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Abstract

A Mobile Ad Hoc Network is comprised of nodes with wireless interfaces that are
able to move arbitrarily, changing the network topology as they do so. Designing
a routing protocol for such a network, where connections can be broken and re-
established with different paths is challenging and a standard routing scheme has
yet to emerge.

Routing protocols for Mobile Ad Hoc Networks have so far taken approaches
similar to routing protocols used for traditional wired non-mobile networks. Vari-
ations of link-state or source-routing protocols or combinations of both have been
proposed. Recently, a class of protocols that exploit the physical location of mobile
nodes for more efficient routing of data has appeared. The subject of this thesis is
related to such location-aware protocols.

We argue that by taking advantage of the location and the mobility path nodes
follow, routing can be improved. We identify and explore a number of algorithms
that can provide a metric for similarity of direction. One of these metrics is then
implemented in a simulation environment (ns) using the Dynamic Source Routing
(DSR) protocol. The protocol is then tested with mobility scenarios and commu-
nication patterns and results are extracted that compare its performance against
the original DSR protocol. The three performance metrics that are evaluated from
the simulation results include the longevity of routes, the routing efficiency and the
channel usage of the protocol. Results have proved no significant performance gains
of the Direction Based DSR against the standard DSR, but have shown scalability

problems associated with DSR in densely populated networks.
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Chapter 1

Introduction

1.1 Motivation

Adaptation of technology to human needs has always been a great incentive for
innovation in the fields of science and technology. This factor, together with the
continuous growth in processing power and the miniaturisation of hardware has
led to a tremendous rise in mobile computing. Users are no longer restricted by
stationary computers in order to enjoy networked applications. By means of portable
computers or Personal Digital Assistants (PDAs) equipped with wireless interfaces,
they are allowed access to networked communication even while mobile.

Much of the shift towards mobile computing has to do with the fact that we want
to retain a high degree of connectivity to the Internet. Indeed, the convenience that
was offered originally with mobile phones and paging has been transforming (or
converging) to keeping track of e-mails and scheduling appointments while outside
office or house. Even more, a commercial PDA nowadays (like Compaq’s IPAQ) can
accept a wide range of expansion modules including wireless ethernet and Global
Position System (GPS) cards. This gives rise to a whole new range of application
domains that can be accessed while users are not restricted by fixed communica-

tion and the traditional bulkiness of personal computers. Consider for example that



one might want to receive driving suggestions, based on information from GPS or
even have location-based services as he or she roams around a new city they are
not familiar with. This is a reality that is made possible today by small, inexpen-
sive mobile devices and the affordable cost of having wireless communication links
offering reasonable bandwidth.

As wireless devices of all types proliferate and their cost and size is reduced,
users will demand access to information or application inter-connectivity even when
they are outside the reach of the traditional Internet. That could be the case when
either wireless Internet is not an option or because a failed component makes access
to the Internet temporarily unavailable. As Perkins points out in [Per01, page 2]
people using laptop computers at a conference in a hotel might wish to communicate
in an ad hoc manner, without the mediation of routing across the global Internet.
Yet today such obvious communications requirements cannot be easily met using
Internet protocols. The theme of this thesis concerns networks that rise from the
need to form this kind of spontaneous, short-lived, partially connected networks

from mobile computers with wireless network interfaces.

1.2 Ad Hoc Networks

The Working Group on Mobile Ad Hoc Networks of the Internet Engineering Task
Force (IETF MANET WG) defines ad hoc networks as:

A “mobile ad hoc network” (MANET) is an autonomous system of mo-
bile routers (and associated hosts) connected by wireless links—the union
of which form an arbitrary graph. The routers are free to move randomly
and organize themselves arbitrarily; thus, the network’s wireless topol-
ogy may change rapidly and unpredictably. Such a network may operate

in a stand-alone fashion, or may be connected to the larger Internet.!

lhttp://www.ietf.org/html.charters/manet-charter.html



The above definition suggests a network that is characterised by certain unique
properties unlike those found in common networks that were designed with a fixed
infrastructure in mind like the Internet or Local Area Networks.?

As an example of a small ad hoc network consider figure 1.1. The network nodes,
depicted by the solid line circles, are able to move relative to each other. As this is
happening, their neighbouring nodes will change, establishing new links with nodes
that are inside the coverage area of their wireless interface and breaking other links
as nodes become distant from each other. In the above figure, node A is initially
connected to node B. As it moves away it will establish new connections with nodes
C and D. Thus, its physical location has changed but the node still wants to be an
active network participant, exchanging data with the rest of the network and having
its applications being agnostic of the node’s mobility and changing neighbouring
nodes.

In a communication scenario where node A transmits data to node C, initially
the data sent will have to travel through node B, since A’s communication range
includes only B. This ability to relay data through intermediate nodes until they
reach their destination is called multi-hop. Most store-and-forward packet switching
networks like the Internet, work in a multi-hop fashion.® The problem with ad hoc
networks lies in the fact that the network topology can change rather frequently,
which results in established route paths becoming invalid after a certain (short)
period of time. In the same example, when A migrates to its final position, data
destined for C will no longer require a path through B but can be transmitted
directly, since A is now a neighbouring node with C' and D. For this reason, ad hoc
networks present a totally different scenario and a whole new spectrum of design
decisions and options when related to how non-mobile networks work. It is the

reason that some of the routing protocols in ad hoc networks had to be re-designed

2Though current advancements in the Internet and LANs try to incorporate solutions to prob-

lems found in ad hoc networks (e.g. Mobile-IP for the Internet and wireless IEEE 803.11 LAN).
3In fact, it is the network layer Internet Protocol (IP) that is said to be multi-hop.



from the ground up rather than being simple modifications of non-mobile network

protocols or required major modifications from existing protocols.

Figure 1.1: A Simple Ad Hoc Network

The primary focus of this thesis is on routing protocols for ad hoc networks. A
discussion follows on some of the most salient characteristics and the application
domains of ad hoc networks that can influence the design of routing algorithms. In
fact, such is the very nature of the field that the characteristics described can dictate
routing solutions that work well only in particular domains but fail when some
conditions change. This and the lack of a standardised specification has contributed
to a plethora of routing protocols with different architectures and properties that

will be examined in more details in chapter 2.

1.2.1 Characteristics of Mobile Ad Hoc Networks

A MANET can be thought of as a collection of mobile platforms each combining the

functionality of a router and a host. These mobile platforms, also called hosts, are



attached to a number of wireless communication mediums and are free to move about
arbitrarily. These hosts are equipped with wireless transmitters and receivers using
antennas which may be omnidirectional (broadcast), highly directional (point-to-
point), possible steerable or some combination thereof [CM99]. It is worth pointing
out here, that the actual wireless medium is not important for the functionality of
the upper network layers, since many of the same principles will apply regardless of
the actual technology used. Examples include infra-red, wireless RF, bluetooth or
even wired based transceivers used when emulating ad hoc networks.

Node mobility introduces certain scalability problems in ad hoc network proto-
cols. When network topology changes frequently, control messages have to be sent
between nodes so that new routes are found and propagated through the network.
In networks where topology changes infrequently, it is reasonable to expect that
when this happens there might be a short period where lots of control messages will
propagate the network to distribute the new destination paths. But when a high
rate of topology change is one of the characteristics of the network, the protocol de-
signer should make provision for highly dynamic and fast adapting algorithms that
minimise control messages and attempt to utilise long-lived routes to the maximum
extent.

Minimising control messages is also essential because of the additional load that
they place in the bandwidth constrained wireless links. Nowadays, there is at least an
order of magnitude difference between wired and wireless data rates with the former
having a standardised 100Mbit/sec in a local ethernet while the latter having, in
the best case, a nominal bit rate of 10Mbit/sec. The techniques used to reduce
control messages must strike a balance between a minimum amount of messages
by keeping network state information in each node and flooding the network each
time the topology changes. The former has the side-effect that in an ever changing

network topology stale routes will appear often, while when the latter is applied

“In fact due to interference and other problems end users usually end with a 1 to 2 Mbit/sec

data rates.



to a network containing nodes with high rate of mobility, it might result in control
messages consuming all the available bandwidth. This could also lead to very slow
network convergence where nodes contain either incomplete or out-of-date views of
the network topology.

In many kinds of ad hoc networks, mobile nodes usually rely on exhaustible
means for providing energy, such as batteries. For these nodes, energy conservation
suddenly becomes an important design decision. Nodes with low battery power
may decide to enter a power saving mode when they have nothing to send or until
another high priority event is generated. This behavior may effect the way the
whole network is operating, since each node is responsible for forwarding other
nodes’ packets, apart from its own. If nodes decide to become “selfish” and break
the collective and cooperative nature of ad hoc networking by not forwarding other
nodes’ data, the ad hoc architecture is endangered. A multitude of other problems
and design trade-offs is concerned with power utilization in such networks and this
particular area is becoming the focus of increased attention.

Last but not least, we should examine briefly some security issues in ad hoc net-
works. As with any wireless communications, ad hoc networks can be highly vulner-
able to security threats. On one hand, their distributed nature makes it difficult to
implement any security scheme that relies on a central authority (e.g. for key distri-
bution and management), while on the other hand there is an increased possibility
for eavesdropping, denial-of-service and man-in-the-middle attacks. Add to this,
the fact that the more secure an architecture is, the slower and more cumbersome
it becomes and the whole issue of security in ad hoc networks becomes somewhat
problematic. Nevertheless, the decentralised architecture provides a more resilient

approach to single points of failures.



1.2.2 Applications of Ad Hoc Networking

The history behind the evolution of ad hoc networks is given in the beginning of
chapter 2. In this section, an outline is given on some of the application domains
that could suit the unique characteristics of ad hoc networks.

The two most cited applications for ad hoc networks are communications in sit-
uations where battlefield survivability counts or infrastructure is non-existent which
is the case during disaster relief or rescue operations. Both of these applications rely
on the decentralised and cooperative attributes of MANETSs. However, a number of

other applications can be envisioned.

Conferencing

Conferencing is perhaps the application domain that could produce the killer app
for ad hoc networks. This scenario envisages a group of people gathering in the
same area and exchanging shared information using the multi-hop characteristics
of ad hoc networks. Currently, this is done by requiring everyone to connect to a
central network which at times might be unavailable or the overhead might be to

costly when all that is required is the sharing of small amount of data.

Ubiquitous Computing

If projections and estimations are correct then soon we could be living in a world
where electronic devices can join spontaneously in established networks and ex-
change data with other devices in their close vicinity, in a transparent and sim-
ple fashion. Bluetooth is an emerging standard for realising such a vision and is
backed by such companies as Ericsson Inc, IBM, Intel, Microsoft and Nokia. It is a
short-range radio technology aimed at eliminating wires between electronic devices.
Bluetooth allows up to eight devices to be connected into what is called a piconet.
This could be a suitable technology that ad hoc networks could use for transferring

information without utilising fixed infrastructure.



Data Gathering

Another application where ad hoc networks can prove useful is the collection of data
from remote areas or terrains like air or sea. A network of sensors can contain small,
inexpensive, short-range radio transmitters that can collectively gather and forward
data towards a base station. Current alternatives include either storing data for
later collection or using large and expensive satellite transmitters. But for cases like
animal tracking where small transmitters are essential, ad hoc networks can prove
to be a useful tool, provided there is a reasonable coverage of the specific area with
tracking devices.

