

Distributed Multi -User Urban Simulation

Clodagh Rossi

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2001

 - - ii

Declaration

I declare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted as an
exercise for a degree at this or any other university.

Clodagh Rossi

 14th September 2001

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation
upon request.

Clodagh Rossi
14th September 2001

 - - iii

Acknowledgements

I would like to thank my supervisor Carol O’Sulli van for her interest, enthusiasm and

guidance throughout the course of this project. I would also like to thank all my

friends, family and classmates for their friendship, support and help during the year.

 - - iv

Abstract

The objective of the research project is the importation, representation

and 3D navigation of a large-scale city model. The model will be the

backbone for the construction of the proposed Virtual Dublin project.

The research & design carried out was aimed to identify issues in

distributed multi-user Virtual Environments (VE).

A simulation was created which demonstrates the many benefits of the

proposed architecture including the following

• 3D Rendering: Level of Detail i ts importance and benefits

towards acceptable response times

• Distributed Database: Provides polygonal mesh data and

removes the need for replicated data.

• A Multi-tasking Environment: Allows for the required multi-

user activities

• Dead Reckoning: Reduces the network traffic required

contributing towards quicker response times and more up to

date rendering.

The subsequent performance evaluation identified areas for further

development and future work.

 - - v

Contents

Table of Figures...vii
1: Introduction..1

1.1 Background to Virtual Environments..1
1.1.1 Virtual Cities...1
1.1.2 NPSNET...3
1.1.3 The Walkthrough Project ..5
1.1.4 Virtual Bath ..6

1.2 Project Goals..8
1.3 Overview..8

2: Research...9
2.1 Dead Reckoning ...9

2.1.1 Introduction ..9
2.1.2 Dead Reckoning Algorithms...11
Case 1: ...11
Case 2: ...12
Case 3: ...12

2.2 Distributed Multi-User Virtual Environments...14
2.2.1 Design Issues for Distributed Systems...14
2.2.2 Architectural Consideration...16
2.2.3 Central Server Models...19
2.2.4 Design Issues for Virtual Environments..20

2.3 Polygonal Meshes...22
2.3.1 Processing Polygonal Meshes ...22
2.3.2 Polygonal Model Simplification..22
2.3.2.1 Levels of Detail ...23

3: Analysis & Design..25
3.1 Camera Design ...25

3.1.1 Positioning and Pointing the Camera...26
3.1.2 Building the Camera into the Program...27

3.2 Polygonal Mesh..28
3.3 Server Design...29

3.3.1 Main Thread: Display Graphics and Handle User I/O.......................30
3.3.2 Listening Thread...32
3.3.3 Client Thread 1...32
3.3.4 Client Thread 2...32

3.4 Client Design..32
3.4.1 Main Thread ...33
3.4.2 Sending Thread...34
3.4.3 Receiving Thread..34

3.5 Dead Reckoning Algorithm ..34
4: Implementation ..37

4.1 MSQL Mesh Database..37
4.2 Camera...39
4.3 MSQLDB ...41
4.4 Thread ..42
4.5 Threed ..42
4.6 Main...43

4.6.1 Server Specific Routines...44

 - - vi

4.6.2 Client Specific Routines..44
5: Evaluation & Future Work ...45

5.1 Server Responsibil ities..45
5.2 Graphics...46
5.3 Mesh Data & Textures..48
5.4 Dead Reckoning ...50

6: Bibliography ...52

 - - vii

Table of Figures

Fig 1.1: Screen Shot of Virtual Tokyo 3

Fig 1.2: NPSNET History 4

Fig 1.3: Screen Shot of Virtual Bath 7

Fig 2.1: Dead Reckoning Level of Threshold 13

Fig 2.2: Point to Point Communication 17

Fig 2.3: Broadcast Communication 17

Fig 2.4: Multicast Communication 18

Fig 3.1: Camera Overview 25

Fig 3.2: Camera Orientation 27

Fig 3.3: Turning the camera to the right or left 28

Fig3.4: Polygonal Mesh Overview 29

Fig 3.5: Server Activities 30

Fig 3.6: Display Sectors 31

Fig 3.7: Client Activities 33

Fig 5.1: Time Effects from Rendering 46

Fig 5.2: Database time loadup 48

 - - 1

1: Introduction

Virtual environments are used in many applications - Architecture,

Mechanical Design, Scientific Visualisation, Mili tary Simulations,

Training, and Healthcare etc. For each of these applications, virtual

environments have to be designed and implemented in a business-like

manner [Duke 01].

This project aims to analyse and discuss all -important issues involved

in the development of these virtual environments and design and

implement a 3D navigation of an urban simulation.

1.1 Background to Virtual Environments

1.1.1 Virtual Cities

The increasing popularity and emergence of affordable virtual reality

on the World-Wide Web has lead to an ever-rising interest in ‘Virtual

Cities’ . These interactive simulations have numerous potential uses in

aiding the planning and managing of cities as people can explore and

interact with the city on screen. [Dodge, Smith & Doyle 1997b] state

that there are important distinctions in the type of virtual cities

currently on the Web and have devised a four-fold classification.

1. Web Listing Virtual Cities: These are Web sites, which

describe themselves as virtual cities, but in reality are on-line

guides, menus and listings. They are often created for

advertising purposes, particularly for tourism promotion,

usually making little attempt to represent the built form of

cities. A typical example being [Virtual Brighton & Hove].

 - - 2

2. "Flat" Virtual Cities: These use "flat" image maps of buildings

and street as an static interface. A typical example is [Virtual

Bologna].

3. Three-dimensional Virtual Cities: These use Web-based

Virtual Reality (VR) technologies to model the built form of

cities, to varying degrees of accuracy and realism. These cities

are usually navigable in the sense that the user can walk around

and fly through the scene. Buildings are represented as 3D

polygons with textures to add realism. Virtual Reality

Modelli ng Language (VRML) is often used to create such sites,

although they are seldom compiled using accurate base map

data as a foundation and generally only cover small part of the

city.

4. "True" Virtual Cities are ones, which are an effective digital

equivalent of real cities, providing people with a genuine sense

of walking around an urban place. To fulfil this demanding

criterion a true virtual city must have a sufficiently realistic

built form interface, a rich diversity of services, functions and

information content, and crucially, the abili ty to support social

interaction with other people.

[Planet 9 Studios] is a leading company on providing 3D virtual cities.

They have produced over 200 virtual worlds for a variety of

applications such as marketing, advertising, product visualization,

training, architectural simulation, military visualization and

entertainment.

 - - 3

Fig 1.1: Screen Shot of Virtual Tokyo

When developing virtual reality walkthroughs like Virtual Tokyo, real

time generation of realistic looking images is essential [Isler et. Al.

96]. A “simple” city is not very realistic and/or does not operate in

real-time, examples of these would be Type 1 and 2 defined by [Dodge

et.al.].

1.1.2 NPSNET

NPSNET is a complex world developed at the Naval PostGraduate

School, providing high fidelity in real-time, that requires the use of

hierarchical data structures [Falby et. Al]. The NPSNET system is a

workstation-based, 3D visual simulation system capable of displaying

vehicle movement over the ground or in the air utili zing SIMNET

databases and networking formats [Thorpe 87] [Zyda and Pratt 91].

The following diagram by [Zyda and Pratt 93] shows the evolution of

NPSNET Networking.

