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Abstract 

 
Java Remote Method Invocation (RMI) is a 

specification for building distributed object-oriented 
applications. RMI was designed primarily for use in 
conventional, wired computing environments and 
provides no mechanisms to allow objects hosted by 
mobile, wireless-enabled computers to interact with other 
RMI objects. Mobile devices regularly change their point 
of connection to the Internet making the task of correctly 
locating and invoking methods on the hosted RMI server 
objects difficult.  The nature of wireless communication 
also means that the TCP/IP connections used to access 
these RMI objects are frequently broken, potentially 
resulting in data being lost and leaving the two 
communicating parties in inconsistent states. 

This paper outlines an architecture that supports such 
mobile RMI objects and describes an implementation of 
this architecture and its performance. This architecture 
provides mobility support in the form of two main 
components. The first is a session layer component that 
provides the low-level support services required to 
maintain transport connections in a mobile environment. 
The second is an application layer component that uses 
application-level proxies to address the difficulties of 
invoking methods on mobile RMI servers.  
 
1. Introduction 
 

The market for portable computing devices continues 
to grow at an astonishing rate, a fact well illustrated by 
the huge market penetration achieved by cellular mobile 
phones. Such phones, when enabled to use the Wireless 
Access Protocol (WAP) standard, provide the user with a 
simple yet effective means of communicating with certain 
fixed network based services. Continuing advances in 
mobile device and wireless communications technologies 
are greatly improving the processing, networking, data 
storage, and display capabilities of affordable Personal 
Digital Assistants (PDAs). Soon, PDA users will have at 
their disposal devices capable of interacting with shared

software services of types currently available only to 
users on wired networks. Ideally, these services will be 
continually and transparently available even when the 
PDA user is roaming across different sections of the 
wireless network and even in the face of degradation of 
the wireless network coverage. 

Such services require some form of middleware to 
allow physically separate software components to 
communicate with one another and co-ordinate their 
actions. Commonly used forms of middleware include 
distributed object technologies such as those 
implementing the Common Object Request Broker 
Architecture (CORBA) standard and Java Remote 
Method Invocation (RMI). These systems are designed to 
allow a programmer to build complex distributed systems 
without much knowledge of the underlying low-level 
networking details.   

However, designing distributed object-oriented 
software for mobile environments presents challenges not 
encountered while designing for traditional wired 
systems. The inherent characteristics of mobile computing 
can essentially be divided into three main considerations: 
wireless communication, mobility and device portability 
[1].  Methods of wireless communication are typically 
much less efficient than wired communication due to 
environmental interference, low bandwidth and limited 
range of carrier signals and the associated increases in 
error and loss rates. Mobility of devices introduces added 
complexity to the system due to the difficulty of locating 
a mobile host with no fixed address and communicating 
effectively with that device as it moves from one point of 
connection to the wired network to another. Portability 
considerations restrict the weight and size of mobile 
devices and hence their computing, power and display 
capabilities. 

The mobility addressed in this paper is of the host or 
terminal, not the mobility of software objects or code. 
Although Java does allow objects to migrate between Java 
Virtual Machines (JVMs), the problems that are solved by 
the design proposed in this paper are related only to host 
mobility and the corresponding physical change in the



  

network address of the hosted objects. While sections of 
the design do involve the movement of Java code from 
one JVM to another this should not be confused with the 
mobility of the client or server objects on the mobile host. 
These objects do not change the JVM in which they are 
executed. 
 
1.1 RMI 

 
Java RMI [2] is a specification from Sun Microsystems 

that allows Java objects to invoke methods on objects in 
other address spaces while preserving the semantics of 
local method invocations. RMI uses sockets as the 
communication mechanism between the two JVMs but 
abstracts the communication interface to the level of a 
method invocation, hiding the complexities of socket 
protocols from the programmer. This results in a much 
simpler and more intuitive means of building complex 
client-server systems. 

An important feature of RMI, and one that most 
distinguishes it from other RPC-like implementations is 
its dynamic code loading ability. This allows a JVM to 
download the implementation of a particular class when 
required, for example when passed as a parameter to an 
RMI call or returned as a result of such a call. Another 
RMI feature known as serialization allows for the member 
data of a Java object to be to be turned into a stream of 
bytes to allow it to be transmitted (via whatever transport 
protocol is being used) to another JVM. This ability for 
code and objects to move between address spaces is 
fundamental to the design and operation of RMI.  

