE does.

A much different approach to handling host mobility is
illustrated by [7], an end-to-end architecture in which
Domain Name Service (DNS) servers are updated
dynamically to track host location. Such a design requires
no changes to be made to the underlying IP substrate as in

Mobile IP; instead it modifies the transport protocols and
the applications at the end hosts themselves. When a host
changes its point of attachment to the network it sends an
update to a DNS server in its home domain to reflect the
location change. Name-to-address mappings are
uncacheable by other domains so there can be no stale
bindings. The transport connections to and from the
mobile host can be migrated transparently between fixed
gateways to support continuous communication while the
host changes location. Unlike this end-to-end approach,
ALICE allows mobility to be fully transparent to
applications, providing conventional CORBA applications
designed for wired networks with full mobility support.

[8] is a recently proposed design for supporting
wireless access and terminal mobility in CORBA. This
design envisages wireless mobile terminals (each of
which is its own ORB domain) connecting to other ORB
domains through gateways called Wireless Access
Bridges (WABs). A terminal can have a location register
in its home domain to provide a means for other entities to
find its current location. The mobile terminal can move
between WABs, open connections being tunneled
between WABs as the terminal moves to provide a means
of processing unfinished object invocations. To overcome
the unreliable nature of the underlying wireless transport
connections a mapping of the General Inter-ORB Protocol
(GIOP) onto UDP is provided. Since UDP itself is
unreliable a protocol layer called the GIOP Session
Protocol (GSP) is used to provide the required reliability
and mobility support. In addition GSP provides
fragmentation, error detection, flow and congestion
control as well as protection against flooding and
masquerade attacks. Overall this design resembles
ALICE, especially with the use of a session layer to
overcome an unreliable underlying transport layer. As
mentioned before however, ALICE does not require a
centralised location register to keep track of a CORBA
server object’s location.

A similar approach was used to implement an RPC
mechanism for mobile clients in [9], known as M-RPC.
RPC clients on mobile hosts access servers on the fixed
network via agents located on mobility gateways called
Mobility Support Routers (MSRs). The agents on the
MSRs receive RPC requests from the mobile host and
then forward them on to the originally intended
destination. Library support is provided to RPC client
applications to hide the communication details with the
agents on the MSRs. Two new transport protocols for use
over wireless links were developed for M-RPC, Reliable
Data Protocol (RDP) and Indirect TCP (I-TCP) [10]. If an
M-RPC client with open connections to a server switches
MSRs then the new MSR informs the previous MSR of

the movement and the M-RPC agent at the previous MSR
transfers state information about the RDP or I-TCP
connections to the new MSR agent. Although this
approach is similar to that taken by ALICE, it does not
allow RPC clients to interact with servers on the mobile
host. Providing support for mobile servers is an integral
component of the ALICE design.

3. CORBA and the ALICE Architecture

This section provides a brief introduction to CORBA
and the ALICE architecture and the operation of its
components. The original implementation of ALICE was
CORBA-specific but many of the components were found
to be equally applicable to other protocols, including Java
RMI. A brief overview of CORBA is given first followed
by a description of the physical infrastructure required by
ALICE and an outline of the ALICE software
architecture.

3.1 CORBA

The CORBA [5] specification from the Object
Management Group (OMG) describes a means for
providing interoperability between objects in a
heterogeneous, distributed environment. CORBA allows
programmers to access remote objects in a transparent
manner. The OMG Object Model defines common object
semantics for specifying the externally visible
characteristics of objects in a standard and
implementation-independent way. In this model, client
objects can invoke methods on server objects through a
well-defined interface. This interface is specified in the
Interface Definition Language (IDL). A client accesses an
object by issuing a request to the object. The information
sent in the request includes the operation being
performed, the Interoperable Object Reference (IOR) of
the server object, and any parameters supplied to the
method call. IORs are used in CORBA to uniquely
identify and locate a server object. An IOR essentially
consists of a hostname and port number at which to
connect to the server object.

