Distributed Multi-User Urban Simulation

Clodagh Ross

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degreeof
Master of Sciencein Computer Science

September 2001

Declar ation

| dedare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted as an
exercise for adegreeat this or any aher university.

Clodagh Ross
14" September 2001

Permisson to lend and/or copy

| agreethat Trinity College Library may lend or copy this dissertation
upon request.

Clodagh Ross
14" September 2001

Acknowledgements

| would like to thank my supervisor Carol O’ Sullivan for her interest, enthusiasm and
guidance throughout the aurse of this projed. | would aso like to thank al my

friends, family and classmates for their friendship, support and help during the yea.

il-

Abstract

The objedive of the research projed is the importation, representation
and 3D navigation of a large-scde city mode. Themodd will be the
badkbone for the construction of the proposed Virtud Dublin projed.

Thereseach & design caried out was amed to identify issuesin
distributed multi-user Virtual Environments (VE).

A simulation was creaed which demonstrates the many benefits of the

proposed architedure including the following

* 3D Rendering: Level of Detall its importance axd benefits
towards acceptable response times

» Didtributed Database: Provides polygona mesh data ad
removes the neeal for replicaeddata.

* A Multi-tasking Environment: Allows for the required multi-
user adivities

» Dea Redoning: Reduces the network traffic required
contributing towards quicker response times and more up to

date rendering.

The subsequent performance evaluation identified areas for further

development and future work.

4V-

Contents

TaDIE Of FIQUIES.... i ee e e e el Vi
S 0 0o [x4 o o F PP 1
1.1 Badkground to Virtual ENVIrONMENES..........cccuviiiiieiiiieeiiieeeceeeeeeae e 1
111 VIMTUBl CILIES... ittt e e 1
112 NP ONET .. e 3.
1.1.3 The Wakthrough Projedccoiviiiiiiiieee e 5
114 VIrtual Bath......oconi e (6]

1.2 Proje@ GOalS.....ccouiiiiiiiiiie ettt 8.
1.3 OVEIVIBI .ottt e e e et e e e et e e et e 8
2l RESBECN. .. 9
2.1 Dea REOKONING ..uuiiitieii e e et e e e e e e s 9
211 INEFOAUCKION ... e 9
2.1.2 Dea Redkoning Algorithms...........oooviiiii 11
(02T N PP UPPTRRPPTRPP 11
(02 PP PRRPPTRPP 12
(02 I PP PRRPPTRPP 12

2.2 Distributed Multi-User Virtual ENVIroNmMents.............ccooevevviieeeiiiienneeennn. 14
2.2.1 Design Isaues for Distributed Systems..........ccocovvveiiiiiiiiiiieeei e 14
222 Architedural ConSIderation.............ooveeviiiiiiiineee e 16
2.2.3 Central Server MOElS.........ooiiiiiiiiiii e 19
2.2.4 Design Issues for Virtual Environments...........coocoeveviiiiiiiicienineens 20

2.3 POlygonal MESNES.c.uiiiii i 22
2.3.1 Processing Polygonal MeSheSovvviiiiiiiiiiieceee e 22
2.3.2 Polygonal Model Simplification............cccovviiiiiiiiiiieei e, 22
2321 Levelsof Detall........cc.oiiiiiiiiiiiiii e 23

3 ANAlYSIS & DESION. . ceutiiiieei e 25
3l CamMEraDESION c.uuiii e 25
311 Positioning and Pointing the Camera.............ccooeviviiiii e, 26
3.1.2 Building the Camera into the Program.............ccoooeeveiiiieieeeeecineens 27

3.2 POlYgonal MESN ... v 28
3.3 SV DBSIGN ..t 29
331 Main Thread: Display Graphicsand Handle User 1/0O..................... 30
3.3.2 Litening Threadoovviii e 32
3.33 Client Thread L........couiiiiiiiiiii e e 32
3.34 Client TArea 2.......couuiiiiiii e 32

I O 11 o | D 1= o | RS 32
34.1 MaIN TArEeuniiii e 33
3.4.2 Sending Thread ... 34
343 Re@IVING THreaccvniiiiii e 34

35 DeaRed&koning Algorithmccoiiiiiiiiiiii e 34
N 1 10701 1= 00170 1=] o PPN 37
41 MSQL MeSh Database.coevuuuiiiiiiiieeiiiee e 37
N O 1 (= - DT PP PRR 39
4.3 MSQLDB ... 41
A4 TRIEEI ... e eaan 42
A5 TRIEEI ... e eean 42
A6 MAIN . e 43
4.6.1 Server Specific ROULINES.......cocvviiiiii e 44

4.6.2 Client SpeCific ROULINES.ccuuiiiiiiiicce e 44

5. Evaluation & FULUrE WOIKcouuiiiiiii e 45
51 Saver ReSpoNSIDITIES.ccuiiiiiii e 45
A € - o] o [o:S PPN 46
5.3 MeShDala & TEXIUIES......ccuuiiiieeiii et e e e e e 48
54 Dea REMKONINGuiiiiiiii e e e e e e aans 50

6. Bibliographyccouiiiiii 52

Table of Figures

Fig 1.1
Fig1.2:
Fig 1.3:
Fig 2.1:
Fig 2.2:
Fig 2.3:
Fig 2.4:
Fig 3.1
Fig 3.2:
Fig 3.3:
Fig3.4:
Fig 3.5:
Fig 3.6:
Fig 3.7
Fig 5.1
Fig5.2:

Screen Shot of Virtual Tokyo
NPSNET History

Screen Shot of Virtual Bath

Dead Fedkoning L evel of Threshold
Point to Point Communication
Broadcast Communication
Multicast Communication

Camera Overview

Camera Oriertaion

Turningthe canerato the right or | eft
Polygona Mesh Overview

Server Activities

Display Sedors

Client Activities

Time Hfeds from Rerdering
Database tme loadup

vVik

13
17
17
18
25
27
28
29
30
31
33
46
48

1: Introduction

Virtual environments are used in many applicaions - Architedure,
Medhanicd Design, Scientific Visualisation, Military Simulations,
Training, and Hedthcare etc. For eat of thes apgdications virtud
environments have to be designed and implemented in a business-like

manner [Duke01].

Thisprojed amsto analyse and discussall -important issues involved
in the development of these virtual environments and design and

implement a 3D navigation of an urban simulation.

1.1 Background to Virtual Environments

1.1.1 Virtual Cities

The increasing popularity and emergence of affordable virtua redity
on the World-Wide Web has lead to an ever-rising interest in ‘Virtual
Cities. These interadive smulations have numerous potential uses in
aiding the planning and managing of cities as people can explore ad
interad with the dty on screen. [Dodge, Smith & Doyle 1997] state
that there ae important distinctions in the type of virtual cities

currently on the Web and have devised afour-fold classfication.

1. Web Ligting Virtual Citiess These ae Web dtes, which
describe themselves as virtua cities, but in redity are on-line
guides, menus and listings. They are often creaed for
advertisng puposes, particularly for tourism promotion,
usualy making little da@tempt to represent the built form of
cities. A typicd example being [Virtual Brighton & Hove].

2. "Flat" Virtual Cities: These use "flat" image maps of buildings
and stred as an dtatic interface A typicd example is [Virtual

Bologna).

3. Three-dimensional Virtual Citiess These use Web-based
Virtua Redity (VR) tedhnologies to model the built form of
cities, to varying degrees of acaracy and redism. These daties
are usually navigable in the sense that the user can walk around
and fly through the scene. Buildings are represented as 3D
polygons with textures to add redism. Virtua Redity
Modelling Language (VRML) is often used to creae such sites,
athough they are sldom compiled using acarate base map
data & a foundation and generally only cover small part of the

city.

