

CORBA Middleware for a Palm Operating

System

Mary Connolly

B.E.

A dissertation submitted to the University of Dublin,

in partial fulfill ment of the requirements for the degree of

Master of Science in Computer Science

September 2001

 Declaration

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not previously been

submitted as an exercise for a degree at this or any other university.

Signed: ___________________

 Mary Connolly

 September 2001

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation

upon request.

Signed: ___________________

 Mary Connolly

 September 2001

Acknowledgements

Many thanks to my supervisor, Mr. Alexis Donnelly, for his guidance

and advice throughout the course of this project.

Thanks to Raymond for his willi ngness to help me with any questions

and problems that I had.

Thanks to the other members of the MSc class for their friendship and

for making the year so enjoyable.

Finally, a special thanks to my family and friends whose constant

support throughout the year was much appreciated.

 Abstract

Typically, Computer Networks are heterogeneous and therefore require

special middleware applications in order to enable communication

across their diverse platforms. Middleware applications make the task

of writing software applications for heterogeneous systems easier, by

applying platform-independent models and abstractions, and by hiding

as much low-level complexity as possible without unduly sacrificing

performance.

The Common Object Request Broker Architecture (CORBA) standard

provides a set of rules for writing such platform independent

middleware. CORBA applications require lots of functionality in order

to unite diverse platforms within a heterogeneous system, and are

therefore bulky and computation intensive. Generally, they are used on

machines with considerable memory and processing resources, that can

cope with them.

The challenge posed by this project was to write a condensed and

extensible piece of CORBA middleware, that could operate effectively

on a resource restricted handheld device, thus providing a portable data

access device, that can conveniently fit into a shirt pocket.

Table of Figures

Fig 2.1 CORBA Architecture diagram ..15

Fig 2.2 Structure of a value of type Any ...18

Fig 2.3 Structure of a TypeCode pseudo-object19

Fig 2.4 Minimum CORBA architecture...27

Fig 2.5 Components of the TAO ORB ..29

Fig 2.6 GIOP Message types...32

Fig 3.1 Client ORB Architecture...38

Fig 3.2 Client / Server ORB Architecture..38

Fig 3.3 ORB Initialisation classes ...39

Fig 3.4 GIOP Messaging classes...42

Fig 3.5 Stub Implementation classes...44

Fig 3.6 Downcall classes...45

Fig 4.1 Request Invocation..58

Fig 4.2 Object Reference contents...61

Fig 4.3 Basic structure of a GIOP Message.......................................64

Fig 4.4 GIOP 1.2 message header ...65

Fig 4.5 GIOP Request message ...67

Fig 4.6 GIOP Reply message...70

Fig 6.1 Wrapper Facade..79

Table of Contents

1. INTRODUCTION ..1

1.1 FUTURE OF HANDHELD DEVICES IN DISTRIBUTED ENVIRONMENTS...............1
1.2 PROJECT GOAL ..2
1.3 ROADMAP ...3

2. CORBA AND HANDHELD DEVICES ..5

2.1 LIMITATIONS OF HANDHELD DEVICES..7
2.2 CORBA MIDDLEWARE BACKGROUND...9

2.1.1 OMG ...10
2.2.2 CORBA Architecture ...10
2.2.3 Corba Features...12

2.2.3.1 IDL ..12
2.2.3.2 Language Mappings...13
2.2.3.3 ORB Interface...13
2.2.3.4 Operation Invocation and Dispatch Facili ties14
2.2.3.5 Object Adapters...14
2.2.3.6 Inter-ORB Protocol..15

2.2.4 Interface Repository ..16
2.2.5 Implementation Repository ...17
2.2.6 The Any Type and TypeCodes ...17
2.2.7 ORB Transparencies..19
2.2.8 Common Data Representation Format ...21
2.2.9 Interoperable Object Reference...22
2.2.10 Server Side of an ORB ...22

2.3 CORBA VS. MINIMUM CORBA ...23
2.3.1 MinimumCORBA Omissions...25

2.4 EXAMPLE IMPLEMENTATIONS OF CORBA MIDDLEWARE27
2.4.1 TAO...27
2.4.2 PalmORB ...29

2.5 IIOP AND GIOP..31

3. ORB DESIGN...34

3.1 DESIGN GOALS..34
3.2 STRIPPED DOWN CORBA STANDARD TO FIT PALM III DEVICE....................35
3.3 ORB CLASS DIAGRAMS...39

3.3.1 ORB Initialisation ...39
3.3.2 GIOPMessaging..42
3.3.3 Stub Implementation ..44
3.3.4 ORB Downcalling ...45

3.4 EXTENSIBILITY OF ORB DESIGN ..46

4. CODE IMPLEMENTATION ...48

4.1 DEVELOPMENT ENVIRONMENT ..48
4.2 NETWORK CONNECTIVITY ...49
4.3 EVENT DRIVEN PROGRAMMING ...50

4.4 MEMORY MANAGEMENT FOR THE PALM DEVICE..50
4.4.1 Memory Allocation of Strings ...51
4.4.2 Memory Allocation of Classes...53
4.4.3 Reference Counting ...53
4.4.4 Directional Attributes ..54

4.5 USE OF TEMPLATES ...55
4.6 BIG ENDIAN VS. LITTLE ENDIAN..56
4.7 REQUEST INVOCATION...57

4.7.1 Stubs and Skeletons ...58
4.7.2 Creating an Object Reference from an IOR ..59
4.7.3 Implementation of IIOP and GIOP ..63

4.7.3.1 GIOP Message Header ...64
4.7.3.2 Request Message Format ..66
4.7.3.3 Reply Message Format ...69

5. EVALUATION...72

5.1 CRITIQUE OF DESIGN ...72
5.2 CRITIQUE OF IMPLEMENTATION ...73
5.3 OVERALL CORBA ORB INTEROPERABILITY ...75

6. CONCLUSIONS...76

6.1 SUMMARY OF WORK ...76
6.2 KNOWLEDGE GAINED ..77
6.3 FUTURE WORK ..77

7. BIBLIOGRAPHY ..81

 1

CHAPTER 1

1. INTRODUCTION

The original idea behind handheld devices was to produce a small

(pocket sized), portable, easy to use device that could be used as an

extension to a less portable desktop computer. Handhelds provide a

window to desktop data. Once desktop data has been downloaded onto

a handheld, it can be viewed away from the desk, conveniently and

speedily. Applications that make most use of this tend to be of the

personal organiser type. Examples include address books, to do lists

and memo pads. Email applications can also exploit handhelds in the

same fashion, so that users do not necessarily have to be sitting at a

desktop in order to read their electronic mail.

Over the years, handhelds have evolved at quite a high rate. For

example, the earlier Palm devices that date back to 1996 were very

primitive, affording only 128KB of RAM, and little or no support for

communication with other devices. More recent models like the

Handspring Visor have up to 8MB of RAM and can communicate with

other devices using Infrared and TCP/IP.

Although handheld devices are still quite limited, it is obvious that they

are certainly becoming powerful enough for broader and more

sophisticated applications than those of a mere electronic organiser.

1.1 Future of Handheld Devices in Distributed Environments

One interesting advance for a handheld device is to broaden its

capabili ties to enable it to operate in a distributed computing

environment, and to provide mobile data access to an entire system,

rather than just a single desktop computer. After all, as we enter an age

 2

that endeavours to achieve anywhere, anytime, anyhow computing, the

concept of a portable distributed systems becomes crucial.

Such extended capabili ties transform a handheld device into something

very powerful indeed. For example, remote invocation could be used to

control operations located on other devices within a distributed

computing system. Scope for exciting development is certainly

provided for. Ponder the notion of a pocket size computer that can

cross multiple programming languages, and multiple operating

systems!

1.2 Project Goal

It is apparent that while the handheld device makes a reasonable effort

in its role as remote desktop window, modern PDAs offer sizeable

margins for capitalising on their enhanced capacity, so that they can be

used for something much more powerful. The aim of this project is to

make a contribution to the task of closing the gap between using a

handheld as an extension to a desktop computer, and using it as a

portable access point to a distributed computing environment, or

indeed fully incorporating it into a distributed system by including

server side functionality so that the device itself can actually implement

some of the system functionality.

In particular, the goal of the project is to implement a version of the

Object Management Groups (OMG) Common Object Request Broker

Architecture (CORBA) standard middleware to achieve a cross-

platform, cross-programming language ORB implementation that

enables a Palm III client application to communicate not only with a

server application built on an identical computing architecture, but also

with applications built on several different computing architectures. It

should also enable the intercommunication of applications

implemented in diverse programming languages.

 3

1.3 Roadmap

The remaining chapters in this thesis catalogue the project phases that

were performed in order to realise the aforementioned goals.

Chapter 2 CORBA and Handheld Devices

This Chapter introduces handheld devices, their characteristics, and of

course their limitations. These are things that must be considered when

designing applications for PDAs. It also introduces the architecture and

key features of the OMG’s CORBA standard, followed by a discussion

on how the full CORBA standard can be stripped down to produce a

minimal but compatible, standard set of implementation rules. The

latter refers to the MinimumCORBA standard, which is also a

recognised OMG standard that has been specially constructed for

CORBA implementations on devices with limited resources.

Chapter 3 Design

The proposed extensible design of the CORBA ORB middleware,

which adheres to the MinimumCORBA standard where possible, is

described here. All omissions from the latter standard are documented

and explained within this chapter.

Chapter 4 Implementation

This presents the important ORB implementation features and issues. It

includes a section on the techniques employed to achieve consistent

memory management of the Palm III device, which is key to the

successful implementation of applications on such a limited piece of

electronics.

Chapter 5 Evaluation

The evaluation chapter critically analyses the design and the

implementation of the ORB application

 4

Chapter 6 Conclusions

A summary of the work done and knowledge gained is provided in the

conclusion. This chapter also puts forward several ideas, which could

be used to carry out further work on this CORBA ORB.

 5

CHAPTER 2

2. CORBA AND HANDHELD DEVICES

As already discussed, handheld devices such as those running Palm OS

provide a useful extension to desktop computers. Even though it is

indeed possible to perform more complex tasks with handhelds, their

main purpose is for viewing data and entering small amounts of data,

rapidly and easily. Typically a desktop user will remain at their desk

for a prolonged period of time, working on a dedicated task that is

enabled by their desktop. Handheld devices on the other hand, tend to

be used as an aside, which can be conveniently and speedily referred

to, while almost all attention is focused on another core task. For this

reason, handhelds require the following key features:

• Small Size

They must be small enough to be conveniently carried anywhere, for

example, in a shirt pocket.

• Ergonomic Interface

A handheld device should have a fast and easy to use user interface. A

handheld user should be able to comfortably and rapidly navigate the

device during meetings, at business lunches and in situations where

there is no convenient place to mount the device.

• Desktop Integration

It should be easy to synchronise a handheld device with a desktop

computer. This serves several purposes. Firstly, it backs up important

data. It also enables a user to input large amounts of data comfortably

and rapidly on a desktop machines using a mouse and keyboard. This

data can subsequently be transferred electronically to the handheld

 6

device. This process avoids lengthy manual data entry on the latter’s

limited input interface.

[Foster ' 00]

Clearly, a handheld device can be utili sed valuably in conjunction with

a desktop computer, to enable the easy use of address book, memo-

pad, and other helpful organisational applications, away from the

actual desk itself. It is now time to progress towards a discussion on

the incorporation of handhelds into a distributed environment that

encompasses multiple platforms, for example Unix or Windows,

running applications implemented in diverse programming languages

like Java, COBOL or C/C++. It is also of immense importance to

highlight the restrictions of handheld devices. These restrictions must

be considered when endeavouring to implement on a handheld, the

manner of bulky and intricate, low level middleware code, that enables

such interoperation.

PalmORB [Roman ' 99], is a CORBA compliant middleware

application that has been developed at the University of Illi nois, with a

design that allows it to fit onto limited resource devices. PalmORB

provides a seamless mobile data access mechanism using handheld

devices and wireless links. It essentially extends a handheld device

from something that simply acts as a smart organiser with stripped

down versions of widely used desktop programs, to a device that is

seamlessly integrated into a sophisticated distributed computing

environment. This provides users with a unified image of a distributed

system from a device that can conveniently fit inside a shirt pocket.