The central component of CORBA is the Object
Request Broker (ORB). The ORB provides services to
clients to enable them to identify and locate server
objects, handle connection management and deliver data.
The basic functionality of the ORB consists of passing the
requests from clients to the object implementations on
which they are invoked. In order to make a request, the
client can communicate with the ORB either through the
IDL stub or the Dynamic Invocation Interface (DII). The

stub represents the mapping between the language of
implementation of the client and the ORB. Thus the client
can be written in any language as long as the ORB
supports that language.

GIOP specifies a standard protocol for communication
between ORBs. GIOP is specifically built for ORB to
ORB interactions and is designed to work directly over
any connection-oriented transport protocol that meets a
minimal set of assumptions. The Internet Inter-ORB
Protocol (IIOP) element specifies a GIOP mapping onto
TCP/IP, the most pervasive transport layer.

3.2 ALICE Physical Environment

ALICE presumes a mobile environment such as that
shown in Figure 1. A Mobile Host (MH) connects to a
Foreign Host (FH) via a wireless link to a Mobility
Gateway (MG) that has a wired connection to the rest of
the network. The Mobile Hosts can move between MGs,
thereby changing their point of connection to the fixed
network. The gateways relay communications from the
MH to the rest of the network and from remote hosts to
the MH. Gateways also have the responsibility of carrying
out CORBA specific duties such as translation of IORs to
cater for the mobility of server objects.

Old
Connection

New
Connection

INTERNET

FH

 MG

MH

 MG

FH

 MG

MH

Figure 1. ALICE Environment

The software architecture of ALICE consists of several
layers, with different mobility problems being solved at
each layer. ORBs generally use TCP/IP at the transport
level, however TCP/IP connections are unreliable in a
wireless mobile environment and are subject to breakages
and high error rates. This can result in data being lost and
the client and server states becoming inconsistent. To
address this problem ALICE introduces the Mobility
Layer, which sits on top of TCP/IP and hides broken
connections from the layers above it.

The IIOP layer in the ALICE architecture is mobility-
unaware and implements the minimum amount of ORB
functionality to allow it to send and receive inter-ORB
messages. The S/IIOP (or Swizzling IIOP) Layer is a
mobility-aware extension to the IIOP layer and is used to
perform address translation on CORBA IORs.

3.3 ALICE Mobility Layer

The Mobility Layer (ML) provides the low-level
support services required to maintain connections in a
mobile environment. The ML can provide support for any
transport protocol and is independent of the CORBA and
IIOP specific components of the ALICE architecture.
Basically, clients of the ML use it to create what they
consider to be normal TCP socket connections. What is
instead created is a connection to the current MG, which
then connects to the clients’ desired communication
endpoint using a normal socket connection. Connections
from the MH to the MG are multiplexed over a single
transport connection in order to conserve the limited and
expensive bandwidth available to a wireless device and
make the tasks of handoff and connection re-
establishment easier. Connection multiplexing also makes
the task of error correction easier, a fact that is vitally
important in a mobile environment where line quality is
quite often poor. If the MH-MG connection breaks it is
the task of the ML on the MH to re-establish it.

There are individual message types to indicate whether
the MH wishes to establish a connection, shutdown a
connection, send data, reconnect after a break, plus
corresponding acknowledgements for each type. A special
header identifying the type of message, payload length, an
identifier for the destination, etc. prefixes all data sent. In
addition to transparently re-establishing a broken
connection, the ML must also cache any data sent and
wait for an acknowledgement for this data. Data being
sent is first cached, along with the Logical Connection
Identifier (LCID), a unique identifier allocated to each
virtual connection and the request identifier, which is used
to identify the acknowledgement of a packet. To increase
efficiency, the ML will delay opening a connection for a
socket until there is actual data to be sent or received for
it.

The ML provides four main services to the layers
above it [4] –

• It hides broken connections by transparently restoring

links when they are lost.
• It allows TCP ports on the MG to be allocated by the

IIOP Layer to accept incoming connections.