4. "True" Virtua Cities are ones, which are an effedive digitd
equivalent of red cities, providing people with a genuine sense
of walking around an urban place To fulfil this demanding
criterion a true virtua city must have a sufficiently redistic
built form interface a rich diversity of services, functions and
information content, and crucialy, the aility to support socid

interadion with other people.

[Planet 9 Studiog] is a leading company on providing 3D virtua cities.
They have produced over 200 virtua worlds for a variety of
applications such as marketing, advertising, product visualizaion,
training, architedural smulation, military visuaizaion and

entertainment.

I“ L
Iﬂ |:t“‘]
'm i I:]:“n

e 1 1)
[T

i

Fig 1.1: Screen Shot of Virtual Tokyo

When developing virtua redity walkthroughs like Virtual Tokyo, red
time generation of redistic looking images is essential [Ider et. Al
96]. A “smple” city is not very redistic and/or does not operate in
red-time, examples of these would be Type 1 and 2 dfined by [Dodge
et.a.].

1.1.2 NPSNET

NPINET is a complex world developed at the Naval PostGraduate
School, providing high fidelity in red-time, that requires the use of
hierarchicd data structures [Falby et. Al]. The NPSNET system is a
workstation-based, 3D visual simulation system cagpable of displaying
vehicle movement over the ground or in the ar utilizing SIMNET
databases and networking formats [Thorpe 87] [Zyda axd Pratt 91].
The following dagram by [Zyda axd Pratt 93] shows the evolution of
NPINET Networking.

Evolution of NPSNET Networking

DIS Protocol, IP
MultiCAST Objed-Oriented
For Large Scde Simulations

NPNET-DI

NPNET IV

LN
»
"
]

NPSNET II

\/
SIMNET

Locd Protocol Protocol

Distributed LAN Interoperable
used Bridged
LAN Concept
for WAN

Communicaion

Figl2: NPS\ET History

[Pratt 93] discusses me of the major challenges and isaues that were
dedt with during the development of NPSNET and makes reference to
how the isales are not limited to NPSNET, or just workstation based
smulation systems, but aacoss the atire Virtua World (VW)

development platforms. These isaues are summarised below:

* Cost Reduction: Using commercialy available workstations
reduces the overal development cost both by enabling re-use of
the workstation for other purposes when not being used in the
simulation exercise and sharing the cost over many host users.

* World Construction and Maintenance: The run-time world
database must be flexible, expandable and rapidly accesed.

1.1.3

World Population: There is not aways enough resources for
every smulated vehicle to be ontrolled by a human and to
dleviate this problem scripted vehicles are used.

Realistic Icon Interaction: Users tend to focus on objedsthat
are missng or incorred than on objeds that are wrred i.e. all
physicd entities behave acording to certain rules and users
exped those rules to befollowed.

Machine Limitations. To reat an accetable frame rate in a
system the graphics subsystem, the network and processor
components must al be enharced.

Human Computer Interaction: Information must be
presented to the user in a way that they fed immersed in the

simulation.

The Walkthrough Project

The overal goa of the [Walkthrough Projed] is to crede interadive

graphics g/stems that enable aviewer to experience an architecural

model by smulating a wak through of the model. The projed

considers the following areas as the most important areas for reseach

and enhancement in their smulations.

Faster Display: This involves looking at the use of
Hierarchicd Levels of Detall where fidelity based level of
detall creaes lower complexity representations of objeds and
renders these smpler versions when the user cant discern the
difference

Interaction: Collision detedion and proximity queries with
large models are used for evauation of maintenance and
operation requirements.

Prettier Models. Better lighting, photo- and procedural

textures all contribute towards more redistic rendering.

* Real Application and Modd Building: Models of red or
proposed structures are used in walkthroughs by the dient,
archited and interior designer to evaluate remodelli ng options.

 Handier Interface: Investigations are being caried out into
how people navigate and perform spatial problems in virtua

environments.

1.1.4 Virtual Bath

In 1991 the Centre for Advanced Studies in Architedure, University of
Bath, constructed a 3D computer model of the dty of Bath [Smith et.
a]. The model was constructed using aeaia photographs using
photogrammetry [Bourdakis et al., 1997. Bath City Council supported
the projed and since its completion the model has been used by the
city planners to test the visual impad of a number of proposed
developments in the dty. The model was developed as sparate units
based on city blocks with ead unit being modelled in a PC based CAD
padckage.

Levels of Detall (LOD) are used in rendering to help improve the
frame rate i.e. the further an objed is from the camerathe lessneed for

detall thereisand lesstime spent on rendering.

Bourdakis describes the four levels of detaill used in Virtual Bath.

* Leve 1. A smple volumetric description of ead terracewith
a flat roof at the arerage height for that terrace Roads,
pavements and landscape areasareal so added in.

* Leve 22 Eadc huilding is modelled with acairate wall and roof
geometry and tagged as a separate objed in the model. This
means that ead property in the daty can be identified and used

for data linking. Description hints are set so that the name and

-6-

address of the property is diredly accessble. Trees that are
within the urban dock are dso switched on (as billboards).
Typicdly Level 2 switches on at approximately 150 metres
from the canera.

* Levd 3 Windows, doors, parapets, party wals and
freestanding garden walls are alded. Level 3 typicdly switches
on at 90 metres.

 Leve 4: Architedura detal such as chimney pots, string
courses and plasters are alded. At this level some
photographic texture maps are dso included for windows and
shop fronts. The Level 3 structure is kept; Level 4 switches on

at approximately 60 metres.

Fig 1.3: Screen Shot of Virtud Bath

1.2 Project Goals

This projed involves the importation, representation and 3D
navigation of a large-scde aty model. The model will be the badbone
for the succesdul construction of the proposed Virtual Dublin projed.
This projed looks at ways of representing the data in a format suitable
for 3D rendering using OpenGL, and then providing a 3D interface
which alows multiple users to navigate the daty in red-time. The
large-scde size of the finished model will require a distributed
database and the dfeds of this such as timely loading of visible
regions is investigated. Level of Detall control is also an important
fador. The ultimate goa will be to integrate this projea with other
projeds in the large-scde sentient traffic management projed, with the
fina am being a large-scde smulation where aitonomous vehicles

will drive safely around Dublin.

1.3 Overview

The following topics are discussed in the subsequent chapters of this
disertation. Chapter 2 provides a detaled discusson on Deal
Redkoning Tedniques and how they aid in reducing network traffic,
design issues and architedural consderations in Distributed Multi-
User Virtual Environments and Polygonal Meshes, how to processand
smplify them. Chapter 3 provides an overview of the analysis and
design for the urban smulation creaed in this dissertation. Chapter 4
reviews the implementation techniques carried out. Chapter 5 reviews
the results of the dissertation. Chapter 6 gves a brief conclusion and

offers some suggestionsfor future work.

2: Research

2.1 Dead Reckoning

2.1.1 Introduction

In the @nstruction of networked virtual environments there ae three

primary ams[Crowley99].

* Responsetimes (latency) must be kept to aminimum.
* Network bandwidth usage must be minimised.

» Consistency must be maintained between all nodes.

To obtain consistency entities send their current relevant details e.g.
the position they are airrrently at, their diredion and speed, to other
entities in the system. Every time an entity updates its criteria it must

send the update to the other members of the system.