Furthermore, the design of PalmORB, for use within the user centric

2K distributed computing environment [Roman ' 99], which is also

under development at the University of Illi nois, makes for what

appears like an even more powerful handheld device. This unique

amalgamation enables computation intensive tasks to be processed

away from the handheld, on a separate machine within the 2K system.

 7

Such technology has enabled sophisticated mechanisms such as video

streaming to run on handheld devices. PalmORB is discussed in further

detail in section 2.4.2.

The ORB implemented for this thesis is different in that it was

designed to run entirely on any handheld device, to which it has been

commissioned, with no outsourcing of complex and demanding tasks.

Such an ORB facili tates the possibili ty of a flexible handheld device

that can interoperate within diverse distributed systems. The design is

discussed in depth in chapter 3.

2.1 Limitations of Handheld Devices

Since the capabili ties of desktop computers and handheld devices

differ significantly, the approach to designing a handheld application is

much different to that for a desktop application. The following

limitations should be kept in mind when designing for a handheld.

• Performance Requirements

Useful information should be available instantly, since unlike a user at

a desktop, who is likely to remain at that machine for some time

performing dedicated tasks, a handheld user is typically performing

another more important task, and merely requires the handheld for a

few small but crucial functions, like retrieving a telephone number, or

jotting down key points at a meeting. Since there is a limit to the

processing power of a handheld device, it is very important to ensure

that their applications are small and efficient. Typically, handheld

applications are implemented in C or C++ for its efficiency.

• Battery and Processor Power

Since handheld devices rely on batteries for power, they are limited to

smaller processors than a plugged-in desktop computer. Such a

processor is not ideal for running computation intensive applications.

 8

One possible way to overcome this short coming would be to arrange

for any intensive number crunching operations to be executed on a

more powerful machine that is remote from the handheld. This

approach is taken by PalmORB.

• Limited Memory

Limited memory space on a handheld means that things like deeply

recursive routines. Large numbers of global variables, and huge

dynamically allocated data structures are not handheld device friendly.

• RAM as Permanent Data Storage

Unlike desktops, where vast amounts of data can be stored on hard

drives, with a handheld device all data must be stored in RAM, which

means that storage space is much more limited. The reason for this is

that data entry and access must be very fast. Space limitations mean

that handheld applications must be as small as possible, and that

infrequently used features should be left out. Also, any data to be

stored persistently on a handheld should be packed tightly before being

written to memory. The Palm III device used for this project has only

2MB of RAM.

Other elements that should be kept in mind when writing handheld

applications include the limited input methods and the small screen

size. The former element makes it tedious to input large amounts of

data. For example, the Graffiti handwriting recognition software

system that comes with PalmOS, is faster than many forms of

handwriting recognition, but at a top speed of about thirty words per

minute, it is still too slow for entering large amounts of data. Small

screen size makes it diff icult to display large amounts of information,

and complex user interfaces are out of the question. It becomes

essential to strike a balance between showing an adequate amount of

information, and keeping the interface looking uncluttered and easy to

use.

 9

Writing CORBA middleware is a difficult process. Obviously, writing

such middleware for a restricted handheld device adds further

complications. Such software tends to be bulky, and to involve the use

of complicated structures and functions, and all other things that spell

trouble when programming a limited resource, pocket sized device.

The following subsections take a look at the CORBA standard, and

then at the MinimumCORBA standard. The latter details ways of

cutting down the former, in order to come up with a compliant set of

rules for writing a minimal CORBA ORB, that fits onto a small

handheld device, while remaining compatible with all other fully

implemented, compliant CORBA ORBs.

2.2 CORBA Middleware Background

Typically, Computer Networks are heterogeneous. A network may, for

example, have UNIX workstations for the support of software

development, or a mainframe to handle database transactions, and of

course, personal computers that run Windows and provide general

office tools.

One of the main reasons for this heterogeneity is the change in

technology over time. The best technologies from different time

periods tend to end up co-existing on networks. Another reason for

network heterogeneity is that different combinations of computers,

operating systems, and networking platforms will work best for

different subsets of the computing activities performed within diverse

networks.

Of course, developing software for a heterogeneous distributed system

is very complicated. The difficulties of application development for

heterogeneous distributed systems can be eased to a large extent, by

applying platform-independent models and abstractions to software

 10

development, and by hiding as much low-level complexity as possible

without unduly sacrificing performance.

The Common Object Request Broker Architecture (CORBA) standard

provides a set of rules for writing such platform independent

middleware, in order to hide some of the difficulties associated with

writing applications for distributed and heterogeneous systems.

[Baker ' 97]

2.1.1 OMG

The Object Management Group (OMG) was formed in the late 1990s

to address the problems of developing portable distributed applications

for heterogeneous systems. The CORBA specification, written and

maintained by the OMG, supplies a balanced set of flexible

abstractions and concrete services needed to realise practical solutions

for the problems associated with distributed heterogeneous computing.

The CORBA standard has been reviewed on several occasions. The

most up to date version is CORBA 2.3. [Henning ' 99]

2.2.2 CORBA Architecture

Object Request Broker middleware provides a means for writing

distributed systems that can use different programming languages and

operating systems, and integrate applications to provide new systems.

‘On-the-wire’ format is a standard language and platform independent

message format, that is used when transmitting messages for remote

object invocation in a distributed system.

The OMG has also defined CORBAservices and CORBAfacilities, which

essentially hang from the ORB internal infrastructure, to extend the

built-in support for applications.

 11

The purpose of the CORBAservices, is to provide a set of utili ties that

are useful for objects or low level distributed applications. A subset of

these services have been grouped into categories and described below.

• Distributed systems-related services:

Naming Service: to allow a client to find remote objects that have been

registered with the naming service. This extra level of indirection

means that target objects can easily be moved from one host to another

without breaking any of the references to that object that are held by

clients. The only place where the host destination details will need

updating, is at the naming service itself.

Event Service: to allow a client or server to send a message or event to

any number of receivers.

Security Service: to ensure that only suitable privileged users can call

specified operations on particular objects

• Database-related services:

Concurrency Service: to provide a locking mechanism to control the

access to an object by concurrent callers.

Transaction Service: to control the commitment and abortion of

transactions that span multiple databases, of the same or of different

types.

Persistent Object Service: to define an abstract framework for how a

database and an object should communicate to store and restore the

object to and from the database.

• General services:

 12

Licensing Service: to allow an object’s data to be converted to and

from a stream of bytes, so that it can be copied to another location

Time Service: to find the time of day or to obtain an event call after a

specified time.

CORBAfacili ties, on the other hand provide a higher level of support

for applications. The latter refers to a new area of CORBA which has

been designed to address information management, system

management, task management and user interfaces. [Baker ' 97]

2.2.3 Corba Features

2.2.3.1 IDL

In order to be able to invoke operations on a distributed object, a client

must first of all know the interface related to the target object. Such an

interface is composed of the operations it supports and the types of

data that can be passed to and from those operations.

The CORBA standard defines a set of rules for writing these object

interfaces. These rules constitute what is known as the Interface

Definition Language (IDL). IDL is not a programming language like

C++ or Java, in the sense that objects and applications cannot be

implemented in IDL. The latter merely allows object interfaces to be

defined in a fashion that is independent of any particular programming

language. This facili tates the interoperation of applications

implemented in different programming languages, which is vital to the

CORBA goal of supporting heterogeneous systems and integrating

separately developed applications.

 13

2.2.3.2 Language Mappings

CORBA Language mappings specify exactly how the IDL object

interface definitions are translated into each of the different

programming languages supported by the CORBA standard. For each

IDL construct, a language mapping defines which features of the

programming language are used to make the construct available to

applications. For example, for languages that support the ‘class’

construct, IDL interfaces are mapped to classes, and operations are

mapped to the member functions of those classes. Implementation

languages currently supported by the CORBA standard are C, C++,

Smalltalk, COBOL, Ada and Java. This cross language support enables

the implementation of different portions of a distributed system in

different languages. For example, a server application requiring speed

and efficiency in order to cope with large amounts of data, could be

implemented in a fast language like C or C++, while its clients could

be written using languages, such as Java or Visual Basic, which have

strong support for the development of aesthetically pleasing graphical

user interfaces.

Most state of the art ORB implementations that use the CORBA

standard have an IDL compiler associated with them, which generates

stub and skeleton classes from the IDL definitions. These stubs and

skeletons, which are discussed in further detail in section 4.7.1, provide

the link between the client and server applications, and the ORB itself.

2.2.3.3 ORB Interface

The ORB interface provides a point at which a client can interface with

the underlying ORB for purposes other than sending messages. For

example, a client can pass an interoperable object reference, section

2.2.9, for a remote object to the ORB via the ORB interface. Message

invocations, on the other hand, go through client stubs.

 14

2.2.3.4 Operation Invocation and Dispatch Facilities

CORBA applications invoke operations on remote objects by sending

requests to the target CORBA objects. At the server side, the request is

processed and dispatched to the correct object adapter and servant

combination. A reply is then sent back to the requesting client. A

servant is an entity that implements one or more CORBA objects.

Object adapters are discussed in further detail in section 2.2.3.5.

The two general approaches to request invocation and dispatch are

static and dynamic. With static invocation OMG IDL is translated into

language-specific stubs (client-side request invocation functions) and

skeletons (server-side request dispatch functions). Dynamic invocation

is more complicated. It requires the construction and dispatch of

CORBA requests at run time rather than at compile time. The creation

and interpretation of requests requires the use of a mechanism such as

an Interface Repository, discussed in section 2.2.4, to provide run time

access to IDL definitions, and their interfaces and types.

The latter approach can be useful for applications such as gateways or

bridges, that receive and forward requests without having compile time

knowledge of the types and interfaces involved. However, the static

invocation approach provides a better programming model for

application development in statically defined languages such as C++.

2.2.3.5 Object Adapters

An object adapter is an object that adapts the interface of one object to

a different interface which is expected by a caller. It allows a caller to

invoke requests on an object without knowing that object’s true

interface. The three principal functions of CORBA object adapters are

to create object references that allow clients to address objects, to

ensure that every object is incarnated by a servant, and to direct

requests to the servant that implements the object to be invoked. Object

 15

Adapters facili tate the development of scalable, high performance

server applications.

Until version 2.1, CORBA contained specifications only for the Basic

Object Adapter (BOA). The BOA was the original CORBA object

adapter. CORBA 2.2 introduced the Portable Object Adapter (POA) as

a means of improving the portabili ty and capabili ties of object adapters

[OMG ' 01] chapter 11. The POA replaced the BOA.

 Fig 2.1 CORBA Architecture diagram

2.2.3.6 Inter-ORB Protocol

In order to be CORBA compliant, an ORB implementation must be

able to communicate with all other CORBA compliant ORBs, using a

protocol known as the Internet Inter-ORB Protocol (IIOP). IIOP is

defined to run on the widely available Transmission Control

Protocol/Internet Protocol (TCP/IP). IIOP uses a messaging format

called the General Inter-ORB protocol (GIOP). That is, IIOP is the

GIOP message format sent over TCP/IP. GIOP can also be layered on

other transport protocols, including specialised protocols for

proprietary networks. This means that any CORBA client can

communicate with any CORBA object to which it has the necessary

 16

access privileges. However, to be CORBA compliant, an ORB must be

able to use IIOP when communicating with objects on other ORBs.

IIOP request packets contain the identity of the target object, the name

of the operation to be invoked, and the parameters. This information is

used automatically at the server side to find the target object, and call

the correct function on it. [Henning ' 99]

2.2.4 Interface Repository

An Interface Repository (IFR), can be implemented as a component of

a CORBA ORB to provide persistent storage for all IDL types such as

modules and interfaces. The purpose of such a storage facili ty is to

provide clients with runtime access to an object’s type information

(and other information about that type), so that a client can invoke an

operation on a remote object, without always needing to have compile

time knowledge of the objects characteristics.