Remote Host

Application

S/IIOP

Mobility Layer

TCP/IP

 IIOP

Application

S/IIOP IIOP

Mobility Layer

TCP/IPTCP/IP

ORB

Mobile Host Mobility Gateway

Logical Data Flow

Physical Data Flow

Figure 2. ALICE Software Architecture

• It provides mobility information to the S/IIOP layer
so it can translate addresses and forward requests.

• It performs handoff between MGs and tunnels
existing connections from the old MG to the new one.

3.4 IIOP and S/IIOP Layers

The IIOP standard specifies how inter-ORB messages
should be sent using a TCP/IP transport connection. The
IIOP layer developed for ALICE was designed to be as
efficient as possible and to have a small memory footprint
to accommodate the limitations of mobile devices. The
API for the IIOP Layer also hides much of the complexity
of the actual protocol from the application programmer
while still allowing for manipulation of relevant
parameters when required. In addition, the IIOP Layer
allows the ML to be plugged in and out cleanly whenever
mobility support is necessary or not.

The S/IIOP Layer performs functions that are
necessary for the IIOP layer to operate correctly when
server objects are hosted on the mobile host. As noted
above, an IOR essentially consists of a hostname and port
number at which to connect to the server object. Server
objects on the MH export IORs that point to the MH.
Since no remote host can directly contact the MH this is
useless. To overcome this problem the S/IIOP layer on the
MH replaces the hostname with that of the current MG in
a process called ‘swizzling’. The S/IIOP layer uses the
Mobile Layer to obtain information about the MH’s
current MG.

When a remote host receives the swizzled IOR and
contacts the MG, the S/IIOP layer on the gateway will
forward the request to the MH. When the MH changes it’s

point of connection to the network to a different MG, it
must ‘reswizzle’ any IORs to point to the new MG. The
S/IIOP layer on the old MG will also change any IOR’s it
holds that pointed to the MH to point to the new MG.

3.5 Handoff

The limited range of wireless communication
mechanisms means that roaming mobile hosts must
change their mobility gateway at regular intervals. To do
this the mobile host will cause handoff to occur between
the new gateway and the old one. The host will send a
Handoff Request message to the new MG stating the
address of its last MG and the identifiers of any logical
connections that were in use [4]. The new MG will then
negotiate the handoff of each of these logical connections
from the old MG. In doing this the contents of each of the
caches containing unacknowledged data,
acknowledgements received and any unsent data are
transferred to the new MG and will be sent to the MH as
soon as is appropriate. When the handoff procedure is
complete the old MG sends a Finished Handoff message
to the new MG, which will then send another Finished
Handoff message to the ML on the mobile host.

 Any transport connections that were open between the
old MG and remote hosts will be tunnelled to the new MG
for as long as they remain open. This leaves open the
possibility of the creation of a long chain of MGs each
tunnelling open connections to the next without having
any knowledge of where the chain ends or any means of
shortening the chain. This should only prove to be the
case on rare occasions.

4. Mobile RMI Design

The ALICE architecture provides a useful model for
extension to other distributed object technologies, Java
RMI being an obvious candidate for this treatment. RMI
and CORBA both provide the programmer with a means
of transparently invoking methods on remote objects.
CORBA however is language independent whereas RMI
is a Java-only implementation. This makes the task of
programming in RMI significantly simpler than CORBA
and allows for some of the useful features mentioned in
Section 3 such as dynamic code loading. The differences
between RMI and CORBA however do mean that the task
of creating an architecture to support mobility in RMI is
not as trivial as converting the C/C++ ALICE code to
Java. The significantly different approaches taken by RMI
to object addressing and naming mean that a new
technique of addressing remote objects is needed. Instead
of altering object references at the mobility gateway as in
the original CORBA implementation of ALICE, we
instead introduce application level proxies (implementing
the same interface as the mobile server object) to relay
method invocations to the server and return data to the
client.