As a network bemmes more owmplicaed, maintaning more
connedions and managing more mmunicaion routes between
computers, the dhances increase that a message may get missrouted or
inadvertently consumed by the routing medhanism [Gosaweiler et. al.
Also, when the number of messages on the network increases, the
chances increase that two messages get sent at the same time and
collide, garbling both. Sometimes the network has an accetable
amount of communicaion traffic, but then a sudden surge of messages
momentarily floods the network, thus effeding two major issues in this
type of environment, consistency and communicéaion costs [Peter9g].
The problems with network latency and bandwidth, which unable to
cope with the high stream of data being sent results in lost padets not
reating their destination. The lost padkets then leal to

inconsistencies on other entities <reens, for example atities can

appea to ‘jump’ over screens instead of moving in a cntinuous sealy
path.

To reduce the number of connedions and the number of messages
being sent, the dead redoning tedhnque may be amployed
[Gosswveller et. d]. Deal Redkoning is a form of replicated computing
in that everyone participating in a multi-user system winds up
smulating al the aitities in the environment, a predefined set of
algorithms are used by all entity nodes to extrapolate the behaviour of
entities in the game, and an agreement on how far redity should be
alowed to get from these extrapolation algorithms before a orredion

isissued [Aronson97].

When an entity is creded the computer that owns the entity sends out
information about itself. The padket of data contains information to
describe the arrent state of the etity for example, a unique identifier
for the entity, its position, velocity, acceeration and orientation. Upon
recapt of the first entity state padket ead node on the net begins
moving the ettity using the deal redkoning algorithm. This entities
position cdculation, based on last known wvelocity, is cdled deal
redkoning. As long as the entity continues to move in a predictable
fashion, it appeas in a onsstent, synchronized way on al nodes on

the net with no further network traffic required.

To caer for when the entity doesn’t move in a predictable fashion, the
program, as well as having control of its ‘live’ objed, must aso retain
the last state update message [Crowley99] it sent out to the net i.e. its
‘ghost’ objed (cdled a ‘ghost’, since the objed is adually controlled
by another process[Gossweller et. d]). The ghost objeds update their
position through a smulation loop using a dead redoning algorithm
[O Conrell97]. The two values are compared and if the differenceis
ggnificant i.e. by an amount that exceels the agreed-upon threshold a

new padket is sent out to the other nodes on the net.

2.1.2 Dead Reckoning Algorithms

Case 1:

Ded redkoning is at the heat of popular smulation medianisms, such
as DIS (the Distributed Interacdive Simulation protocol)[| EEEQ3], and
isused in SIMNET [Pope89] and NPSNET [Macedoniady).

In both SIMNET and DIS no central computer is used for event
scheduling and ead host is autonomous, maintaining its own state. A
broadcast communicaion model is used in conjunction with a
homogeneous world database. Entities interad through a series of
events. Entities are aitonomous and all events are broadcast and are
availlable to al interested entities. An entity initiating an event does
not cdculate which other entities might be interested or how the
recaving entities can be dfeded by it and ead entity transmits the
absolute truth about its gate. This date is commonly referred to as
‘ground truth’ information. The recaving entities are responsible for
transforming the ground-truth information to model the red world. A
host in the SIMNET and DIS model can only know what it istold. A
constant update of position would consume alot of network bandwidth

so adeal redkoning algorithm is used.

The achiteaure aopted by NPSNET has evolved from SIMNET and
DIS, and embodies the “players and dhost” paradigm. In this
paradigm, ead objed is controlled on its own host workstation, by a
software objed cdled a player. On every other workstation in the
network, a version of the player is dynamicdly modelled as an objed
cdled a ghost. The ghost objeds on eat workstation update their
position through a simulation loop using a dead redoning agorithm.
The player tradks both its adual position and the predicted position
cdculated with deal redkoning. The @re smulator communicates to
the network via aprotocol converter interfacethat sends and recaves

network padkets asynchronoudly using both a “send thread” and a

11

“recave thread”. This dlows the graphics display rate to be
maintained while data is real/written in separate lightweight processes
[O Connell 97].

Case 2:

The following agorithm is proposed in [Aronson97] where the entities
position, velocity and acceeration are used to extrapolate the entity
forward from its initial postion at time t0. The first algorithm
maintains an entity at the postion spedfied in the etity’s gate from
t0. The second algorithm extrapolates the entity forward from its
known tO position based on its velocity at t0. The third agorithm also
extrapolates forward from the entity’s last known position, but uses

both velocity and acceleration in the extrapolation.

Positiony = Paosition (#1)
Positiony = Position + v '(t1 —t0) (#2)
Positiony = Position + v "(t1 —t0)+ 1/2a"(t1-t0)(#3)

Case 3:

A dmilar approac is used by [Ca et. d 99|, however as well as
focusing on eliminating the transmisgon of irrelevant padkets they am
to reduce the number of state upciete padkets snt by the dea
rekoning medianism. It is dated how most deal redoning
algorithms have fixed threshold levels regardless of the distance
between the two entities and how thisis not necessary. Thefurther the
distance @art the fewer updates are required i.e. the threshold is
dynamicdly changed acording to the relative distances between the

smulation entities.

The following extrapolation equations are provided. One-step formulas
use the last state update padket to extrapolate an entity’s position,
whereas multi-step formulas use the last two or more state update

padketsin the extrapol ation.

One-Step Two-Step
1St0rder Xi=Xp + [’T Xt = Xp + (Xt" Xt“)/(t' —t”) T
2ndOrder Xi = Xy + Vp T+ 05at’ T z Xi = Xy + Ve T+ 0.5(Vt" Vt“)/(t' —t”) T z

Xy = position , Vi = velocity , Ay = acceleration,

T =time elapse from the last update, t=t'+ T

The alaptive multi-level threshold uses relevance filtering to determine
the levels of threshold. The Area of Interest (AOl) of an entity is
defined as a drcle with a constant radius around the antity, the length
of which is defined acwording to the atity type. Also used is the
Sengitive Region (), if one eitity moves into another entity’s SR, a
collision is likely to happen. The following dagrams $ow how both
the AOI and SR are used to determine the level of threshold.

@

Level ‘ 4 ‘ 3 ‘ 2 ‘ 1
Descriotion| ™ overlaps of overlap of AOIs in another entity’s in another
Pt AQIs with another entity AOl entity’s SR

Fig 2.1: Dead Redkoning Lewvd of Threshold

In al cases extrapolation of A neads to be acarate though the degree
of acaragy required is different. For example in level 1 A is in entity
B’s SR and to prevent entity B from meking migudgement on collision
entity A’s update padket will be emitted most frequently, but its

extrapolation will be the most acarrate.

Level 2 is where A is outside B’s SR but within its AOI, to avoid
missng the detedion of an approacding entity, entity B needs to have a
more acurate postion of entity A. However there is no danger of a
migudgement on collison so a small threshold will be alequate in
entity A’s extrapolation.

Level 3 is where A is outside B’s AOI since the two AOIs are
overlapped one etity may move to another’s AOI in a short period of
time. Extrapolation of A’s position still needs to be acarrate but the
requirement is lessrigid. As A isnot in B’s AOI its update padkets do
not need to be sent frequently. So a large threshold can be used in A’s

extrapolation.

2.2 Distributed Multi-User Virtual Environments

2.2.1 Design Issues for Distributed Systems

According to [Tan95 when designing Distributed Systems the

following key issuesmust be taken into condderation:
22.1.1 Transparency
This involves the issie of adiieving a single-system image axd hides

the distribution from users of the system. The following transparency

aspeds should be considered

* Locaion Transparency: The users cannot tell where resources
arelocaed.

* Migration Transparency: Resources can move & will without
changing their names.

* Replicaion Transparency: The user cannot tell how many
copies exist.

» Concurrency Transparency: Multiple users can share resources
automaticdly

e Pardlelism transparency: Activities can happen in paralé

without users knowing.
2.2.1.2 Flexibility
It is important that the system is flexible so the design dedsions, which
now sean reasonable and later may prove, to be wrong can ke ealy
changed.