In RMI any server that wishes to be able to export code 
sets a codebase property which is tagged onto serialised 
objects and indicates to clients where a class file for the 
object can be found. The codebase generally points to a 
directory or Java archive (.JAR) file that is serviced by a 
HTTP server. A client receiving a serialized object will 
try to reconstitute it and will load the relevant class file 
from the specified codebase. In addition to its dynamic 
code loading capabilities, RMI provides mechanisms for 
distributed garbage collection, server replication and 
activation of remote objects to service requests [3]. 

As with most other conventional RPC 
implementations, RMI assumes that both communicating 
parties have fixed addresses and that the transport 
connections that are used by RMI do not break frequently. 
Both of these assumptions do not hold true in a mobile 
computing environment. This paper presents a design to 
allow RMI client or server objects to reside on a mobile 
host which changes its point of connection to the Internet 
and which uses an unreliable wireless transport 
connection to interact with other RMI objects. This design 

is based on the Architecture for Location Independent 
CORBA Environments (ALICE) [4]. ALICE addresses 
similar mobility concerns in the Common Object Request 
Broker Architecture (CORBA) [5]. ALICE provides 
support for CORBA objects on mobile hosts to interact 
transparently with other CORBA objects without the need 
for a centralised location register to monitor the location 
of the hosts. The ALICE model takes a combined session 
layer and application layer approach to solve the problems 
of mobile CORBA objects.  

 
1.2 Roadmap 
 

The rest of this paper describes the technical details of 
our solution to RMI object mobility. Section 2 discusses 
related work in the field of host mobility. The various 
components of the ALICE architecture, their operation 
and functions are presented in Section 3. Section 4 
outlines the differences between RMI and CORBA and 
the required changes to the ALICE architecture to allow 
for mobile RMI server objects and then a design for 
mobile RMI. Section 5 presents the results of performance 
tests carried out on the design. Finally, section 6 presents 
the conclusions of the paper and some proposals for future 
work.   
 
2. Approaches to Host Mobility 
 

The problems associated with mobility can be 
approached in many different ways and solved at different 
layers of the protocol stack. Perhaps the most widely 
known method of handling host mobility is Mobile IP. 
Mobile IP [6] modifies the Internet Protocol (IP) to allow 
applications to be mobility transparent and allows for 
seamless roaming of mobile hosts. This network layer 
approach does however require that all involved parties 
use the new network protocol. Mobile IP also requires 
every mobile host to have a single Home Agent that keeps 
track of the mobile host’s current location and routes 
packets addressed to the mobile node to that location. 
Although route optimisation improvements to the protocol 
have reduced the communication latency involved 
somewhat, Mobile IP still presents an element of routing 
indirection and, in the form of the home agent, requires a 
centralised location register. Mobile IP also does not 
address the fundamental problems of maintaining wireless 
connections to the mobile host as ALICE does. 

A much different approach to handling host mobility is 
illustrated by [7], an end-to-end architecture in which 
Domain Name Service (DNS) servers are updated 
dynamically to track host location. Such a design requires 
no changes to be made to the underlying IP substrate as in 



  

Mobile IP; instead it modifies the transport protocols and 
the applications at the end hosts themselves. When a host 
changes its point of attachment to the network it sends an 
update to a DNS server in its home domain to reflect the 
location change. Name-to-address mappings are 
uncacheable by other domains so there can be no stale 
bindings.  The transport connections to and from the 
mobile host can be migrated transparently between fixed 
gateways to support continuous communication while the 
host changes location. Unlike this end-to-end approach, 
ALICE allows mobility to be fully transparent to 
applications, providing conventional CORBA applications 
designed for wired networks with full mobility support. 

[8] is a recently proposed design for supporting 
wireless access and terminal mobility in CORBA. This 
design envisages wireless mobile terminals (each of 
which is its own ORB domain) connecting to other ORB 
domains through gateways called Wireless Access 
Bridges (WABs). A terminal can have a location register 
in its home domain to provide a means for other entities to 
find its current location. The mobile terminal can move 
between WABs, open connections being tunneled 
between WABs as the terminal moves to provide a means 
of processing unfinished object invocations. To overcome 
the unreliable nature of the underlying wireless transport 
connections a mapping of the General Inter-ORB Protocol 
(GIOP) onto UDP is provided. Since UDP itself is 
unreliable a protocol layer called the GIOP Session 
Protocol (GSP) is used to provide the required reliability 
and mobility support. In addition GSP provides 
fragmentation, error detection, flow and congestion 
control as well as protection against flooding and 
masquerade attacks. Overall this design resembles 
ALICE, especially with the use of a session layer to 
overcome an unreliable underlying transport layer. As 
mentioned before however, ALICE does not require a 
centralised location register to keep track of a CORBA 
server object’s location. 