A client application, wishing to invoke on a remote object, without

having compile time knowledge of the objects type information, can

use a Dynamic Invocation Interface (DII) to do so. The DII accesses

information stored within the Interface Repository in order to construct

a request message at runtime.

The IFR provides a set of functions that enable a DII to browse and list

its contents, and to determine an object’s type information.

A Dynamic Skeleton Interface (DSI) is really the server-side

equivalent of a DII , in that it allows a server to receive an operation

invocation on an object, even one whose IDL interface is unknown at

compile time. Instead of the server being linked with the skeleton code

for an interface, it can use the DSI which will be informed of an

 17

incoming operation invocation. The DSI then determines the identity

of the object being invoked, the name of the operation, and the types

and values of each of the parameters being passed. At that stage, it is

possible for the operation being requested by the client to be executed,

and the result returned. [Baker ' 97]

2.2.5 Implementation Repository

An Implementation Repository allows an ORB to locate and activate

implementations of objects. The Implementation Repository maintains

a mapping from a registered server name to the file name of the

executable code which implements that server. The advantage of

registering servers with an Implementation Repository, is that if an

operation invocation is made on a object whose server is not running,

or if a client attempts to bind to such an object, an ORB can

automatically launch the server by consulting the Implementation

Repository to obtain the servers executable code file name. [Baker ' 97]

2.2.6 The Any Type and TypeCodes

The IDL Any type provides a universal type the can hold a value of

arbitrary IDL type. The Any type allows for values whose types are not

fixed at compile time, to be sent and received at runtime. Values of

type Any maintain type safety, for example, the receiver of an Any type

must treat its contents exactly as the sender intended. If the sender

placed a float value in the Any type, the receiver must extract that value

as a float type, other wise a runtime error will be generated.

A value of type Any consists of two members, see figure 2.2. The first

member is the actual value contained inside the Any. The second

member is the TypeCode of the value (described below). [Baker ' 97]

 18

 Value of type Any

CORBA::TypeCode

Describing the Value

Actual Value

 Fig 2.2 Structure of a value of type Any

TypeCodes are used to carry runtime descriptions of IDL types. They

are important for the dynamic aspects of CORBA such as type Any, the

DII and the DSI.

TypeCodes provide several useful functions. They help to preserve the

type safety of CORBA, by ensuring that type mismatches are detected

at run time. In addition, TypeCodes provide introspection. Given an

Any containing a value whose type is unknown, this unknown type can

be determined by extracting the TypeCode from the Any and

interrogating it. Introspection is vital for programs requiring dynamic

typing. Also, TypeCodes provide an ORB runtime at the receiving end

with the information required to correctly unmarshal the values off the

wire.

A TypeCode, figure 2.3, essentially contains two values, the TCKind

member and a description of the TypeCode. The TCKind is an

enumeration that records the kind of type that is described by the

TypeCode, for example a null, float, object reference or struct kind,

among others. The description of the TypeCode depends on the values of

TCKind. For example, if the TCKind is a struct, the description contains

the name of the struct and the name and type of each member of the

structure. [Baker ' 97]

 19

Value of type TypeCode

TCKind

Description

 Fig 2.3 Structure of a TypeCode pseudo-object

An example of an area where Typecodes and the Any type are very

useful, is in the CORBA Event Service, where it must be possible to

transport values whose IDL types are unknown to the service. Using

Any types, the events can simply be values of type Any, and the Event

Service can then act as a transport for these values without requiring

compile time knowledge of the actual types contained in them. At the

receiving end, Typecode introspection can be used in order to determine

the type contained in the Any value.

2.2.7 ORB Transparencies

Request invocation for an ORB requires the following characteristics:

• Location transparency

The client should not need to know whether the target object is a local

object in the same or a different address space, or if is implemented in

a process on a different machine. Server processes do not necessarily

remain on the same machine forever, it should be possible for them to

be moved around from machine to machine without clients becoming

aware of it. If a server process is moved, new IORs containing the new

location details should be generated for each of the objects it supports.

Once the client has obtained the updated IORs, the ORB should simply

obtain the new server destination details, and use this information to

send the client request to the correct location.

• Server transparency

 20

The client should not need to know which objects are implemented on

which servers

• Language independence

The client should not be concerned with what language is used by the

server. As an example, a C client should be able to call a Java

implementation without being aware of the fact that it is invoking on a

Java object.

• Implementation independence

The client should not need to be aware of how the object

implementation works on the server.

• Architecture independence

The client should be unaware of the CPU architecture that is used by

the server and should be shielded from such details as byte ordering

and structure padding. This facili tates Palm / desktop communication,

since Palm uses big-endian while intel based Pentium machines use

little-endian.

• Operating system independence

The client should not be required to know what operating system is

used by the server. The use of the standard on-the-wire message format

means that a received message can be understood by any operating

system.

• Protocol independence

The client should not need to know what communication protocol is

used to send messages. Generally, if several protocols are available to

communicate with the server, an ORB should transparently select a

protocol at run time. In order to be CORBA compliant, this ORB

should be able to communicate IIOP messages over the TCP/IP

protocol. [Henning ' 99]

 21

2.2.8 Common Data Representation Format

The Common Data Representation, defined by GIOP, is required for

the binary layout of IDL types for transmission across a network.

CDR-encoded data should be tagged to indicate the byte ordering of

the data, which can be either big-endian or little-endian. This is

necessary so that both big-endian and little-endian machines can send

data in their native format, with the onus being on the receiver to

undertake byte-swapping if it uses a different byte order to the sender.

All data types require well-defined encodings in order to ensure

interoperabili ty between ORBs.

CDR requires the alignment of primitive data types along their natural

byte boundaries. For example, short values should be aligned on a 2-

byte boundary, long values on a 4-byte boundary and double values on

an 8-byte boundary. Strings and wide strings should be aligned as

unsigned long types (aligned on a 4-byte offset), that indicates the

length of the string, including its terminating NULL byte, followed by

the bytes of the string, terminated by a NULL byte. Structures should

be aligned as a sequence of structure members in the order in which

they are defined in the IDL. This kind of alignment means that data can

be marshalled and un-marshalled simply by pointing at a value stored

in memory in its natural binary representation. This approach avoids

expensive data copying during marshalli ng.

CDR encoding requires an agreement between sender and receiver

about the types of data that are exchanged. This agreement is

established by the IDL definitions that are used to define the interface

between sender and receiver. If the agreement is violated, the receiver

has no way to prevent misinterpretation of the data.

 22

Because CDR supports both little-endian and big-endian

representations and aligns data on natural boundaries, it makes

marshalli ng both simple and efficient. [Henning ' 99]

2.2.9 Interoperable Object Reference

Object references are the only way for a client to reach target objects.

A client cannot communicate unless it holds an object reference.

References are published by servers in several ways. The most

common way for a client to acquire object references is to receive them

in response to an object invocation. In that case, object references are

parameter values and are no different from any other type of value,

such as a string. Clients simply contact an object, and the object returns

one or more object references. In this way, clients can navigate an

“object web” in much the same way as following hyperlinks. Another

common way for clients to obtain object references is for servers to

advertise references in some well-known service, such as the Naming

Service.

Regardless of the origin of object references, they should always be

created by the ORB server run time on behalf of the client, to which

they should subsequently be made available. [Henning ' 99]

2.2.10 Server Side of an ORB

Whenever a server application creates an IOR object reference, the

server-side run time embeds object key information inside the object

reference, that supports binding of the object to the servant that

implements it. An IOR is also provided with an IP address (or host

 23

name) and TCP port number, to allow a client to correctly locate the

host in which the remote object is implemented. The contents of an

IOR are discussed in more detail in section 2.2.9. A server can insert

its own address and port number into a reference to facili tate direct

binding. A server can also employ indirect binding, which involves the

use of an external location broker known as an Implementation

Repository.

At the server side of a request invocation, the ORB locates the IOR

information that is encoded within the request message. If the server

application for the object being invoked is not already running, the

ORB activates it. The server side object adapter uses the IOR

information retrieved from the request message, to dispatch the request

to the servant that incarnates the target object. Any arguments that

have been provided by the client invocation are also passed to the

object, and the operation is invoked. If any of the arguments are out or

inout values, they are returned to the client in a reply message, along

with the return value. Out and inout parameters are further discussed in

section 4.4.4. If the call fails, an exception, including any data

contained in the exception, is returned to the client.

2.3 CORBA Vs. Minimum CORBA

The MinimumCORBA standard describes a subset of the CORBA

standard, and is designed for systems with limited resources.

Implementations of the full CORBA standard are too large to fit PDAs

and other devices with limited resources. Acceptable performance

levels are also an issue when considering the implementation of a

CORBA ORB on a small device. Devices with resource restrictions

require a cut-down version of CORBA, and this is provided by the

MinimumCORBA standard.

 24

The minimumCORBA specification supports all of OMG IDL. This

allows maximum compatibili ty between minimumCORBA and full

CORBA applications.

Many of CORBAs features have much value in typical large scale

CORBA applications, however there are also some cases where these

features use up so many resources that their inclusion cannot be

substantiated. Minimum CORBA omits many of the resource intensive

features that are not typically essential to a basic CORBA

implementation. However it is of course possible to implement such

features within a minimal CORBA ORB, if they are required.

Omitting features from CORBA represents a trade-off between

usabili ty and conserving resources. Obviously, an implementation of

the full CORBA standard has a greater degree of user-friendliness, but

minimumCORBA facili tates the conservation of limi ted resources.

The MinimumCORBA specification defines a single profile that

preserves the key benefits of CORBA (portabili ty of applications and

interoperabili ty between ORBs). The following goals were recognized

when choosing this profile:

• MinimumCORBA provides a profile that reserves broad

applicabili ty within the world of limited resource systems.

• MinimumCORBA should interoperate easily with CORBA so

that applications running on either kind of ORB can interoperate as

part of a larger system.

• MinimumCORBA should support full IDL so that any CORBA

application can be executed on either full CORBA or on

minimumCORBA.

 25

• Features that support the dynamic aspects of CORBA are

omitted, as the systems for which minimumCORBA is targeted tend to

make commitments at design-time rather than at runtime.

There are several features included within the minimumCORBA

profile that incur considerable cost, in terms of static ORB size and

stub code size, even when they are not being used by the applications.

These include TypeCodes, user and system exception features, and

inheritance features. [OMG ' 01] chapter 23.

2.3.1 MinimumCORBA Omissions

• ORB Interface omissions

A number of omissions are made from the ORB interface, particularly

in areas to do with the dynamic features of CORBA.

Operations related to accessing the Interface Repository are omitted

since the majority of the Interface Repository itself is omitted.

Operations that facili tate runtime type checking are omitted, as

MinimumCORBA is only required to support design time resolution of

type checking.

• DII, DSI and dynamic Anys

The entire Dynamic Invocation Interface, Dynamic Skeleton Interface,

and dynamic Anys are omitted from minimumCORBA, as they support

dynamic aspects of CORBA.

• Interface Repository & TypeCodes

The majority of the Interface Repository is omitted from

minimumCORBA, as it is part of the dynamically typed programming

model.

 26

However, part of the TypeCode interface is retained for sending and

receiving IDL types that are known at build time. The latter is used

with the Interface Repository.

• Portable Object Adapter

MinimumCORBA supports a subset of the interfaces and policies

defined by CORBA for the Portable Object Adapter.

Features required for reasons of portabili ty and interoperabili ty are

included. However, features that support a dynamic mode of POA

operation are omitted. What remains is sufficient to achieve portabili ty

and interoperabili ty between different minimumCORBA

implementations and between minimumCORBA and full CORBA

implementations.

• Policies

Only a subset of the server side policies are used in MinimumCORBA.

Among these policies are all of the default policy values from the

CORBA specification. In all other cases, only the policies required for

basic ORB operation, portabili ty and interoperabili ty are included.

• Interoperability

The minimumCORBA specification has the same conformance criteria

regarding interoperabili ty as CORBA. See section 2.5.