 - - 4

Fig1.2: NPSNET History

[Pratt 93] discusses some of the major challenges and issues that were

dealt with during the development of NPSNET and makes reference to

how the issues are not limited to NPSNET, or just workstation based

simulation systems, but across the entire Virtual World (VW)

development platforms. These issues are summarised below:

• Cost Reduction: Using commercially available workstations

reduces the overall development cost both by enabling re-use of

the workstation for other purposes when not being used in the

simulation exercise and sharing the cost over many host users.

• World Construction and Maintenance: The run-time world

database must be flexible, expandable and rapidly accessed.

Evolution of NPSNET Networking

DIS Protocol, IP
MultiCAST Object-Oriented
For Large Scale Simulations

NPSNET IV

NPSNET-DI

NPSNET II NPSSTEALTH

NPSNET I

Local Protocol
Distributed LAN

SIMNET
Protocol
Interoperable
used Bridged
LAN Concept
for WAN
Communication

 - - 5

• World Population: There is not always enough resources for

every simulated vehicle to be controlled by a human and to

alleviate this problem scripted vehicles are used.

• Realistic Icon Interaction: Users tend to focus on objects that

are missing or incorrect than on objects that are correct i.e. all

physical entities behave according to certain rules and users

expect those rules to be followed.

• Machine Limitations: To reach an acceptable frame rate in a

system the graphics subsystem, the network and processor

components must all be enhanced.

• Human Computer Interaction: Information must be

presented to the user in a way that they feel immersed in the

simulation.

1.1.3 The Walkthrough Project

The overall goal of the [Walkthrough Project] is to create interactive

graphics systems that enable a viewer to experience an architectural

model by simulating a walk through of the model. The project

considers the following areas as the most important areas for research

and enhancement in their simulations.

• Faster Display: This involves looking at the use of

Hierarchical Levels of Detail where fidelity based level of

detail creates lower complexity representations of objects and

renders these simpler versions when the user cant discern the

difference.

• Interaction: Colli sion detection and proximity queries with

large models are used for evaluation of maintenance and

operation requirements.

• Prettier Models: Better lighting, photo- and procedural

textures all contribute towards more realistic rendering.

 - - 6

• Real Application and Model Building: Models of real or

proposed structures are used in walkthroughs by the client,

architect and interior designer to evaluate remodelli ng options.

• Handier Interface: Investigations are being carried out into

how people navigate and perform spatial problems in virtual

environments.

1.1.4 Virtual Bath

In 1991 the Centre for Advanced Studies in Architecture, University of

Bath, constructed a 3D computer model of the city of Bath [Smith et.

al]. The model was constructed using aerial photographs using

photogrammetry [Bourdakis et al., 1997]. Bath City Council supported

the project and since its completion the model has been used by the

city planners to test the visual impact of a number of proposed

developments in the city. The model was developed as separate units

based on city blocks with each unit being modelled in a PC based CAD

package.

Levels of Detail (LOD) are used in rendering to help improve the

frame rate i.e. the further an object is from the camera the less need for

detail there is and less time spent on rendering.

Bourdakis describes the four levels of detail used in Virtual Bath.

• Level 1: A simple volumetric description of each terrace with

a flat roof at the average height for that terrace. Roads,

pavements and landscape areas are also added in.

• Level 2: Each building is modelled with accurate wall and roof

geometry and tagged as a separate object in the model. This

means that each property in the city can be identified and used

for data linking. Description hints are set so that the name and

 - - 7

address of the property is directly accessible. Trees that are

within the urban block are also switched on (as bill boards).

Typically Level 2 switches on at approximately 150 metres

from the camera.

• Level 3: Windows, doors, parapets, party walls and

freestanding garden walls are added. Level 3 typically switches

on at 90 metres.

• Level 4: Architectural detail such as chimney pots, string

courses and pilasters are added. At this level some

photographic texture maps are also included for windows and

shop fronts. The Level 3 structure is kept; Level 4 switches on

at approximately 60 metres.

Fig 1.3: Screen Shot of Virtual Bath

 - - 8

1.2 Project Goals

This project involves the importation, representation and 3D

navigation of a large-scale city model. The model will be the backbone

for the successful construction of the proposed Virtual Dublin project.

This project looks at ways of representing the data in a format suitable

for 3D rendering using OpenGL, and then providing a 3D interface,

which allows multiple users to navigate the city in real-time. The

large-scale size of the finished model will require a distributed

database and the effects of this such as timely loading of visible

regions is investigated. Level of Detail control is also an important

factor. The ultimate goal will be to integrate this project with other

projects in the large-scale sentient traffic management project, with the

final aim being a large-scale simulation where autonomous vehicles

will drive safely around Dublin.

1.3 Overview

The following topics are discussed in the subsequent chapters of this

dissertation. Chapter 2 provides a detailed discussion on Dead

Reckoning Techniques and how they aid in reducing network traffic,

design issues and architectural considerations in Distributed Multi-

User Virtual Environments and Polygonal Meshes, how to process and

simplify them. Chapter 3 provides an overview of the analysis and

design for the urban simulation created in this dissertation. Chapter 4

reviews the implementation techniques carried out. Chapter 5 reviews

the results of the dissertation. Chapter 6 gives a brief conclusion and

offers some suggestions for future work.

 - - 9

2: Research

2.1 Dead Reckoning

2.1.1 Introduction

In the construction of networked virtual environments there are three

primary aims [Crowley99].

• Response times (latency) must be kept to a minimum.

• Network bandwidth usage must be minimised.

• Consistency must be maintained between all nodes.

 To obtain consistency entities send their current relevant details e.g.

the position they are currently at, their direction and speed, to other

entities in the system. Every time an entity updates its criteria it must

send the update to the other members of the system.

As a network becomes more complicated, maintaining more

connections and managing more communication routes between

computers, the chances increase that a message may get miss-routed or

inadvertently consumed by the routing mechanism [Gossweiler et. al].

Also, when the number of messages on the network increases, the

chances increase that two messages get sent at the same time and

colli de, garbling both. Sometimes the network has an acceptable

amount of communication traffic, but then a sudden surge of messages

momentarily floods the network, thus effecting two major issues in this

type of environment, consistency and communication costs [Peter98].

The problems with network latency and bandwidth, which unable to

cope with the high stream of data being sent results in lost packets not

reaching their destination. The lost packets then lead to

inconsistencies on other entities screens, for example entities can

 - - 10

appear to ‘ jump’ over screens instead of moving in a continuous steady

path.

To reduce the number of connections and the number of messages

being sent, the dead reckoning technique may be employed

[Gossweiler et. al]. Dead Reckoning is a form of replicated computing

in that everyone participating in a multi-user system winds up

simulating all the entities in the environment, a predefined set of

algorithms are used by all entity nodes to extrapolate the behaviour of

entities in the game, and an agreement on how far reality should be

allowed to get from these extrapolation algorithms before a correction

is issued [Aronson97].

When an entity is created the computer that owns the entity sends out

information about itself. The packet of data contains information to

describe the current state of the entity for example, a unique identifier

for the entity, its position, velocity, acceleration and orientation. Upon

receipt of the first entity state packet each node on the net begins

moving the entity using the dead reckoning algorithm. This entities

position calculation, based on last known velocity, is called dead

reckoning. As long as the entity continues to move in a predictable

fashion, it appears in a consistent, synchronized way on all nodes on

the net with no further network traffic required.