Another potential application domain is data gathering in urban environments
through the use of vehicles. Cars for example, are much better suited as carriers
of equipment, like tranceivers and batteries, which enable short to medium range
communication. An urban ad hoc network can then be formed collecting and prop-
agating up to date information about traffic characteristic in order to provide traffic
information and perform congestion control, even allowing communication between

passengers to take place.

1.3 Objectives

This section describes the objectives and the scope of the project as well as tasks
that although related will not be addressed. These could be the aim of further

research into the field.

1. The specification and design of a novel ad hoc routing algorithm that takes
into account the location and direction of moving nodes. This is interpreted
into a set of principles defining a routing metric that mobile nodes should

apply whenever a routing decision is made.

2. The implementation of this routing algorithm in a simulation framework.



3. Verifying the correctness in the implementation of the simulated algorithm by
providing a set of tests and interpreting the results. This is different from the
evaluation of the performance of the algorithm in that we are trying to verify
that the individual modules of the algorithm (cache module, state machine,
etc) work as intended. Because of the difficulty of this task we could drop
back into qualitative verification by source code review if time constrains are

tight.

4. Evaluate the performance of the algorithm by constructing different mobility
scenarios with varying parameters such as the number of nodes, their mobility
patterns, velocity, transmission range etc. and test the protocol under these
scenarios. Data generated by these test runs, would then be aggregated and
suitable analysis should be conducted. It would also be interesting to apply
this routing algorithm to the same kind of scenarios as other ad hoc routing
protocols and make a comparative analysis in terms of efficiency, latency, over-

head. A useful guide in this task could be the evaluation criteria, set by the

IETF MANET WG in [CM99].
The issues that this thesis will not examine, research and deal with are:

1. The design of a fully fledged routing protocol. Certain work in this area can
be reused and extended to meet the requirements of this thesis. The general
format of routing packets should remain unchanged, as should the different

timing and cache size values.

2. Interoperability with the Internet will not be considered and the algorithm
should be assumed to run in layer 3 of the OSI/ISO model. Network addressing

will be provided by the simulation environment.



1.4 Document Structure

This section outlines the chapters of the thesis, the contents of which are listed below.

Chapter 1: Introduction describes the motivation behind the Direction Based
Routing project, makes an introduction to the concepts involved and states the ob-

jectives.

Chapter 2: State of the Art looks at relevant material in the area of ad hoc

routing protocols.

Chapter 3: Analysis and Design introduces the ideas behind the Direction Based
Routing project, identifies their properties, develops and discusses the relevent met-

rics. It also lays down the rules by which the protocol will operate.

Chapter 4: Implementation looks at the way the Direction Based Routing pro-
tocol was implemented in the simulation environment. There is an outline of the ns
network simulator and the implementation details of the DSR protocol.

Chapter 5: Experiments and Evaluation describes the experiments performed
to test the applicability of the new metric. An evaluation section interprets the

results produced.

Chapter 6: Conclusion concludes the project.

10



Chapter 2

State of the Art

The initial success of packet switching technology during the 1960s, first demon-
strated by the ARPAnet, gave rise to systems that could exploit this technology
without the burden of a fixed wired infrastructure. Recognising the advantages
of packet switching in a mobile wireless environment, in 1972 DARPA initiated a
research effort to develop and demonstrate a packet radio network (PRNet). Al-
though the initial PRNet protocols used a centralised control station, the core PR-
Net concept quickly evolved into a distributed architecture consisting of a network
of broadcast radios with minimal central control, using multihop store-and-forward
routing techniques to create complete end-user connectivity from incomplete radio
connectivity [Per01, pages 33-34].

Over the years, commercial (and military) interest continued to grow for wire-
less mobile ad hoc networks as the underlying technology improved and the demand
for new application paradigms involving ad hoc networks increased. With the in-
troduction of the Internet Engineering Task Force MANET Working Group (IETF
MANET WG) with both commercial and military participation, another step to-
wards standardising a routing protocol among a dozen candidates was made.

Today, there are substantial number of algorithms available that exploit wildly
different properties and characteristics of the mobile hosts and the network topol-

ogy. However, most of these algorithms are still at an experimental stage with only

11



few of them having actual implementations, while the majority relies on simula-
tion results for further ramifications and improvements. It is fortunate that recent
research has provided more comparative performance results between the existing
algorithms giving more independent and objective views on the capabilities of each
one [BMJ*98, DPROO0].

In general, ad hoc routing systems can be classified into those that discover a
path to the destination node at the time it is needed and those that try to maintain
an up to date view of the changing network topology. Former systems are called
reactive while latter protocols are characterised as proactive. Reactive protocols
include the Dynamic Source Routing (DSR) [JM96] the Ad Hoc On Demand Dis-
tance Vector Routing (AODV) [PR99] and the Temporally-Ordered Routing Algo-
rithm (TORA) [PC98]. Examples of proactive protocols include RIP (or distributed
Bellman-Ford, DBF) [Mal94], OSPF [Moy94], and Destination Sequenced Distance
Vector (DSDV) [PB94]. These protocols try to continuously maintain route entries
to all destinations on the face of topology changes. The distinction between re-
active and proactive protocols in ad hoc networks is similar as between having an
IP source routing policy or the more widespread IP forwarding in the Internet. IP
source routing allows IP packets to carry the sequence of routers and hosts they will
be routed through, while with the IP forwarding approach, every router maintains
link information and is responsible for choosing the next router.

The idea behind this thesis is closer to protocols that have appeared recently and
make use of geographic position of network nodes to distribute messages and find
routes. Routing schemes that are based on the location of nodes take advantage of
the relation that exists in ad hoc networks between physical and network proximity.!
Protocols that facilitate geographic forwarding of packets include LAR [YBKV9S]
and DREAM [BCSW99]. Exploiting location of nodes is an important aspect that

is utilised in differing degrees for several other routing protocols. Su et al. have

1This suggests that nodes that are physical neighbours will probably take on the role of being

network neighbours.
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devised an algorithm for mobility prediction and routing [SLGO00], Lin et al. use
location information to provide loop-free routing [LS] and Morris et al. use a scalable
distributed algorithm to keep track of nodes’ positional information that can be used
for routing purposes [LJD*00].

The state of the art review is organised as follows. Section 2.1 describes the
DSR protocol and some of its optimisations. Section 2.2 discusses LAR, a geo-
graphic routing protocol. Both of these protocols are reactive, with LAR being a
further optimisation to the way DSR operates. Section 2.3 gives an overview of the
salient characteristics of a proactive protocol, namely DSDV. The discussion will
identify differences between the approaches and their respective advantages and dis-
advantages. All of the above protocols are chosen as representing the particular type
and architecture which they belong and because of the increased attention they have

received in the literature. Section 2.4 concludes with a summary of this chapter.

2.1 Dynamic Source Routing

Dynamic Source Routing is a routing protocol specifically designed for wireless mo-
bile ad hoc networks. Its specification was published originally in [JM96], and
subsequent changes to the protocol were made as Internet drafts with the latest
being [JMHJ00].

As with any routing protocol, DSR was designed so that nodes would be allowed
to dynamically discover and use routes to any other nodes in the ad hoc network.? It
does so by using source routing. Source routing is a technique that allows nodes to
communicate with each other by explicitly encoding the complete path to a destina-
tion in every packet’s header. DSR, being a reactive protocol, tries to dynamically
identify possible paths to a destination only when needed. This is in contrast to

distance vector or link state protocols where they try to continuously monitor and

2Provided of course there is a sequence of nodes through which a packet can be forwarded to

reach the destination.
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update their list of paths towards possible destinations. Figure 2.1 shows an exam-
ple of how source routing works. A packet is tagged with the complete path from
source to destination node, with each intermediate node identifying its position in

the header and then forwarding the packet to the next node in line.

/G>
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Figure 2.1: Source Routing in Dynamic Source Routing

2.1.1 Overview

The DSR protocol operates in three distinct modes.

e Route Discovery, in which any node that wants to find a route to a destination

obtains a full path to it.

14



e Route Maintenance, is the mechanism by which a change in the network topol-

ogy leading to a route breakage, will cause a new route to be used.

e Data Relay, the transmission of data from higher layer protocols to next hop

neighbours, when a valid source route exists.

As stated previously, both route discovery and route maintenance operate on de-
mand. Each node is also equipped with a route cache, for caching source routes
that the node has learned. DSR in particular, makes aggressive use of caching
techniques in order to improve efficiency. Some comparative results, when different

caching techniques are used have been published in [HJ00].

2.1.2 Route Discovery

Whenever a source node transmits data to a destination node, it appends the full
route of the intermediate nodes in the packet header. This route can either be
extracted from the route cache maintained at the source node, or in case that the
path to the destination is unknown, a route discovery sequence is initiated. In the
latter case, the source node is called the initiator and the destination node the target
of the route discovery.

Figure 2.2 illustrates an example where initiator node 2 commences a route
discovery to find a path (or multiple paths) to destination node 5. To do that, node
2 transmits a ROUTE REQUEST packet which is received by all nodes currently in
the wireless transmission range of 2. Each ROUTE REQUEST message contains the
address of the node that initiated the request as well as the address of the destination
node. It also contains a unique® request ID that is created by the initiator node.
Furthermore, every node that receives the ROUTE REQUEST appends its own
address in a record that is part of the packet header and lists the intermediate

nodes that the ROUTE REQUEST has been through.

3Uniqueness is guaranteed in the scope of route discovery and source node
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Any host that receives a ROUTE REQUEST attempts to identify if it is the
destination of the request in which case the request is processed accordingly. If the
host is not the destination, the request is either forwarded to the node’s neighbours
through broadcast or discarded if it has been seen before. It is worth mentioning
at this point the technique that is employed by DSR to avoid loops. As noted,
every ROUTE REQUEST contains the source, destination and request ID as part
of its header. When a request is first seen by a host, it is cached for a certain
period of time. Every subsequent request seen is compared against the source and
the request ID fields of every cached copy. If it exists in the cache the packet is
discarded, otherwise the relevant fields are stored in the route cache and the packet
is further processed. This provides an inexpensive and simple way to avoid loops

in the network, since every request originating from a certain source node will be

Route Request
src=2, dst=5, id=2

2

Route Request N
src=2, dst=5, id=2 Route Request
% Route Request src=2, dst=5, id=2
src=2, dst=5, id=2 5

2

Zz °

Figure 2.2: Route Request in Dynamic Source Routing
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processed and forwarded only once by each subsequent node.