• Language mappings

MinimumCORBA implementations must support at least one language

mapping as defined by the OMG.

The CORBA Architecture and Specification document can be

consulted for further details on feature omissions within

MinimumCORBA. [OMG ' 01] chapter 23.

 27

 Fig 2.4 Minimum CORBA architecture.

 DII and DSI have been removed

2.4 Example Implementations of CORBA Middleware

For ill ustration purposes, two very different existing CORBA ORB

implementations are presented here. TAO is a high-performance, real-

time ORB, which offers a fully CORBA compliant implementation,

along with some of its own additional features which are added to

enhance its middleware capabili ties. On the other hand, PalmORB is

an ORB that implements only a subset of the CORBA standard

features, in order to produce a middleware application that will fit

comfortable on a restricted handheld device.

2.4.1 TAO

While experience would suggest that CORBA is well suited for

standard RPC style applications that afford “best effort” quality of

service (QoS), it is not really suited for high-performance, real time

applications for a number of reasons. For example, there is no QoS

specification interface to enable clients to indicate the relative

priorities of their requests, and no QoS enforcement measures to

prevent low priority requests from blocking the execution of higher

 28

priority requests. CORBA also lacks real time programming features

that could, for example, notify a client when transport level flow

control occurs. If implemented, this could help prevent network

congestion problems. TAO is an example of a CORBA ORB

implementation that attempts to extend its ORB capabili ties in order to

cater for some of CORBA’s weaknesses.

As well as implementing all of the standard CORBA features discussed

in chapter 2.2, TAO adds its own enhancements to the CORBA ORB

specification, to enable clients to specify their QoS requirements to it,

and to enforce QoS guarantees. TAO also endeavours to provide end-

to-end latency, bandwidth and reliabili ty guarantees to distributed

applications, by integrating schemes for I/O subsystem architecture

optimisations, into its middleware. These I/O subsystems are

responsible for mediating ORB and application access to low-level

network and OS resources such as device drivers, protocol stacks, and

CPUs. In addition to all of the latter extras and enhancements, TAO

also possesses a run-time scheduling service. This service is

responsible for allocating CPU resources to meet the QoS requirements

of the applications that share the ORB endsystem. It provides service

guarantees for real time applications with deterministic QoS

requirements, and tries to meet service guarantees within the desired

tolerance, for real time applications with statistical QoS requirements.

TAO’s ORB Core is based on the high-performance, cross platform

ACE components [Schmidt ' 98] such as Acceptors and Connectors,

Reactors, and Tasks. These components help to provide a suitable

connection and concurrency model for predictably sharing the

collective processing capacity of ORB endsystem components among

the operations in one or more threads of control. This ORB Core can

deal with multiple concurrent client requests and server replies,

sending request and reply messages to the correct destinations, and

passing requests at the server side to the object adapter for dispatch.

 29

 Fig 2.5 Components of the TAO ORB

It is evident that a huge amount of time and resources must have been

spent on the construction of the TAO ORB. The entire TAO

implementation took 50 person years to build, and spans over 680,000

lines of code. Also, TAO’s large footprint requires powerful systems to

run it. However its high level of sophistication means that is can be

used in extreme mission critical applications. TAO has been employed

by Boeing for use within its air traffic control system. Other significant

users of TAO include Ericsson, Bellcore, Lucent, Motorola and

Siemens. [Schmidt ' 98].

2.4.2 PalmORB

The University of Illi nois have constructed PalmORB [Roman ' 99], a

stripped down implementation of the CORBA standard for use on

handheld devices. The client side CORBA features have been included

in this ORB, but all server side functionality has been omitted, since

the Palm is used mostly as a client. PalmORB is a very compact ORB,

consisting of only 6000 lines of code, and occupying a mere 50KB of

 30

memory in its compiled form. This is ideal for a limited memory

device.

The 2K distributed environment has also been implemented at Illi nois.

2K provides a user centric organisation of a distributed system, by

persistently storing user specific information in objects called an

‘environments’ . Its operating system has been built on top of another

fully implemented CORBA ORB (which is in fact, a modified version

of TAO). The 2K system has been designed to dynamically adapt itself

to the requirements of specific users that access it, providing each user

with a customised view of the system that depends on their

environment details. It also provides adaptable proxies, which can

alleviate constrained devices from the execution of computation

intensive software. 2K can decide what the original device and what

the proxy should do, according to the hardware capabili ties and

available resources of the device.

One of the key ideas behind the 2K system is that it can be accessed

from numerous different platforms like Windows NT, Solaris and Palm

OS. The fact that the Palm OS platform can be used to access 2K, is of

particular interest here. Originally a gap existed between PalmORB

enabled handhelds and the adaptable 2K distributed system with its

customisable CORBA based services and resources, however a

bridging application called PalmShell was specially designed to fill

this gap. The result offers flexible and powerful Palm clients, which

can dynamically add and remove components from their own tailored

environments. Not only can Palm applications interoperate as part of

an extensive cross platform distributed system, providing a mobile data

access mechanism, but they can also avail of 2K’s adaptable proxies

which are of particular use to such restricted devices. Proxies enable

the Palm to run more powerful applications than could otherwise be

deemed possible for such a small device.

 31

PalmORB on its own permits a Palm device to communicate across

diverse platforms with relatively simple applications. A more

sophisticated type of application that has been enabled on a Palm

device as a result of its integration into the 2K environment is that of

video streaming. 2K proxies take care of the intensive decompression

of video frames, and also reduce the size, rate and colour of these

frames to something that can be handled with relative ease by a

handheld device.

2.5 IIOP and GIOP

GIOP is defined as the basic interoperabili ty framework for CORBA,

that enables all CORBA compliant ORB communication. GIOP is not

a concrete protocol that can be used directly to communicate between

ORBs. Rather, it describes how specific protocols can be created to fit

within the GIOP framework. The Internet Inter-ORB protocol (IIOP),

which is specific to TCP/IP, is one solid realisation of GIOP. All

CORBA 2.0 compliant interoperable ORBs must implement GIOP and

IIOP, and almost all contemporary ORBs do so.

Not only does ORB interoperabili ty require a network communication

protocol, it also requires standardised object reference formats. Object

references are opaque to applications. In fact, they are even partially

opaque to client side ORBs wishing to invoke on the object that the

reference refers to, but they also contain information that ORBs need

in order to establish communication between clients and target objects.

The standard object reference format, called the Interoperable Object

Reference (IOR), can store information for almost any inter-ORB

protocol imaginable. An IOR identifies at least one supported protocol

and, for each protocol supported, contains information specific to that

protocol. New protocols can also be added to CORBA without

breaking existing applications.

 32

For IIOP, an IOR contains a host name, a TCP/IP port number, and an

object key (the opaque part). The object key is used by the portable

object adapter at the host referred to in the IOR (which is also the host

that created that IOR), in order to identify the target object at that host

name and port combination.

There are three versions of GIOP: versions 1.0, 1.1 and 1.2. GIOP and

IIOP were initially defined by CORBA 2.0. They were revised with

CORBA 2.1 in order to provide support for message fragmentation. A

subsequent revision with CORBA 2.3 added support for bi-directional

communication. The latter enables role reversal of the client and

server, without the need to open a separate connection that may be

blocked by a firewall.

GIOP has eight message types.

Message Type Originator

Request Client

Reply Server

Cancel Request Client

Locate Request Client

Locate Reply Server

CloseConnection Server

MessageError Client or Server

Fragment Client or Server

 Fig 2.6 GIOP Message types

Request and Reply type messages are by far the most commonly used

because they implement the basic RPC mechanism.

 33

The Request message is sent from the client to the server, and is used

to invoke an operation or to read or write an attribute.

A Reply message is always sent from the server to the client, and only

in response to a previous request. It contains the result of an operation

invocation. If an operation raises an exception, the Reply message

contains the exception that was raised. [Henning ' 99]

 34

CHAPTER 3

3. ORB DESIGN

A good place to start with the discussion of the ORB design would be

to compare it with the two ORBs that have been ill ustrated in section

2.4, namely TAO and PalmORB. TAO provides a very advanced and

complicated QoS oriented CORBA implementation. It implements the

entire CORBA standard, along with some of its own added features

and enhancements. While TAO is crucial for real-time mission-critical

applications, it is obvious that much of its functionality would be

absolutely superfluous for use on a handheld device, even if it was

small enough to fit. A much more realistic comparison can be drawn

between the designs for this ORB and those for PalmORB. By

omitting server side functionality, PalmORB uses a subset of the

features provided by the MinimumCORBA standard. It does however

implement a minimal client side ORB that can invoke operations on

remote CORBA objects. The ORB design for this thesis includes a

similar set of ORB features to PalmORB. The main difference being

that a PalmShell type application design, to integrate the ORB into a

distributed environment was not included.

3.1 Design Goals

One of the main considerations taken while designing the ORB, was

that it had to fit comfortably on to a Palm III device with only 2MB of

memory. This memory had to provide storage for application data, like

address book information, as well as for dynamic memory. This put

limits on the size of the executable code that could be downloaded onto

the handheld device, and on the kind of memory intensive structures

that could be employed to construct the ORB.

 35

Another key design goal was to implement an extensible ORB, to

which additional middleware functionality could be added with relative

ease, for future use on a more resourceful Palm device than the Palm

III , for instance, a Handspring Visor with 8MB.

3.2 Stripped down CORBA standard to fit Palm III Device

• Server-side omission

In a similar fashion to the PalmORB design, the MinimumCORBA

client side functionality was included in this ORB, while server side

functionality was eliminated. The Palm III presents itself as one of the

more primitive of the Palm OS family of handheld devices, and while

server side functionality would indeed provide a strong edge on

PalmORB, it was deemed unsuitable for the device, which would serve

much better as a client in most situations. A decision was therefore

made, to concentrate on implementing a solid client side ORB.

However an extensible ORB design provided a degree of

compensation, with its aim to enabling the easy addition of extended

ORB functionality for future use on one of the more modern Palm

devices.

Another motivation for implementing just a client side ORB, was to

avoid the 32KB restriction which puts yet further limitations on the

development of applications for Palm devices. This restriction prevents

Palm applications whose compiled code exceeds 32KB, from operating

correctly on the Palm device. The Motorola DragonBall processor that

is used in Palm OS handhelds uses 16-bit memory addresses, which

limits it to relative jumps of 32KB. If an application tries to call a

function located more than 32KB away from it within the same code

resource, the call will fail. While this 32KB restriction can be lifted to

an extent, by changing the link order of the source files to avoid jumps

exceeding 32KB, an absolute limit of 64KB still remains for any code

resource.

 36

Of course, applications exceeding 64KB are also possible for Palm

handhelds, but their code must be divided into multiple segments so

that no segment exceeds 64KB in its compiled form. This multi

segmentation technique also requires the use of special runtime

libraries that take up even more space. It was very important therefore

to try to avoid using multi segmentation on the Palm III , in order to

preserve as much of its 2MB of memory as possible, for permanent

data storage, and for the dynamic allocation required by running

applications. Omitting server side functionality helped to keep the

ORB footprint small. [Henning ' 99]

• Omission of DII

Features that support the dynamic aspects of CORBA are omitted by

MinimumCORBA, since the systems for which the standard is targeted

make commitments at design-time rather than runtime. Thus, a

decision was made to abide by MinimumCORBA and omit the DII .

[OMG ' 01] chapter 23.

• Omission of dynamic Anys

The dynamic Any types outlined in section 2.2.6, are omitted from the

MinimumCORBA standard, and hence they are also excluded from

this ORB design.

• TypeCode, exception and inheritance omissions

There are several features included within the minimumCORBA

profile that incur considerable cost, in terms of static ORB size and

stub code size, even when they are not being used by the applications.

Among these features are TypeCodes, user and system exception

features, and inheritance features.

 37

Some limited support for TypeCodes is included as part of the

MinimumCORBA standard, however the support provided was not

considered to be of particular use to this ORB. Thus, a decision was

made to omit TypeCodes entirely from the design, in favor of saving

on RAM.