A similar approach was used to implement an RPC 
mechanism for mobile clients in [9], known as M-RPC. 
RPC clients on mobile hosts access servers on the fixed 
network via agents located on mobility gateways called 
Mobility Support Routers (MSRs). The agents on the 
MSRs receive RPC requests from the mobile host and 
then forward them on to the originally intended 
destination. Library support is provided to RPC client 
applications to hide the communication details with the 
agents on the MSRs. Two new transport protocols for use 
over wireless links were developed for M-RPC, Reliable 
Data Protocol (RDP) and Indirect TCP (I-TCP) [10]. If an 
M-RPC client with open connections to a server switches 
MSRs then the new MSR informs the previous MSR of 

the movement and the M-RPC agent at the previous MSR 
transfers state information about the RDP or I-TCP 
connections to the new MSR agent. Although this 
approach is similar to that taken by ALICE, it does not 
allow RPC clients to interact with servers on the mobile 
host. Providing support for mobile servers is an integral 
component of the ALICE design. 
 
3. CORBA and the ALICE Architecture 
 

This section provides a brief introduction to CORBA 
and the ALICE architecture and the operation of its 
components. The original implementation of ALICE was 
CORBA-specific but many of the components were found 
to be equally applicable to other protocols, including Java 
RMI. A brief overview of CORBA is given first followed 
by a description of the physical infrastructure required by 
ALICE and an outline of the ALICE software 
architecture. 
 
3.1 CORBA 
 

The CORBA [5] specification from the Object 
Management Group (OMG) describes a means for 
providing interoperability between objects in a 
heterogeneous, distributed environment. CORBA allows 
programmers to access remote objects in a transparent 
manner. The OMG Object Model defines common object 
semantics for specifying the externally visible 
characteristics of objects in a standard and 
implementation-independent way. In this model, client 
objects can invoke methods on server objects through a 
well-defined interface. This interface is specified in the 
Interface Definition Language (IDL). A client accesses an 
object by issuing a request to the object. The information 
sent in the request includes the operation being 
performed, the Interoperable Object Reference (IOR) of 
the server object, and any parameters supplied to the 
method call. IORs are used in CORBA to uniquely 
identify and locate a server object. An IOR essentially 
consists of a hostname and port number at which to 
connect to the server object. 

The central component of CORBA is the Object 
Request Broker (ORB). The ORB provides services to 
clients to enable them to identify and locate server 
objects, handle connection management and deliver data. 
The basic functionality of the ORB consists of passing the 
requests from clients to the object implementations on 
which they are invoked. In order to make a request, the 
client can communicate with the ORB either through the 
IDL stub or the Dynamic Invocation Interface (DII). The 



  

stub represents the mapping between the language of 
implementation of the client and the ORB. Thus the client 
can be written in any language as long as the ORB 
supports that language.  

GIOP specifies a standard protocol for communication 
between ORBs. GIOP is specifically built for ORB to 
ORB interactions and is designed to work directly over 
any connection-oriented transport protocol that meets a 
minimal set of assumptions. The Internet Inter-ORB 
Protocol (IIOP) element specifies a GIOP mapping onto 
TCP/IP, the most pervasive transport layer.  
 
3.2 ALICE Physical Environment 
 

ALICE presumes a mobile environment such as that 
shown in Figure 1. A Mobile Host (MH) connects to a 
Foreign Host (FH) via a wireless link to a Mobility 
Gateway (MG) that has a wired connection to the rest of 
the network. The Mobile Hosts can move between MGs, 
thereby changing their point of connection to the fixed 
network. The gateways relay communications from the 
MH to the rest of the network and from remote hosts to 
the MH. Gateways also have the responsibility of carrying 
out CORBA specific duties such as translation of IORs to 
cater for the mobility of server objects. 
 

Old
Connection

New
Connection

INTERNET

FH

 MG

MH

  MG

FH

  MG

MH

 
Figure 1. ALICE Environment 

The software architecture of ALICE consists of several 
layers, with different mobility problems being solved at 
each layer. ORBs generally use TCP/IP at the transport 
level, however TCP/IP connections are unreliable in a 
wireless mobile environment and are subject to breakages 
and high error rates. This can result in data being lost and 
the client and server states becoming inconsistent. To 
address this problem ALICE introduces the Mobility 
Layer, which sits on top of TCP/IP and hides broken 
connections from the layers above it. 

The IIOP layer in the ALICE architecture is mobility-
unaware and implements the minimum amount of ORB 
functionality to allow it to send and receive inter-ORB 
messages. The S/IIOP (or Swizzling IIOP) Layer is a 
mobility-aware extension to the IIOP layer and is used to 
perform address translation on CORBA IORs.  
 