Of the main components of the ALICE architecture,
the Mobility Layer can easily be used with RMI as it is
protocol independent. However, Java applications cannot
directly interface with the original ALICE Mobility Layer
as it is coded in C. There were two possible ways to
provide Java applications with access to the ML; one was
to completely recode the ML in Java, and the other was to
add a Java Native Interface ‘glue code’ layer to the
existing C code. The first option was taken once it was
discovered that the size and complexity of the glue code
would far outweigh the costs of a full Java rewrite of the
layer.

4.1 Operation of the Mobility Layer with RMI

When a Java RMI program requires a socket to be
created it calls the createSocket() method in
java.rmi.RMISocketFactory which returns a socket to use.
The default socket factory returns an ordinary
java.net.Socket or java.net.ServerSocket if a server socket
is required. However, RMI supports programmer-defined
custom socket factories that return other types of socket if
a custom transport protocol is to be used rather than TCP,
which RMI uses by default. The Mobile RMI design uses

Application

RMI

Remote method invocation

createSocket()

Opens a virtual input and output
stream

Mobility Layer
MGSetup

To Mobility Layer on MG

MHServerOutMHServerIn

Caches

MSocket

MGatewayConnection

Figure 3. Normal operation of the Mobility Layer

a custom socket factory to return a custom socket (called
an MSocket) to the RMI applications. MSockets
implement the functionality of the Mobility Layer
including multiplexing socket connections onto a single
transport connection, caching of sent data and data
acknowledgement.

The basic operation of the Java Mobility Layer is
illustrated in Figure 3. When an RMI application requires
a socket it makes a createSocket() call to the
RMISocketFactory which returns a reference to an
MSocket. If this is the first MSocket to be created then the
MGSetup thread first initialises the ML and connects to
the ML on the local gateway by creating an instance of
the MGatewayConnection class. The application can then
write to the MOutputStream, which places the data in the
cache from where the MHServerOut thread will write it
out over the connection to the gateway. Data returned
from the gateway will be placed in a cache by the
MHServerIn thread from where it will be read by the
MInputStream and returned to the application.

4.2 Invoking Methods on Mobile RMI Server
Objects

The Java version of the ML provides RMI applications

with enough mobility support to function as mobile
clients (see section 4.3). It does not provide enough
support for mobile servers, however, for a number of
reasons, the most important being that the mobile host is
not directly accessible to remote hosts and can only be
accessed through the gateway. Therefore even if a remote
client held a stub referring to a server object on the mobile
host it would not be able to successfully contact it. The
CORBA version of ALICE solved this problem by
introducing the S/IIOP layer.

The S/IIOP layer however is CORBA dependent and
relies on the fact that IORs can be altered at runtime. This
allows IORs to be changed to point to the gateway instead
of the MH. When invocations arrive at the MG the IORs
are simply reswizzled and then the request redirected to
the MH.

The object addressing scheme in RMI is substantially
different to that of CORBA. The RMI equivalent to the
IOR, the RemoteRef, cannot be created independently of
a remote object nor can it be accessed or manipulated at
the application layer. In addition, all client-server
interactions in RMI do not pass through a single entity as
invocations and returns pass through an ORB in CORBA.
In RMI once a client has received an object reference
from the server’s registry it communicates directly with
the server object. Hence the swizzling approach to

addressing mobile objects cannot be used with RMI and a
different means must be employed.

Our approach is to use application-layer proxies to
relay method invocations and returned data between the
client and the server through the gateway. This allows the
difficulties of address translation and request forwarding
to be solved at the application layer instead of a lower
level in the protocol stack. This also eliminates the
requirement for an RMI version of the S/IIOP layer since
there is no manipulation of RemoteRefs. When the mobile
server changes gateway its proxy on the old gateway is
updated to point to the new proxy on the new gateway.
This behavior mimics the ‘reswizzling’ of IORs on the old
gateway that occurs during handoff in the CORBA
version of ALICE.