2.2.1.3 Reliability

The origina goa of building dstributed systems was to make them

more reliable than single-procesor systems.

2214 Performance

When running an applicaion on a distributed system, it should not be
appredably worse than running the same gplicaion on a single
processor.

2.2.15 Scalability

Most current distributed systems are designed to work with a few

hundred CPUs. It is possble future systems will be orders of

magnitude larger, and solutions that work well for 200 madines will

fall miserable for larger numbers of madines.

Data distribution policies affed not only network performances but
also consistency, reliability, and scdability. According to [Crowley99
there ae two main challenges to be @nsidered when designing a

distributed system, Consistency and Latency.

* Consstency: Ead users world must correspond closely to all
other users. In some caes, lak of consistency may be
tolerated as long as the user cannot perceave this and does not
affea the future subjedive mnsistency of the world. All
objeds within ead user’s world-view must correspond with

those of the whole.

» Latency: The system must respond without perpetual delay to

both the user’s adions and to other users or entities adions.

2.2.2 Architectural Consideration

When designing dstributed systems for Virtual Environments (VE)
there two main points that need to be aldressed [OConnell97], the
communicaion model to be alopted, and the gproades for
distributing the system.

2.2.2.1 Communication Models:
The communication techniques adopted by multi-user VW fall into
threecatgories, point-to-point, broadcast, and multicast

Point-to-Point: One nnedion for eat host is established
[KahaniBealle] and eady host communicaes with al other
hosts in the system. This approach falls apart, however, when

communicaion is sded, as it requires n’ messages, where n is

the number of hostsin the network.

B < > D

Fig 2.2 Point to Point Communicaion

Broadcast This communicaion protocol alows eadt host on
the network to send a single message that is recaved by all
other hosts in the system. Kahani and Bealle state how the
datais sent so everyone regardiessif they neealit or not.

A

>

Fig 2.3: Broadcast Communicaion

Multicasting This involves in hosts joining multicast groups.
Data is ®nt to one or more multicast addresses and if a host is
part of the multicast address it will recave the data
Multicesting is ®en as method for improving efficiency
compared to Broadcasting where data is ®nt so everyone in
LAN regardlessif they need it or not [KahaniBeall€].

17

Fig 2.4: Multicast Communication

2224 Distribution Schemes:
All distributed VEs gare the problem of where to keep the VE

database on the network and how to represent it.

Replicated Database: Ead host maintains a full copy of the
world database. Ead host is responsible for the maintenance
and upkee of its internal database and refled any changes
made. The originator of any change to the database must send a
message to the other hosts on the network informing them of
the dhange. This distribution model is typicdly associated with
a broadcast communicaion model, whereby when the state of
an entity on a host changes, the host broadcasts that change to
all of the other hosts on the network.

Centralised Database: A single server host is responsible for
communicaing with ead of the dients to determine and report
the airrent state of the system. The server maintains the
database while the dients handle computation and rendering

and presnt the iseswith a view of the VE.

» Partitioned Database: The database is partitioned among
clients and a server is used to communicae the database

between the relevant clients.

» Shared Distributed Databases. Basicdly a shared memory
system, where eab new entity which is creaded or modified is
distributed through the shared memory model.

2.2.3 Central Server Models

In Central Server Models clients communicae with a ceitral server,
which manages the etire system and informs clients of any updates
and changes in objea states. Clients only communicate with the
server, which contains the eitire database and tradcks al objeds of
interest within the system [Crowley99]. The server processes all input
from ead client, and dspatches the dianges in the environment to
eadh user. All clients perform graphics and other user I/O eg.

traversing the system.

Centralised systems have the following benefits when used in a small-

scale distributed multi-user environment

0 Thereisone definite point of referencefor the VW.

0 The server isaware of the etire state of the VW at any point in
time, and can aways update aparticipant client with the state
of an objea or other clients.

0 Database housekeeping are easer tomantan

[Looman0Q] takes the following fadors into consideration when

designing both the client and server nodesfor a Gentrd Server system:

* Clients have threedistinct adivities;

o Esablishing aconnedion with the server

19

0 Sending datato or reading datafrom the ®rver

0 Terminating the connedion.

* Serversadivitiesinclude:
0 Handle communications with existing clients
0 Processconsole commands
0 Acceat new client connedions fast enough so the dient

doesn’'t timeout.

According to Looman the only red way to solve the problem of
caering for these multiple adivities is to dedicae one thread to
handling the @nsole in the main thread, allocae another thread for
processng new client connedions, and spawn new threads to manage
communicaions with ead conneded client. This is the method that
has been adopted in this dissertation; more detall of the design can be
sean in the Analysis and Design Chapter.

2.2.4 Design Issues for Virtual Environments

[Diaz d@.al] describe the threefundamental elements that exist in VES

and issues that are associated with them.

1 Contexts:. A context defines a set of circumstances and
describes the purpose of these. A VE is defined as a set of conneded
contexts. Contexts are mnneded by links, which alow users to
navigate anong contexts. From the visualizaion point of view, eat
context could be represented by a stree metaphor and navigation could

mean to walk down the stred.
2. Objeds: Represent red world objeds and they are the

components of the VE, which can be used by the user to cary out his

adivities. [Kahani] refers to two types of behaiour:

20

3.

o0 Deterministic Behaviour: These ae where the static entities

never change during the simulation e.g. mountains or buildings.
Certain animated entities change but their states are predictable
and can be determined e.g. clock hands.

Non-deterministic Entities. These ae intelligent entities that

are compex and can't be predictede.g. humans.

Users and Groups: Thereis need to model the user profile with

al of ther abilities, history and preferences in the system and all

adivities that the user can do:

To adivate an dojed that caries out someadivity

To colled objeds

To move objeds from one placeto another, this could imply to
move the objed inside or outside the current context

To possssobjedsi.e. only its owner can handle the objeds
[Kahani] also refersto users Area of Interest. Usersarenot dl
interested in recaving the same update information depending
where they are in the system. As a result the AOI for a user can
be can be defined and only information related to the AQOI is
broadcast to that user. For example ausers camera position
could be used to determine their position in the world so that
only the relevant objeds i.e. those in the direa vicinity of the
users location will be displayed. This contributes both towards
improving user 1/0O response times and also the anount of data
required to be sent aaoss the network. Less data on screen
means lesstime required to processit and more time to address
user 1/0. If the whole world does not nead to be displayed than
there is no neead to sent al data to the user at the same time,
instead it is st when requested by the user contributing
towards helping to reduce bandwidth and network latency.

21

2.3 Polygonal Meshes

Polygonal meshes currently dominate the field of interadive three
dimensional computer graphics due to their mathematicd simplicity

that allows fast rendering of polygonal data sets[Chasan].

2.3.1 Processing Polygonal Meshes

[Kobbelt, Kahler et al. 00] outline the main areas involved in
gathering dataand processngit into polygona mesh format.

» Data Acquisition: The first task is to retrieve the relevant
properties of the objed i.e. gather its geometry, surfacetexture,
volumetric density information etc.

» Mesh Generation: This dep taking the data retrieved in the
first step and generates a single surface representation i.e. a
triangle mesh.

» Mesh Decimation: Reduces the complexity of a given input
mesh by removal of detal information i.e. vertices and
triangles.

» Subdivision Surfaces. Provide auniform and efficient way to
describe smooth curves and surfaces.

» Remeshing: This involves applying a regular refinement
operator to a marse triangle mesh so that every submesh
corresponds to one base triangle i.e. eat submesh hes the

structure of aregular grid.

2.3.2 Polygonal Model Simplification

Since model sizes £am to be increasing faster than hardware rendering
cgpabilities there ae many tedhniques that have been investigated for
accderated rendering. The smplest approach could be taken as that

22

quoted by [Aliaga d@. Al. 98] who state that the ided agorithmic
approadh is. Do not even attempt to render any geometry that the user

will not ultimately see.