3.3 ALICE Mobility Layer 

The Mobility Layer (ML) provides the low-level 
support services required to maintain connections in a 
mobile environment. The ML can provide support for any 
transport protocol and is independent of the CORBA and 
IIOP specific components of the ALICE architecture. 
Basically, clients of the ML use it to create what they 
consider to be normal TCP socket connections. What is 
instead created is a connection to the current MG, which 
then connects to the clients’ desired communication 
endpoint using a normal socket connection. Connections 
from the MH to the MG are multiplexed over a single 
transport connection in order to conserve the limited and 
expensive bandwidth available to a wireless device and 
make the tasks of handoff and connection re-
establishment easier. Connection multiplexing also makes 
the task of error correction easier, a fact that is vitally 
important in a mobile environment where line quality is 
quite often poor. If the MH-MG connection breaks it is 
the task of the ML on the MH to re-establish it.  

There are individual message types to indicate whether 
the MH wishes to establish a connection, shutdown a 
connection, send data, reconnect after a break, plus 
corresponding acknowledgements for each type. A special 
header identifying the type of message, payload length, an 
identifier for the destination, etc. prefixes all data sent. In 
addition to transparently re-establishing a broken 
connection, the ML must also cache any data sent and 
wait for an acknowledgement for this data. Data being 
sent is first cached, along with the Logical Connection 
Identifier (LCID), a unique identifier allocated to each 
virtual connection and the request identifier, which is used 
to identify the acknowledgement of a packet. To increase 
efficiency, the ML will delay opening a connection for a 
socket until there is actual data to be sent or received for 
it. 

The ML provides four main services to the layers 
above it [4] – 
 
• It hides broken connections by transparently restoring 

links when they are lost. 
• It allows TCP ports on the MG to be allocated by the 

IIOP Layer to accept incoming connections. 
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Figure 2. ALICE Software Architecture 

 
 

• It provides mobility information to the S/IIOP layer 
so it can translate addresses and forward requests.  

• It performs handoff between MGs and tunnels 
existing connections from the old MG to the new one. 

 
3.4 IIOP and S/IIOP Layers 
 

The IIOP standard specifies how inter-ORB messages 
should be sent using a TCP/IP transport connection. The 
IIOP layer developed for ALICE was designed to be as 
efficient as possible and to have a small memory footprint 
to accommodate the limitations of mobile devices. The 
API for the IIOP Layer also hides much of the complexity 
of the actual protocol from the application programmer 
while still allowing for manipulation of relevant 
parameters when required. In addition, the IIOP Layer 
allows the ML to be plugged in and out cleanly whenever 
mobility support is necessary or not. 

The S/IIOP Layer performs functions that are 
necessary for the IIOP layer to operate correctly when 
server objects are hosted on the mobile host. As noted 
above, an IOR essentially consists of a hostname and port 
number at which to connect to the server object. Server 
objects on the MH export IORs that point to the MH. 
Since no remote host can directly contact the MH this is 
useless. To overcome this problem the S/IIOP layer on the 
MH replaces the hostname with that of the current MG in 
a process called ‘swizzling’. The S/IIOP layer uses the 
Mobile Layer to obtain information about the MH’s 
current MG. 

When a remote host receives the swizzled IOR and 
contacts the MG, the S/IIOP layer on the gateway will 
forward the request to the MH. When the MH changes it’s 

point of connection to the network to a different MG, it 
must ‘reswizzle’ any IORs to point to the new MG. The 
S/IIOP layer on the old MG will also change any IOR’s it 
holds that pointed to the MH to point to the new MG. 
 
3.5 Handoff  
 

The limited range of wireless communication 
mechanisms means that roaming mobile hosts must 
change their mobility gateway at regular intervals. To do 
this the mobile host will cause handoff to occur between 
the new gateway and the old one. The host will send a 
Handoff Request message to the new MG stating the 
address of its last MG and the identifiers of any logical 
connections that were in use [4]. The new MG will then 
negotiate the handoff of each of these logical connections 
from the old MG. In doing this the contents of each of the 
caches containing unacknowledged data, 
acknowledgements received and any unsent data are 
transferred to the new MG and will be sent to the MH as 
soon as is appropriate. When the handoff procedure is 
complete the old MG sends a Finished Handoff message 
to the new MG, which will then send another Finished 
Handoff message to the ML on the mobile host. 