To cater for when the entity doesn’t move in a predictable fashion, the

program, as well as having control of its ‘ live’ object, must also retain

the last state update message [Crowley99] it sent out to the net i.e. its

‘ghost’ object (called a ‘ghost’ , since the object is actually controlled

by another process [Gossweiler et. al]). The ghost objects update their

position through a simulation loop using a dead reckoning algorithm

[O’Connell97]. The two values are compared and if the difference is

significant i.e. by an amount that exceeds the agreed-upon threshold a

new packet is sent out to the other nodes on the net .

 - - 11

2.1.2 Dead Reckoning Algorithms

Case 1:

Dead reckoning is at the heart of popular simulation mechanisms, such

as DIS (the Distributed Interactive Simulation protocol)[IEEE93], and

is used in SIMNET [Pope89] and NPSNET [Macedonia95].

In both SIMNET and DIS no central computer is used for event

scheduling and each host is autonomous, maintaining its own state. A

broadcast communication model is used in conjunction with a

homogeneous world database. Entities interact through a series of

events. Entities are autonomous and all events are broadcast and are

available to all interested entities. An entity initiating an event does

not calculate which other entities might be interested or how the

receiving entities can be affected by it and each entity transmits the

absolute truth about its state. This state is commonly referred to as

‘ground truth’ information. The receiving entities are responsible for

transforming the ground-truth information to model the real world. A

host in the SIMNET and DIS model can only know what it is told. A

constant update of position would consume a lot of network bandwidth

so a dead reckoning algorithm is used.

The architecture adopted by NPSNET has evolved from SIMNET and

DIS, and embodies the “players and ghost” paradigm. In this

paradigm, each object is controlled on its own host workstation, by a

software object called a player. On every other workstation in the

network, a version of the player is dynamically modelled as an object

called a ghost. The ghost objects on each workstation update their

position through a simulation loop using a dead reckoning algorithm.

The player tracks both its actual position and the predicted position

calculated with dead reckoning. The core simulator communicates to

the network via a protocol converter interface that sends and receives

network packets asynchronously using both a “send thread” and a

 - - 12

“receive thread” . This allows the graphics display rate to be

maintained while data is read/written in separate lightweight processes

[O’Connell97].

Case 2:

The following algorithm is proposed in [Aronson97] where the entities

position, velocity and acceleration are used to extrapolate the entity

forward from its initial position at time t0. The first algorithm

maintains an entity at the position specified in the entity’s state from

t0. The second algorithm extrapolates the entity forward from its

known t0 position based on its velocity at t0. The third algorithm also

extrapolates forward from the entity’s last known position, but uses

both velocity and acceleration in the extrapolation.

Position t1 = Position t0 (#1)

Position t1
 = Position t0 + v r(t1 –t0) (#2)

Position t1
 = Position t0 + v r(t1 –t0)+ 1/2a r(t1-t0)(#3)

Case 3:

A similar approach is used by [Cai et. al 99], however as well as

focusing on eliminating the transmission of irrelevant packets they aim

to reduce the number of state update packets sent by the dead

reckoning mechanism. It is stated how most dead reckoning

algorithms have fixed threshold levels regardless of the distance

between the two entities and how this is not necessary. The further the

distance apart the fewer updates are required i.e. the threshold is

dynamically changed according to the relative distances between the

simulation entities.

 - - 13

The following extrapolation equations are provided. One-step formulas

use the last state update packet to extrapolate an entity’s position,

whereas multi-step formulas use the last two or more state update

packets in the extrapolation.

 One-Step Two-Step

1stOrder xt = xt’ + t’T xt = xt’ + (xt’- xt’’)/(t’ – t’’) T

2ndOrder xt = xt’ + vt’ T + 0.5at’ T 2 xt = xt’ + vt’ T + 0.5(vt’- vt’’)/(t’ – t’’) T 2

xt’ = position , vt’ = velocity , at’ = acceleration,

T = time elapse from the last update, t = t’ + T

The adaptive multi-level threshold uses relevance filtering to determine

the levels of threshold. The Area of Interest (AOI) of an entity is

defined as a circle with a constant radius around the entity, the length

of which is defined according to the entity type. Also used is the

Sensitive Region (SI), if one entity moves into another entity’s SR, a

colli sion is likely to happen. The following diagrams show how both

the AOI and SR are used to determine the level of threshold.

B A

AOI

SR

AOI

A B A B A B

Level

Description
no overlaps of
AOIs

overlap of AOIs
with another entity

in another entity’s
AOI

in another
entity’s SR

4 3 2 1

Fig 2.1: Dead Reckoning Level of Threshold

 - - 14

 In all cases extrapolation of A needs to be accurate though the degree

of accuracy required is different. For example in level 1 A is in entity

B’s SR and to prevent entity B from making misjudgement on colli sion

entity A’s update packet will be emitted most frequently, but its

extrapolation will be the most accurate.

Level 2 is where A is outside B’s SR but within its AOI, to avoid

missing the detection of an approaching entity, entity B needs to have a

more accurate position of entity A. However there is no danger of a

misjudgement on colli sion so a small threshold will be adequate in

entity A’s extrapolation.

Level 3 is where A is outside B’s AOI since the two AOIs are

overlapped one entity may move to another’s AOI in a short period of

time. Extrapolation of A’s position still needs to be accurate but the

requirement is less rigid. As A is not in B’s AOI its update packets do

not need to be sent frequently. So a large threshold can be used in A’s

extrapolation.

2.2 Distributed Multi-User Virtual Environments

2.2.1 Design Issues for Distributed Systems

According to [Tan95] when designing Distributed Systems the

following key issues must be taken into consideration:

2.2.1.1 Transparency

This involves the issue of achieving a single-system image and hides

the distribution from users of the system. The following transparency

aspects should be considered

 - - 15

• Location Transparency: The users cannot tell where resources

are located.

• Migration Transparency: Resources can move at will without

changing their names.

• Replication Transparency: The user cannot tell how many

copies exist.

• Concurrency Transparency: Multiple users can share resources

automatically

• Parallelism transparency: Activities can happen in parallel

without users knowing.

2.2.1.2 Flexibility

It is important that the system is flexible so the design decisions, which

now seem reasonable and later may prove, to be wrong can be easily

changed.

2.2.1.3 Reliability

The original goal of building distributed systems was to make them

more reliable than single-processor systems.

2.2.1.4 Performance

When running an application on a distributed system, it should not be

appreciably worse than running the same application on a single

processor.

2.2.1.5 Scalability

Most current distributed systems are designed to work with a few

hundred CPUs. It is possible future systems will be orders of

 - - 16

magnitude larger, and solutions that work well for 200 machines will

fail miserable for larger numbers of machines.

Data distribution policies affect not only network performances but

also consistency, reliabili ty, and scalabili ty. According to [Crowley99]

there are two main challenges to be considered when designing a

distributed system, Consistency and Latency.

• Consistency: Each users world must correspond closely to all

other users. In some cases, lack of consistency may be

tolerated as long as the user cannot perceive this and does not

affect the future subjective consistency of the world. All

objects within each user’s world-view must correspond with

those of the whole.

• Latency: The system must respond without perpetual delay to

both the user’s actions and to other users’ or entities’ actions.