4.3 Mobile Host as Client

The ML provides all of the support necessary for a
mobile RMI client to interact transparently with a remote
server. The ML tunnels the lookup requests, method
invocations and all other interactions initiated by the
client with the server through the mobility gateway. Any
data sent by the client over the virtual connection is sent
to the mobility gateway and redirected from there to its
intended target. Similarly, data returned from the server to
the gateway is forwarded to the client.

If the transport connection between the mobile host
and the gateway breaks at any point then the ML on the
mobile host will transparently reconnect and any data lost
during transmission will be resent. If the mobile host
hands off to another gateway then any existing
connections to the remote server will be tunneled between
the old and new gateways for as long as they exist. The
RMI stub for the remote server object held by the mobile
client is still valid for making calls through the new
gateway as the server host has not changed location.

4.4 Mobile Host as Server

When an RMI server is located on a mobile host the
ML will provide the same low-level support as described
in the previous section. As remote hosts cannot directly
contact a mobile server, all communication must go
through whichever MG the server is currently connected
to. Since the client cannot hold an RMI stub that refers
directly to the server on the mobile host, it is instead
given a stub that refers to a proxy object on the gateway.
The mobile server gives the code for the proxy to its
current MG to use in forwarding incoming calls

5.

5.
3.

2.1.

rmiregistry rmiregistry

Mobile Host Mobility Gateway Remote Host

ServerImpl GWRegistry

4.

ImplProxy Client Object

Figure 4. Procedure for passing Proxy Object

to the actual server on the mobile host. To facilitate the
uploading and registration of proxies from mobile servers,
a special remote object called the GatewayRegistry is
registered on the gateway. The server can download the
stub for this object and call various methods on it to pass
the proxy class and associated parameters to the gateway.
The proxy class implements a well-known interface called
MobilityProxy. The GatewayRegistry creates an instance
of this proxy class and calls a method on it that downloads
its RMI stub from the server and then registers it with the
local rmiregistry. The procedure for passing the proxy and
registering it are shown in Figure 4 above.

The procedure follows the following steps:

1. The server object, ServerImpl (which implements

some interface called Server) starts execution on the
mobile host and registers itself with the local
rmiregistry.

2. ServerImpl contacts the rmiregistry on the gateway

and downloads the stub for the GatewayRegistry.

3. ServerImpl then invokes a method called register() on
the GatewayRegistry object, passing as parameters
the name of the Proxy class and the address of a web
server where it and all associated classes can be
found.

4. The GatewayRegistry object then downloads the

Proxy and any implemented interface classes from

the mobile host and instantiates a proxy object (here
called ImplProxy) and registers it with the local
rmiregistry.

5. A client object located on a remote host can then

contact the gateway’s rmiregistry and obtain a stub
for the ImplProxy object. Invoking methods on the
ImplProxy object will cause it to download the stub
from the ServerImpl object and forward the calls to it.
Any data returned to the ImplProxy is then returned
directly to the client.

A complication arises when an invocation of a remote
method on the server returns a reference to another remote
object. When a reference to a remote object is returned
from a remote method call, RMI returns the stub for the
remote object. Returning this stub to the client via the
proxy is pointless, as the client cannot contact the mobile
host itself. Instead the ServerImpl gives the
GatewayRegistry not only a proxy class for itself, but also
proxy classes for any remote object type that it returns in
a method invocation. When a method call on ServerImpl
returns a reference to a remote object the ImplProxy can
create a separate proxy for the returned object. The stub
returned from the mobile server is passed to the newly
created proxy that will then use it to forward calls to the
original remote object on the mobile host. The ImplProxy
will then return a stub for this proxy object to the client
and the new proxy will relay any calls to the actual object

in the same manner as for the ImplServer and ImplProxy
objects.