 Any transport connections that were open between the 
old MG and remote hosts will be tunnelled to the new MG 
for as long as they remain open. This leaves open the 
possibility of the creation of a long chain of MGs each 
tunnelling open connections to the next without having 
any knowledge of where the chain ends or any means of 
shortening the chain. This should only prove to be the 
case on rare occasions.  
 



  

4. Mobile RMI Design 
 

The ALICE architecture provides a useful model for 
extension to other distributed object technologies, Java 
RMI being an obvious candidate for this treatment. RMI 
and CORBA both provide the programmer with a means 
of transparently invoking methods on remote objects. 
CORBA however is language independent whereas RMI 
is a Java-only implementation. This makes the task of 
programming in RMI significantly simpler than CORBA 
and allows for some of the useful features mentioned in 
Section 3 such as dynamic code loading. The differences 
between RMI and CORBA however do mean that the task 
of creating an architecture to support mobility in RMI is 
not as trivial as converting the C/C++ ALICE code to 
Java. The significantly different approaches taken by RMI 
to object addressing and naming mean that a new 
technique of addressing remote objects is needed. Instead 
of altering object references at the mobility gateway as in 
the original CORBA implementation of ALICE, we 
instead introduce application level proxies (implementing 
the same interface as the mobile server object) to relay 
method invocations to the server and return data to the 
client. 
 

Of the main components of the ALICE architecture, 
the Mobility Layer can easily be used with RMI as it is 
protocol independent. However, Java applications cannot 
directly interface with the original ALICE Mobility Layer 
as it is coded in C. There were two possible ways to 
provide Java applications with access to the ML; one was 
to completely recode the ML in Java, and the other was to 
add a Java Native Interface ‘glue code’ layer to the 
existing C code. The first option was taken once it was 
discovered that the size and complexity of the glue code 
would far outweigh the costs of a full Java rewrite of the 
layer. 

 
4.1 Operation of the Mobility Layer with RMI 
 

When a Java RMI program requires a socket to be 
created it calls the createSocket() method in 
java.rmi.RMISocketFactory which returns a socket to use. 
The default socket factory returns an ordinary 
java.net.Socket or java.net.ServerSocket if a server socket 
is required. However, RMI supports programmer-defined 
custom socket factories that return other types of socket if 
a custom transport protocol is to be used rather than TCP, 
which RMI uses by default. The Mobile RMI design uses 
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Figure 3. Normal operation of the Mobility Layer 

  



  

a custom socket factory to return a custom socket (called 
an MSocket) to the RMI applications. MSockets 
implement the functionality of the Mobility Layer 
including multiplexing socket connections onto a single 
transport connection, caching of sent data and data 
acknowledgement. 

The basic operation of the Java Mobility Layer is 
illustrated in Figure 3. When an RMI application requires 
a socket it makes a createSocket() call to the 
RMISocketFactory which returns a reference to an 
MSocket. If this is the first MSocket to be created then the 
MGSetup thread first initialises the ML and connects to 
the ML on the local gateway by creating an instance of 
the MGatewayConnection class. The application can then 
write to the MOutputStream, which places the data in the 
cache from where the MHServerOut thread will write it 
out over the connection to the gateway. Data returned 
from the gateway will be placed in a cache by the 
MHServerIn thread from where it will be read by the 
MInputStream and returned to the application.  

 
4.2 Invoking Methods on Mobile RMI Server 
Objects 

 
The Java version of the ML provides RMI applications 

with enough mobility support to function as mobile 
clients (see section 4.3). It does not provide enough 
support for mobile servers, however, for a number of 
reasons, the most important being that the mobile host is 
not directly accessible to remote hosts and can only be 
accessed through the gateway. Therefore even if a remote 
client held a stub referring to a server object on the mobile 
host it would not be able to successfully contact it. The 
CORBA version of ALICE solved this problem by 
introducing the S/IIOP layer. 

The S/IIOP layer however is CORBA dependent and 
relies on the fact that IORs can be altered at runtime. This 
allows IORs to be changed to point to the gateway instead 
of the MH. When invocations arrive at the MG the IORs 
are simply reswizzled and then the request redirected to 
the MH. 

The object addressing scheme in RMI is substantially 
different to that of CORBA. The RMI equivalent to the 
IOR, the RemoteRef, cannot be created independently of 
a remote object nor can it be accessed or manipulated at 
the application layer. In addition, all client-server 
interactions in RMI do not pass through a single entity as 
invocations and returns pass through an ORB in CORBA. 
In RMI once a client has received an object reference 
from the server’s registry it communicates directly with 
the server object. Hence the swizzling approach to 

addressing mobile objects cannot be used with RMI and a 
different means must be employed. 