2.2.2 Architectural Consideration

When designing distributed systems for Virtual Environments (VE)

there two main points that need to be addressed [OConnell97], the

communication model to be adopted, and the approaches for

distributing the system.

 2.2.2.1 Communication Models:

The communication techniques adopted by multi-user VW fall into

three categories, point-to-point, broadcast, and multicast

Point-to-Point: One connection for each host is established

[KahaniBeadle] and each host communicates with all other

hosts in the system. This approach falls apart, however, when

 - - 17

communication is scaled, as it requires n2 messages, where n is

the number of hosts in the network.

 Fig 2.2: Point to Point Communication

Broadcast This communication protocol allows each host on

the network to send a single message that is received by all

other hosts in the system. Kahani and Beadle state how the

data is sent so everyone regardless if they need it or not.

 Fig 2.3: Broadcast Communication

Multicasting This involves in hosts joining multicast groups.

Data is sent to one or more multicast addresses and if a host is

part of the multicast address it will receive the data.

Multicasting is seen as method for improving efficiency

compared to Broadcasting where data is sent so everyone in

LAN regardless if they need it or not [KahaniBeadle].

A

 B

C

D

A

B C D

 - - 18

Fig 2.4: Multicast Communication

2.2.2.4 Distribution Schemes:

All distributed VEs share the problem of where to keep the VE

database on the network and how to represent it.

• Replicated Database: Each host maintains a full copy of the

world database. Each host is responsible for the maintenance

and upkeep of its internal database and reflect any changes

made. The originator of any change to the database must send a

message to the other hosts on the network informing them of

the change. This distribution model is typically associated with

a broadcast communication model, whereby when the state of

an entity on a host changes, the host broadcasts that change to

all of the other hosts on the network.

• Centralised Database: A single server host is responsible for

communicating with each of the clients to determine and report

the current state of the system. The server maintains the

database while the clients handle computation and rendering

and present the users with a view of the VE.

A

B C D

 - - 19

• Partitioned Database: The database is partitioned among

clients and a server is used to communicate the database

between the relevant clients.

• Shared Distributed Databases: Basically a shared memory

system, where each new entity which is created or modified is

distributed through the shared memory model.

2.2.3 Central Server Models

In Central Server Models clients communicate with a central server,

which manages the entire system and informs clients of any updates

and changes in object states. Clients only communicate with the

server, which contains the entire database and tracks all objects of

interest within the system [Crowley99]. The server processes all input

from each client, and dispatches the changes in the environment to

each user. All clients perform graphics and other user I/O e.g.

traversing the system.

Centralised systems have the following benefits when used in a small-

scale distributed multi-user environment

o There is one definite point of reference for the VW.

o The server is aware of the entire state of the VW at any point in

time, and can always update a participant client with the state

of an object or other clients.

o Database housekeeping are easier to maintain

 [Looman00] takes the following factors into consideration when

designing both the client and server nodes for a Central Server system:

• Clients have three distinct activities:

o Establishing a connection with the server

 - - 20

o Sending data to or reading data from the server

o Terminating the connection.

• Servers activities include:

o Handle communications with existing clients

o Process console commands

o Accept new client connections fast enough so the client

doesn’t timeout.

According to Looman the only real way to solve the problem of

catering for these multiple activities is to dedicate one thread to

handling the console in the main thread, allocate another thread for

processing new client connections, and spawn new threads to manage

communications with each connected client. This is the method that

has been adopted in this dissertation; more detail of the design can be

seen in the Analysis and Design Chapter.

2.2.4 Design Issues for Virtual Environments

[Diaz et.al] describe the three fundamental elements that exist in VEs

and issues that are associated with them.

1. Contexts: A context defines a set of circumstances and

describes the purpose of these. A VE is defined as a set of connected

contexts. Contexts are connected by links, which allow users to

navigate among contexts. From the visualization point of view, each

context could be represented by a street metaphor and navigation could

mean to walk down the street.

2. Objects: Represent real world objects and they are the

components of the VE, which can be used by the user to carry out his

activities. [Kahani] refers to two types of behaviour:

 - - 21

o Deterministic Behaviour: These are where the static entities

never change during the simulation e.g. mountains or buildings.

Certain animated entities change but their states are predictable

and can be determined e.g. clock hands.

o Non-deterministic Entities: These are intelli gent entities that

are complex and can’ t be predicted e.g. humans.

3. Users and Groups: There is need to model the user profile with

all of their abili ties, history and preferences in the system and all

activities that the user can do:

o To activate an object that carries out some activity

o To collect objects

o To move objects from one place to another, this could imply to

move the object inside or outside the current context

o To possess objects i.e. only its owner can handle the objects

o [Kahani] also refers to users Area of Interest. Users are not all

interested in receiving the same update information depending

where they are in the system. As a result the AOI for a user can

be can be defined and only information related to the AOI is

broadcast to that user. For example a users camera position

could be used to determine their position in the world so that

only the relevant objects i.e. those in the direct vicinity of the

users location will be displayed. This contributes both towards

improving user I/O response times and also the amount of data

required to be sent across the network. Less data on screen

means less time required to process it and more time to address

user I/O. If the whole world does not need to be displayed than

there is no need to sent all data to the user at the same time,

instead it is sent when requested by the user contributing

towards helping to reduce bandwidth and network latency.

 - - 22

2.3 Polygonal Meshes

Polygonal meshes currently dominate the field of interactive three-

dimensional computer graphics due to their mathematical simplicity

that allows fast rendering of polygonal data sets [Chasan].

2.3.1 Processing Polygonal Meshes

[Kobbelt, Kahler et al. 00] outline the main areas involved in

gathering data and processing it into polygonal mesh format.

� Data Acquisition: The first task is to retrieve the relevant

properties of the object i.e. gather its geometry, surface texture,

volumetric density information etc.
� Mesh Generation: This step taking the data retrieved in the

first step and generates a single surface representation i.e. a

triangle mesh.
� Mesh Decimation: Reduces the complexity of a given input

mesh by removal of detail information i.e. vertices and

triangles.
� Subdivision Surfaces: Provide a uniform and efficient way to

describe smooth curves and surfaces.
� Remeshing: This involves applying a regular refinement

operator to a coarse triangle mesh so that every submesh

corresponds to one base triangle i.e. each submesh has the

structure of a regular grid.

2.3.2 Polygonal Model Simplification

Since model sizes seem to be increasing faster than hardware rendering

capabili ties there are many techniques that have been investigated for

accelerated rendering. The simplest approach could be taken as that

 - - 23

quoted by [Aliaga et. Al. 98] who state that the ideal algorithmic

approach is: Do not even attempt to render any geometry that the user

will not ultimately see.

2.3.2.1 Levels of Detail

The aim of polygonal simplification, when used for levels of detail

(LOD) generation, is to remove primitives from an original mesh in

order to produce simpler models, which retain the important visual

characteristics of the original object [Krus et. Al]. According to [Krus

et. Al.], in order to maintain a constant frame rate, the key is to find a

good balance between the richness of the models and the time it takes

to display them. The following are characteristics that need to be

considered in the simplification algorithm being used:

� LOD Continuum: Successive LODs will differ by the

number of polygons they have so that switching from one to the

other is usually noticeable by the observer i.e. popping effect.