4.5 Home Mobility Gateway

An inherent difficulty in distributed object systems is
finding a reference to a remote object to communicate
with. In a conventional RMI or CORBA application, the
address of the server could be supplied to the client as a
command line argument, read from a file, hardcoded into
the application itself etc. In the ALICE architecture
however, a mobile server does not have a fixed address
and can only be contacted via its current mobility
gateway. To provide prospective clients of the mobile
server with a means of finding its current location, we
introduce the concept of a Home Mobility Gateway
(HMG). The HMG is a gateway that is permanently
associated with the mobile host, perhaps one that the MH
spends the most amount of time connected to, such as a
gateway near the users home or office. Clients wishing to
connect to the mobile server connect to the HMG, lookup
the service on the rmiregistry there and are returned a stub
for the proxy on the mobile host’s current gateway. The
stub for the server’s proxy on the HMG must of course be
updated every time the MH changes gateway. The MH
notes the address of the HMG so that it can be passed to a
new gateway after handoff. This is discussed in the
following section.

4.6 Handoff in Mobile RMI

Handoff of the mobile host from one gateway to
another should be transparent to both the mobile RMI
server application and any remote clients of that server.
To make handoff transparent to clients we must ensure
that the following requirements hold true:

1. Method invocations that are being processed when

handoff occurs are completed.

2. Clients that currently hold a stub for a proxy on a
previous gateway can still communicate with the
server through this proxy.

3. The proxy on the Home Mobility Gateway is updated

whenever the server changes gateway.

4. New clients looking up the server on one of the
server’s previous gateways are given a stub to talk to
the current gateway.

The first requirement is satisfied by the use of the ML
since all currently open transport connections between the
MH and the previous MG are tunneled between the two
gateways until they are closed. Although this introduces
some delay to the method invocation it does allow it to be
completed successfully and also transparently to both
communicating parties. Addressing the remaining three
requirements needs the co-operation of both the ML and
the RMI proxies on the gateways.

The second requirement is essential to the operation of
the system. Since the server’s mobility is transparent to
the client, there is no way to prompt the client to update
the proxy stub it holds by downloading one from the
current MG. When the client looks up the rmiregisty on a
gateway and receives a proxy stub, it expects to be able to
use this stub for as long as it wishes to communicate with
the mobile server. Therefore a proxy on a previous
gateway must itself relay the clients’ method invocations
to the proxy on the current MG. This is accomplished by
having the GatewayRegistry object on the new gateway
contact the corresponding object on the previous gateway
and supply it with the stub for the new proxy. The proxy
on the old MG replaces the stub for the mobile server
object (which of course it can no longer contact) with the
stub for the proxy on the current MG. Subsequent method
invocations on the previous MG’s proxy will be relayed to
the current MG’s proxy and from there onto the server. In
this way a ‘chain’ of proxy objects is set up between the
MH and the client, which is unaware of communicating
with anything other than the old MG.

Satisfying the third requirement is simply a matter of
the new MG contacting the previous MG and giving it the
stub for its proxy. The previous MG will register this stub
in its rmiregistry in place of the old stub that pointed to
the mobile server. If there are any older MGs in the chain
then these will be contacted in the same way and their
stubs updated. Similarly, the new gateway will contact the
HMG and update its’ stub as well, satisfying the fourth
requirement.

To explain how handoff is implemented in the Mobile
RMI model we will start by assuming that the system has
been initialized so that the fixed client has downloaded
the ImplProxy stub and is able to call methods on the
remote server object on the mobile host via the
ImplProxy. Handoff to a new mobility gateway is
achieved as follows:

1. The Mobility Layer on the MH sends a Handoff

Request message to the new MG and all existing
server-client connections through the old gateway are
tunneled through the new gateway. The MH

downloads the stub for the GatewayRegistry object
from the new gateway.

2. By calling the register() method on the

GatewayRegistry stub, the ImplProxy and all
associated classes and interfaces are uploaded to the
new MG. The ImplProxy is instantiated and
registered with the rmiregistry on the new MG.

3. MH calls a method on the GatewayRegistry stub

from the new gateway that causes the
GatewayRegistry service on the new MG to
download the stub for the GatewayRegistry service
from the old MG.