Our approach is to use application-layer proxies to 
relay method invocations and returned data between the 
client and the server through the gateway. This allows the 
difficulties of address translation and request forwarding 
to be solved at the application layer instead of a lower 
level in the protocol stack. This also eliminates the 
requirement for an RMI version of the S/IIOP layer since 
there is no manipulation of RemoteRefs. When the mobile 
server changes gateway its proxy on the old gateway is 
updated to point to the new proxy on the new gateway. 
This behavior mimics the ‘reswizzling’ of IORs on the old 
gateway that occurs during handoff in the CORBA 
version of ALICE. 
 
4.3 Mobile Host as Client 
 

The ML provides all of the support necessary for a 
mobile RMI client to interact transparently with a remote 
server. The ML tunnels the lookup requests, method 
invocations and all other interactions initiated by the 
client with the server through the mobility gateway. Any 
data sent by the client over the virtual connection is sent 
to the mobility gateway and redirected from there to its 
intended target. Similarly, data returned from the server to 
the gateway is forwarded to the client.  

If the transport connection between the mobile host 
and the gateway breaks at any point then the ML on the 
mobile host will transparently reconnect and any data lost 
during transmission will be resent. If the mobile host 
hands off to another gateway then any existing 
connections to the remote server will be tunneled between 
the old and new gateways for as long as they exist. The 
RMI stub for the remote server object held by the mobile 
client is still valid for making calls through the new 
gateway as the server host has not changed location. 

 
4.4 Mobile Host as Server 
 

When an RMI server is located on a mobile host the 
ML will provide the same low-level support as described 
in the previous section. As remote hosts cannot directly 
contact a mobile server, all communication must go 
through whichever MG the server is currently connected 
to. Since the client cannot hold an RMI stub that refers 
directly to the server on the mobile host, it is instead 
given a stub that refers to a proxy object on the gateway. 
The mobile server gives the code for the proxy to its 
current MG to use in forwarding incoming calls
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to the actual server on the mobile host. To facilitate the 
uploading and registration of proxies from mobile servers, 
a special remote object called the GatewayRegistry is 
registered on the gateway. The server can download the 
stub for this object and call various methods on it to pass 
the proxy class and associated parameters to the gateway. 
The proxy class implements a well-known interface called 
MobilityProxy. The GatewayRegistry creates an instance 
of this proxy class and calls a method on it that downloads 
its RMI stub from the server and then registers it with the 
local rmiregistry. The procedure for passing the proxy and 
registering it are shown in Figure 4 above. 
 
The procedure follows the following steps: 

 
1. The server object, ServerImpl (which implements 

some interface called Server) starts execution on the 
mobile host and registers itself with the local 
rmiregistry. 

 
2. ServerImpl contacts the rmiregistry on the gateway 

and downloads the stub for the GatewayRegistry. 
 

3. ServerImpl then invokes a method called register() on 
the GatewayRegistry object, passing as parameters 
the name of the Proxy class and the address of a web 
server where it and all associated classes can be 
found. 

 
4. The GatewayRegistry object then downloads the 

Proxy and any implemented interface classes from 

the mobile host and instantiates a proxy object (here 
called ImplProxy) and registers it with the local 
rmiregistry. 

 
5. A client object located on a remote host can then 

contact the gateway’s rmiregistry and obtain a stub 
for the ImplProxy object. Invoking methods on the 
ImplProxy object will cause it to download the stub 
from the ServerImpl object and forward the calls to it. 
Any data returned to the ImplProxy is then returned 
directly to the client. 

 

A complication arises when an invocation of a remote 
method on the server returns a reference to another remote 
object. When a reference to a remote object is returned 
from a remote method call, RMI returns the stub for the 
remote object. Returning this stub to the client via the 
proxy is pointless, as the client cannot contact the mobile 
host itself. Instead the ServerImpl gives the 
GatewayRegistry not only a proxy class for itself, but also 
proxy classes for any remote object type that it returns in 
a method invocation. When a method call on ServerImpl 
returns a reference to a remote object the ImplProxy can 
create a separate proxy for the returned object. The stub 
returned from the mobile server is passed to the newly 
created proxy that will then use it to forward calls to the 
original remote object on the mobile host. The ImplProxy 
will then return a stub for this proxy object to the client 
and the new proxy will relay any calls to the actual object 



  

in the same manner as for the ImplServer and ImplProxy 
objects.  
 