2.3.2.1 Levels of Detail

The am of polygonal smplification, when used for levels of detall
(LOD) generation, is to remove primitives from an origina mesh in
order to produce smpler models, which retain the important visual
charaderistics of the original objed [Krus et. Al]. According to [Krus
et. AlL], in order to maintain a constant frame rate, the key isto find a
good balance between the richness of the models and the time it takes
to display them. The following are daraderistics that neal to be
considered in the smplification algorithm being used:

» LOD Continuum: Successve LODs will differ by the
number of polygons they have so that switching from one to the
other is usualy noticedle by the observer i.e. popping effed.
This popping effed needs to be minimised.

» Shape Preservation: The smplification must keep the general
shape ad charaderistics, which make the objed easly
identifiable, are preserved. Thus the dgorithms have to look

for the following distinct feaures:

0 Inspecting the normals of adjacent polygons can
identify Planar Area. These polygons can be merged
to form bigger ones.

o0 Sharp Edges should be preserved and can be smplified
by merging conneded edges, which are nealy collinea.

0 Pointed Edges must be preserved since they have many
chances of appeaing on the silhouette of the objed.

23

Measure of the Approximation Error: To control smplificaion
the approximation error should be measured locdly.

User Spedficaion of the Amount of Simplification: Most
algorithms alow the user to spedfy the limit to the anount of
sgmplificaion in terms of upper bound for the locd
approximation error.

Topology Preservation: Algorithms may have a ¢woice of
smplifying the topology but the result is rarely usable & the
differences with the original objed istoo noticedle.
Controllable Simplification: Simplificaion may vary aqoss
the mesh in order to preserve some parts and smplify others

more aggressvely.

24

3. Analysis & Design

3.1 Camera Design

All hosts require fine control over camera movements due to the need
to forward their detals to other hosts. OpenGL provides smple
camera ommands, however in order to know the cameras co-ordinates
it is necessary to creae the programs own camera where, after ead
change to the camera is made it “tells’ OpenGL the new camera

position.

The following dagram shows the general form of a canera. It has an
eye positioned at some point in space and its view volume is a portion
of aredangular pyramid, whose gex is at the g/e. The opening of the
pyramid is st by the view angle 8. Two planes are defined
perpendicular to the ais of the pyramid: the nea plane and the far
plane. Where these planes intersed the pyramid, they form recdangular
windows. The windows hawe a cetain asped ratio, which can le stin

aprogram.

Fig3.1: CameraOverview

25

OpenGL clips off any parts of the scene that lie outsde the view
volume. Points inside the view volume ae projeded onto the view
plane to a wrresponding point P. With a perspedive projedion, the
point P is determined by finding where a line from the ee to P
interseds the view plane. Finaly the image formed on the view plane

is mapped into the view port.

3.1.1 Positioning and Pointing the Camera

In order to obtain the desired view of a scene, the canera is moved
away from its default position and amed in a particular diredion. This
is done by performing a rotation and trandation which, become part of

what is cdled the modelview matrix.

The modelview matrix combines two effeds. the sequence of
modelling transformations applied to dbjeds and the transformation

that orients and postions the canerain space

To help camera position and orientation an explicit coordinate system
is attadched to the canera, which helps describe transformations to the
camera. The mordinate system has its origin at the eg/e and has three
axes u, v and n that define its orientation. The aes are pointed in

diredions given by the vedorsu, v and n.
As the camera looks down the negative zaxis the canera dso looks

down the negative n-axis. U points off to the right of the canera and v

points upwardsi.e. u, v, and n-axes are clones of thex,y and z-axes.

26

eve Y Y
No—=—+1
P

Fig3.2: Camera Orientation

3.1.2 Building the Camera into the Program

The Camera dasscontains fields for the g/e and the diredions u, v and
n. It aso has fields that describe the shape of the view volume:
viewAngle, asped, neaDist, and farDist. A utility routine
setModelViewMatrix() communicates the modelview matrix to
OpenGL. It is cdled after ead change is made to the canera's

position or orientation.

3.1.2.1 Sliding the Camera

Sliding the camera means to move it along one of its own axes without
rotating it i.e. in the u, v, or n diredion. Since the canera is looking
along the negative n-axis movement along n is “forward” or “badk”, u
is “left” or “right” and v is “up” or “down”. This is done using the

eguation :

eye= eye+ Du

D is the distance to move and in this particular example the dient is

moved along the u-axis.

2F

3.1.2.2 Rotating the Camera

Rotating the canera means to rotate it about the v-axis, which means
both u and n must be rotated.

Fig3.3: Turning the caneratotheright or left

Two new axes U’ and n' are formed which lie in the same plane & u
and n but have been rotated through the angle [radians. Both u' and
n' are formed as the appropriatelinearcombination of u andn:

u' =cos()u + sn()n

n' = -sin(C)u + cos()n

The new axesu’ and n' then replaceu and n in the canera.

3.2 Polygonal Mesh

Polylines are a onneded sequence of straight lines that don't form a
closed figure but if the first and last points are cnneded by an edge
the polyline is a polygon.

Polygonal meshes are a olledion of polygons that are given by a
sequence of vertices. Ead vertex has a normal vedor associated with
it. The normal vedor provides diredional information about the way a
polygon is faang and is used in the shading process and determines
how light is refleded off the surface of the polygon. To crede a

redistic 3D view of ascene textures are mapped onto the polygons.

28

The following diagram gives an overview of a basic polygona mesh.
It highlights the aght vertices that make up the @rners of the block,
these vertices make up ‘triangles’, which form the skin of the block
and enable the texture to be mapped to the block giving it the
appeaance of abuilding.

A
0(-1,1,-1) 3(1,1,-1) Triangles

« 013
« 231
» 457

> * 567

015
71170, goe

« 326

5(-1,-1,1) 6(1,-1,1)

Fig3.4: Polygond Mesh Overview

3.3 Server Design

The server as well as graphics and user 1/O is responsible for
communicaing al client adivities to the other clients in the system i.e.
clients do not communicae with ead other diredly but through the
server. To caer for these multiple tasks the server must be multi-

threaded as shown in thefollowing diagam.

29

. ax>
|:> Display graphics and handle
user 1/0

78N
Listen for new Client
connedions

N\

78N
Send Data Padketsto
Clients

N\

ax>
|:> Receave Clients Data

Padkets N,

FHg35: ServerActivities

3.3.1 Main Thread: Display Graphics and Handle User I/O

When deding with 3D rendering the following fadors have to be taken
into acount:

3.3.11 Lighting

» Enable usersto seethings
* Provides 3D graphics with more redistic worlds, with shadows,
refledive surfaces, colour, and various other effeds.
» Threedifferent types of light
0 Ambient Light
o DiffuseLight
0 Speaular Light

3.3.1.2 Texture Mapping

e Turn the 3D world from a bunch of coloured triangles into a

photo redistic scene

3.3.1.3 Determine Sector

» To display the whole world on screen results in response times
being very dow e.g. user cannot navigate swiftly through the
world but instead it seams to jump intermittently between eath
frame.

» The solution is to divide the world into blocks or sedors, then
use the dients current position to draw the meshes in their
surrounding vicinity.

» The following dagram highlights the sedors that would be
drawn around the dients' current position marked by the face
If the dient moved into another sedor the nine surrounding

sedorswould then be displayed.

Fig 3.6: Display Sedors

3.3.14 Draw Other Users Logged on

» |f the user isnew draw the position recaved
» Otherwise predict postion for the user using Dead Redoning

if client has not resent its new position.