System exception features were minimized for this ORB. In any case,

the ORB code generated had to be quite small in order to fit onto a

handheld, and small code requires reduced exception processing

functionality.

The use of inheritance was minimized within the ORB design,

however there were certain cases where it had to be included, one of

the main areas being in the design of the stub classes. Inheritance

provided a clean and easy way of seamlessly linking application

specific stub code with ORB stub code, so that any application which

implemented its own stubs could inherit from the ORB’s stubs, and

hence use the ORB to invoke operations on remote objects. The stub

design is discussed in further detail in section 3.3.

• Other omissions

Limited memory space on a handheld means that things like deeply

recursive routines, large numbers of global variables, and huge

dynamically allocated data structures are not handheld device friendly.

The ORB was designed to avoid the over use of global variables, and

recursive routines. Data structures were designed to be as small as

possible, only including features that are required for basic ORB

operation.

Figure 3.1 presents the resulting ORB architecture with excess features

removed.

 38

 Fig 3.1 Client ORB Architecture

While server side ORB functionality has not been included in this

design, figure 3.2 depicts a MinimumCORBA compliant client/server

architecture. The Portable Object Adapter offers a subset of the

functionality provided by a full CORBA implementation. Items that

support the dynamic mode of the POA are omitted, in keeping with the

minimum standards aim to omit dynamic aspects of CORBA. The

dynamic skeleton interface is also omitted.

 Fig 3.2 Client / Server ORB Architecture

 39

3.3 ORB Class Diagrams

The key components of the ORB design have been spread over the

following four different class diagrams. The design has been broken

down into these four major areas in order to enhance the clarity of

presentation.

3.3.1 ORB Initialisation

Before the client can invoke on a remote operation, it calls on the

methods that initialise an ORB instance. Once the ORB has been

initialised, the client can call operations that kick-start the ORB into

processing remote object references, and then marshalli ng a message to

send to the target object.

 Fig 3.3 ORB Initialisation classes

 40

• ORB_init is called by the Client application. It initialises the

ORB run-time and returns a reference to the ORB object. ORB_init

expects three arguments, argc, argv and orb_identifier. Argc holds the

number of entries in argv, which in turn holds ORB-specific options.

Orb_identifier identifies the particular ORB to be initialised. These

arguments are useful if an application needs to initialise more than one

ORB run-time environment. For example, it is possible for different

ORB instances to have different policies and services associated with

them, each instance being of particular advantage to a possible subset

of client invocation requests. Argc, argv and orb_identifier, were not fully

utili sed by the ORB developed for this thesis however, since its client

application only required a single ORB. However, they were included

in the code in order to facili tate the easy extension of the ORB, to

produce multiple different ORB instances for a single client

application, as mentioned above, for a Palm device with more RAM

and processing power than the Palm III .

• The ORB_impl class provides the ORB run-time with access to

an object factory class that can be used by the ORB to create an IOR

object from an IOR string. This class has been structured to allow for

the addition of things like more factory classes, the Initial Service

Manager, and the POA Manager [OMG ' 01] chapter 11, for server side

functionality, on a more advanced Palm device.

• All proxy objects (i.e. local interfaces that represent remote

objects, having an identical signature), inherit from the Object class.

This allows generic operations that expect object types, to accept and

return object references to these arbitrary proxy interface types. An

Object instance contains references to the ORB, the IOR it corresponds

to, and to its Stub Implementation, see section 4.7.1. An Object

instance can be narrowed to represent its proxy subclass. The proxy

retains the ORB, IOR and Stub Implementation references, which are

 41

used to marshal request messages and to send then to the correct

destination.

• The ObjectFactory generates IOR objects from their string

representations. The ORB uses these IOR objects to direct request

messages to the correct destination. To do this, the ObjectFactory

implements the StringtoObject operation, that calls the

CORBAObjectLocator class, which converts the string to an object. This

conversion process is discussed in further detail in the implementation

section.

• The RefCount class provides a painless mechanism for keeping

a count of the number of references that have been made to objects that

are referenced frequently throughout the ORB code. These reference

counts can then be monitored, so that objects can be deleted when their

count drops to zero, thus freeing up valuable memory.

• The RefCountedIOR class contains a reference counted IOR

object reference.

 42

3.3.2 GIOPMessaging

 Fig 3.4 GIOP Messaging classes

• The GIOPOutgoingMessage class is responsible for writing

GIOP request messages to the output stream. These messages are then

sent from the output stream to the server side ORB.

• The GIOPIncomingMessage class is responsible for reading,

from the input stream, a GIOP reply message that has been sent to it by

the server side ORB. This message is then interpreted to see if the

corresponding remote object request has been executed successfully, or

if problems were encountered.

 43

Details of the GIOP request and reply message formats are discussed in

detail in section 4.7.3.

• The OutputStream class contains methods to align all data types

on their natural boundaries when writing them to the output stream.

This kind of alignment is necessary so that the message can be

correctly de-marshalled when sent to the server side. The InputStream

class contains methods that can read naturally aligned data types, from

reply messages received into the input stream.

Data alignment is discussed in further detail in section 2.2.8.

• The input and output streams use instances of the BufferImpl

class to store data. This class also contains useful methods and holders

for determining buffer data positions, in order to facili tate reading of

messages from, and the writing of messages to, the input and output

streams.

• The ProfileInfo structure is constructed from the profile

information retrieved from the IOR string. Profile information is

included in all client request messages. When a request message is

picked up by the server side ORB, the POA uses the profile

information to determine which object the request is intended to invoke

on.

 44

3.3.3 Stub Implementation

 Fig 3.5 Stub Implementation classes

• StudentDetails is the name of the target object that can be

invoked remotely. The StudentDetails interface class (not shown in

figure 3.5) on the client side, provides the interface between the client

application and the stub code that passes a request for a remote object

to the ORB core. It contains the outputStudentDetails operation that has

a signature identical to that of the remote operation being targeted.

• The StubImplBase class provides a reference counted base class

for all stub implementation classes. A stub is a client side function that

allows a request invocation to be made via a normal looking local

function call.

 45

• The MarshalStubImpl_StudentDetails class implements the client

application specific proxy code that initiates the passing of a remote

object invocation request to the ORB. MarshalStubImpl_StudentDetails

inherits from the StubImpl_StudentDetails class, which provides a

facili ty for keeping a reference count on the former’s instances. It also

inherits from the MarshalStubImpl class, which is a generic ORB stub

class which implements operations that pass a remote object request

down to the ORB core, for marshalli ng and dispatching.

3.3.4 ORB Downcalling

Fig 3.6 Downcall classes

 46

• The Downcall class gives a request message an identification

number. It also prompts the writing of a request message to the output

stream, and subsequently calls the transport layer to send the message

to the server side ORB.

• Transport_impl implements methods to open, write to, read from,

and close the Palm device’s serial port. This serial port provides a link

from the Palm to a remote application that implements a socket

connection, for IIOP, to a server side ORB, as detailed in section 4.2.

Transport_impl also interprets replies to request messages that are

received from the server side ORB, in order to determine whether or

not the request was successfully honoured. Transport_impl effectively

acts as the ORBs transport layer, sending messages to, and receiving

messages from a server side ORB.

3.4 Extensibility of ORB Design

• Section 3.3.1, on the ORB initialisation design, explains how

the initialisation code was designed in order to facili tate the easy

extension of the ORB, to enable single clients to use different ORB

instances to deal with various remote object invocations, that could

require slightly varying ORB characteristics, during the same

execution session.

The ORB initialisation classes were also structured to simplify the

addition of things like more factory classes, the Initial Service

Manager, and the POA Manager [OMG ' 01] chapter 11, to provide

server side functionality for a Palm device with more resources

available to it than the Palm III .

• This ORB was designed to support GIOP 1.1 and 1.2.

However, the structure of the GIOP class would allow for its easy

extension, to include future versions of the standard, or indeed to

 47

support the older version if required. This would merely require the

insertion of a new case into the GIOP messaging method, to enable the

construction of a message under the new version of GIOP. The IOR

and reply message interpretation code could also be extended in a

similar fashion.

• At the time of writing, this PalmOS ORB was only capable of

interpreting IIOP messages related to the TCP/IP communication

protocol. However it did have the capacity to read IORs containing

multi protocol data. This was achieved by creating a sequencing data

structure into which the IOR profile data could be read. Each entry in

the sequence would contain information relating to a different

communication protocol. Thus, extending the ORB to interpret

communication protocols other than just TCP/IP, would simply require

the insertion of additional C++ functions, to interpret these protocols.

• The transport class was put in place within the ORB code in

order to implement the serial / socket connection. Replacing the latter

with a pure socket connection would simply involve modifying the

transport class code to implement pure socket functions, rather than

serial functions.

 48

CHAPTER 4

4. CODE IMPLEMENTATION

Before delving into the actual implementation details of this ORB

middleware, it is worth emphasising the fact that implementing such a

low level application is a particularly frustrating and exhausting task.

To make matters worse, little previous knowledge of the CORBA

standard or indeed of the C/C++ programming languages was had prior

to undertaking the project, which created even more difficulties.

However, in the end, hard work and persistence overcame these

obstacles, and all to make life easier for the writers of distributed

applications!

4.1 Development Environment

As previously mentioned, a Palm III device, with a Motorola

MC68328 “DragonBall” processor was used to develop the

middleware for the purposes of this thesis. This provided a big

challenge, since, while a Palm III possesses much more in terms of

resources than some of its predecessors, it is still limi ted to a rather

diminutive 2MB of memory. The ORB had to be made small enough,

to fit easily onto this Palm III device, while leaving a reasonable

amount of free memory available for the development of other regular

Palm applications, and indeed for other client applications to be used in

conjunction with the ORB itself.

Metrowork’s CodeWarrior for Palm Computing platforms was used for

the code development. CodeWarrior, which is the official development

environment supported by Palm Computing, provides a number of

useful development tools along with the basic source code editor.

Those used for the purposes of this project included:

 49

• Constructor for Palm OS

This is a resource editor with a graphical interface, that facili tates the

development of Palm user interface elements. These elements are

combined with the source code to create the finished product.

• Palm OS Emulator

This is also known as POSE. It imitates most of the hardware and

software functions of an actual Palm handheld, and can be downloaded

onto a desktop computer for use. One of POSE’s most useful features

is its accurate emulation of the processors used in a range of Palm

devices (including the Palm III) . This means that real Palm OS

applications can be loaded directly onto POSE for debugging purposes.

Debugging on the emulator is faster than on the actual Palm device,

and of course, it provides worthwhile savings on batteries!

4.2 Network Connectivity

The Palm III device for which the ORB was developed did not possess

a direct networking facili ty to enable TCP/IP connectivity to other

computers. In order to emulate such a network connection, a

combination of serial and TCP/IP communication capabili ties were

employed. The Palm device was connected to COM1 of a desktop

computer via its serial cable. TCP/IP Sockets were implemented on the

desktop to provide the applications on the Palm with indirect access to

all other TCP/IP enabled devices on the network. It is obvious that the

latter implementation was not ideal, in that it reduced the mobili ty of

the Palm since it had to be physically connected to a TCP/IP enabled

device in order to communicate with other devices on the network.

However, the ORB was developed to be extensible and to operate on

any Palm OS device, and so, it would be relatively easy to install i t on

a larger more up to date, TCP/IP enabled Palm device.

 50

4.3 Event Driven Programming

Palm OS applications are event driven, receiving events from the OS

and either handling them or passing them back to be handled by the OS

itself. An event structure describes the type of event that has taken

place (for example, a stylus tap on a screen button), as well as

information related to that event, such as the screen coordinates of a

stylus tap. During a normal application launch, execution is passed to

the application’s event loop, which retrieves events from the event

queue and dispatches them according to the type of event. The event

loop passes most events back to the OS, because the system already

has facili ties for dealing with common tasks such as displaying menus

or determining what button on the screen was tapped. Those events

that are not handled by the OS go to the application’s own event

handler, which either handles the events if they are interesting to the

application, or passes them back to the event loop.