The request thus propagates through the ad hoc network until it reaches the
target host, which then replies to the initiator. This happens by sending a ROUTE
REPLY message to the source of the request that contains the fully ordered list of the
hosts that the ROUTE REQUEST has been through. In the example of figure 2.2,
ROUTE REPLY will contain the addresses of nodes [2,3,6,5]. When the ROUTE
REPLY is received by the initiator node, the path to the destination is stored in its
cache. Any packets that were buffered waiting for a valid route to the destination
are tagged with the newly received path and are sent off. DSR employes several
optimisations in many parts of its architecture and some of them are mentioned in
section 2.1.4. Specifically to choosing a route for the source node during a ROUTE
REPLY, the destination has several options depending on the nature of the ad hoc

network.

e If a route to the initiator node exists in the target’s cache, it can use this path

to propagate the ROUTE REPLY.

e It can reverse the list of nodes the ROUTE REQUEST has stored in its record.
That implies that nodes in the network have support for bi-directional links,
something that is not always true in ad hoc networks due to interference,

various obstacles and differing MAC architectures.

e In the case that bi-directional links are not supported, the destination node
can piggyback the ROUTE REPLY in another ROUTE REQUEST message

aimed at discovering a path to the initiator node.

Route discovery is probably the most expensive function in reactive protocols,
like DSR. Especially when no technique is used to limit the scope of the route
discovery and flooding is employed to identify destinations, it can cause traffic de-
lays, increased latency, bandwidth consumption and create communication over-

head. There are a number of ways to attack the above problems, each involving

17



trade offs in some other areas. One can hope to decrease the effective zone of the
route discovery thereby reducing traffic and minimising overhead, which is what the
LAR protocol does. Other approaches like the ZRP [HP97] try to restrict route dis-
covery to neighbouring nodes by creating a cluster environment and keeping some
network state information in the node that acts as the cluster-head. Our approach
aims at creating long-living routes, balancing in this way the effects of flooding

during every route discovery.

2.1.3 Route Maintenance

Conventional routing protocols integrate route discovery with route maintenance by
continuously sending periodic route updates. If the status of a link or router changes,
the periodic updates will eventually reflect the changes to all other routers, presum-
ably resulting in the computation of new routes. However, using route discovery,
there are no periodic messages of any kind from any of the mobile hosts. Instead,
while a route is in use, the route maintenance procedure monitors the operation of
the route and informs the sender of any routing errors.

When a node along a routing path, detects a broken link, it returns a ROUTE
ERROR message back to the originating node. The ROUTE ERROR message
contains information to identify the link over which the error occurred. It contains
the address of the node that identified the error as well as the address of the node
that could not be reached. When the initiator node receives the ROUTE ERROR
message it will purge from its route cache all the routes that contain the broken link.
Any subsequent transmissions requiring this route will probably result in another
route discovery (provided there is no alternative cached route to the destination).

The way that broken links are detected is usually done through receipt confir-
mation. Sometimes this is provided to DSR for free by layer 2 protocols (such as the
link level acknowledgement defined by IEEE 802.11), otherwise DSR may explicitly
request an acknowledgement by the next hop node by setting a flag in the packet’s
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header. Finding a route to the originating node for a ROUTE ERROR message
uses the same options that were mentioned for a ROUTE REPLY message in sec-
tion 2.1.2. The reporting node can either decide to extract a route from its cache

(provided there is one), reverse the route that exist in the packet it was trying to

send or initiate a new ROUTE REQUEST to find a path to the source node.

2.1.4 Optimisation Techniques

DSR accepts a variety of optimisations, most of them having to do with aggressive
use of the route cache. The following paragraphs mention some of these optimisa-

tions and give a brief overview for each one.

Promiscuous mode

DSR can “snoop” on any packet that it receives and extract information from the
packet’s header that it then processes and stores in its cache. It is not necessary that
only originator nodes will cache routes from a ROUTE REPLY message, but any
intermediate node that forwards the ROUTE REPLY can cache the route that is
carried. This of course on the expense of processing power and memory consumption.
The same idea can be applied for ROUTE ERROR, packets making distribution of

broken links faster.

Reply Using Cached Routes

Another form of optimisation is the ability of intermediate nodes to reply to ROUTE
REQUEST messages by searching their cache for a route to the destination of the
route discovery, instead of just broadcasting the request packet to their neighbours.
In case a route exists to the destination of the ROUTE REQUEST, the cached path
is appended to the path that is stored in the request’s header and a ROUTE REPLY

is sent to the initiator node by the intermediate node.
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Preventing Route Reply Storms

A situation might occur in DSR, whereby neighbouring nodes can choose to respond
with ROUTE REPLY messages simultaneously. This happens when nodes receive a
ROUTE REQUEST and have the destination cached (possible because the destina-
tion is their neighbour). To avoid this behaviour, which can lead to wasting precious
bandwidth, nodes snoop on neighbouring ROUTE REPLY messages and only send

their own reply if they have a better (shorter) route to the destination.

Packet Salvaging

After sending a ROUTE ERROR message as part of route maintenance described in
section 2.1.3, a node may attempt to salvage the data packet that caused the ROUTE
ERROR rather than discard it. To salvage a packet, the node sending a ROUTE
ERROR searches its own route cache for a route from itself to the destination of
the packet causing the error. If such a route exists, the node replaces the source
route of the salvaged packet with the one existing in its cache. To avoid potential
routing loops, caused by nodes continuously salvaging the packet, a flag is set, so

that further nodes will not attempt to salvage it again.

2.1.5 Summary

DSR is one of the few ad hoc routing protocols that apart from having undergone
quite extensive simulation evaluation, has been implemented and tested in a real
network [MBJ99]. DSR is essentially a protocol that uses flooding to discover routes
to nodes only when needed. As such, no periodic transmissions are needed, but
the full route to destination is included into every packet that is sent with DSR.
This is one source of overhead that cannot be defeated by using intelligent caching
techniques employed for reducing the amount of time needed for route discovery
and propagation of broken links. Simulation results [BMJ*98] have proven DSR to
outperform 3 other protocols (DSDV, TORA, AODV). However, testing was done
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on network with 50 nodes by varying traffic and mobility patterns. It remains to
be seen how DSR would operate in larger networks, where flooding the network for

route discovery might create serious network congestion.

2.2 Location Aided Routing

2.2.1 Overview

This section describes another routing protocol which uses the physical location
of mobile hosts in its route discovery operation. Protocols that make use of such
location information are called location-aware and the protocol reviewed here is
called Location Aided Routing (LAR) [YBKV98|. LAR attempts to reduce the
route discovery overhead by limiting the physical area where nodes reside. The way
that it tries to achieve that, is by defining an Ezpected Zone and a Request Zone.

Consider figure 2.3 for example, where host S wants to find a route to host D.
Assuming node S knows that node D was at location L at time ¢y, and that current
time is t;, then the ezxpected zone for node D is an area where node S expects D
to be found on time ¢;. An approximation can be made if node S could know the
speed by which node D is moving. Then it could calculate the expected zone as a
circular region with radius u(t; —tp), centred at location L. In figure 2.3 the expected
zone corresponds to the greyed out circle around node D. Naturally, if the location
information at some previous moment in time is unknown, nothing can be assumed
about the current position of any destination node. In this case LAR falls back to
being a flooding protocol during route discovery (e.g. DSR).

The request zone is the core of the LAR protocol. When a node has stored
location information about potential destination nodes, it defines a request zone
during route discovery in which only nodes belonging physically in this zone will be
allowed to forward the ROUTE REQUEST messages. To increase the probability

that the route request will reach node D, the request zone should include the expected
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zone. LAR defines two schemes on how to construct a request zone. The first
scheme is like the one defined in figure 2.3. Essentially, it is the smallest rectangle
that includes current location of the source node and the expected zone of the
destination node (the circular region defined above), such that the sides of the
rectangle are parallel to the X and Y axis. In the example, the request zone under
scheme 1 is the rectangle defined by the S;A,B and C vertices.

In LAR scheme 1, source S explicitly specifies the request zone in its route
request message. In scheme 2, node S includes two pieces of information with its

route request:
e Its distance to the destination node, denoted as DIST;.
e The coordinates of the destination (X4, Yy).

Under this scheme, every node that receives the route request checks if its distance
is less than the distance defined by the previous node. If it is, the node updates
the distance stored in the route request message with its own distance from the
destination and forwards the message to its neighbours. Otherwise, the message is

discarded with no further processing.
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Figure 2.3: Reducing flooding during route discovery in LAR

22



2.2.2 Summary

LAR is a simple routing algorithm that relies on location information about nodes
to reduce the number of routing messages required during route discovery. LAR can
be seen as an optimisation to flooding protocols like DSR, improving their route
discovery procedure. Some evaluation and testing in a simulation environment has
been produced by the writers of LAR, showing LAR to outperform basic flooding
protocols in both its schemes, with scheme 2 being slightly better in its efficiency
than scheme 1.

Tseng et al in [YC], described GRID which is another location aware routing
protocol. A comparative simulation analysis made in the same paper between GRID
and between LAR and AODV, found GRID to outperform both LAR and AODV

in areas like routing cost, delivery rate and maximum connection establishing time.

2.3 Destination Sequence Distance Vector

This section describes the third ad hoc routing protocol that is based on the proac-
tive approach and is in fact an extension to the standard distance-vector algorithms.
Although there are well known problems that are associated with this type of algo-
rithm (i.e. count-to-infinity), DSDV tries to overcome them with techniques that
shall be described below.

As described by Bertsekas et al. in [BG87], in traditional distance-vector algo-
rithms, every node ¢ maintains, for each destination z, a set of distances {d;;(x)}
for each node j that is a neighbour of 7. Node 7 treats neighbour £ as a next hop for
a packet destined for z if di(z) equals min{d;;(z)}. The succession of next hops
chosen in this manner leads to x along the shortest path. To keep the distance up to
date, each node monitors the cost of its outgoing links and periodically broadcasts,
to all of its neighbours, the current estimate of the shortest distance to every other

node in the network.
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2.3.1 Protocol Overview

In DSDV, packets are routed by using route tables stored at each node. Each route
table maintains entries for every other node in the network. These entries include the
address of the destination node as well as the address of the next hop that packets
should take in order to reach the destination. Each such entry is also tagged with a
sequence number that is generated from the destination node. In order to maintain
consistency of the routing tables in every node of the network, periodic updates of
the tables are generated when significant changes of the topology happen. Through
these updates and each node’s view of the neighbouring nodes, it can calculate the
next hop for every destination taking into account relevant metrics. These metrics
can be anything from number of hops to available bandwidth and link delay or
anything else that depends on the application domain.

Since one of the characteristics of ad hoc networks is the frequently changing
topology, the entries of the routing tables in DSDV tend to change quite often.
This requires frequent updates to ensure that every mobile node can almost always
locate every other mobile node in the network. The data that are broadcast by each
mobile computer will contain a new sequence number and the following information

for each new route:
e The address of the destination.
e The number of hops required to reach the destination.

e The sequence number of the information received regarding that destination,

as originally stamped by the destination.

Tagging every update with a new sequence number from the transmitter, is done
to distinguish between stale update packets and valid ones. The sequence number
is a monotonically increasing number that uniquely identifies each update packet
from a sender node. Therefore, as update packets propagate around the network

and nodes receive update packets from the same originator, the most recent ones
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(with the highest sequence number) are always used for routing decisions. When
the sequence number between an entry in the route table and an update packet is

the same, then the one with the lowest metric is used.