This popping effect needs to be minimised.
� Shape Preservation: The simplification must keep the general

shape and characteristics, which make the object easily

identifiable, are preserved. Thus the algorithms have to look

for the following distinct features:

o Inspecting the normals of adjacent polygons can

identify Planar Area. These polygons can be merged

to form bigger ones.

o Sharp Edges should be preserved and can be simplified

by merging connected edges, which are nearly colli near.

o Pointed Edges must be preserved since they have many

chances of appearing on the silhouette of the object.

 - - 24

� Measure of the Approximation Error: To control simplification

the approximation error should be measured locally.
� User Specification of the Amount of Simplification: Most

algorithms allow the user to specify the limit to the amount of

simplification in terms of upper bound for the local

approximation error.
� Topology Preservation: Algorithms may have a choice of

simplifying the topology but the result is rarely usable as the

differences with the original object is too noticeable.
� Controllable Simplification: Simplification may vary across

the mesh in order to preserve some parts and simplify others

more aggressively.

 - - 25

3: Analysis & Design

3.1 Camera Design

All hosts require fine control over camera movements due to the need

to forward their details to other hosts. OpenGL provides simple

camera commands, however in order to know the cameras co-ordinates

it is necessary to create the programs own camera where, after each

change to the camera is made it “tells” OpenGL the new camera

position.

The following diagram shows the general form of a camera. It has an

eye positioned at some point in space, and its view volume is a portion

of a rectangular pyramid, whose apex is at the eye. The opening of the

pyramid is set by the view angle θ. Two planes are defined

perpendicular to the axis of the pyramid: the near plane and the far

plane. Where these planes intersect the pyramid, they form rectangular

windows. The windows have a certain aspect ratio, which can be set in

a program.

near
plane

far plane

y

z

x

F

P’ P
eye

Fig3.1: Camera Overview

 - - 26

OpenGL clips off any parts of the scene that lie outside the view

volume. Points inside the view volume are projected onto the view

plane to a corresponding point P′. With a perspective projection, the

point P′ is determined by finding where a line from the eye to P

intersects the view plane. Finally the image formed on the view plane

is mapped into the view port.

3.1.1 Positioning and Pointing the Camera

In order to obtain the desired view of a scene, the camera is moved

away from its default position and aimed in a particular direction. This

is done by performing a rotation and translation which, become part of

what is called the modelview matrix.

The modelview matrix combines two effects: the sequence of

modelli ng transformations applied to objects and the transformation

that orients and positions the camera in space.

To help camera position and orientation an explicit coordinate system

is attached to the camera, which helps describe transformations to the

camera. The coordinate system has its origin at the eye and has three

axes u, v and n that define its orientation. The axes are pointed in

directions given by the vectors u, v and n.

As the camera looks down the negative z-axis the camera also looks

down the negative n-axis. U points off to the right of the camera and v

points upwards i.e. u, v, and n-axes are clones of the x, y and z-axes.

 - - 27

Fig3.2: Camera Orientation

3.1.2 Building the Camera into the Program

The Camera class contains fields for the eye and the directions u, v and

n. It also has fields that describe the shape of the view volume:

viewAngle, aspect, nearDist, and farDist. A utili ty routine

setModelViewMatrix() communicates the modelview matrix to

OpenGL. It is called after each change is made to the camera’s

position or orientation.

3.1.2.1 Sliding the Camera

Sliding the camera means to move it along one of its own axes without

rotating it i.e. in the u, v, or n direction. Since the camera is looking

along the negative n-axis movement along n is “forward” or “back” , u

is “ left” or “right” and v is “up” or “down”. This is done using the

equation :

eye = eye + Du

D is the distance to move and in this particular example the client is

moved along the u-axis.

y

x

z
u

v

n

eye

 - - 28

3.1.2.2 Rotating the Camera

Rotating the camera means to rotate it about the v-axis, which means

both u and n must be rotated.

 ∝

 Fig3.3: Turning the camera to the right or left

Two new axes u′ and n′ are formed which lie in the same plane as u

and n but have been rotated through the angle ∝ radians. Both u′ and

n′ are formed as the appropriate linear combination of u and n:

u′ = cos(∝)u + sin(∝)n

n′ = -sin(∝)u + cos(∝)n

The new axes u′ and n′ then replace u and n in the camera.

3.2 Polygonal Mesh

Polylines are a connected sequence of straight lines that don’t form a

closed figure but if the first and last points are connected by an edge

the polyline is a polygon.

Polygonal meshes are a collection of polygons that are given by a

sequence of vertices. Each vertex has a normal vector associated with

it. The normal vector provides directional information about the way a

polygon is facing and is used in the shading process and determines

how light is reflected off the surface of the polygon. To create a

realistic 3D view of a scene textures are mapped onto the polygons.

u‘

u

v

n‘

n

 - - 29

The following diagram gives an overview of a basic polygonal mesh.

It highlights the eight vertices that make up the corners of the block,

these vertices make up ‘ triangles’ , which form the skin of the block

and enable the texture to be mapped to the block giving it the

appearance of a building.

Fig3.4: Polygonal Mesh Overview

3.3 Server Design

The server as well as graphics and user I/O is responsible for

communicating all client activities to the other clients in the system i.e.

clients do not communicate with each other directly but through the

server. To cater for these multiple tasks the server must be multi-

threaded as shown in the following diagram.

0(-1,1,-1) 3(1,1,-1)

7(1,-1,-1)

6(1,-1,1) 5(-1,-1,1)

1(-1,1,1)
2(1,1,1) 4(-1,-1,-1)

Triangles

• 013
• 231
• 457
• 567
• 015
• 025
• 326
• …

…

 - - 30

 Fig3.5: Server Activities

3.3.1 Main Thread: Display Graphics and Handle User I/O

When dealing with 3D rendering the following factors have to be taken

into account:

3.3.1.1 Lighting

• Enable users to see things

• Provides 3D graphics with more realistic worlds, with shadows,

reflective surfaces, colour, and various other effects.

• Three different types of light

o Ambient Light

o Diffuse Light

o Specular Light

3.3.1.2 Texture Mapping

Display graphics and handle
user I/O

Listen for new Client
connections

Send Data Packets to
Clients

Receive Clients Data
Packets

 - - 31

• Turn the 3D world from a bunch of coloured triangles into a

photo realistic scene

3.3.1.3 Determine Sector

� To display the whole world on screen results in response times

being very slow e.g. user cannot navigate swiftly through the

world but instead it seems to jump intermittently between each

frame.
� The solution is to divide the world into blocks or sectors, then

use the clients’ current position to draw the meshes in their

surrounding vicinity.
� The following diagram highlights the sectors that would be

drawn around the clients’ current position marked by the face.

If the client moved into another sector the nine surrounding

sectors would then be displayed.

 Fig 3.6: Display Sectors

3.3.1.4 Draw Other Users Logged on

 - - 32

� If the user is new draw the position received
� Otherwise predict position for the user using Dead Reckoning

if client has not resent its new position.

3.3.1.5 Receive User I/O

� Determine where to move camera to
� Move camera tell openGL
� Determine if server position needs to be sent again – dead

reckoning

3.3.2 Listening Thread

This thread must continuously listen at the predefined socket for new

clients wanting to log on. It sits waiting for input on the socket and

when it receives new client details it immediately creates a new client

thread for this user and goes back to listening for new clients.

3.3.3 Client Thread 1

The first Client Thread will be responsible for sending both the server

details and passing on any other clients details logged onto the system.