3.3.15 Receive User I/O

» Determine where to move canerato
* Movecanera @l openGL
» Determine if server postion reads to be sent again — deal

redoning

3.3.2 Listening Thread

This thread must continuoudly listen at the predefined socket for new
clients wanting to log on. It sits waiting for input on the socket and
when it recaves new client details it immediately credaes a new client

thread for this user and goes badk to listening for new clients.

3.3.3 Client Thread 1

The first Client Thread will be responsible for sending both the server
details and passng on any other clients detalls logged onto the system.
3.3.4 Client Thread 2

This thread recaves any updates that will be sent by this client giving

its new position.

3.4 Client Design

As with the server the dient has multiple adivities that need to be
caried out smultaneoudy. These adivities are summarised in the

following diagram.

ax>

Display graphics and handle
user 1/0

a >
Establish aconnedion
with the server

)\
ax

Send Data Padketsto
& Recave All other
users information from

server
O/

ax>

I:> Terminate connedion
with server

)\

Fig 3.7: Client Activities
3.4.1 Main Thread
Thisthreads main function is Smil ar to the srver:

34.1.1 Responsible for drawing graphics

» Light

» Determine Seaor

» Draw mesh for this sedor and surrounding secors

» Draw other users logged on if new position draw this position

otherwise predict posn for user

34.1.2 Receive User I/O

= Determine whereto move canera to

* Movecanera @l openGL

3.4.1.3 Determine if client’s position needs to be sent

again.

3.4.2 Sending Thread

If the dients position neels to be resent again this thread will send it to

the server.

3.4.3 Receiving Thread

This thread will recave dl other clients co-ordinate details from the

server through thisthread.

3.5 Dead Reckoning Algorithm

This virtual world has a ceitral server to which al entities conned.
The etity upon connedion to the server sends its date padet to the
server, where the server will assgn a unique id to the eitity. The
server will then send to the new entity the servers gate padket and all
state padkets for the other entities. At the same time it will send the
state padket for the new entity to all other nodes, which will recognise

this as a new entity by itsuniqueid.

Accderation and speal are not taken into consderation in this
prediction agorithm as entities move & a fixed rate however the
diredion that the entity is moving must be sent by the etity so that
other entities can predict the ais to move dong i.e. if the atity is
going forwards or backwards or to the right or left. The state padket is
therefore made up of the following data.

Entity Direction
Entity X Position
Entity Y Position
Entity Z Position

Once the state padket is ®nt and there is on screen movement the
prediction algorithm comes into play. The eitity after ead adual
move will also cdculate its ‘ghost’ position i.e. the position caculated
from the last state padket sent which all other nodes will use to predict
this entity’s progress The distance between these two points will then

be found using thefollowing function:

H — 2 2 2
DlSt - \/ (Xcurrent - Xpredicted) + (Ycurrent - Ypredicted) + (Zcurrent - Zpredicted)

If the distance is greaer than the fixed threshold level the entity must
resend its gate padket to the server for redistribution among the other
nodes. A flag is st to indicae to the thread responsible for sending
and recaving data from the server that a new state padet is to be sent
and the new ‘last position sent’ is recmrded to cdculate the ghost

position.

The server has a dient thread for ead entity to communicae with the
linked entity. Associated with eadt entity is a flag, which is st to true
once anew state padket has been recaved for this entity. Once set the
padcket is ®nt to al nodes and reset to false until another padket is
recaved for the eitity. Two methods have been considered for the
distribution of the new state padkets. The first involves the server
having two threads per client, one for recaving the state padket for this
entity and one to send all other updated state padkets in the system to
the eitity. This is due to the random sending of data acoss the
network i.e. it can't be pre-determined when new state padets will be
sent and will therefore not be sent in a pre-defined order. The other
method would involve the server having one threal per client and then

another thread, which distributes new state padkets to al users when

they are receved. The former method was chosen due to the

unpredictable timing of state padets being sent by the entities.

4. Implementation

The following sedions simmarise the database and tables for storing
the polygonal mesh data and the main classs involved in the projed,
giving an overview of the main procedures and routines involved in

ead class

4.1 MSQL Mesh Database

The following four tables contain the data for rendering polygonal
meshes.

Mesh Table Cormal Table_

Meshid

Number Vertices Mesh Id

Number Normals Normal Id

Number Triangles X Position
Y Position

S N\ fPoston)

@ Triangle Table

) Mesh Id
Meshid Triangle Id
Vertlc_e_s Id X Vertices
X Postion Y Vertices
Y Position Z Vertices
Z Position X Normd
X Texture Y Normd
Y Texture 7 Norma

R colour
_/ G colour
B colour

The mesh table indicaes the number of vertices, normals and triangles
in eaty mesh. The values retrieved from this table spedfy the number
of rows that are to be retrieved from the other tables i.e. how many
vertices, normals and triangles are aociated with eat mesh to be

drawn.

Simple SQL statements are used in code to retrieve the data. For
example the following pieceof code is cdled to retrieve data from the
mesh table with the mesh id being passd to the routine to indicate
which mesh is being accessed.

void DBase:: sel ectmTable(int meshNo){

sprintf(query, "select * from %swhere mesh _id = %d", TABLE,
meshNo);

if (msglQuery(sock,query) < 0){
printf("Error: %s\n", msglErrMsg);
exit(-1);

}

res = msglStoreResult();

if ((numrows =msglNumRows(res))){
row = msglFetchRow(res);
[Inumfields = msgINumFields(res);
num_Vertices = atoi(row| 1]);
num_Triangles = atoi(row| 2]);

num_Normals = atoi(row[3]);

msgl FreeResult(res);

4.2 Camera

This class contains all camera @-ordinates and the procedures to

move and store the camera positions around the world.

m SetModdViewMatrix(); \

void Set (Point3 Initial Position, Point3 LookAt Position, Point3
Up Position);

void setShape(float View Angle, float Aspect, float near Distance,
float far Distance);

void setProjectionM atrix();

These procedures al contribute towards determining the caneras

current co-ordinates i.e. creaing the modelview matrix and projedion

{atrix and sending the detailsto OpenGL. J

void Side(float X direction, float Y direction, float Z direction);

void Rotate(float angle, Vector 3 a, Vector3 b);
void right(float angle);
void left(float angle);

These procedures are dl involved in cdculating the new camera
position refleding the users input commands. The Slide procedure for
example, uses the X, Y, Z parameters to determine the diredion to
‘dide’ the canerai.e. if positive x means move to right, if negative Z

move forward. The Right or Left procedures cdl the Rotate procedure

and are used when the user wishesto turn right or left.

Kint DetermineSector(); \

This procedure determines where the camera is in the world. The

sedor number is returned and then used to determine which sedors are

J

to be drawn on screen

double DiffBetweenGhost();

double DiffInRotation();

void ghostSlide(float del X, float delY, float delZ);
void ghostRotate(float angle, Vector3 a, Vector3 b);
void ghostRight(float angle);

void ghostL eft(float angle);

void setGhost();

void predictPosition((HANDL E sEvent, int nu);

These procedures are dl used in the dead redkoning routine. For
example the DiffBetweenGhost procedure finds the difference between
the caneras adua position and the ‘ghost’ position that every other
user has at this moment in time. If the differenceis greder than a pre-
agreal value this user neals to resend its position to the server to
distribute to al otherslogged on. The setGhost routine then makes the
ghost value the same & the aurrent camera position. The ghostSlide,
ghostRotate, ghostLeft and ghostRight routines are cdled after every

frame refleding the cdculations being made by other clients for this

particular client.