2.3.2 Responding to Topology Changes

Mobile nodes cause broken links as they move from place to place. These broken
links may be detected by the MAC layer or by the absence of broadcast packets
from neighbouring nodes. Broken links are described in DSDV as having a metric
of infinity (cc0). When such a situation occurs, all routes through the broken link
are tagged as having a oo metric and their sequence number is updated. Since this
is something that could effect overall network performance, it must be propagated
as soon as possible and indeed DSDV immediately broadcasts an update packet
containing the broken routes. This is a special case where some node other than the
originator of the update packet is allowed to change the sequence number. Sequence
numbers generated to indicate an oo metric to a destination will be one greater than
the last sequence number received from the destination. Subsequent nodes that
receive these packets will trigger immediate broadcasts and eventually the result is
going to be the removal of all the entries that use the broken link from the route

tables across the network.

2.4 Summary

This chapter has reviewed three different routing protocols for mobile ad hoc net-
works. In fact, only DSR and DSDV can be considered protocols with the traditional
sense of the word. They are defined rigorously, with detailed specification of their
algorithms, the structures used and the protocol headers that they utilise. LAR on
the other hand can be considered as an optimisation to the basic DSR protocol with
the aim of reducing the overhead during route discovery. All of the three protocols

have been subjected to testing through simulation, though the different scenarios
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under which the protocols were tested, could stress scalability issues more.
We have chosen to review a reactive and a proactive protocol, so that the analysis
of mobility and direction in the following chapter will be put into the context of these

protocols.
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Chapter 3

Analysis and Design

This chapter discusses the idea of using mobility and direction as the basis for a
routing algorithm in Mobile Ad Hoc Networks. What we seek to exploit, is the
“movement experience” that nodes build up as they roam around the network.
Provided that there is some way of obtaining nodes’ position and then representing
this movement (essentially a series of geographical coordinates through time) we
will look at different algorithms that could then be used in the context of a protocol
to improve routing. Our aim is to try and devise a Directional Metric through the
evaluation and analysis of the salient properties that govern movement and then
place that in the context of proactive and reactive routing schemes as defined in
chapter 2.

Section 3.1 introduces the concept of Direction Based Routing and discusses rel-
evant concepts and definitions associated with it. Section 3.2 deals with the concept
of direction of a moving object through space and time and identifies problems and
ideas that surround the term direction. Section 3.3 provides different metrics that
can be used to describe the movement of a participating node. Section 3.4 looks at
the different issues that are involved in integrating one of the metrics that were pro-
posed in the previous sections to an actual protocol. Finally, section 3.5 summarises

the ideas presented in this chapter.
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3.1 Background

Some of the concepts that this thesis deals with, have already been introduced with
the review of the LAR routing algorithm in section 2.2. Direction Based Routing
extends the idea of exploiting location information a little further, so that hidden in-
formation or “patterns” regarding movement can be used to facilitate routing. When
mentioning mobility pattern from hereafter, it will mean the arbitrary movement of
an object in a two dimensional terrain, over a time period. Stationary objects can
be considered as a degenerate case of a mobility pattern with zero velocity.
Understanding mobility patterns of moving nodes is difficult to do in a generic
fashion. Some research has been done into producing mobility models suitable for
simulating performance of ad hoc networks. Sénchez and Manzoni in [PMH] have
defined mobility patterns as either traces or synthetic. Traces are patterns that are
extracted from real life movement (e.g. a mobile phone carrier could provide the
motion pattern of users in a certain area). However the use of traces raises prob-
lems. Traces tend to be domain specific and different traces can exhibit completely
different motion patterns making it difficult to provide generic testing scenarios.
Traces can also be difficult to create and obtain. Thus, sometime different types of
modelling are required. In comparison synthetic models use certain algorithms to
offer a realistic real life motion. Most protocols for ad hoc networks conduct their

simulations using synthetic models.

3.1.1 Associated Concepts

An example illustrating the key concepts and the problems that are related to Direc-
tion Based Routing is shown in figure 3.1. Node S wants to transmit data to node
D. Assuming that both intermediate nodes, a and b are inside the transmission
range of S, then S can choose to transmit data destined for D through either a or

b. In a case like this, the choice of an intermediate node can happen randomly or
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Figure 3.1: Direction based routing in an Ad Hoc Network

as a result of a decision metric.?

If there was a way to characterise the movement pattern of a node and assuming
that the position of the destination node is known, choosing node a instead of b
would provide the extra benefit of having source, intermediate and destination nodes
travelling in the same general direction. That would mean that a route breakage
between the three nodes will probably happen at a later stage than if selecting
node b. This example is obviously simplified to fit the purposes of illustration.
In particular, it does not take into account velocity of nodes, potential obstacles,
overall pattern of movement through a sufficient long period of time, etc.

Providing a directional metric is something that could function in both proactive

1Tike the distance to destination or quality of link.
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and reactive routing environment. In the latter case that would be accomplished
during a route discovery phase by reasoning that an intermediate node has better
chances of staying in line with source and destination nodes. In the former, positional
information can be exchanged as part of state messages that are sent frequently
by proactive protocols in order to compute new routes in a changing topology.
In both cases, and especially the proactive one, care should be taken so that the
routing overhead does not increase beyond a certain point. Both possibilities will
be investigated during the design phase.

Further analysis of patterns, might provide enough information so that the focus
of the protocol might shift from maintaining long-lasting routes to reduced flooding
during route discovery (only nodes that fit a certain movement pattern could be
allowed to forward a route discovery). Another alternative would be for the source
node to decide not to transmit the packet to any intermediate node, but to carry
the packet towards the destination.

Some of these ideas could only be suited and applied in marginal application
domains. For example, the idea of carrying packets towards a destination instead of
transmitting them to neighbouring nodes, might suit extremely sparse environments
where traffic delay is not important, but eventually reaching the destination is the
primary objective. In such an environment, whenever a data-carrying node comes
into close vicinity with other nodes, there could be a period of direction identification
between all nodes. Then, depending on past and present direction, data would
be relayed towards nodes that have the highest possibility of reaching particular
geographic destination.

Our implementation and further experiments will try to prove if accounting for
mobility information can help routing protocols provide a more efficient route dis-
covery mechanism. Increasing the longevity of routes as well as reduced packet

overhead will be our primary objectives.

30



3.2 Understanding Direction

A central point of this dissertation constitutes the concept of direction and heading
of a moving node. In fact, in order to make an intelligent routing decision based
on direction, one has to understand some basic properties of direction and define a
metric that can be used when we wish to somehow quantify a mobility pattern. The
rest of this document assumes that any node participating in an ad hoc network (or
any moving object in fact) has the capability to know its location by taking samples
of this data at certain time intervals. Every node can also transmit information
regarding its coordinates when queried by other nodes.

As mentioned by Lin et al. in [LS] variations of directional routing algorithms
have been recently proposed [BCSW99, YC, YBKV98, KSU99] that are shown to
perform significantly better than algorithms and protocols that do not use topo-
graphical information for their routing purposes. Most of these protocols however,
tend to use only positional information to perform routing more efficiently. Also, a
closer look of the aforementioned protocols reveals that the term direction is used to
denote movement towards a particular point or area. The actual direction of move-
ment (e.g. North, South, East, West) or else the heading of the source, destination
and intermediate nodes is generally not considered. In other words, when topo-
graphical information is taken into account for routing purposes, source and target
nodes are pinpointed by their location but their mobility trace is not regarded.

When we try to adapt this directional knowledge for routing packets between
moving nodes in a MANET, we are faced with some inherently complex and not well
understood problems. On one hand, movement patterns and their “characteristics”
are likely to affect what directional information we can extract and to what extent
we can trust this information to be of value. An object moving in a straight line
for a specified period of time presents less of a challenge for predicting its future
move than an object moving in a Brownian-Random way. Moreover, it is important

to identify certain attributes and characteristics that can be used to understand
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different types of movement. Simply exchanging information about a node’s current
heading unlikely to be sufficient. It could be the case that during this data exchange
the node made a spontaneous move towards a totally different direction than the
one it will continue to follow in the future. Capturing and transmitting this will
result in routing decisions that are not accurate since they are based on a transient
manoeuvre of the node and it is not expressive enough to rely on.

What is needed is a set of metrics that can quantify the mobility pattern of a
node and give an estimate of its past and future route. Knowledge of this past
route is essential if we want to avoid relaying packets to nodes that are for example
moving in loops and thus are unable to transfer packets very far. It also provides

us with some data so that we can reason about the node’s future route.

3.3 Directional Routing

Devising an algorithm that gives a good approximation of an object’s directional
behaviour in every possible mobility pattern is beyond the scope of this thesis. In-
stead, we will try to identify certain properties that can be parameterised depending
on the application domain. Three qualities of movement are identified and analysed
in the following sections. They result from the general intuition regarding move-
ment in that it has a heading, it traverses a certain distance from a starting point
and also covers a certain area. The movement of every object can be described in a
four-dimensional plane as a series of positional and time coordinates. This is how we
will approximate movement in our analysis and simulation. Every movement also
has a starting and an ending point as well a starting and an ending time, except for
objects moving ad infinitum.

Between any two given points we can represent movement using vectors. The
heading of the vector represents the movement’s direction while the vector’s mag-
nitude represent the distance travelled. In the following paragraphs we propose

metrics to approximate the mobility properties mentioned above by quantifying the
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most important characteristics. For each one of the three properties, we will discuss
possible algorithms and choose the one which is going to be used in the design and

implementation of the Direction Based Routing protocol.

3.3.1 A Metric for Heading

The aim here is to identify an algorithm that could approximate a node’s future
position provided that we have enough information about its past movement trace.
It should be noted that if a node’s mobility pattern is truly random, then trying to
identify where the node is going to be next carries no real significance. However,
common sense may suggest that in a suitable time period, certain types of movement
may disclose patternsiDTMB99].

Time is an important factor in prediction, especially when trying to approximate
something as volatile as movement. It can influence a predictive algorithm for

direction in cases like,

- Where the input to the algorithm consists of the node’s past trajectory. In
this case we need to be aware of the time where we took the samples of the

node’s position.
- How long a predictive result is valid for.

Different application domains can have surprisingly different requirements for taking
positional samples and for valid time frames of prediction results. For our discussion,
we assume that coordinates are measured at almost identical discreet time intervals

and the result is valid for the same period of time.

Solution 1: Rate of Angular Change

Let us assume that we have a movement pattern like the one depicted in figure 3.2.

We measure the coordinates of the node in points A B,C,...at times t1,t5,t3,. .. ,t5.
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One way to express the change of direction is to use an equation like the following,

_ [¢2— ¢
a; = t2 — tl (31)

or in the more general case,
= |Ag|
PTOAL

where a; is the rate of angular change expressed in degrees per second. Since the

(3.2)

result is an absolute value, we can only expect this metric to be useful when we
want to know how volatile a movement is over a period of time. This will give us an
average of a node’s change of direction between two different time measurements.
A comparison of the rate of angular change between nodes will not tell whether the
nodes are heading towards the same destination, but express the tendency they have
to follow the same pattern of changes in their headings. Furthermore, it will not
give us any estimation for any future heading, but could prove useful for analysing

past changes of direction.