4.5 Home Mobility Gateway 
 

An inherent difficulty in distributed object systems is 
finding a reference to a remote object to communicate 
with. In a conventional RMI or CORBA application, the 
address of the server could be supplied to the client as a 
command line argument, read from a file, hardcoded into 
the application itself etc. In the ALICE architecture 
however, a mobile server does not have a fixed address 
and can only be contacted via its current mobility 
gateway. To provide prospective clients of the mobile 
server with a means of finding its current location, we 
introduce the concept of a Home Mobility Gateway 
(HMG). The HMG is a gateway that is permanently 
associated with the mobile host, perhaps one that the MH 
spends the most amount of time connected to, such as a 
gateway near the users home or office. Clients wishing to 
connect to the mobile server connect to the HMG, lookup 
the service on the rmiregistry there and are returned a stub 
for the proxy on the mobile host’s current gateway. The 
stub for the server’s proxy on the HMG must of course be 
updated every time the MH changes gateway. The MH 
notes the address of the HMG so that it can be passed to a 
new gateway after handoff. This is discussed in the 
following section.  
 
4.6 Handoff in Mobile RMI 
 

Handoff of the mobile host from one gateway to 
another should be transparent to both the mobile RMI 
server application and any remote clients of that server. 
To make handoff transparent to clients we must ensure 
that the following requirements hold true: 

 
1. Method invocations that are being processed when 

handoff occurs are completed. 
 

2. Clients that currently hold a stub for a proxy on a 
previous gateway can still communicate with the 
server through this proxy. 

 
3. The proxy on the Home Mobility Gateway is updated 

whenever the server changes gateway. 
 

4. New clients looking up the server on one of the 
server’s previous gateways are given a stub to talk to 
the current gateway. 

 

The first requirement is satisfied by the use of the ML 
since all currently open transport connections between the 
MH and the previous MG are tunneled between the two 
gateways until they are closed. Although this introduces 
some delay to the method invocation it does allow it to be 
completed successfully and also transparently to both 
communicating parties. Addressing the remaining three 
requirements needs the co-operation of both the ML and 
the RMI proxies on the gateways.  

The second requirement is essential to the operation of 
the system. Since the server’s mobility is transparent to 
the client, there is no way to prompt the client to update 
the proxy stub it holds by downloading one from the 
current MG. When the client looks up the rmiregisty on a 
gateway and receives a proxy stub, it expects to be able to 
use this stub for as long as it wishes to communicate with 
the mobile server. Therefore a proxy on a previous 
gateway must itself relay the clients’ method invocations 
to the proxy on the current MG. This is accomplished by 
having the GatewayRegistry object on the new gateway 
contact the corresponding object on the previous gateway 
and supply it with the stub for the new proxy. The proxy 
on the old MG replaces the stub for the mobile server 
object (which of course it can no longer contact) with the 
stub for the proxy on the current MG. Subsequent method 
invocations on the previous MG’s proxy will be relayed to 
the current MG’s proxy and from there onto the server. In 
this way a ‘chain’ of proxy objects is set up between the 
MH and the client, which is unaware of communicating 
with anything other than the old MG. 

Satisfying the third requirement is simply a matter of 
the new MG contacting the previous MG and giving it the 
stub for its proxy. The previous MG will register this stub 
in its rmiregistry in place of the old stub that pointed to 
the mobile server. If there are any older MGs in the chain 
then these will be contacted in the same way and their 
stubs updated. Similarly, the new gateway will contact the 
HMG and update its’ stub as well, satisfying the fourth 
requirement. 

To explain how handoff is implemented in the Mobile 
RMI model we will start by assuming that the system has 
been initialized so that the fixed client has downloaded 
the ImplProxy stub and is able to call methods on the 
remote server object on the mobile host via the 
ImplProxy. Handoff to a new mobility gateway is 
achieved as follows: 
 
1. The Mobility Layer on the MH sends a Handoff 

Request message to the new MG and all existing 
server-client connections through the old gateway are 
tunneled through the new gateway. The MH 



  

downloads the stub for the GatewayRegistry object 
from the new gateway. 

 
2. By calling the register() method on the 

GatewayRegistry stub, the ImplProxy and all 
associated classes and interfaces are uploaded to the 
new MG. The ImplProxy is instantiated and 
registered with the rmiregistry on the new MG. 

 
3. MH calls a method on the GatewayRegistry stub 

from the new gateway that causes the 
GatewayRegistry service on the new MG to 
download the stub for the GatewayRegistry service 
from the old MG. 

 
4. The new MG calls a method handoff(…) on the 

GatewayRegistry stub from the old MG. This 
forwards a call to the method changeStub(..) in the 
ImplProxy object on the old MG, causing it to discard 
the stub it had previously downloaded from the MH. 
The ImplProxy replaces this stub with one 
downloaded from the new MG. 