3.3.4 Client Thread 2

This thread receives any updates that will be sent by this client giving

its new position.

3.4 Client Design

As with the server the client has multiple activities that need to be

carried out simultaneously. These activities are summarised in the

following diagram.

 - - 33

Fig 3.7: Client Activities

3.4.1 Main Thread

This threads main function is similar to the server:

3.4.1.1 Responsible for drawing graphics

� Light
� Determine Sector
� Draw mesh for this sector and surrounding sectors
� Draw other users logged on if new position draw this position

otherwise predict posn for user

3.4.1.2 Receive User I/O

� Determine where to move camera to

Display graphics and handle
user I/O

Establish a connection
with the server

Send Data Packets to
& Receive All other
users information from
server

 Terminate connection
with server

 - - 34

� Move camera tell openGL

3.4.1.3 Determine if client’s position needs to be sent

again.

3.4.2 Sending Thread

If the clients position needs to be resent again this thread will send it to

the server.

3.4.3 Receiving Thread

This thread will receive all other clients’ co-ordinate details from the

server through this thread.

3.5 Dead Reckoning Algorithm

This virtual world has a central server to which all entities connect.

The entity upon connection to the server sends its state packet to the

server, where the server will assign a unique id to the entity. The

server will then send to the new entity the servers state packet and all

state packets for the other entities. At the same time it will send the

state packet for the new entity to all other nodes, which will recognise

this as a new entity by its unique id.

Acceleration and speed are not taken into consideration in this

prediction algorithm as entities move at a fixed rate however the

direction that the entity is moving must be sent by the entity so that

other entities can predict the axis to move along i.e. if the entity is

going forwards or backwards or to the right or left. The state packet is

therefore made up of the following data.

Entity Direction

Entity X Position

Entity Y Position

Entity Z Position

 - - 35

Once the state packet is sent and there is on screen movement the

prediction algorithm comes into play. The entity after each actual

move will also calculate its ‘ghost’ position i.e. the position calculated

from the last state packet sent which all other nodes will use to predict

this entity’s progress. The distance between these two points will then

be found using the following function:

Dist = √ (Xcurrent – Xpredicted)
2 + (Ycurrent – Ypredicted)

2 + (Zcurrent – Zpredicted)
2

If the distance is greater than the fixed threshold level the entity must

resend its state packet to the server for redistribution among the other

nodes. A flag is set to indicate to the thread responsible for sending

and receiving data from the server that a new state packet is to be sent

and the new ‘ last position sent’ is recorded to calculate the ghost

position.

The server has a client thread for each entity to communicate with the

linked entity. Associated with each entity is a flag, which is set to true

once a new state packet has been received for this entity. Once set the

packet is sent to all nodes and reset to false until another packet is

received for the entity. Two methods have been considered for the

distribution of the new state packets. The first involves the server

having two threads per client, one for receiving the state packet for this

entity and one to send all other updated state packets in the system to

the entity. This is due to the random sending of data across the

network i.e. it can’ t be pre-determined when new state packets will be

sent and will therefore not be sent in a pre-defined order. The other

method would involve the server having one thread per client and then

another thread, which distributes new state packets to all users when

 - - 36

they are received. The former method was chosen due to the

unpredictable timing of state packets being sent by the entities.

 - - 37

4: Implementation

The following sections summarise the database and tables for storing

the polygonal mesh data and the main classes involved in the project,

giving an overview of the main procedures and routines involved in

each class.

4.1 MSQL Mesh Database

The following four tables contain the data for rendering polygonal

meshes.

V
e
r
t
i
c
e
s

T
a
b
l
e

Mesh id
Vertices Id
X Position
Y Position
Z Position
X Texture
Y Texture

Mesh Table

Mesh id
Number Vertices
Number Normals
Number Triangles

Mesh Id
Normal Id
X Position
Y Position
Z Position

Mesh Id
Triangle Id
X Vertices
Y Vertices
Z Vertices
X Normal
Y Normal
Z Normal
R colour
G colour
B colour

Normal Table

Triangle Table Vertices Table

 - - 38

The mesh table indicates the number of vertices, normals and triangles

in each mesh. The values retrieved from this table specify the number

of rows that are to be retrieved from the other tables i.e. how many

vertices, normals and triangles are associated with each mesh to be

drawn.

Simple SQL statements are used in code to retrieve the data. For

example the following piece of code is called to retrieve data from the

mesh table with the mesh id being passed to the routine to indicate

which mesh is being accessed.

void DBase::selectmTable(int meshNo){

 sprintf(query, "select * from %s where mesh_id = %d",TABLE,

meshNo);

 if (msqlQuery(sock,query) < 0){

 printf("Error: %s\n", msqlErrMsg);

 exit(-1);

 }

 res = msqlStoreResult();

 if ((numrows =msqlNumRows(res))){

 row = msqlFetchRow(res);

 //numfields = msqlNumFields(res);

 num_Vertices = atoi(row[1]);

 num_Triangles = atoi(row[2]);

 num_Normals = atoi(row[3]);

 }

 msqlFreeResult(res);

}

 - - 39

4.2 Camera

This class contains all camera co-ordinates and the procedures to

move and store the camera positions around the world.

void SetModelViewMatrix();

void Set (Point3 Initial Position, Point3 LookAt Position, Point3

Up Position);

void setShape(float View Angle, float Aspect, float near Distance,

float far Distance);

void setProjectionMatrix();

These procedures all contribute towards determining the cameras

current co-ordinates i.e. creating the modelview matrix and projection

matrix and sending the details to OpenGL.

void Slide(float X direction, float Y direction, float Z direction);

void Rotate(float angle, Vector3 a, Vector3 b);

void right(float angle);

void left(float angle);

These procedures are all involved in calculating the new camera

position reflecting the users input commands. The Slide procedure for

example, uses the X, Y, Z parameters to determine the direction to

‘slide’ the camera i.e. if positive x means move to right, if negative Z

move forward. The Right or Left procedures call the Rotate procedure

and are used when the user wishes to turn right or left.

 - - 40

int DetermineSector();

This procedure determines where the camera is in the world. The

sector number is returned and then used to determine which sectors are

to be drawn on screen

double DiffBetweenGhost();

double DiffInRotation();

void ghostSlide(float delX, float delY, float delZ);

void ghostRotate(float angle, Vector3 a, Vector3 b);

void ghostRight(float angle);

void ghostLeft(float angle);

void setGhost();

void predictPosition((HANDLE sEvent, int nu);

These procedures are all used in the dead reckoning routine. For

example the DiffBetweenGhost procedure finds the difference between

the cameras’ actual position and the ‘ghost’ position that every other

user has at this moment in time. If the difference is greater than a pre-

agreed value this user needs to resend its position to the server to

distribute to all others logged on. The setGhost routine then makes the

ghost value the same as the current camera position. The ghostSlide,

ghostRotate, ghostLeft and ghostRight routines are called after every

frame reflecting the calculations being made by other clients for this

particular client.