N(tn)

Figure 3.2: Rate of angular change in a movement
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Solution 2: Weighted Average

An alternative way to try and predict changes in the node’s direction would be to
take an average of the past n headings. The formula should be parameterised in a
suitable way so that it can be ratified for different application domains. That can be
achieved by assigning different weights to past and current headings, which would
depend on the significance we would like to attribute to the current direction com-
pared to the past route. It could also be a way (albeit a simple one) to dynamically
adapt the prediction functionality when mobility conditions change. Such a metric
of direction can then be modelled as,

p = iz WD) (3.3)

n

where h would be the result in either degrees or radiants, W (i) a weight function with

Yor  W(i) =1 and ¢,...,p, the angles of the corresponding directional vectors.
In figure 3.2 for example, the approximation to the direction of the EN vector

corresponding to angle ¢5 can be calculated by substitution to the previous equation

like,
0530 i+ 0.5¢4
N 4

b5 (3.4)

giving an equal weight to past and current headings. A problem with this equation
is the fact that in order for a comparison to take place we need to ensure that
an identical number of positional samples was used for every node. Otherwise,
comparison will produce skewed results because if n is not equal for every node, it

will give a different weight to the measured angles.

Solution 3: Time Dependent Weighted Average

One of the shortcomings of the previous solution is that it does not take into consid-
eration the time a node has been following a certain path. That means that angles
will be given the same weight regardless of the amount of time. This could be reme-

died if the function assumed that positional coordinates are taken at identical timing
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periods, which again prevents the algorithm from adapting to changing parameters
(e.g. changes in speed could result in changes in the period that positional samples
are taken).

A better solution would be to integrate the rate of change function with the

weighted average, giving an equation like the following,

n—1

i i & Z¢i(ti+1 — )W (i) (3.5)

h =

where h, W(i) and ¢,...,¢, are the same parameters defined in the equation 3.3,

while (¢;11 — t;) is the time the node traced the path defined by angle ¢;.

Critique

Solution 1 described above is not attractive because it is not sufficiently expressive.
It could be used to predict whether we should anticipate small or large directional
changes but it cannot actually give an estimate position. Unlike solutions 2 and
3, solution 1 does not take detailed past positions into account, only the starting
point and the last recorded position. Solution 1 is also an absolute metric which
makes it considerable harder to compare headings between nodes. Solution 2 on
the other hand, provides a good metric when comparison is needed but does not
encapsulate the notion of time in the calculations. This might result in inconsistent
values coming from the fact that we assume each heading to be followed for an equal
amount of time. The fact that it also produces an average by division of the number
of sample positions creates another problem, since this needs to be the same when
nodes compare results. Solution 3 can be a good candidate for implementation, being
the only one that can give a good estimate taking as input timing requirements and
directional changes.

The problem with solution 3 arises when a value is required as a comparative
metric. If we want to measure similarity in direction between nodes, then an extra
step will be required after calculating equation 3.5. Unlike metrics like bandwidth,

delay, distance, etc. for which values can be compared on a minimum, maximum
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function, conversion from different values of the aforementioned function would re-
quire another function to normalise the results and return a similarity metric (e.g.

if results are within a certain threshold value then assign a certain number).

3.3.2 A Metric for Distance

As was indicated in section 3.3 another important factor for constructing a relevant
routing metric is the distance travelled by a node during a given period of time.

What this distance tells about the behaviour of a node, is things like,

1. The activity of a node. This is a property closely related to velocity. Assuming
identical time periods of measurements, we can distinguish between the degree

of activity of nodes depending on the distance covered.

2. By comparing the total distance travelled between two points with the mag-
nitude of a vector connecting the starting and ending points we can reason

about the quality of movement.

Point 2 is especially important for providing a good comparative metric. We can

formulate it in an equation like the following,

IR
d= =2 =7
Zk:l 7%

and ||7|| is the distance vector between two positions, while |E|| is the resultant

where ||7||,|| || € R? (3.6)

between points 1 and n.

What this equation expresses, is how well the resultant vector approximates the
constituent vectors. In other words, it says how determined was a node in keeping
a steady course during the movement. We will name this factor the determination
factor, where a large fraction would mean that the movement is more or less close to
the resultant vector while a small value would suggest a movement that fluctuates
around the resultant. The movement depicted in figure 3.2 between points A and
B for example, would present a larger fraction than a movement between points A

and E in figure 3.3.
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Figure 3.3: Approximating direction by using a resultant vector

This determination factor presents a metric whereby the quality of a movement
can be characterised. It is also a time independent function, though again mea-
surement intervals are of importance and specific to application domains that can

influence the quality of the routing decisions made.

3.3.3 A Metric for Area

Complementary information to distance is also the area that a node is covering when
moving. This could be a further aid in order to quantify proximity to a target node
and for making a more accurate prediction of how a node’s mobility pattern has
evolved in the past. For random movement patterns developed for studying ad hoc
networks in simulated environments, this might provide only limited knowledge but
it could prove very useful when ad hoc networks perform under real life scenarios.
Using routing algorithms that rely on an area coverage is an approach that is
discussed by Navas et al. in [NI97]. They have devised an algorithm for routing in
fixed networks that is based on geographical areas. A router is responsible for a
certain area that is defined by bounding polygons and a packet finds its destination
by polygon intersection between the packet’s coordinates and the area that the router
is responsible for. The same mechanism can also be employed but for a different

purpose in Direction Based Routing.
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Bounding Polygons

Having constructed a bounding polygon from the trajectory of a node, allows some
assumptions to be made on the suitability of the node to carry or transmit a packet
to the desired geographical location. In general, a bounding polygon that covers a
large area means frequent changes of direction. This can provide useful input which
can be used in conjunction with the distance metric as described in section 3.3.2 to
provide more accurate approximations of mobility.

However, further analysis should be conducted on the merits and the actual
benefits that are provided by accounting covered area in the calculation of the di-
rectional metric versus the computational cost in calculating bounding polygons. If
the bounding polygon can be obtained in a computationally inexpensive way it could
then be used in addition with the distance metric. Another interesting characteristic
of bounding polygons, is the dependence of the calculated area on the number of
vertices (in our case location measurement points). Ideally, we would like changes
in the number of location points measured not to affect, or affect proportionally the
area that is calculated around these points.

This is an area that has not been adequately researched, as it was considered
peripheral to the project’s aims. It is a field though that worths exploring for future

work in location aware and direction based routing.

3.4 Selecting a Directional Metric

The decisions that have to be made concern the type of directional metric that will
be used, the type of protocol the metric will be fitted in (either proactive or reactive)
and, after choosing the type, the exact protocol that will be used. Hopefully the
above choices will direct us into a clean and straightforward design on how the metric
will function with the protocol and how it will be calculated with minimal overhead.
Although some of the choices are interdependent, this leads to a nice separation of

sections, with each of the following discussing one of the above items.
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3.4.1 Choosing a Metric

For this thesis, the selection of an appropriate metric depends on several factors.
Time constrains mandate that a relatively straightforward metric be chosen for im-
plementation, without sacrificing the effectiveness of the algorithm and the efficiency
of the protocol. A metric that can fit into a preexisting protocol would be desirable,
since the design and implementation of a fully fledged ad hoc routing protocol is
outside the scope of this dissertation. Regarding algorithmic effectiveness, it is de-
sirable that the metric leads directly to a quantity that can be used as a comparative
value during route selection.

For the above reasons a decision was made to use a variation of the distance
metric described in section 3.3.2. As mentioned in the beginning of this chapter, the
goal is to find a metric that describes similarity in the direction of moving nodes. By
knowing the directional vectors of the moving nodes, we can divide the magnitude
of the overall resultant of these vectors with the sum of the magnitude of each indi-
vidual vector. In this way we get a fraction that as it approaches 1 it means greater
similarity in direction. Figure 3.4 helps to clarify this point. Vectors 77y, 7, 73, 74
represent the movement of individual nodes, while vector R is the resultant. By
dividing the magnitude of B with the sum of the magnitudes of the constituent vec-
tors, a fraction close to 1 will be calculated, since all of the individual vectors face
the same direction and belong to the same quadrant. The mathematical notation

of this description is the following equation,
R
o IR
> ket 7l

with n = 4 for the example in figure 3.4.

where ||7|),|| || € R? (3.7)

3.4.2 Choosing a Protocol Type

The decision for the selection of a protocol type was interleaved with the decision
for the metric in section 3.4.1. Although the introduction mentioned that the met-

ric should work in both types of protocols, early on it was made clear that such
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Figure 3.4: Choosing a Directional Metric

a metric would cooperate better with a reactive algorithm than a proactive one.
The most important reason for this, is the tendency of proactive protocols to hide
the complexity that the mobility of nodes introduces under the frequent exchange of
messages. Clearly, seeking to maximise the performance of routing by taking advan-
tage of mobility patterns under a protocol that tries to hide this factor is difficult.
Even if this is disregarded, the fact that proactive protocols operate on a next-hop
fashion, makes it difficult to gather, analyse and extract results on nodes’ directional
similarity. We found no suitable place to merge the vectors of the source, interme-
diate and destination nodes so that a metric could be calculated. The possibility
that such a metric can be used with proactive protocols remains an open issue and
could be the subject of further research.

Looking at on demand protocols, a simple algorithm was realised that could

provide the ability for nodes to make routing decisions based on the directional
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metric. The protocol would perform the following steps,
1. Issue a discovery to find a destination.

2. Have each node encapsulate its directional vector together with its address in

the discovery message.

3. Destination node receives the discovery message, appends its own vector

information and sends back a reply.

4. Source node receives (potentially) multiple replies from the destination with

vector information included and stores them in its cache.

5. When a packet is ready to be sent to a known destination, calculate the
metric for each route in the cache and choose the one with the highest

fraction.

Figure 3.5 helps illustrate the process of obtaining vector information during the
route discovery procedure. The notation <node number>|dx/dy implements step 2
that when each node adds its address in the ROUTE REQUEST message, it also
includes its vector information in the wvector representation format (this format is

further explained in section 4.4).

3.4.3 Choosing the Protocol

As mentioned already in chapter 2, reactive protocols include but are not limited to
the Dynamic Source Routing (DSR) protocol, the Ad hoc On demand Distance Vec-
tor (AODV) and the Zone Routing Protocol (ZRP). Between them, ZRP is really a
hybrid approach, dividing the network area in to zones, with intra-zone routing tak-
ing place in a proactive fashion while inter-zone routing is done reactively. Although
its use as a base protocol has not been exhaustively researched, we think that the

same problems will be encountered as when using a purely proactive protocol.
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Figure 3.5: Appending vector information during route discovery.

The choice between DSR and AODV was based on several factors. Although
both protocols operate on-demand the source routing architecture of DSR provided
an extra benefit. The metric would have to be advised only in the source node before
a route is tagged into the outgoing packet. In the case of AODV, an on-demand,
next-hop protocol, the metric would have to be calculated in each node. The fact
that AODV employes routing tables for next-hop routing is also a problematic factor,
because of the reasons that were mentioned before.