4. The new MG calls a method handoff(…) on the

GatewayRegistry stub from the old MG. This
forwards a call to the method changeStub(..) in the
ImplProxy object on the old MG, causing it to discard
the stub it had previously downloaded from the MH.
The ImplProxy replaces this stub with one
downloaded from the new MG.

5. The old MG repeats step 4 for an older MG in the

chain if one exists. This is repeated until all previous
MGs have been contacted and their stubs updated.

6. MH calls a method notifyHMG(…) on the current

GatewayRegistry that causes it download the stub
from the HMG and call the method changeStub(…)
on it. This uploads the current MGs proxy stub to the
HMG where it is registered in the rmiregistry.

5. Performance

The purpose of these tests was to obtain approximate

results for the performance of the Java Mobility Layer and
RMI proxy scheme. The results shown in Figure 5 below

compare the performance times of method invocations
between ordinary RMI over a wireless link with those
obtained when the calls are being made through a proxy
and with Mobility Layer support enabled. In all of the
tests the server host used was a laptop using the Windows
98 operating system and equipped with a WaveLAN
wireless LAN card. The mobility gateway and remote
client were desktop PCs using Solaris OS with wired
LAN connections.

As can be seen from the table above the data caching,
multiplexing and other functions carried out by the
Mobility Layer introduce significant overhead to the
process of invoking a remote method. However, the vast
majority of the delay is caused by widespread use of Java
Thread.sleep() statements used to facilitate the
synchronization of different components of the code. As
this is still only a prototype version of the Java Mobility
Layer it is realistic to assume that the invocation time
with the ML could be reduced by at least an order of
magnitude when these sleep statements are removed.
Further optimisation of the manner in which data is read
from java.net.InputStreams would also improve the
performance considerably.

6. Conclusions and Future Work

This paper has discussed how the mobility support
provided to CORBA applications by the ALICE
architecture can be applied to Java RMI. This project
proved that a valuable feature of the original ALICE
architecture was the separation of mobility related issues
from CORBA-specific issues. The Mobility Layer solves
mobility issues in a protocol independent manner and thus
a simple recoding of the layer in Java was sufficient to
provide the same support to RMI. The CORBA request
forwarding techniques used in ALICE’s S/IIOP layer
were found to be incompatible with RMI and so
application layer proxies on the mobility gateways

Figure 5. Average method invocation times

Message Size (bytes) Invocation Time with ML
(millisecs)

Invocation Time without
ML (millisecs)

8 1910 17
256 1930 21
384 1940 22
512 4770 49
768 4810 49

1024 7600 51
1280 7730 52
1536 7820 56

were implemented to forward method invocations to the
mobile server. The use of the Java Mobility Layer and the
proxies proved to be a simple and effective means of
allowing mobile RMI servers and clients to interact with
remote hosts with no knowledge of their mobility.

These application layer proxies were straightforward to
implement. Those sections of ALICE that were
independent of CORBA and IIOP (i.e. the Mobility
Layer) were coded in Java for use by RMI applications.
The initial performance tests carried out on the
architecture show that much work remains to be done on
improving the speed of method invocations through the
Mobility Layer and the proxies. The delay currently
experienced should be massively reduced following such
improvements. Handoff in the Java Mobility Layer also
remains to be implemented.

Further work is required to make the measures to
support mobility completely transparent to the
programmer of a mobile server. The proxy classes
exported by mobile servers have a generic format. The
only difference between proxy classes exported by servers
implementing different remote interfaces is the name of
the proxy classes, the name of the remote interfaces that
the proxies implement, and the inclusion of the method
signatures of the remote interface. As a result, it is
possible for the proxy classes to be automatically
generated provided the remote interface and the proxy
class name are supplied as arguments. The code to pass
the proxy class to the MG can be hidden in the RMI
source code so that a call to register an RMI object with
the local registry will automatically notify the current
MG. The MG will then download the server interface and
the server objects stub and automatically create a proxy
object for the mobile server.