40

4.3 MSQLDB

This class contains al routines required for accessng the aty data in
the msgl database so that the buildings and objeds can be rendered on

screen. The query statements use sgl to accessthe tables.

fvoid connectDB(); X

This routine is cdled to conned to the database. The IP Config
Addressof the database is used to indicae where the db is stored.

N J

void selectmTable(int meshNo);

void selectVertTable(TriMesh *mesh, int meshlD, int
num_Vertices);

void sdectTriangTable(TriMesh *mesh,int meshiD, int
num_Triangles);

void selectNormalTable(TriMesh *mesh,int meshID, int

num_Normals);

These routines al contribute towards retreiving the data from the four
tables. SeleamTable retrieves the number of vertices, triangles and
normals in ead polygonal mesh. SededVertTable seleds al the
vertices for a mesh, seledTriangTable seleds the triangles that make

up the surfaceof the mesh so the texture can be rendered onto it and

seledNormaTable cntains the norma co-ordinates to help in the

shadows and refledions.

41

4.4 Thread

This defines the ClientPos classthat is used to store dl other clients
positions logged on and aso the deal redkoning routines, which are

required to cdculate their new co-ordinatesin ead frame.

@:al cPosn() \

void dide(float del X, float delY, float delZ)
void rotate(float angle, Vector3 a, Vector 3 b)

void right(float angle)
void left(float angle)

These procedures are dl used in cdculating the dient’s new position.

The cdcPosn routine uses the aurrent client ‘diredion’ to determine

where the dient is moving to i.e. if they are going forward or

@vards, to theright or left or turning around.

45 Threed

The Point3 and Vedor3 classes and routines define the 3D points and

vedors used in the building setup and the canera co-ordinates.

@oi nt3::set(Point3 & p); \

void Vector3::set(Vector3 & v);

void Vector 3::flip();

void Vector 3::setDiff(Vector 3& a, Vector3& b);
void Vector 3::flip();

The set procedures are cdled to fix the x, y, and z values. The flip
routine turns the x,y,z co-ordinates into minus values. The setDiff

procedure determines the difference between two vedors a and b.

@aﬁ se adjusts a vedor to unit length. /

42

4.6 Main

The main classis responsible for creaing the different threads required

to cary out themutiple adivities bath in the dientand Server.

@ GLUTinitialise(int argc, char *argv[]) \

The GLUTinitialise procedure caries out a number of initial functions

that are required. The different types of light and surface refledion
values are determined. The textures that are mapped onto the aty
objeds are dso loaded in here. All polygonal meshes are real in from
the database. Theinitial cameraand ‘ghost’ co-ordinates are set.

ﬂid GLUTdrawFunction() \

This procedure determines the sedor that the camera is currently in

and then draws the relevant sedors surrounding the camera binding the
corred textures to the objeds/buildings to be drawn. All clients logged
on are dso drawn either by using the newly receved clients position or

by cdculating their new position using deal redkoning.

@d GLUTkeyFunction(unsigned char k, int x, int y)

This procedure is cdled whenever there is input from the user. The
user can tell which diredion they wish to travel by pressng pre-
determined keys e.g. to go forward ‘f’ is pressed, ‘b’ indicaes bad, ‘&

indicaes the user wishesto turn right etc.

N /

43

4.6.1 Server Specific Routines.

ﬁid mainL oopThread(void *dummy) \

void createUser Thread(void *us)

The mainLoopThreal listens continuoudly at the agreead socket for new
incoming connedions. Once a new conredion is acceted the
creaeUserThreal is cdled to crede anew thread to ded with this
client. The aeaeUserThread then determines if this is a ‘send’ or
‘recave’ threa for the dient. If it'sa ‘send’ threal it knows that its

function is to send all clients positional information to this client when

it recaeves it. If it's a ‘recave threda its function is to receve this
\@ﬂs postiond updates. /

4.6.2 Client Specific Routines.

void sendThread(void* dummy)

void mainLoopThread(void *dummy)

The sendThreal first makes connedion with the server socket, upon
initial conredion it tells the server that it's a sending thread i.e. it will
be responsble for resending this clients postion when required.
Before going into a acntinuous loop which spends its time waiting to
resend this clients position when the dead redkoning routine indicaes it
neals to be resent, it cdls the manLoopThread thread. The
mainLoopThread upon connedion indicates it’s a ‘recaver’ thread and
goes into a @ntinuous loop listening for al other clients co-ordinates
that are logged on.

44

5: Evaluation & Future Work

This projed has provided a substantial basis towards the succesdul
completion of the proposed Multi-User Virtual Dublin Environment.

The multi-user nature of this projed means that all users must know
and be &le to see the exad locaion of al other users in the
environment. The Camera setup means that at any time dl users can
send their exad positional details to others who can then represent
them on their screens. The database provides polygona mesh data and
removes the neeal for replicaed data. A multi-tasking environment
dlows for the required multi-user adivities and dead red<oning
reduces the network traffic required contributing towards quicker

response times and more up to date rendering.

The results found have dso highlighted areas for improvements and

future work.

5.1 Server Responsibilities

The design and implementation for the server includes the server
carying out graphics rendering and catering for user 1/0. Tests have
shown that this hinders the servers cagpabilities of deding with clients

requests and can contribute towards delays on screen.

For example tests caried out when the server included rendering and
user /O functionalities resulted in 2-3 seaond delays on the screens of
the dients. When the rendering was removed this delay was

negligible.

45

Further developments will therefore remove this adivity from the
server thus improving the overal multi-user interadion and

communicaion.

5.2 Graphics

When designing a 3D world to display the whole world on screen at
the same time is too dow, both the movement on screen is badly
effeded and the time it takes to send/receve network data between
hosts. This is due to the anount of time required to cary out the

rendering for al the world objedsin ead frame.

The following graph shows the relationship between time and 3D
rendering and how the greder the anount of rendering required the
more time is required to draw ead frame and therefore the dower the

response times for all other adivities.

A
Number of "
objeds to
oo renderad
Time required to carry out rendering

Fig5.1: Time Bfedsfrom Rerdering

The solution to this problem is to divide the world into sedors and
assgn huildings to sedors depending on their positions. The users
current camera position is then used to tell the program the sedors that

are diredly around the user and that need to be drawn. This lution

46

grealy improves the response times as less rendering is required,

however other fadors must then te taken into cons deration.

Sedoring leads to ‘popping’ affeds on screen which is when the users
move from one sedor to another resulting in different sedors being
drawn so that buildings sam to ‘pop’ on screen out of nowhere. To
reduce the popping affed so that it is lessobvious to the user means to
draw more sedors or increase the size of sedors 9 that the buildings
are popping upat adistancethat istoo far away from the users position
to be noticed. This lution however is again increasing the rendering
required and so is going to affed the response times bringing us badck

to the original problem.

Tests caried out on on this projed to determine the optimal number of
sedors that should be rendered, counting 80 block meshes in one
sedor with a width of 25 wits and depth of 47 wits to alow a
satisfadory user 1/0 showed the following results with the number of

frames shown per second

20
No. of
Frames
per 10
seoond
5
25 50 100 200 1000

No. of Sedors Rendered

47

The number of sedors that were found to be the most usable for the
response times meant that popping was more evident when the user

moved from sedor to sedor.

What is needed is the same response times but more objeds rendered
on screen. To obtain this result display more sedors but reduce the
details required on objeds/buildings that are drawn depending on the
distance to the user. This means that the buildings are ill visible on
screen hut due to the distance ahigh level of detall is not required,
therefore less rendering is required and so less time needed to draw
them. It is only the objeds in the dired vicinity of the user that the
highest level of detail isrequired.

This olution results therefore in more buildings being drawn on screen
simultaneoudly and so less obvious popping affeds, however due to
lower levels of detall for distant objeds less time is required for
rendering so the response time will not be a badly affeded and will

not hinder users adivities.