Apart from an implementation in a simulation environment, DSR also features
a real implementation under the FreeBSD Unix operating system. This is an extra
motivation for the use of DSR, since it means that apart from a simulation, we could
have a code base for a future real implementation of the Direction Based Routing

algorithm using wireless LAN cards and GPS modules. The author does not know
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of any existing or future plans for a real implementation of AODV.

The benefits of AODV include native support for multicast and broadcast as well
as simulation results that show that AODV scales gracefully for large population
of nodes. Tests conducted with the AODV protocol, employed 500 nodes, while its
authors Perkins et. al. claims that results with AODV in node sizes of up to 10,000
nodes have shown good delay and packet delivery measurements [Per01, page 207].
Multicast and broadcast support are outside the scope of this thesis, but scalability
is an important characteristic, especially since tests under DSR have only been
conducted with no more than 50 nodes. Still, the merits of DSR outweigh those of
AODV.

3.5 Summary

In this chapter we identified techniques and metrics that can be used to characterise
the quality of a movement pattern in order to facilitate more efficient routing in
mobile ad hoc networks. The analysis and the discussion was not tied up to specific
to routing algorithms, but was put in the more general context of movement ap-
prozimation and prediction. This gave more flexibility over the design, where a base
protocol, a metric and a generic algorithm were selected.

Three properties of a movement were identified and alternative ways of repre-
sentation were suggested. The decisions made in the previous sections are outlined

below.

Heading

Based on feedback from the angular value of previous distance vectors, an algo-
rithm was devised that could be used for predicting and comparing directions in a
generic way in an ad hoc network. Three solutions were proposed; a rate of change
function, a weighted average of direction and a time dependent weighted average.

Equation 3.5 was found to be more expressive because it encapsulates timing and an-
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gular parameters giving a more detailed metric. Computational cost is a remaining

issue and could be dealt with in future work.

Distance

Whilst the heading metric can be used to approximate the future position of a node,
the distance metric expresses the quality of the node’s past movement. When this
is used with multiple nodes, it can provide a metric for measuring similarity in
direction. This determination factor will be used in the implementation to show the
resemblance in the movement of nodes that participate in a source route towards a

destination.

Area

The use of a metric regarding the area covered by the route a node traverses, can be
used either complementary to the distance metric or as an optimisation in certain
application domains. Bounding polygons offer a solution for defining and calculating
an area given the coordinates of its vertices but it remains to be seen whether their

use is justified for routing decision.
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Chapter 4

Implementation

This chapter describes the implementation of the ideas discussed already in chap-
ter 3. Having provided an analysis of the aims, as well as the algorithms that will
be used, we test these in a simulation environment. As was mentioned earlier, after
studying both proactive and reactive protocols, a decision was made to use Dynamic
Source Routing as the basis in which to fit the algorithm. The ns [MF] network
simulator was chosen for having an existing mature implementation of the DSR
protocol and an overall modular architecture using languages (C++, TCL) that the
author is fairly well accustomed to.

Section 4.1 provides details into the workings of the ns simulator. In section 4.2
we describe the changes made by the CMU Monarch group to add wireless mobile
capabilities to ns. Section 4.3 overviews the implementation of the DSR protocol.
Section 4.4 presents the extensions that were necessary in order for the DSR pro-
tocol to accommodate the Direction Based Routing algorithm. Finally, section 4.5

concludes the implementation chapter.
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4.1 The ns Network Simulator

4.1.1 Overview

The ns network simulator is a packet-level, discrete event simulator. It is an open
source software product, mainly used by the research and academic community to
validate research in most areas of networking. It supports both wired and wireless
networks from the Data Link to the Application layer (Layers 2 to 7 of the OSI
protocol stack). It also provides the framework and the implementation of unicast
and multicast algorithms for routing, TCP (Transmission Control Protocol), UDP
(Unix Datagram Protocol), CBR (Constant Bit Rate) and congestion control for the
transport layer as well as web caching and multimedia algorithms at the application
level. The simulation engine is also available in a multitude of architectures and
operating systems including flavors of BSD (Open-BSD, Free-BSD), Linux, Solaris,
HP, SGI and Windows 95/98/NT.

4.1.2 Architecture

The overview that follows will concentrate on the latest version of the simulator,
now called ns-2. From here after, whenever we refer to ns we will mean version 2. ns
is written in an object oriented fashion for maximum scalability and extensibility. It
offers a modular approach which splits the functionality of objects in two languages,
C++ and OTcl.! The duality of the language choice offers a design where separation
exists between control operations on the state of the simulation and the low level
data manipulation. OTecl, a scripting language, is used when the parameters of
the simulation need to change (e.g. varying some protocol parameters) without the
extra burden of recompiling the program. On the other hand, efficient packet and
data manipulation needs a system language, which is why C++ was chosen for. In

general, things that have to do with configuration parameters and setup are written

1OTecl is an object oriented extension to Tcl from David Wetherall at MIT/LCS.
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to be manipulated in OTcl while lower level algorithms and protocols are written in

C++ for maximum performance.

% C++/0Tdl split objects %

i Objects

Pure C++ PureOTcl
C++ OTd

I
I
I
I
I
I
|
I
Objects |
I
I
I
I
I
I
I

Figure 4.1: C++ and OTecl usage in ns

Figure 4.1 shows how the two languages are bound together in the simulator to
create a reusable and extensible framework without compromising efficiency. Al-
though there are two different object models, one in C++ and another one in OTcl,
most of the C++ object hierarchy has a corresponding OTcl hierarchy which allows
the objects to change behaviour at run-time through the OTcl interpreter. C++
variables can be bound into OTcl, thereby enabling the protocol designer to quickly

change aspects of some algorithm and re-run the simulation.

Components

Here we will describe some of the most important components that make up the
simulation environment and can be used to extend it. Although most of these
components correspond to a C++/OTcl class, there are some exceptions where a

component’s functionality is provided by a class hierarchy.

e Classifier. When a node in ns receives a packet, it tries to examine the
packet’s fields (e.g. destination address and port number) and then map these
values to an outgoing interface object that is the next downstream recipient

of this packet. This function is performed by a classifier object. A classifier
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object acts as a filter and tries to match each packet against some logical
criteria, retrieve a simulator object based on the matched results (e.g. the
routing layer) and let this object deal with the packet. Classifiers include

unicast, multicast, flow and address.

e Agents. An agent object is the ‘core’ of ns. They represent endpoints where
packets are usually constructed or consumed and are mainly used for the imple-
mentation of the different protocols. The agent object has an implementation
partly in C++ and partly in OTcl. Examples of agents already implemented
in ns include variations of the TCP protocol (Reno, Vegas), the UDP, mobile

ad hoc routing protocols, etc.

e Trace. Traces are special objects that are used to store information about each
packet that is sent, received or dropped during run-time, so that these data
can then be analysed. This information can be displayed during the execution
but is usually written to a file and post-processed after the simulation has

finished executing.
e Queues. Queues are used for buffer management and packet scheduling.

e Mathematical Support. This includes support for a random number gener-
ator, calculation of integrals and samples objects that support the computation

of mean and variance statistics for a given sample.

ns also includes support (as a separate program) for visualising the results of a
network simulation. The program is called nam (network animator) and is written
in Tcl/Tk. It is fed results produced by the trace component and is able to visualise
both wired and wireless networks showing nodes, links and the flow of packets with

parameterised level of detail.
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4.2 The CMU Monarch Extensions

This section describes some of the modifications and additions made to the ns simu-
lation by the CMU Monarch Project.? This happened in order to support a number
of ad hoc routing protocols including DSR. The description here is deemed necessary
because ns did not support wireless networks and ad hoc routing protocols before
the contribution of the Monarch project and because it will provide the base for the
discussion on the design and implementation of the routing algorithm of this thesis.
For a more detailed description on the changes, see [MP)].

The CMU Monarch project contributed changes to the ns in the physical, link
and routing layers. With these changes it is possible to construct simulations for
wireless LANs or mobile ad hoc networks. Specifically the components that were

implemented are the following:

1. A Radio Propagation Model, Omni-Directional antennas and a shared me-
dia network interface that approximates Lucent’s WaveLAN direct-sequence

spread-spectrum (DSSS) radio interface at the physical layer.

2. At the link layer the specification of the IEEE 802.11 Distributed Coordination

Function (DCF) was implemented.

3. Four ad hoc routing protocols were implemented at the routing layer (DSR,

DSDV, TORA, AODV).

Another important component added by the CMU extensions is the MobileNode
super class. It inherits some of its functionality from the basic Node class, which rep-
resents network nodes in ns. The MobileNode class is responsible for keeping track
of its position and velocity as it roams in the network. A layout of the functionality

associated with a mobile node in ns is given in figure 4.2.

2http://www.monarch.cs.rice.edu
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Figure 4.2: Schematic of a mobile node (source: [MP])

Incoming Packets

Starting with the lower layers of the figure, each mobile node is attached to a chan-
nel, which simulates the medium that transfers data between nodes. All mobile
nodes participating in a wireless network are connected to this channel by means of
a network interface. Each packet that is sent to the network, is distributed by the
channel entity to all network interfaces. These interfaces then use a radio propa-

gation model which takes into account signal strength and distance between source
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and destination nodes to determine if the target node is able to receive the packet.
Once a packet is received by the network interface, is is passed to the MAC layer
which will test whether the packet was received collision and error free. The link
layer then takes control of the packet and hands it off to an entry point. There, an
address demultiplezer will decide if the packet’s destination is the current node, in
which case the packet is received by the application layer, otherwise the packet is
sent to the routing agent which will decide and tag the packet’s next hop towards

the destination.

Outgoing Packets

Packets that are generated from the application layer are passed down to the ad-
dress demultiplezer. The address demultiplexer will check the packet’s destination
address and if it is destined for the same node, it will pass the packet to the port
demultiplexer which has the task of assigning packets to different agents listening
at different ports. Most packets generated by a source node will be destined for
a different node, in which case the address demultiplexer hands them down to the
routing agent. The routing agent will tag the packet with the next hop towards
the destination and send the packet to the link layer module. Another contribution
from the CMU Monarch project was an ARP component that the link layer will use
when the address of the packet is an TP address. After the ARP request has been
completed the packet is pushed in an interface queue (IFq), which gives priority to
control packets over normal ones. The Media Access Control (MAC) object pulls
packets from the interface queue and sends them to the network interface object
which stamps each packet with properties like signal power and node position and

then passes them to the channel object.
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4.3 The DSR Implementation

As already mentioned in section 2.1, DSR is a simple ad hoc routing protocol that
employes quite a few optimisations, described in section 2.1.4, to reduce route discov-
ery delay and channel efficiency. Table 4.1 shows what optimisations are supported
by the current implementation of the DSR and which one of these had to be disabled
for the implementation of the Direction Based Routing algorithm. An explanation
of why some of these had to be disabled will be given on the next section.

The basic architecture of the MobileNode super class in ns had to be changed to
accommodate some of the optimisations. The MobileNode class incorporates both
the address demultiplexer and the routing agent into a single object (the DSRAgent).
This is done in order to support some extra functionality, whereby the node could
extract or insert extra routing information in data packets that would otherwise
not flow through the routing agent. The implementation of DSR supported by ns
is a fully functional implementation based on the published specification that tries
to follow closely the architecture and the structures that would be used in a real

implementation.