 - - 41

4.3 MSQLDB

This class contains all routines required for accessing the city data in

the msql database so that the buildings and objects can be rendered on

screen. The query statements use sql to access the tables.

void connectDB();

This routine is called to connect to the database. The IP Config

Address of the database is used to indicate where the db is stored.

void selectmTable(int meshNo);

void selectVertTable(TriMesh *mesh, int meshID, int

num_Vertices);

void selectTriangTable(TriMesh *mesh,int meshID, int

num_Triangles);

void selectNormalTable(TriMesh *mesh,int meshID, int

num_Normals);

These routines all contribute towards retreiving the data from the four

tables. SelectmTable retrieves the number of vertices, triangles and

normals in each polygonal mesh. SelectVertTable selects all the

vertices for a mesh, selectTriangTable selects the triangles that make

up the surface of the mesh so the texture can be rendered onto it and

selectNormalTable contains the normal co-ordinates to help in the

shadows and reflections.

 - - 42

4.4 Thread

This defines the ClientPos class that is used to store all other clients’

positions logged on and also the dead reckoning routines, which are

required to calculate their new co-ordinates in each frame.

void calcPosn()

void slide(float delX, float delY, float delZ)

void rotate(float angle, Vector3 a, Vector3 b)

void right(float angle)

void left(float angle)

These procedures are all used in calculating the client’s new position.

The calcPosn routine uses the current client ‘direction’ to determine

where the client is moving to i.e. if they are going forward or

backwards, to the right or left or turning around.

4.5 Threed

The Point3 and Vector3 classes and routines define the 3D points and

vectors used in the building setup and the camera co-ordinates.

void Point3::set(Point3 &p);

void Vector3::set(Vector3 &v);

void Vector3::flip();

void Vector3::setDiff(Vector3& a, Vector3& b);

void Vector3::flip();

The set procedures are called to fix the x, y, and z values. The flip

routine turns the x,y,z co-ordinates into minus values. The setDiff

procedure determines the difference between two vectors a and b.

Normalise adjusts a vector to unit length.

 - - 43

4.6 Main

The main class is responsible for creating the different threads required

to carry out the multiple activities both in the Client and Server.

void GLUTinitialise(int argc, char *argv[])

The GLUTinitialise procedure carries out a number of initial functions

that are required. The different types of light and surface reflection

values are determined. The textures that are mapped onto the city

objects are also loaded in here. All polygonal meshes are read in from

the database. The initial camera and ‘ghost’co-ordinates are set.

void GLUTdrawFunction()

This procedure determines the sector that the camera is currently in

and then draws the relevant sectors surrounding the camera binding the

correct textures to the objects/buildings to be drawn. All clients logged

on are also drawn either by using the newly received clients position or

by calculating their new position using dead reckoning.

void GLUTkeyFunction(unsigned char k, int x, int y)

This procedure is called whenever there is input from the user. The

user can tell which direction they wish to travel by pressing pre-

determined keys e.g. to go forward ‘ f’ is pressed, ‘b’ indicates back, ‘a’

indicates the user wishes to turn right etc.

 - - 44

4.6.1 Server Specific Routines.

void mainLoopThread(void *dummy)

void createUserThread(void *us)

The mainLoopThread listens continuously at the agreed socket for new

incoming connections. Once a new connection is accepted the

createUserThread is called to create a new thread to deal with this

client. The createUserThread then determines if this is a ‘send’ or

‘ receive’ thread for the client. If it’s a ‘send’ thread it knows that its

function is to send all clients positional information to this client when

it receives it. If it’s a ‘ receive’ thread its function is to receive this

clients positional updates.

4.6.2 Client Specific Routines.

void sendThread(void* dummy)

void mainLoopThread(void *dummy)

The sendThread first makes connection with the server socket, upon

initial connection it tells the server that it’s a sending thread i.e. it will

be responsible for resending this clients position when required.

Before going into a continuous loop which spends its time waiting to

resend this clients position when the dead reckoning routine indicates it

needs to be resent, it calls the mainLoopThread thread. The

mainLoopThread upon connection indicates it’s a ‘ receiver’ thread and

goes into a continuous loop listening for all other clients co-ordinates

that are logged on.

 - - 45

5: Evaluation & Future Work

This project has provided a substantial basis towards the successful

completion of the proposed Multi-User Virtual Dublin Environment.

The multi-user nature of this project means that all users must know

and be able to see the exact location of all other users in the

environment. The Camera setup means that at any time all users can

send their exact positional details to others who can then represent

them on their screens. The database provides polygonal mesh data and

removes the need for replicated data. A multi-tasking environment

allows for the required multi-user activities and dead reckoning

reduces the network traffic required contributing towards quicker

response times and more up to date rendering.

The results found have also highlighted areas for improvements and

future work.

5.1 Server Responsibilities

The design and implementation for the server includes the server

carrying out graphics rendering and catering for user I/O. Tests have

shown that this hinders the servers capabili ties of dealing with clients

requests and can contribute towards delays on screen.

For example tests carried out when the server included rendering and

user I/O functionalities resulted in 2-3 second delays on the screens of

the clients. When the rendering was removed this delay was

negligible.

 - - 46

Further developments will therefore remove this activity from the

server thus improving the overall multi-user interaction and

communication.

5.2 Graphics

When designing a 3D world to display the whole world on screen at

the same time is too slow, both the movement on screen is badly

effected and the time it takes to send/receive network data between

hosts. This is due to the amount of time required to carry out the

rendering for all the world objects in each frame.

The following graph shows the relationship between time and 3D

rendering and how the greater the amount of rendering required the

more time is required to draw each frame and therefore the slower the

response times for all other activities.

Fig 5.1: Time Effects from Rendering

The solution to this problem is to divide the world into sectors and

assign buildings to sectors depending on their positions. The users

current camera position is then used to tell the program the sectors that

are directly around the user and that need to be drawn. This solution

Time required to carry out rendering

Number of
objects to
be rendered

 - - 47

greatly improves the response times as less rendering is required,

however other factors must then be taken into consideration.

Sectoring leads to ‘popping’ affects on screen which is when the users

move from one sector to another resulting in different sectors being

drawn so that buildings seem to ‘pop’ on screen out of nowhere. To

reduce the popping affect so that it is less obvious to the user means to

draw more sectors or increase the size of sectors so that the buildings

are popping up at a distance that is too far away from the users position

to be noticed. This solution however is again increasing the rendering

required and so is going to affect the response times bringing us back

to the original problem.

Tests carried out on on this project to determine the optimal number of

sectors that should be rendered, counting 80 block meshes in one

sector with a width of 25 units and depth of 47 units to allow a

satisfactory user I/O showed the following results with the number of

frames shown per second

25

20

10

50 100 1000

5

200

No. of Sectors Rendered

No. of
Frames
per
second

 - - 48

The number of sectors that were found to be the most usable for the

response times meant that popping was more evident when the user

moved from sector to sector.

What is needed is the same response times but more objects rendered

on screen. To obtain this result display more sectors but reduce the

details required on objects/buildings that are drawn depending on the

distance to the user. This means that the buildings are still visible on

screen but due to the distance a high level of detail is not required,

therefore less rendering is required and so less time needed to draw

them. It is only the objects in the direct vicinity of the user that the

highest level of detail is required.

This solution results therefore in more buildings being drawn on screen

simultaneously and so less obvious popping affects, however due to

lower levels of detail for distant objects less time is required for

rendering so the response time will not be as badly affected and will

not hinder users activities.

5.3 Mesh Data & Textures

This project highlighted the time difference that is required for reading

in mesh data from a database on the same PC as the program is running

or reading the data from another PC. For example, to read in 80 block

meshes from the database on the same machine would take

approximately 1 minute however to read in the same 80 meshes from

another machine could take approximately 20 – 25 mins. This is a

considerable time difference and solutions are required to improve on

this delay.