 
5. The old MG repeats step 4 for an older MG in the 

chain if one exists. This is repeated until all previous 
MGs have been contacted and their stubs updated. 

 
6. MH calls a method notifyHMG(…) on the current 

GatewayRegistry that causes it download the stub 
from the HMG and call the method changeStub(…) 
on it. This uploads the current MGs proxy stub to the 
HMG where it is registered in the rmiregistry. 

 
5. Performance 

 
The purpose of these tests was to obtain approximate 

results for the performance of the Java Mobility Layer and 
RMI proxy scheme. The results shown in Figure 5 below 

 

compare the performance times of method invocations 
between ordinary RMI over a wireless link with those 
obtained when the calls are being made through a proxy 
and with Mobility Layer support enabled. In all of the 
tests the server host used was a laptop using the Windows 
98 operating system and equipped with a WaveLAN 
wireless LAN card. The mobility gateway and remote 
client were desktop PCs using Solaris OS with wired 
LAN connections. 

As can be seen from the table above the data caching, 
multiplexing and other functions carried out by the 
Mobility Layer introduce significant overhead to the 
process of invoking a remote method. However, the vast 
majority of the delay is caused by widespread use of Java 
Thread.sleep() statements used to facilitate the 
synchronization of different components of the code. As 
this is still only a prototype version of the Java Mobility 
Layer it is realistic to assume that the invocation time 
with the ML could be reduced by at least an order of 
magnitude when these sleep statements are removed. 
Further optimisation of the manner in which data is read 
from java.net.InputStreams would also improve the 
performance considerably. 
 
6. Conclusions and Future Work 
 

This paper has discussed how the mobility support 
provided to CORBA applications by the ALICE 
architecture can be applied to Java RMI. This project 
proved that a valuable feature of the original ALICE 
architecture was the separation of mobility related issues 
from CORBA-specific issues. The Mobility Layer solves 
mobility issues in a protocol independent manner and thus 
a simple recoding of the layer in Java was sufficient to 
provide the same support to RMI. The CORBA request 
forwarding techniques used in ALICE’s S/IIOP layer 
were found to be incompatible with RMI and so 
application layer proxies on the mobility gateways

 

Figure 5. Average method invocation times 

Message Size (bytes) Invocation Time with ML 
(millisecs) 

Invocation Time without 
ML (millisecs) 

8 1910 17 
256 1930 21 
384 1940 22 
512 4770 49 
768 4810 49 

1024 7600 51 
1280 7730 52 
1536 7820 56 



  

were implemented to forward method invocations to the 
mobile server. The use of the Java Mobility Layer and the 
proxies proved to be a simple and effective means of 
allowing mobile RMI servers and clients to interact with 
remote hosts with no knowledge of their mobility. 

These application layer proxies were straightforward to 
implement. Those sections of ALICE that were 
independent of CORBA and IIOP (i.e. the Mobility 
Layer) were coded in Java for use by RMI applications. 
The initial performance tests carried out on the 
architecture show that much work remains to be done on 
improving the speed of method invocations through the 
Mobility Layer and the proxies. The delay currently 
experienced should be massively reduced following such 
improvements. Handoff in the Java Mobility Layer also 
remains to be implemented. 

Further work is required to make the measures to 
support mobility completely transparent to the 
programmer of a mobile server. The proxy classes 
exported by mobile servers have a generic format. The 
only difference between proxy classes exported by servers 
implementing different remote interfaces is the name of 
the proxy classes, the name of the remote interfaces that 
the proxies implement, and the inclusion of the method 
signatures of the remote interface. As a result, it is 
possible for the proxy classes to be automatically 
generated provided the remote interface and the proxy 
class name are supplied as arguments. The code to pass 
the proxy class to the MG can be hidden in the RMI 
source code so that a call to register an RMI object with 
the local registry will automatically notify the current 
MG. The MG will then download the server interface and 
the server objects stub and automatically create a proxy 
object for the mobile server.  

Extending the design to incorporate the Jini technology 
[11] provides an interesting solution to some of the 
difficulties inherent in the system. For example, the Jini 
lookup service provides a client with a means of finding a 
service that matches its supplied preferences so that the 
client does not need to know the precise address of the 
server’s current gateway or its Home Mobility Gateway in 
order to access a service. In addition, the Jini registrar 
provides a simple means of supplying the mobile server 
objects stub to the lookup service. This functionality is 
recreated in our Mobile RMI design when the server 

passes the GatewayRegistry the location of the HTTP 
server to download the stub class from. Thus aspects of 
Jini complement and neatly dovetail with the Mobile RMI 
architecture. 
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