An application event loop was incorporated into the client application

that was written to use this ORB. A CodeWarrior facili ty was used to

generate the bones of an application loop. Functions were then written

to handle the event loop events that required processing by the

application. These events were handled in a way that was specific to

the client application’s requirements. For example, if the remote

invocation application’s main GUI icon was tapped, that event

prompted the opening of the main application form, which indicated

what objects were available for invoking on remotely. If such an object

was selected, this prompted the initialisation of the ORB. The ORB

subsequently interpreted that object’s IOR and marshalled a GIOP

message, which it then sent to the correct destination.

4.4 Memory Management for the Palm Device

 51

Memory management is very important for a Palm OS device with

limited memory resources. It is imperative that as much memory as

possible be available for allocation at all times. The following

paragraphs outline a number of memory management features that

were put in place, in order to minimise the possibili ty of memory leaks,

and to ensure that memory would be freed as soon as it was no longer

required by either the ORB, or the client application.

4.4.1 Memory Allocation of Strings

For normal desktops, writing to incorrect memory addresses can cause

dramatic application failures, but won’t normally affect permanently

stored data, because it resides on a separate storage device from the

systems main memory. For Palm OS devices on the other hand, the

same RAM is used for both data storage and for dynamic memory.

Using RAM for storage provides faster access to data, however, a

rigorous means of memory management had to be availed of to prevent

the possibili ty of corrupting permanently stored data. Palm OS APIs

were used for allocating memory for strings, in order to prevent the

loss of permanent data.

Two different types of memory manipulation functions for Palm OS

devices are available for allocating memory for strings, and other

straightforward data structures. These are pointer functions and handle

functions. The MemPtrNew and MemPtrFree functions are provided to

allocate and de-allocate pointers, in place of the C standard library

calls, malloc and free. However, a decision was taken to implement the

handle functions, based on the following argument:

The Palm operating system has the abili ty to efficiently manage the

small amount of dynamic RAM it has available, by shifting chunks of

data around with an aim to creating large chunks of contiguous space.

 52

This is obviously preferable to having lots of small fragments of free

space scattered around the memory, which cannot be used if a new

data record fails to fit into any of them individually. Pointers use only

unmoveable memory chunks, and so they do not avail of the latter

memory management facili ty. However, handle functions allow

applications to manipulate chunks of memory that may be moved by

the operating system. If the operating system needs to allocate

memory, it can move handles around until there is enough contiguous

memory for the new data to be allocated. New memory can be

allocated with the MemHandleNew function and freed using the

MemHandleFree function. Also, because the operating system may

freely decide to move the memory associated with a handle at any

time, the handle must first be locked with the MemHandleLock function

before it can be read from, or written to. While the handle is locked,

the operating system will not move its memory to another location.

The handle can subsequently be unlocked using the MemHandleUnlock

function, when the read or write operation has been completed. This

approach greatly increases the efficient use of the limited memory on a

Palm device. [Foster ' 00]

In addition to using Palm OS handles for allocating memory for

strings, a String_var class has also been implemented to provide a

memory management wrapper for char * . [Henning ' 99]. Indeed, the

internals of the String_var allocation mechanisms utili se memory

handles to ensure the safe and efficient allocation of memory for

strings. String_vars can be used in situations where keeping track of

the number of references to allocated stings is diff icult for the ORB

programmer. This class stores a pointer to a memory allocated string in

a private variable, and takes responsibili ty for managing the string’s

memory. The String_var uses a destructor to ensure de-allocation of

memory when a string that it wraps goes out of scope.

 53

4.4.2 Memory Allocation of Classes

The new and delete operators in C++ facili tate the dynamic allocation

of memory for structures whose sizes aren’ t known until runtime.

Since support for the latter operators was included in the version of

CodeWarrior used to develop this ORB (though not in previous

versions), they were both used in the allocation and de-allocation of

memory for class structures.

However, as for string referencing, creating references to and

removing references from such classes complicates the issue of when

dynamic memory can be de-allocated. Normally, a programmer must

keep track of the number of references to an object, so that the object

can be explicitly de-allocated when there are no remaining references

to it. This point represents a memory management issue that puts extra

workload on the programmer, and runs the risk of producing memory

leaks.

A set of smart pointer classes known as var types, that use the same

principles as String_var, have been implemented [Henning ' 99], to

alleviate the burden of having to explicitly de-allocate variable-length

structures and to make memory leaks less likely. This works by

associating a _var class with each normal class type. The class provides

the required functionality, while the _var class acts as a memory

management wrapper around the former. This means that the _var class

takes care of de-allocating normal instances at the appropriate times.

This de-allocation process uses reference counters to keep track of the

number of references to each of its class instances.

4.4.3 Reference Counting

Each CORBA object has a reference count that indicates the number of

local references that refer to it. This reference count is incremented

each time a new local reference to the object is created, and

 54

decremented when a local reference to the object is deleted. The idea

behind this is that once the object’s reference count falls to zero, it is

automatically de-allocated. This helps to prevent memory leaks.

• _ptr types: When assigning between two _ptr type object

references , the reference count is incremented explicitly using a

_duplicate function. A _duplicate function has been implemented for all

of the objects that require its use. A release function is used to

explicitly decrement the reference count for _ptr types.

• var types: _var types can handle reference counts

automatically. Therefore, for objects with associated _var types, the

burden of explicitly incrementing and decrementing reference types is

eliminated. In a _var type, the ‘=’ operator is overloaded, so that when

such a type is assigned a value using the ‘=’ operator, its reference

count is automatically incremented. Also, when the _var type goes out

of scope, its reference count is automatically decremented in its

destructor. [Henning ' 99]

4.4.4 Directional Attributes

In compliance with the CORBA standard, three types of parameter

attributes were made available to clients who wish to pass parameters

as part of a remote invocation. These are:

• in

The in attribute indicates that the parameter is sent from the client to

the server.

• out

The out attribute indicates that the parameter is sent from the server to

the client

• inout

 55

The inout attribute indicates a parameter that is initialised by the client

and sent to the server. The server can modify the parameter value, so

after the operation completes, the client parameter value may have

been changed by the server.

Directional attributes are required for two reasons. They are necessary

in order to know when a parameter must be sent from a client to a

server or vice versa. This enables some savings in transmission costs.

Also, directional attributes are required to assist in memory

management. For example, the client application implemented as part

of this thesis includes inout string parameters to be read and/or

modified by the target object on the server side. This means that

ownership of the string parameters in this application is temporarily

given to the server so that the server can de-allocate and re-allocate the

strings in order to modify them. After the invocation however,

ownership of the strings is returned to the client. To ensure de-

allocation of the string parameters after target object invocation, the

strings are declared as String_vars, so that they will be automatically

de-allocated when they go out of scope.

Memory management for operation parameters varies with the

direction and type of parameter. Directional attributes control whether

the client or the server is responsible for allocating and de-allocating

memory for parameters. Memory management details for in and out

parameters can be obtained from most common CORBA textbooks.

[Baker ' 97]

All of the above memory management mechanisms help to prevent

memory leakage.

4.5 Use of Templates

 56

Template classes, which provide one of C++’s most powerful

capabili ties for software reuse, were implemented to enable the

specification, within a single code segment, of an entire range of

related classes.

At runtime, templates are used to create the _var objects, described in

section 4.4.2. Rather than reproducing similar _var type code for all

objects that require a _var wrapper, these objects were divided into

object groups containing similar characteristics. A template was then

produced for each such group. At runtime, any object requiring a _var

wrapper for memory management purposes, is passed into its

respective _var template class, where it is subsequently assigned a

private variable that holds a pointer to the class type that the wrapper

encapsulates. This approach reduced the amount of code that had to be

written and also minimised the resulting code footprint.

4.6 Big Endian Vs. Little Endian

An important fact that had to be kept in mind during the Palm OS

program design and implementation, was that all data entering or

leaving the device was arranged in Motorola’s big-endian byte order.

In other words, multi-byte data types such as long integers were

arranged with their most significant bytes at the lowest memory

address, and vice versa. This detail was very important when

connecting to Intel-based machines, all of which use little-endian byte

ordering.

The CORBA standard states that byte swapping should only occur on

the receiver side of a sent message. A device sending a message, can

therefore send using its own natural byte-order format, however, a

special message field is set aside to allow the sender to indicate the

byte-order that they use. At the receiver end, this byte-order field is

examined. If the byte-order for sender and receiver are the same, the

receiver has nothing to worry about, but if the byte-orders are different,

 57

then the burden is on the receiver to swap the bytes so that the intended

message can be correctly interpreted.

A byte swapping facili ty was introduced into the ORB code in order to

deal with the inevitable byte-ordering problem that arose when the

Motorola processor attempted to communicate with an Intel device. It

was implemented using bitwise left shift and right shift operators, and

the bitwise-inclusive-or operator. [Lazzarotto]

4.7 Request Invocation

A client is an entity that invokes a request on a CORBA object.

A client application was written for the Palm device. This client

manipulates a remote object by sending messages to it. The ORB sends

the message to the object whenever the client invokes an operation on

the object. To send the message, the client needs to hold an object

reference (IOR) for the object. The object reference uniquely identifies

the target object and encapsulates all of the information required by the

ORB to send the message to the correct destination. IORs are discussed

in further detail later in this chapter. [Henning ' 99]

The entire request invocation mechanism was implemented to be

completely transparent to the client, for whom a request to a remote

object looks like an ordinary method invocation on a local C++ object:

Student->outputStudentDetails(name, student_number);

In the above example, Student corresponds to the remote object,

outputStudentDetails to the remote operation, and name and

student_number are the parameters that were passed to the remote

operation. A client side call to the remote operation (as above), results

in a call to a client side stub, which in turn passes the request to the

ORB, which then marshals the object name, operation and parameters,

and sends the resulting request package to the correct server machine,

 58

where it was de-marshalled and serviced. Stubs and skeletons are

discussed in detail in the following section. [Baker '97]

 Fig 4.1 Request Invocation

4.7.1 Stubs and Skeletons

To invoke an operation on a remote object the client first instantiates a

proxy object in its own address space. The proxy is a C++ instance that

provides the client with an interface to the target object. It contains

references to the ORB, the IOR and to the stub Implementation. The

signature on the proxy interface is the same as the signature on the

implementation of the remote object on the server side.

A reference to the proxy object is analogous to a C++ class instance

pointer, but denotes an object implemented in a different process, and

on another machine. When the client invokes an operation on the proxy

via the proxy reference,

Student->outputStudentDetails(name, student_number);

 59

the proxy’s stub then sends a corresponding message to the remote

servant via the ORB.

MarshalStubImpl_ Student::outputStudentDetails (CORBA::Long& _ob_a0, char*&

_ob_a1, char*& _ob_a2)

It is actually the ORB that marshals the message, locates the server and

establishes network connections transparently on behalf of the client.

[Baker ' 97]

void MarshalStubImpl_ Student:: outputStudentDetails (CORBA::Long& _ob_a0,

char*& _ob_a1, char*& _ob_a2)

{

OB::Downcall_var _down = createDowncall("outputStudentDetails ", true);

OB::OutputStreamImpl* _out = _preMarshal(_ob_down);

_out -> write_long(_ob_a0);

_out -> write_string(_ob_a1);

_out -> write_string(_ob_a2);

_postMarshal(_ob_down);

_request(_ob_down);

}

The above code creates a down call to the ORB to marshal a request

message. It also writes the parameters that are to be passed to the

remote object to the output stream.

Once the request data has been marshalled and aligned on the output

stream buffer, it is then sent by the ORB via a serial / socket

connection to the server implementing the required object. The

destination host and port details are obtained from the object’s IOR.