 - - 49

Fig 5.2: Database time loadup

This diagram highlights the time difference it takes for two machines

to load up the mesh data depending on if the database is on the hosts

machine or if it is on another machine.

Buildings in this projects environment are basic block buildings and

therefore do not require many vertices, normals and triangles to be

stored. However buildings are usually not that simple and have

complicated designs and this will greatly increase the amount of data

required to represent them. For example the following figure gives the

number of vertices, normals and triangles in a basic block building and

a building in Trinity College.

TIME/mins

DB

0 20 5 10 15

DB

Block Building

No. Vertices: 10
No. Normals: 8
No. Triangles: 12

Trinity Building

No. Vertices: 655
No. Normals: 655
No. Triangles: 756

 - - 50

If the time required for reading in simple mesh formats is so high the

time required to read in the large amounts of data for actual real

buildings would be too long and totally unacceptable.

Building mesh databases can be stored on each users machine however

this leads to more complicated housekeeping and ensuring that all

databases are updated simultaneously and are the same version.

Loading in the buildings as required would reduce the time needed to

load the data into RAM to be displayed instead of reading all mesh

formats into memory at the beginning of the program.

Caching will also reduce network traffic and loading times required.

Users can cache sectors that they recently traversed or that they

traverse on a frequent basis.

Large mesh formats will also increase the amount of memory required

to store the mesh data. This will eventually result in multiple

databases being required to represent the city. How to split this data

and distribute it needs to be considered. Typical solutions could

include partitioning the database among clients or in larger systems

where more than one server is required dividing the databases among

the servers and having the data distributed among the servers and

forwarded to the clients.

Buildings textures are also quite complicated and will result in more

than one texture being required per building. How to store the textures

and map them onto the buildings also needs to be addressed.

5.4 Dead Reckoning

The dead reckoning algorithm in this project takes a users direction

and positional details into consideration when predicting their next

move. Normally a users velocity i.e. their direction and speed is

 - - 51

considered. When the steering wheel is introduced this will bring

speed into the equation and will also help to eliminate the slight

jumping affect which can occur on screen as the clients move around

the city. The jumping affect is the result of being unable to predict if a

user is slowing down or speeding up and so being able to predict if

they are going to stop moving. If the user suddenly stops a number of

frames will have passed before the dead-reckoning algorithm notices it.

 - - 52

6: Bibliography

[Aliaga et. Al98] D.Aliaga, J. Cohen, A. Wilson, H. Zhang, C.

Erikson, K. Hoff, T. Hudson, W. Stuerzlinger,

E. Baker, R. Bastos, M. Whitton, F. Brooks, D.

Manocha. A Framework for the Real-Time

Walkthrough of Massive Models

[Aronson97] Jesse Aronson. Dead Reckoning: Latency

Hiding for Networked Games, 1997.

[Bourdakis et al., 1997] Vassili s Bourdakis & Alan Day. A VRML

model of Bath, 1997.

[Cai et. al99] Wentong Cai, Francis B.S.Lee, L.Chen. An

Auto Adaptive Dead Reckoning Algorithm for

Distributed Interactive Simulation, 1999.

[Chasan] Visualisation of Complex Polygonal Models

 http://www.dcc.uchile.cl/~chasan/visual.html

[Crowley99] Daniel Crowley. DVRML: Extending VRML

for Multi-User Virtual Reality, M.Sc. 1999.

[Diaz et. Al] Alicia Diaz, Ronald Melster. Patterns for

Modelli ng Behaviour in Virtual Environment

Applications

[Dodge, Smith & Doyle 1997b] Towards the Virtual City: VR &

Internet GIS for Urban Planning.

[Duke 01] Design of Virtual Environments, held at the

Rutherford Appleton Laboratory. Chairman: Dr

 - - 53

David Duke, University of Bath. A full day

VVECC seminar presenting the state of the art

in the design of virtual environments. http://www-

ais.itd.clrc.ac.uk/VVECC/proceed/vedesign

[Falby et. Al] NPSNET: Hierarchical Data Structures for Real-

Time Three Dimensional Visual Simulation

John S. Falby, Michael J. Zyda, David R.Pratt

and Randy L. Mackey.

[Gossweiler et. al] Rich Gossweiler, Robert J. Laferriere, Michael

L.Keller, Randy Pausch. An Introductory

Tutorial for Developing Multi-User Virtual

Environments.

[IEEE93] Institute of Electrical and Electronics Engineers,

International

Standard, ANSI/IEEE Std 1278-1993, Standard

for Information Technology, Protocols for

Distributed Interactive

Simulation, March 1993.

[Isler et. Al. 96] Veysi Isler, Rynson W.H. Lau, Mark Green

Real-time. Multi-Resolution for Complex

Virtual Environments.1996.

[Kobbelt, Kahler et al. 00] Leif Kobbelt, Kolja Kahler et. al.

Processing Complex Polygonal Meshes 2000.

[Krus et. Al.] Mike Krus, Patrick Bourdot, Francoise Guisnel

& Guill aume Thibault. Levels of Detail &

Polygonal Simplification.

 - - 54

[Looman00] Jeff Looman. Develop a Client/Server

Application on Windows and Linux.

[Macedonia95] Michael R. Macedonia, Michael J. Zyda, David

R. Pratt, Paul T. Barham and Steven Zeswitz.

“NPSNET: A Network Software Architecture

for Large Scale Virtual Environments, 1995.

[O’Connell97] Karl O’Connell. System Support for Distributed

Multi-User Virtual Worlds, Ph.D. 1997.

[Peter98] Communication cost optimisation and analysis

in Distributed Virtual Environment, 1998.

[Planet 9 Studios] Contents Copyright © Planet 9 Studios, 1995-

2001 http://www.planet9.com/

[Pope89] Pope, Arthur, BBN Report No. 7102, The

SIMNET Network and Protocols, BBN Systems

and Technologies, Cambridge,

Massachusetts, July 1989.

[Pratt 93] David R Pratt. A Software Achitecture for the

Construction and Management of Real Time

Virtual Worlds. June 1993 pp 22-28

[Smith et. al] Andy Smith, Martin Dodge, Simon Doyle.

Visual Communication in Urban Planning and

Urban Design.

[Tan95] Andrew S. Tanenbaum Distributed Operating

System p22 –31.

 - - 55

[Thorpe 1987] Thorpe Jack A. The New Technology of Large

Scale Simulator Networking: Implications for

Mastering the Art of Warfighting” Proceedings

of the Ninth Interservice Industry Training

Systems Conference, Novembr 1997.

[Virtual Brighton & Hove] http://www.brighton.co.uk/

[Virtual Bologna] http://www.nettuno.it/bologna/MappaWelcome.html

[Walkthrough Project] http://www.cs.unc.edu/~walk/overview

[Zyda and Pratt 1991] Zyda, Micael J. and Pratt, David,

NPSNET: A 3D Visual Simulator for Virtual

World Exploration and Experimentation, 1991

SID International Symposium Digest of

Technical Papers May 1991 pp 361-364

[Zyda and Pratt 93] Michael r Macedonia, Micahel J Zyda, David

R Pratt, Paul T Barham, Steven Zeswitz

NPSNET: A Network Software Architecture for

Large Scale Virtual Environments pp7