5.3 Mesh Data & Textures

This projed highlighted the time difference that is required for reading
in mesh data from a database on the same PC as the program is running
or realing the data from another PC. For example, to read in 80 block
meshes from the database on the same madine would take
approximately 1 minute however to real in the same 80 meshes from
another maciine culd take gproximately 20 — 25 mins. This is a
considerable time difference and solutions are required to improve on
this delay.

48

TIME/mins

Fig 5.2: Database ime loadup

This diagram highlights the time difference it takes for two macdhines
to load upthe mesh data depending on if the database is on the hosts

macine or if it ison another macdhine.

Buildings in this projeds environment are basic block buildings and
therefore do not require many vertices, normals and triangles to be
stored. However buildings are usualy not that smple axd have
complicaed designs and this will gredly increase the anount of data
required to represent them. For example the following figure gives the
number of vertices, normals and triangles in a basic block building and

abuilding in Trinity College.

Block Building Trinity Building
No. Vertices: 10 No. Vertices: 655
No. Normals: 8 No. Normals, 655
No. Triangles: 12 No. Triangles: 756

49

If the time required for reading in simple mesh formats is % high the
time required to rea in the large amounts of data for adua red

buildings would be too long and totally unacceptable.

Building mesh databases can be stored on ead users macine however
this leads to more complicaed housekeegping and ensuring that all
databases are updated smultaneoudy and are the same version.
Loading in the buildings as required would reduce the time neaded to
load the data into RAM to be displayed instead of reading all mesh

formatsinto memory at the keginning of the program.

Cadhing will also reduce network traffic and loading times required.
Users can cade sedors that they recettly traversed or that they

traverse on afrequent basis.

Large mesh formats will also increase the anount of memory required
to store the mesh data This will eventualy result in multiple
databases being required to represent the dty. How to split this data
and ddtribute it needs to be considered. Typicd solutions could
include partitioning the database among clients or in larger systems
where more than one server is required dviding the databases among
the servers and having the data distributed among the servers and

forwarded to the clients.

Buildings textures are dso quite complicated and will result in more
than one texture being required per building. How to store the textures
and map them onto the buildings also nealsto be addres®d.

5.4 Dead Reckoning

The dea redkoning algorithm in this projed takes a users diredion
and positional details into consideration when predicting their next

move. Normaly a users velocity i.e. ther diredion and speel is

50

considered. When the steaing whed is introduced this will bring
sped into the eguation and will also help to eiminate the dight
jumping affea which can occur on screen as the dients move aound
the aty. The jumping affed is the result of being unable to predict if a
user is dowing down or speealing up and so being able to predict if
they are going to stop moving. If the user suddenly stops a number of
frames will have passed before the dead-red<oning algorithm noticesit.

6. Bibliography

[Aliagaet. Al9§g]

[Aronson97]

D.Aliaga, J. Cohen, A. Wilson, H. Zhang, C.
Erikson, K. Hoff, T. Hudson, W. Stuerzlinger,
E. Baker, R. Bastos, M. Whitton, F. Brooks, D.
Manocha. A Framework for the Red-Time
Walkthrough of Massve Models

Jese Aronson. Dea Redoning: Latency
Hiding for Networked Games, 1997.

[Bourdakis et al., 1997 Vasslis Bourdakis & Alan Day. A VRML

[Cai et. al99]

[Chasan]

[Crowley99

[Diazet. Al]

model of Bath, 1997

Wentong Cai, Francis B.S.Leg L.Chen. An
Auto Adaptive Dead Redoning Algorithm for
Distributed Interadive Simulation, 1999

Visualisation of Complex Polygonal Models
http://www.dcc.uchil e.cl/~chasan/visual.html

Daniel Crowley. DVRML: Extending VRML
for Multi-User Virtual Redity, M.Sc. 1999

Alicia Diaz Ronad Melster. Patterns for
Modelling Behaviour in Virtua Environment

Applicaions

[Dodge, Smith & Doyle 1997 Towards the Virtud City: VR &

[Duke 01]

Internet GIS for Urban Planning.

Desgn of Virtua Environments, held at the
Rutherford Appleton Laboratory. Chairman: Dr

[Falby et. Al]

[Gosswveller et. al]

[l EEE93)

[Iler et. Al 96]

[Kobbelt, Kahler et

[Kruset. Al.]

David Duke, University of Bath. A full day
VVECC seminar presenting the state of the at

in the design of virtual environments. http://www-
ais.itd.clrc.ac.uk/VV ECC/procead/vedesign

NPSNET: Hierarchicd Data Structures for Red-
Time Three Dimensional Visua Simulation
John S. Falby, Michad J. Zyda, David R.Pratt
and Randy L. Madkey.

Rich Gosaweiler, Robert J. Laferriere, Michad
L.Keller, Randy Pausch. An Introductory
Tutorial for Developing Multi-User Virtual

Environments.

Institute of Eledricd and Eledronics Enginees,
International

Standard, ANSI/IEEE Std 12781993 Standard
for Information Tedwnology, Protocols for
Distributed Interadive

Simulation, March 1993

Veys lder, Rynson W.H. Lau, Mark Green
Red-time. Multi-Resolution for Complex
Virtual Environments.1996

a. 00] Lef Kobbet, Kolja Kahler et. al.
Processng Complex Polygonal Meshes 2000

Mike Krus, Patrick Bourdot, Francoise Guisnel
& Guillaume Thibault. Levels of Detal &
Polygonal Simplification.

[Looman0(]

[Maceadonia95|

[O Connell97]

[Peter9s]

[Planet 9 Studios]

[Pope89|

[Pratt 93]

[Smith et.]

[Tan95]

Jeff Looman. Develop a Client/Server

Applicaion on Windows and Linux.

Michad R. Macealonia, Michad J. Zyda, David
R. Pratt, Paul T. Barham and Steven Zeswitz.
“NPSNET: A Network Software Architecure
for Large Scde Virtual Environments, 1995

Karl O'Connell. System Support for Distributed
Multi-User Virtual Worlds, Ph.D. 1997

Communicaion cost optimisation and analysis
in Distributed Virtual Environment, 1998

Contents Copyright © Planet 9 Studios, 1995
2001 http://www.planet9.com/

Pope, Arthur, BBN Report No. 7102 The
SIMNET Network and Protocols, BBN Systems
and Tednologies, Cambridge,

Massadhusetts, July 1989

David R Pratt. A Software Achitedure for the
Congtruction and Management of Red Time
Virtual Worlds. June 1993 pp 2228

Andy Smith, Martin Dodge, Simon Doyle.
Visua Communication in Urban Planning and
Urban Design.

Andrew S. Tanenbaum Distributed Operating
System p22-31.

[Thorpe 1987

Thorpe Jadk A. The New Tedhnology of Large
Scde Smulator Networking: Implicaions for
Mastering the Art of Warfighting” Procealings
of the Ninth Interservice Industry Training

Systems Conference, Novembr 1997,

[Virtual Brighton & Hove] http://www.brighton.co.uk/

[Virtual Bologna] http://www.nettuno.it/bologna/M appaWelcome.html

[Walkthrough Projed] http://www.cs.unc.edu/~walk/overview

[Zydaand Pratt 1991 Zyda, Micad J. and Pratt, David,

[Zydaand Pratt 93]

NPSNET: A 3D Visual Simulator for Virtua
World Exploration and Experimentation, 1991
SID International Symposium Digest of
Tednicd PapersMay 1991 pp 364364

Michad r Macelonia, Micahel J Zyda, David

R Pratt, Paul T Barham, Steven Zeswitz
NPSNET: A Network Software Architedurefor
Large Scde Virtua Environments pp7