[Baker ' 97]

4.7.2 Creating an Object Reference from an IOR

 60

In order to use an object reference, the ORB takes the string

representation of the IOR, that is provided by the server that supports

the object to be invoked. This IOR string, which is initially in

hexadecimal format, is then converted into an IOR object using the

object_to _string ORB operation. This involves firstly converting the

IOR string from hexadecimal to decimal format. The decimal string is

then converted to its ASCII representation by casting it to an unsigned

char type. The contents of the unsigned char string are then used to

create the IOR object. From this point on, the IOR is in a format that

can be used directly by the ORB. An IOR object generally contains

three major pieces of information. In this case, the Repository ID

information was omitted from the IOR object since an interface

repository facili ty was not implemented. The two pieces of information

contained by this minimal ORB’s IOR objects were as follows:

• Endpoint information

This field provides the ORB with all of the information it needs in

order to establish a physical connection to the server implementing the

target object. The endpoint information indicates which protocol to use

when attempting to invoke an operation on the object represented by

the IOR. It also contains physical addressing information appropriate

for a particular transport. Since this ORB uses IIOP only, the endpoint

information contains an Internet domain name or IP address and a TCP

port number. The Endpoint Information field could also contain the

address of an Implementation Repository to be consulted to locate the

correct server on which the requested object runs. This extra level of

indirection would enable server processes to move from one machine

to another, without breaking existing references held by clients.

However, due to the memory constraints of the Palm III device used

here, the Implementation Repository was omitted from this ORB, and

so the Endpoint Information field directly contains the address and port

number of the server that implements the object. Thus if a server

process moves location to a different machine, a new IOR containing

 61

the new object location details would had to be provided for the Palm

device.

The CORBA standard also allows information for several different

protocols and transports to be embedded in the reference, permitting a

single reference to support more than one protocol. Since the ORB

developed for our Palm device used only IIOP, the TCP/IP information

alone was extracted from the IOR for use.

• Object key

Unlike the endpoint information, which is standardised, the object key

contains proprietary information. The arrangement and usage of this

information is unique for different ORB implementations. All ORBs

have an application-specific object identifier that is embedded inside

the object key by the server, when the server creates the reference.

When the object identifier is received by the server-side ORB from a

client request message, it is used by that ORB and its object adapter (or

one of its object adapters) to identify the target object in the server,

upon which an operation invocation had been requested, from within

the message. The client-side simply sends the key as a transparent

block of binary data with every request it makes. Since for all intents

and purposes, the key remains an opaque block of information to the

client, it does not matter that the reference data is in proprietary format.

It is never looked at by any ORB, except the ORB hosting the target

object (i.e. the very ORB that created the object reference with the

proprietary object key in the first place).

 Object Reference

Fig 4.2 Object Reference contents

Repository ID Endpoint Info Object Key

 62

The following pseudo IDL shows how the information required to send

a request to the correct target object, is encoded within an IOR object

that has been generated by the ORB from an IOR string.

module IOP{

 typedef unsigned long ProfileId;

 const ProfileId TAG_INTERNET_IOP=0;

const ProfileId TAG_MULTIPLE_COMPONENTS=1;

 struct TaggedProfile{

 ProfileId tag;

Sequence<octet> profile_data;

};

 struct IOR{

 string type_id;

 TaggedProfile profile

};

};

[OMG ' 01] chapter 13

struct IOR, which is the main data type within the generated IOR object,

defines the basic encoding of an IOR as a string followed by a

sequence of profiles. The type_id string contains the interface type of

the IOR in a standard CORBA format. The profiles field specifies the

IIOP protocol profile that is to be used to send all messages to the

object referenced by the IOR. An ORB that supports multiple profiles

could contain a sequence of protocol profiles within the profiles field,

one for each protocol supported by the target object and the client

itself.

This ORB supports only IIOP, so the type id is followed by a single

profile containing a structure of type TaggedProfile. A tagged profile

contains a tag field and an octet sequence that contains the profile body

 63

identified by the tag. As an example, for IIOP 1.1 and IIOP 1.2, the tag

is TAG_INTERNET_IOP (zero), and the profile_data member encodes

a structure of type IIOP::ProfileBody as shown below.

Module IIOP{

 struct Version {

 octet major;

 octet minor;

 };

 struct ProfileBody_1_1 {

 Version iiop_version;

 string host;

 unsigned short port;

 sequence<octet> object_key;

 sequence<IOP::TaggedComponent> components;

};

};

[OMG ' 01] chapter 15

This ORB supports CORBA versions 1.1 and 1.2. The Version field

enables the ORB to identify what version of CORBA generated the

IOR. This information is used by the ORB when deciding how to

marshal a request to a server object.

The object host and port information is used to send CORBA requests

over TCP/IP. And, as already mentioned, the object_key field, which is

included in all CORBA request messages, contains information on how

to identify the POA and that servant that implements the object at the

server side.

4.7.3 Implementation of IIOP and GIOP

 64

Support for GIOP and IIOP versions 1.1 and 1.2 was implemented

within the ORB code. The implementation followed the CORBA

specification exactly. This support facili tates the transformation of IOR

strings to IOR objects, and the generation of request messages, for

inter-ORB communication using either version. It also facili tates, for

both versions, the interpretation of reply messages received from the

server-side, which determines if a remote operation invocation has

been successful or not. The CORBA Architecture and Specification

[OMG ' 01] can be consulted for details of version 1.0 of the latter

standards, if desired.

Figure 4.3 shows the basic structure of a GIOP 1.1 or GIOP 1.2

message.

12-byte GIOP Message Header Variable-length GIOP Message Body

0 0 12

 Fig 4.3 Basic structure of a GIOP Message

Request and Reply type messages only, were implemented since these

two are by far the most commonly used, and because they alone

implement the basic RPC mechanism. Also, support for fragmentation

(introduced in GIOP 1.1) and for bi-directional communication (GIOP

1.2) was omitted. However, it was felt that given more time, and a

more powerful PalmOS based PDA, both of these features could have

been implemented without undue effort.

4.7.3.1 GIOP Message Header

The following describes the implementation of the message header in

pseudo IDL. It is the same for versions 1.1 and 1.2:

module GIOP {

 struct Version {

 65

octet major;

 octet minor;

};

 enum MsgType_1_1 {

 Request

};

struct MessageHeader_1_1 {

 char magic[4];

 Version GIOP_version;

Octet flags;

Octet message_type;

Unsigned long message_size;

};

};

[OMG ' 01] chapter 15

G I O P 1 2 0 0 4-Byte Message Size

0 1 2 3 4 5 6 7 8

Fig 4.4 GIOP 1.2 message header

The message header layout is as follows:

• The first 4 bytes of a message header are always the characters

GIOP, which indicate that the message is a GIOP message. They also

serve to define message boundaries.

• The 4th and 5th bytes are the major and minor version numbers

represented as 8-bit binary values.

• The 6th byte is a flag byte. The least significant bit of the flag

byte is used to specify whether the remainder of the message is in big-

endian or little-endian format. The Palm device uses big-endian

(indicated by a 0). The second-least significant bit indicates whether or

not a message uses fragmentation. A value of 1 indicates that the

 66

message is a fragment of a larger message, and that there are more

fragments to follow. A value of zero (as in the above case, figure 4.4)

indicates that the message is a complete message or that it is the last

message in a sequence of fragments.

• The 7th byte indicates the message type. For example, the value

0 indicates a Request message.

• Bytes 8-11 contain a 4-byte unsigned value that indicates the

size of the remainder of the message, which constitutes the GIOP

message body, (e.g. for a Request message, these bytes would indicate

the size of the Request Header and the Request Body combination).

The GIOP message body consists of the message header and body

type, that are specific to the type of message that it encompasses. For

example, for a Request message, the GIOP message body consists of

the Request message Header and the Request message Body.

The implementation of Request and Reply messages is described in the

following subsections.

4.7.3.2 Request Message Format

The Request message formats for GIOP 1.2 and 1.1 differ slightly,

however the ideas behind both are similar. For this reason, a

description of how the more recent version 1.2 was implemented, has

been included in this document, while details of the implementation of

version 1.1 have been omitted. If desired, they can be obtained form

the CORBA Architecture and Specification document [OMG ' 01].

The Request message consists of three parts as shown in figure 4.5.

12-byte GIOP Header Variable-length GIOP Request Header Variable-length GIOP Request Body

0 12 12 + length of Request Header

 67

 Fig 4.5 GIOP Request message

The Request message, which contains a Request header and a Request

body, follows the GIOP header. The Request header is structured as

follows:

Module GIOP {

 struct RequestHeader_1_2 {

unsigned long request_id;

octet response_flags;

octet reserved[3];

TargetAddress target;

string operation;

IOP::ServiceContextList service_context;

};

};

[OMG ' 01] chapter 15

The fields within the Request header are as follows:

• request_id

The client uses this field in order to relate a request with its response.

The request_id is set to a unique number when a request is being sent.

Reply messages also have a request_id field, in which they include the

identification number of the request that they are responding to. This

means that the client can have replies for more than one request

outstanding at any one time.

• response_flags

The response_flags field can be set to indicate whether or not a reply

message is to be expected from the server-side of an invocation.

• reserved

 68

As part of the CORBA standard, the three bytes of the reserved field

are reserved for future use and are always set to zero for GIOP 1.1 and

1.2.

• target

The target field is a union type, which identifies the object that is the

target of the invocation. It contains a key address, profile address and

reference address.

The key address contains the object_key field, obtained form the

transport specific IOR generated by the target objects server. It is only

meaningful to the server and is not interpreted by the client.

The profile address field is the transport specific GIOP profile selected

from the target’s IOR by the client ORB. It indicates to the server side

ORB the type of transport being used by the client side ORB.

The reference addressing information contains the full IOR of the

target object. It is used by the server to identify the POA and servant of

the object on which an operation is to be invoked.

• operation

This field contains a string that indicates the name of the operation to

be invoked.

• service_context

The service_context field contains ORB service data being passed from

the client to the server. It could contain, for example, data for

transaction services, codeset negotiations services, or bridging

services. This field is not used by this ORB. It is set to the value of 0,

so that it will be skipped over by the ORB at the server side.

In GIOP version 1.1, request bodies immediately follow the Request

Header. In GIOP version 1.2, the message body is always aligned on an

 69

8-octet boundary. Since GIOP specifies that the maximum alignment

for any primitive type is 8, this guarantees that the request body will

not require any re-marshalli ng if the message header or request header

are modified. The data for the request body includes all in and inout

parameters, marshalled as if they were members of a structure, in the

order in which they are specified in the operations OMG IDL

definition, from left to right.

The request body for the operation used to demonstrate this CORBA

ORB:

void outputStudentDetails(inout string name, inout long student_number);

Would be equivalent to the following structure:

struct outputStudentDetails _body{

 string name; //leftmost inout parameter

 long student_number; // rightmost parameter

};

4.7.3.3 Reply Message Format

A Reply message is sent from a server to a client in response to a

client’s Request message, provided that the response_expected flag of

the request is set to true. Since this minimal ORB implements only

client side functionality, it does not need to generate Reply messages to

send to other hosts. However, the ORB implementation is capable of

interpreting and processing Reply messages received from the host

machines of objects that it invokes.

As with Request messages, Reply messages in GIOP versions 1.1 and

1.2 are slightly different. Functionality to interpret both message

versions has been included in the code, but only version 1.2 is

 70

described in detail in this document. For details on version 1.1, see the

CORBA Architecture and Specification document [OMG ' 01] chapter

15.

Like a Request message, a Reply message is also made up of three

parts. The Reply header and body follow the GIOP header, and together

form the GIOP message body.

12-byte GIOP Header Variable-length GIOP Reply Header Variable-length GIOP Reply Body

0 12 12 + length of Reply Header

 Fig 4.6 GIOP Reply message

The following defines the Reply header structure:

Module GIOP {

 Enum ReplyStatusType_1_2 {

 NO_EXCEPTION,

USER_EXCEPTION,

SYSTEM_EXCEPTION,

LOCATION_FORWARD,

LOCATION_FORWARD_PERM,

NEEDS_ADDRESSING_MODE

 };

struct ReplyHeader_1_2 {

Unsigned long request_id;

 ReplyStatusType reply_status;

 IOP::ServiceContextList service_context;

};

};

 71

When a Reply message is received from a server by the Palm client, its

reply_status field value is extracted in order to determine whether or not

the remote operation invocation was successful. For example, a

NO_EXCEPTION value would indicate that the request completed

successfully, while a USER_EXCEPTION request would imply a user

exception.