Cache Structure

The DSR simulated implementation uses the same cache structure and request table
as the real implementation that runs on FreeBSD. The route cache is populated by
ROUTE REPLY messages that the node receives and also by listening to traffic
generated by neighbouring nodes and then extracting from this traffic paths to des-
tinations. For this reason, DSR uses a primary and a secondary cache. Routes that
are learned as responses to ROUTE REQUEST messages are automatically inserted
into the primary cache, while routes learned while the node is in promiscuous mode
are inserted into the secondary cache. The implementation uses a set of rules to
upgrade routes from the secondary to primary cache and to replace entries when the

cache becomes full in FIFO order.
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Variables Description DB-DSR
dsragent_snoop_forwarded_errors snoops forwarded Enabled
errors
dsragent_snoop_source_routes Snoop on source Disabled
routes
dsragent_reply_only_to_first_rtreq reply only to first Disabled
Route Request
dsragent_propagate_last_error propagate error Enabled
messages on the next
Route Request
dsragent_send_grat_replies send gratuitous Enabled
replies to affect
route shortening
dsragent_salvage_with_cache when a route breaks Enabled
consult the cache for
another route
dsragent_use_tap use promiscuous Disabled
mode
dsragent_reply_from_cache_on_propagating | answer from the Disabled
cache before
propagating Route
Request
dsragent_ring_zero_search send a Disabled

non-propagating

Route Request first

Table 4.1: Optimisations used by the DSR implementation




The cache structure that DSR utilises is a path cache. That means that every
entry in the cache list will be occupied by a full path with the first element being the
caching node. Implementing a path cache is simple and straightforward with an easy
algorithm for navigating and searching each entry in the list. On the other hand,
it does not offer great flexibility in cross-connecting path information in different
entries. A cache structure like link cache, where paths to destinations appear as a
unified graph, offer a better chance of obtaining alternative paths to a destination

but with the price of increased overhead during search and more complex structures.

Request Table

The request table structure is used in DSR to avoid the problem of propagating
multiple ROUTE REQUEST messages. Every time that a new ROUTE REQUEST
message is received by a node, the address of the source of the message as well as the
sequence_number are added to a table-like structure. Every subsequent ROUTE
REQUEST is compared against the entries of this table and if its source address and
sequence_number matches an entry in the cache, it is dropped. That helps avoid

potential routing loops, since ROUTE REQUESTS will never be propagated twice.

4.4 Extending DSR

We will describe here the changes that were made to the core DSR implementation
in ns, in order to accommodate a new metric for route selection. The steps of the
algorithm were briefly outlined in section 3.4.2. The areas that were modified are

outlined below.
e The DSR Routing Agent.
e The DSR Packet Header.

e The Route Request Mode.
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e The Route Reply Mode.
e The Cache Module.

For the implementation, the latest available version of ns-2 was chosen, ns-2. 1b8a.

DSR Routing Agent

The routing agent in ns corresponds to what would normally be the component
that incorporates the logic and the functional aspects in a real implementation of
a protocol. An extra timer was added to the routing agent, so that periodically
the coordinates of the node’s position are stored in a circular buffer. The period
for taking the positional samples was chosen as a uniform distribution between 0.75
and 1.5 seconds.

A modification was made so that during ROUTE REQUEST and ROUTE RE-
PLY messages, each node would append its movement vector together with its ad-
dress to the packet’s header. This vector is essentially the distance between the last
and the most recent entry in the circular buffer. The vector representation® was
chosen for storing vectors in structures. It is a simple representation that requires
storing the difference in the x,y coordinates between starting and ending point. This
is not a positional representation but allows the extraction of the vector’s magnitude
and angle and is also convenient for calculating the resultant between vectors since
it only involves the addition of corresponding coordinates.

It is the responsibility of the destination node of the ROUTE REQUEST mes-
sage, to copy the addresses and the vectors of all the nodes to the ROUTE REPLY
message. It also appends its own address and vector representation and sends the
reply message back to the originator node. DSR has an optimisation, whereby a
node can reply to a route discovery by searching its cache for routes to this destina-

tion. This was disabled in our implementation, as indicated in table 4.1, so that the

z2—2z1 z2
y2

3Mathematically is represented with (1127?}1

) where (ﬁ) is the start point and (%) is the end

point.

26



vector information obtained by the originating nodes would always be up to date.
When a ROUTE REPLY arrives at the source node, the path to the destination
is stored in the route cache. This path is composed by a series of addresses along
with vector information. In dense networks, we should expect multiple ROUTE
REPLY messages to arrive to the originating node, each containing different paths
to the destination. Our metric applies when for a given destination more than one
possible paths to the destination exist. For every packet sent, the algorithm follows

these steps,
1. Initialise hops to destination to some maximum and metric to zero.
2. Calculate the number of hops for a given path.

3. Calculate equation 3.7 where k is the number of hops from source to

destination inclusive.

4. If the number of hops is less than the number stored, overwrite and tag this

path as good.

5. If the number of hops is equal to the number stored, compare calculated

metric with the one stored.
6. If the calculated metric is bigger then tag this path as good.
7. Repeat for each path to destination in route cache.

8. The path chosen will be the one with the smallest number of hops and

highest similarity metric.

It is obvious from the above analysis that the primary metric is the number of hops
towards a destination, while the directional metric is a secondary metric that takes
effect when paths with the same number of hops to destination are encountered.
Again, depending on the density of the network there are likely to be quite a lot of

paths containing the same number of hops towards a particular destination.
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DSR Packet Header

The DSR packet header was modified so that during the route discovery and route
reply procedure, the header would be able to carry not only the IP or MAC addresses
of the nodes that it is going through, but also the directional vector of the node.
Assuming single precision floating representation, the overhead of this is eight bytes
(four bytes per coordinate) per node that participates in the path. This is not a
big overhead, even for a real implementation since it only occurs during the route
discovery and the route reply phases of the protocol operation. Other than that no

other changes were made to the DSR header.

4.5 Summary

In this chapter we have looked at the implementation details of the ns simulation
environment and the way that DSR is implemented inside this framework. There is
also a description of the changes that were necessary to be made to DSR in order to
support the Direction Based Routing metric. The next chapter is going to deal with
a comparative performance evaluation between the modifications presented in this

thesis and the original DSR protocol as implemented by the CMU Monarch project.
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Chapter 5

Experiments and Evaluation

This chapter describes the simulation model and the performance results produced,
in order to evaluate the efficiency of the algorithm described in this thesis. Since
Direction Based Routing is based on the DSR protocol it is natural to compare the
modified DSR against the standard implementation.

When simulating mobile ad hoc networks, ns requires information about the
network topology the description of a mobility scenario and a communication sce-
nario. A mobility scenario describes the mobility pattern that nodes follow during
the simulation period. The communication scenario refers to the application layer
protocol used as well as the number of connections between nodes and the amount,
size and rate of packets sent during a connection between a source and a destination.

Although a detailed description of the simulation model is in section 5.2, the
rationale for choosing mobility scenarios is introduced here. The vast majority of
performance results published in the area of MANET routing protocols use simu-
lations with mobility scenarios based on the random-waypoint pattern. This is a
simple pattern in which nodes are assigned in a random fashion a destination as
soon as they reach their current one. In the case of ns this does not happen during
simulation time, but rather such a pattern needs to be “fed” into the simulation
engine before the execution. Each simulation can be run with several variations of

the basic random-waypoint scenario, changing for example the velocity of the nodes,
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the pause time before they start moving towards a target, whether or not the nodes
bounce off the edges of the specified area in the simulation, etc. The fundamental
principle, however, remains the random factor which makes it difficult to make any
kind of prediction about movement patterns by studying the past trace of a node.

More mobility scenarios are available that implement slightly more complex
movement patterns, but the choice is for the random-waypoint pattern mainly be-
cause it is widely used. A secondary consideration is the fact that testing a routing
algorithm that accounts for mobility with “ordered” patterns, might provide an un-
fair bias. This might have been one of the choices that led to the less than anticipated
results in the simulation.

Section 5.1 gives a description of the aims of the evaluation and explains why
particular metrics were selected. Section 5.2 discusses the simulation model and
section 5.3 performs a statistical analysis and presents and evaluates the results on

the metrics used. Finally, in section 5.4 a summary is given.

5.1 Measuring Aims

Section 3.1.1 listed one of the primary objectives for the algorithm as increasing
the longevity of routes, thus producing less overhead in the form of route discovery
traffic and therefore improving overall network throughput. The primary method to
measure route longevity is to measure the average period of time for which routes
are valid. Especially in DSR the lifetime of a route could be measured from the first
data packet sent after the path to a destination has been inserted into the cache,
until a ROUTE ERROR message removes this path from the cache. However,
this approach was problematic in its implementation due to the way ns produces
traces of operations on packets through the different network layers. It would take a
complicated filtering mechanism to understand when the first packet after a ROUTE
REPLY message has actually left the interface queue where it was buffered and got
transmitted through the MAC layer. The same difficulty was experienced when
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trying to identify the last packet transmitted before an error message erases a specific
path.

Instead, a more simplified, metric was used; the number of total ROUTE RE-
QUEST messages per simulated run. This is the number of request messages that
are actually broadcasted by the originator node. It does not include any discovery
messages dropped or any of them that are forwarded from intermediate nodes. This
metric is coarse-grained since it expresses a breakage on a route (which could consists
of multiple alternative paths) rather than a path. Future work should concentrate
on providing this type of analysis on a per path basis. Between two protocols op-
erating in a source route on-demand way the one with the least amount of request
messages would be the one that has chosen and maintained routes the longest.

Next metric evaluates the overall throughput of the protocol by means of pack-
ets received per data packet transmitted. Increased route lifetimes would result in
fewer packets lost, thereby improving protocol efficiency. The final metric is channel
usage which shows the number of control bytes transmitted per data byte deliv-
ered. It expresses the cost of the routing protocol in terms of bandwidth spent on

management.

5.2 Simulation Model

The simulation uses an area of 1500m x300m, while varying the number of nodes
between 25 and 100. Each mobile host randomly starts its journey from a ran-
dom location to a random destination with varying speed. Once a destination is
reached, another destination is picked at random fashion. The mobile hosts move
continuously with no pause time in between choosing waypoints. All simulations
run for 900 seconds (simulated) for each scenario. The gathered data represents the
average of five runs with identical traffic models, but different randomly generated
mobility scenarios. Both DSR and the Direction Based DSR are run with same

mobility and communication scenarios. Table 5.1 shows the fixed parameters that
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Parameter Value

Network Area 1500m x300m
Transmission Radius 250m
Packet Size 512 bytes
Application Output Rate 4 Packets/sec
Maximum Number of Packets 10000
Pause Time 0 sec
Number of Connections 20
Transmission Rate 2.5 Mbps
Application Protocol CBR

Table 5.1: Fixed simulation parameters

are used during the simulations. In each run, 20 pairs of sources and destinations
are selected randomly. Data packets are generated on a fixed rate of four packet
per second until either the simulation ends or the maximum number of packets is
exceeded. The application data packets are Constant Bit Rate (CBR) packets. Use
of Transmission Control Protocol (TCP) or other higher level protocols is avoided
in order not to skew the results with protocol timers used by such protocols.