Extending the design to incorporate the Jini technology
[11] provides an interesting solution to some of the
difficulties inherent in the system. For example, the Jini
lookup service provides a client with a means of finding a
service that matches its supplied preferences so that the
client does not need to know the precise address of the
server’s current gateway or its Home Mobility Gateway in
order to access a service. In addition, the Jini registrar
provides a simple means of supplying the mobile server
objects stub to the lookup service. This functionality is
recreated in our Mobile RMI design when the server

passes the GatewayRegistry the location of the HTTP
server to download the stub class from. Thus aspects of
Jini complement and neatly dovetail with the Mobile RMI
architecture.

References

[1] George H. Forman and John Zahorjan. The Challenges of
Mobile Computing. IEEE Computer Journal, April 1994.

[2] Sun Microsystems. Remote Method Invocation Specification.
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTO
C.doc.html

[3] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed
Object Model For the Java System. In Conference on Object
Oriented Technologies, Toronto Ontario (Canada), 1996.

[4] Mads Haahr, Raymond Cunningham and Vinny Cahill.
Supporting CORBA Applications in a Mobile Environment. In
Proc. of MobiCom99, Seattle, WA, pages 36--47. ACM, August
1999.

[5] Object Management Group. The Common Object Request
Broker: Architecture and Specification, V2.2. Object
Management Group, February 1998.

[6] Charles E. Perkins. Mobile IP. IEEE Communications
Magazine, vol. 35, no. 5, pp. 84-99, May 1997.

[7] Alex C. Snoeren and Hari Balakrishnan. An End-to-End
Approach to Host Mobility. 6th ACM MOBICOM, August
2000.

[8] Joint Nokia/Vertel Response to OMG Request for Proposal.
OMG Document telecomm/99-05-05.
ftp://ftp.omg.org/pub/docs/telecom/99-05-05.pdf

[9] Ajay Bakre and B.R. Badrinath. M-RPC: A Remote
Procedure Call Service for Mobile Clients. Proceedings of the
1st ACM Mobicom Conference, 1995, pp. 2-11.

[10] Ajay Bakre and B.R. Badrinath. I-TCP: Indirect TCP for
Mobile Hosts. 15th. Int. Conference on Distributed Computing
Systems (ILCDS), May, 1995.

[11] Ken Arnold, Bryan O’Sullivan, Robert W. Schiefler, Jim
Waldo, Ann Wollrath. The Jini Specification. Prentice Hall, July
1999.

http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html
ftp://ftp.omg.org/pub/docs/telecom/99-05-05.pdf

	Mobile RMI: Supporting Remote Access to Java Server Objects on Mobile Hosts
	
	
	
	
	
	
	
	Department of Computer Science

	Abstract
	1.1 RMI
	Java RMI [2] is a specification from Sun Microsystems that allows Java objects to invoke methods on objects in other address spaces while preserving the semantics of local method invocations. RMI uses sockets as the communication mechanism between the tw
	An important feature of RMI, and one that most distinguishes it from other RPC-like implementations is its dynamic code loading ability. This allows a JVM to download the implementation of a particular class when required, for example when passed as a pa
	1.2 Roadmap
	2. Approaches to Host Mobility
	3. CORBA and the ALICE Architecture
	3.1 CORBA
	3.2 ALICE Physical Environment
	The limited range of wireless communication mechanisms means that roaming mobile hosts must change their mobility gateway at regular intervals. To do this the mobile host will cause handoff to occur between the new gateway and the old one. The host will
	Any transport connections that were open between the old MG and remote hosts will be tunnelled to the new MG for as long as they remain open. This leaves open the possibility of the creation of a long chain of MGs each tunnelling open connections to the
	4.1 Operation of the Mobility Layer with RMI
	4.4 Mobile Host as Server
	
	
	
	
	
	4.5 Home Mobility Gateway
	4.6 Handoff in Mobile RMI

	References