Extraction of the Request_id field from the Reply message allows the

Palm client to associate that Reply with one of its own Request

messages.

The Reply body would contain the return value of the remote operation,

followed by all of the operations out and inout parameters if

applicable.

As with a Response body, GIOP 1.2 also aligns Reply bodies on an 8-

byte boundary rather than directly after the Reply header.

 72

CHAPTER 5

5. EVALUATION

This chapter critically examines the design and implementation of the

application that was developed for the purposes of this thesis, which

aimed to produce an ORB for operation on a restricted Palm OS

device. Strong areas are highlighted, and areas that offer room for

further development are also discussed, along with suggestions on how

to address them.

5.1 Critique of Design

• The key to designing middleware for the Palm III device lies in

keeping the code small and avoiding the use of complex structures and

mechanisms that eat heavily into memory. This essential design factor

can reason out many of the shortcomings associated with the ORB

design. For example, the use of server side functionality would have

been particularly motivating, especially since it was not included in

PalmORB. This would have given our ORB a definite edge over the

latter. Also, considering the speed at which modern technology is

continually increasing the power of electronic devices, it is only a

matter of time before the notion of a two-way communications, pocket

sized device, will be capitalised on. Had our ORB been developed on

one of the newer Palm devices, such as a Handspring Visor bearing

8MB RAM and a more powerful processor, then implementing server

side capabili ties would have been a lot more feasible. As mentioned on

several occasions throughout this thesis, a valuable alternative was

instead employed, in the form of an extensible design, fashioned to

accommodate the relatively easy addition of server side functionality.

 73

A second viewpoint could however, argue the advantages of

application development on a device with such low memory resources

as the Palm III . This kind of constraint forces the design of a very

compact ORB application. A handheld having more RAM available to

play about with, could have resulted in the development of a looser

middleware application. The restrictions imposed by a 2MB device

forces developers to keep a very close eye on conserving resources.

It is hoped that this ORB implementation will provide the best of two

worlds. That is, a finely tuned and condensed middleware application

with lots of scope for functionality extensions.

It is also worth mentioning that the final code in its compiled form,

occupies 55KB of memory (similar to that of PalmORB which requires

50KB RAM). This implies that the ORB application uses three percent

of the available RAM, leaving a comfortable proportion available for

permanent data storage, other applications, and of course for the

dynamic memory allocation of running applications. The

implementation of server side functionality, which would likely break

the 64KB barrier, resulting in multi-segmentation and the need for

resource intensive runtime libraries, as discussed in section 3.2, might

not leave such a secure proportion of free RAM. Again, for the more

modern Palms, the extra memory required for these runtime libraries

would become less of an issue, and the ORB application could be

divided into as many segments as necessary so that each segment

would be less than 64KB.

5.2 Critique of Implementation

There are several areas of the implementation to be examined here.

• Firstly, much of the implementation effort focused on memory

management issues, since preserving free memory is of major

importance to a handheld device. Techniques employed to facili tate

 74

successful management and freeing up of memory have been discussed

at length in section 4.4. Extensive use is made of references in order to

avoid making multiple copies of data structures that use up valuable

memory resources.

The circular theory refers to the situation where two object references

are left pointing to each other. The result of this, is that neither

reference will ever be broken, and so the two objects will remain in

existence indefinitely. This theory would suggest that using references

to the large extent that this ORB does, could result in the latter kind of

situation, thus giving rise to a memory leak. However, since a Palm III

is an extremely limited device in terms of memory (among other

things), it was deemed more important to try to ensure that measures

were taken to reduce dynamic memory usage as much as possible, by

using references rather than making expensive copies of data

structures. It was also argued that if the circular object problem were to

occur, it would happen only very rarely, and if after an extended period

of time, performance problems were encountered then it would be

possible to clear out the Palm memory by executing a soft reset. This

was regarded as acceptable, since it is believed that such a reset would,

at worst, be required only on very rare occasions.

• Next of all the absence of a network card meant that the Palm

device could not be used in a truly mobile fashion. Instead, the Palm

had to be physically connected to a network enabled device using its

docking cradle. This placed the onus on the second device, to actually

make the socket connection with the server side ORB. To achieve true

mobile data access using the handheld would require a suitable

network card, along with some relatively minor changes to the

transport implementation code.

• Finally, the current ORB implementation consists of a Palm OS

platform specific executable file that must be integrated into each new

 75

client application that requires platform interoperabili ty. This manner

of code replication causes major memory resource problems when

more than one client application needs to use the ORB, undoing all of

the hard work that went into creating resource saving middleware. The

good news is that this problem can be easily remedied. The ORB

application could be saved as a Palm OS shared library class. Such

classes can be used by any number of programs, thus eliminating the

need for a separate copy of the ORB for each client program.

5.3 Overall CORBA ORB Interoperability

The overall ORB implementation was tested with the Orbacus ORB

from Iona technologies. The purpose of this was to see if our ORB

could interoperate with another CORBA compliant ORB. The result

was a success. A client application on the Palm device was able to

remotely invoke an operation on an object that was implemented by a

servant running on the Orbacus ORB. A client request was sent to the

server side, and a reply was subsequently received from the server by

the client, indicating that the invocation had been a success. This result

would also suggest that the ORB should be capable of interoperating

with any CORBA compliant ORB.

 76

CHAPTER 6

6. CONCLUSIONS

The purpose of this chapter is to summarise the work carried out

during the course of the project, along with the knowledge that was

gained with regard to writing CORBA middleware. Ideas for future

work that could be carried out on the ORB application are also

suggested.

6.1 Summary of Work

The ORB implementation was condensed enough to ensure that it

would not consume an undue amount of the Palm III ’s memory. This

left room for the development of other Palm applications, and for

plenty of dynamic memory allocation. It also ensured that there would

be no shortage of free memory for the entry of Palm application data

such as address book data, e-mail messages, meeting minutes etc.

Extensive memory management capabili ties were put in place to help

ensure the maximum possible availabili ty of memory at all times.

ORB stub code was implemented in a way that allowed all client

applications to seamlessly interface with the ORB application. This

meant that the ORB could be used with diverse client applications

without ever requiring any modifications to its code.

Functionality was incorporated to allow the ORB to interpret IOR

strings provided by server side ORBs. This was required so that the

ORB could determine where target objects were hosted.

 77

The GIOP/IIOP protocol was fully implemented to allow the ORB to

interoperate with other CORBA ORBs that use the TCP/IP

communication protocol. The ORB was capable of marshalli ng request

messages, and interpreting replies messages, in order to determine if

requests were successfully honoured. This was demonstrated by

successfully sending a GIOP/IIOP request from this ORB to Iona’s

Orbacus ORB.

6.2 Knowledge Gained

An in depth knowledge of the client side features of the

MinimumCORBA standard was gained during the course of this

project. This also covered low level mechanisms like CDR data

alignment and byte swapping. Preliminary reading of the original

CORBA specification also provided a solid grasp on the principles

behind the complete standard, and the components required to build a

fully compliant CORBA ORB. A high level understanding of the

CORBA services that could be implemented to enhance an ORB was

also achieved.

Tackling the Palm OS style of programming provided good experience

in event-based programming which is very different to purely class

based or procedural programming.

6.3 Future Work

Writing a complete CORBA compliant ORB is an immense task.

Writing a minimal ORB reduces the required effort somewhat, and

leaves plenty of scope for extending functionality, given sufficient

hardware resources.

• The most obvious piece of future work would of course involve

extending the ORB to include server side functionality, particularly as

 78

handheld devices are continually being developed to offer greater

memory resources and processing power.

• Dynamic features like the DII and DSI are omitted from the

MinimumCORBA standard. However, it would be very interesting to

add some dynamic capabili ties to a handheld, and move away from the

idea of a PDA as a device that only makes decisions at design time.

The abili ty to make run time decisions would certainly broaden the use

of handheld devices in large distributed environments, to which new

components are constantly being added. TypeCodes and Any types

could be used to facili tate the implementation of the DII and DSI. The

DII could then flexibly consult an interface repository catalogue, to

invoke on remote objects of which it has no compile time knowledge.

The DSI could use an implementation repository in a similar fashion,

to implement objects not known to it at compile time.

Another area for development could involve incorporating some of the

CORBA Services outlined in section 2.2.2. The Naming Service might

be a useful one to start with. It would be remote from the Palm itself,

and therefore not impact seriously on RAM resources. A Naming

Service would allow a client to find references to all objects that have

been registered with it, eliminating the need for IORs to be explicitly

transferred to the ORB when required for remote invocation. It would

also provide an extra level of indirection, allowing target objects to

easily move around from host to host, without breaking any of the

references to that object, that are held by clients. The only place where

the host destination details would need updating would be at the

Naming Service itself.

• The ORB developed for the purposes of this thesis has been

designed to run solely on Palm OS platforms. It would however, be

nice if the ORB could be ported to other diverse handheld devices,

such as the IPAQ pocket PC. One way of extending this ORB to enable

 79

cross platform portabili ty, would involve utili sing the Wrapper Facade

pattern [Schmidt ' 99] to encapsulate low-level functions and other

Palm OS specific functions and data structures, with object-oriented

class interfaces. Wrapper facades provide methods that forward client

invocations to non-portable functions, so that such functions do not

have to be accessed directly. See figure 6.1.

 Fig 6.1 Wrapper Facade

Another area for investigation would involve implementing interpreted

stubs and skeletons with dynamic qualities, to replace the current

compiled stubs and skeletons that have a static knowledge of the types

they marshal and unmarshal. This interpretation concept is examined

and evaluated in an INFOCOM ‘99 paper [Gokhale ' 99]. The

evaluation determined that the code size for stubs and skeletons that

use interpretive schemes is smaller in size compared to the compiled

form. This point is particularly interesting when considering devices

with limited memory.

As a final note, the time constraints on this thesis did not leave any

time for implementing an IDL compiler specific to this ORB. As it

 80

stands, application programmers using the ORB would be required to

know how to write client application specific stub interfaces, in order

to interface with the ORB. An interesting project would involve

implementing an IDL compiler to remove this burden from the client

application programmer.

 81

7. Bibliography

[Baker ' 97] Sean Baker, CORBA Distributed Objects Using Orbix,

Addison-Wesley, 1997

[Foster ' 00] Lonnon R. Foster, Palm OS Programming Bible, IDG

Books Worldwide, 2000

[Gokhale ' 99] Aniruddha Gokhale, Douglas C. Schmidt, Techniques

for Optimizing CORBA Middleware for Distributed

Systems, INFOCOM March 1999

[Henning ' 99] Michi Henning, Steve Vinoski, Advanced CORBA

Programming with C++, Addison-Wesley, 1999

[Lazzarotto] Patrick Lazzarotto, Bitwise Logical Operations in CA-

Visual Objects,

http://www.cavo.com/newsletter/vo199912/bitwise.pdf

[OMG ' 01] Object Management Group, The Common Object

Request Broker Architecture, February 2001

[Rhodes ' 99] Neil Rhodes, Julie Mc Keehan, Palm Programming, The

Developers Guide, O' Reill y, 1999

[Roman ' 99] Manuel Roman, Ashish Singhai, Dulcineia Carvalho,

Christopher Hess, Roy H. Campbell, Integrating PDAs

into Distributed Systems: 2K and PalmORB, HUC 1999

[Schmidt] Douglas C. Schmidt, TAO Architecture, http://

www.cs.wustl.edu/~schmidt/TAO-architecture.html

[Schmidt ' 98] Douglas C. Schmidt, David L. Levine, Chris Cleeland,

Architectures and Patterns for Developing High-

 82

Performance, Real-time ORB Endsystems, Advances in

Computers 1999

[Schmidt ' 99] Douglas C. Schmidt, Wrapper Façade, A structural

Pattern for Encapsulating Functions within Classes,

C++ Report Magazine Feb 1999

[Schmidt ' 99] Douglas C. Schmidt, Chris Cleeland, Applying a

Pattern Language to Develop Extensible ORB

Middleware, Design Patters in Communication,

Cambridge University Press 2000