A total of 60 mobility scenarios are generated with each one of them used twice
for DSR and DB-DSR. The experiments are run with the number of nodes in the
network set to 25, 50, 75 and 100 respectively. The speed with which these nodes
are moving in the area is altered between 10, 20, 30 m/sec. When nodes reach the
edges of the simulated area they bounce back with a 90 degrees angle. It has to be
noted here that these conditions are “stress testing” both the algorithms and ns.
Especially the scenario with the 100 nodes travelling at 30 m/sec (108 Km/h) is
not the average speed that you travel inside a city. Regarding ns, there has only
been one previous simulation experiment that tested two routing protocols with 100

nodes, though they increased the perimeter of the area to 2200mx600m and the

62



nodes were travelling at speeds uniformly distributed between 0-20 m/sec [DPROO].
Where possible the simulation parameters have remained unchanged, with the same

values as the one used during performance evaluation of the DSR from the Monarch

group.

5.3 Performance Metrics

Three parameters are measured,

Number of Route Requests. How many ROUTE REQUEST messages have orig-

inated from source nodes.

Packet Delivery Ratio. The number of data packets delivered to destinations

divided by the number of data packets generated by the CBR sources.

Channel Usage. The number of control bytes transmitted per data bytes de-
livered. Control bytes account for control messages (ROUTE REQUEST,
ROUTE REPLY, ROUTE ERROR) as well as the routing overhead in Packet
Data Units. Data bytes account for the number of bytes in a packet excluding

the header.

For the purposes of evaluating route lifetimes the first metric is the most impor-
tant one, since it shows the number of times that routes were broken and attempted
re-established by the source node. This metric provides an indication whether the
original aims of this algorithm are satisfied. The second and third metrics measure
the gain in routing efficiency. Packet delivery ratio is important because it describes
the throughput that the network can support and is therefore an indication of the
loss rate that will be seen by higher level protocols. Channel usage presents a metric
of how optimal the use of the physical channel is from the routing protocol. Long
source routes for example will create long packet headers that will be appended to

the data packets generated and produce a low ratio of routing efficiency.
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5.3.1 Number of Route Requests

Figures 5.1, 5.2 and 5.3 show the results of the first set of experiments comparing
the number of route requests to the number of nodes and the speed they roam. A
total set of 15 experiments were run, 5 times for each speed selected. The results
presented in each figure is an average of the numbers extracted from each of the five
runs. As mentioned above, we expected DB-DSR to have had fewer route request
messages therefore indicating that longer route lifetimes were established. The speed
was varied to observe how that would affect the establishment of routes.

The results generated show that DSR and DB-DSR create about the same num-
ber of request messages with some small variations. The biggest difference that
favours DSR is in the case of 100 nodes moving with 20 m/sec(figure 5.2) which
is in the area of 10.2%. In contrast DB-DSR shows fewer request messages in the
case of 25 nodes moving at 30 m/sec (figure 5.3). This difference is in the range
of 3.1%. What is surprising in both protocols, is the number of route request
messages that are generated when 100 mobile hosts roam the network. Although
both of the protocols seem to scale gracefully as density increases from 25 to 50
and then to 75 nodes, in the 100 nodes case there is an apparent deterioration of
connectivity. Until a certain threshold, the effect of network density is that more
ROUTE REPLY messages will arrive from the destination to the source with more
alternative paths added to the route cache. In this way, connections that would
otherwise terminate due to ROUTE ERROR messages, can be redirected through
different paths increasing route lifetimes and the efficiency of the protocol. In the
100 nodes case, perhaps the density of the network and the broadcast nature of
ROUTE REQUESTS led to network congestion (a phenomenon called “broadcast
storm effect” [SYNYCTYSCJPS99] in MANETS) that caused nodes to drop incom-
ing packets. Because of the similarity of the simulation data, a statistical analysis
was performed on the results that constitute figure 5.1. In practice, a difference

of 2 means test was conducted on the data of table 5.2. This is expressed in the
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DSR(25n) | DB-DSR | DSR(50n) | DB-DSR | DSR(75n) | DB-DSR | DSR(100n) | DB-DSR
Run 1 1094 1126 593 653 292 285 1208 1320
Run 2 725 742 990 1046 349 307 1797 1829
Run & 921 876 604 575 390 416 1103 1099
Run 4 699 698 661 699 548 583 1021 1060
Run 5 660 737 910 1024 522 629 2316 2190
t 0.315046342 0.831841177 0.619714342 0.071515342

Table 5.2: Total no. of route requests (10m/sec)

following equation,
T, — Ty

p= L2 (5.1)

2_ 2
9179,

n

where T, T constitutes the mean and o1, 09 the standard deviation. When ¢ is less
that 3, it is interpreted as the absence of a statistical significant difference between
the two process means. The last row of the table represents value ¢ of the above
equation, which being a very small value leads to the conclusion that the differences
between the two protocols is likely to be coming from random factors. One way to
overcome this result is to provide a larger sample of data, but tight time constrains as
well as the time and resource intensive! running of ns have prevented from gathering

more data.

5.3.2 Packet Delivery Ratio

The packet delivery ratio as a function of the number of nodes and the mobility
speed is shown in figures 5.4, 5.5 and 5.6. As with the number of route requests,
the pattern in the values is the same as for the packet delivery ratio. Besides, the
two results are intermingled, since more route requests, means more data packets

had been dropped at some intermediate node resulting in the overall packet delivery

1Gcenario generation and simulation running took four high-end machines two days to finish.
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Figure 5.3: No. of Nodes (30m/sec)

ratio dropping. As speed increases, the routing effectiveness of DSR and DB-DSR
degrades. When the node population increases until the 75 nodes threshold, the
ratio remains approximately the same, gaining a bit when node mobility is 10 and
30 m/sec.

As nodes move faster, link connectivity changes more often, resulting in more
control messages sent between nodes. When the network population is 100 nodes,
this situation creates an enormous amount of packets, contributing to collisions,
congestion, contention and packet drops. Again, both protocols seem to perform
well and have a high delivery rate up to a certain density beyond which scalability

is poor.

5.3.3 Channel Usage

This section compares the bandwidth requirements incurred by the two routing
protocols. We observe the total routing cost experienced per delivered data packet.

This includes all control messages (route request, route reply and route error) as well
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as the routing header of each data packet. Only data packets that have actually
been received by the destination (not lost packets) are measured here.

Figures 5.7, 5.8 and 5.9 show the results. Again the two protocols seem to per-
form very similarly, with DB-DSR performing slightly worse in the 100 nodes case
moving at 20 m/sec (figure 5.8). As expected from the previous experiments, scal-
ability is poor as node density increases. It is interesting to note that the overhead
caused by control messages increases by a small fraction up until a density of 75
nodes. After that when the population increases to 100 nodes, efficiency deteriorates
rapidly coming as close as to 2.5 data bytes received for every control byte transmit-
ted. This is an especially important scalability issue that has been identified here
regarding DSR, which shows that in densely populated, low-bandwidth MANETSs a
huge amount of bandwidth will be consumed from control messages trying to give

nodes an up to date view of the network.

5.4 Summary

This chapter has presented the results extracted from ns for evaluating Direction
Based DSR against the standard DSR implementation. Performance testing was
conducted measuring the longevity of routes, routing protocol efficiency and chan-
nel efficiency. These values have been extracted after tests ran for 900 seconds of
simulated time with varying the number of nodes and speed they moved. A differ-
ence of 2 means test was performed on a fraction of these results to discover any
statistical significance among them and found them not to be statistical significant.
This means that more sample data is needed since the differences shown might be
produced by factors not accounted for.

Results have shown that both DSR and DB-DSR perform on about the same
levels, though surprisingly DB-DSR performs worse in some marginal cases. DSR as
a protocol faces scalability problems in dense networks, with rapid deterioration of

throughput as route discovery broadcasts flood the network creating packet collisions
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and contention. The density threshold for protocol efficiency seems to be around
the 75 nodes roaming in an area of 1500m x300m.

Node velocity affected network performance by creating a rapidly changing net-
work topology. Although the set of speeds chosen might have been high (30 m/sec)
it shows that DSR has problems adapting to fast changing topologies. Still the re-
sult indicate that network density has a far worse effect in performance than high

node mobility.
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Chapter 6

Conclusion

This thesis has described the analysis, design and implementation of a new routing
algorithm for mobile ad hoc networks that is based on the similarity of direction
of the participating nodes. The algorithm was implemented in the ns network
simulator as an extension to the Dynamic Source Routing protocol. A comparative
performance evaluation was also conducted, between the standard Dynamic Source
Routing and the modified version described here.

An introduction to mobile ad hoc networks is presented in chapter 1 which
leads into design considerations for routing algorithms in MANETS as described in
chapter 2. Most of the ideas behind the subject of this thesis are discussed and

analysed in chapter 3, which introduces the concept of Direction Based Routing.

6.1 Objectives Fulfilled

In the introduction to this thesis, section 1.3, mentions four objectives. These aims
scope and explain the project. However, they are too abstract as they give no in-
dication on the rationale behind this idea and the expected areas of improvement.
Section 3.1.1 mentions longevity of routes and reduced packet overhead as the ob-
jectives for the evaluation of the Direction Based Routing algorithm.

All of the aims were fulfilled having a simulated implementation and a perfor-
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mance evaluation that is mentioned in chapter 5. There were 60 scenarios that were
simulated for each one of the two routing protocol. The scenarios explored routing
behaviour by changing the density of the nodes and the speed by which nodes move
in an area. The random waypoint model was used as a mobility scenario, while
nodes established connections and sent data using the Constant Bit Rate (CBR)
protocol.

The results of the simulation were used as input to three performance metrics,
namely, route longevity, routing efficiency and channel efficiency. The extracted
values are shown and explained in section 5.3. In short, the two protocols are found
to perform very similarly in all of the cases. More significant was the result about the
scalability of DSR in dense networks. DSR and of course Direction Based Routing
which is based on DSR, perform well up until a density of 75 nodes in an area of
1500m x300m. When node density rises above the 75 nodes threshold, there is a
severe degradation of performance effecting routing and channel efficiency leading

to poor network throughput.

6.2 Future Work

This section describes future work that can be done to provide more performance
results and enhance the algorithm devised in this thesis. Work can be directed to

the following areas,

e Test and evaluate the algorithm with different mobility models than the ran-
dom waypoint. Ideally, real life movement patterns should be used so that the

directional aspect of the algorithm could be utilised to the maximum extend.

e More sample data is needed for a better evaluation. Tests for each case should

probably be run between 20 and 30 times.

e When node density increases, the simulated area should increase correspond-

ingly giving a constant density value. This will exclude the performance de-
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terioration in DSR due to population density when measuring other protocol

characteristics.

A new cache eviction scheme should be realised for DSR. Entries that contain
paths with higher directional metrics should be evicted as late as possible.

Right now the eviction scheme works in a FIFO order.

Route longevity should be measured per path to destination (rather than per
route, which can encapsulate many paths) so that the affect of different values

of the directional metric can be measured against the lifetime of a path.
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