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        Abstract 

 

Typically, Computer Networks are heterogeneous and therefore require 

special middleware applications in order to enable communication 

across their diverse platforms. Middleware applications make the task 

of writing software applications for heterogeneous systems easier, by 

applying platform-independent models and abstractions, and by hiding 

as much low-level complexity as possible without unduly sacrificing 

performance. 

 

The Common Object Request Broker Architecture (CORBA) standard 

provides a set of rules for writing such platform independent 

middleware. CORBA applications require lots of functionality in order 

to unite diverse platforms within a heterogeneous system, and are 

therefore bulky and computation intensive. Generally, they are used on 

machines with considerable memory and processing resources, that can 

cope with them. 

 

The challenge posed by this project was to write a condensed and 

extensible piece of CORBA middleware, that could operate effectively 

on a resource restricted handheld device, thus providing a portable data 

access device, that can conveniently fit into a shirt pocket. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

The original idea behind handheld devices was to produce a small 

(pocket sized), portable, easy to use device that could be used as an 

extension to a less portable desktop computer. Handhelds provide a 

window to desktop data. Once desktop data has been downloaded onto 

a handheld, it can be viewed away from the desk, conveniently and 

speedily. Applications that make most use of this tend to be of the 

personal organiser type. Examples include address books, to do lists 

and memo pads. Email applications can also exploit handhelds in the 

same fashion, so that users do not necessarily have to be sitting at a 

desktop in order to read their electronic mail.   

 

Over the years, handhelds have evolved at quite a high rate. For 

example, the earlier Palm devices that date back to 1996 were very 

primitive, affording only 128KB of RAM, and little or no support for 

communication with other devices. More recent models like the 

Handspring Visor have up to 8MB of RAM and can communicate with 

other devices using Infrared and TCP/IP. 

 

Although handheld devices are still quite limited, it is obvious that they 

are certainly becoming powerful enough for broader and more 

sophisticated applications than those of a mere electronic organiser. 

 

1.1 Future of Handheld Devices in Distributed Environments  

 

One interesting advance for a handheld device is to broaden its 

capabili ties to enable it to operate in a distributed computing 

environment, and to provide mobile data access to an entire system, 

rather than just a single desktop computer. After all, as we enter an age 
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that endeavours to achieve anywhere, anytime, anyhow computing, the 

concept of a portable distributed systems becomes crucial.  

 

Such extended capabili ties transform a handheld device into something 

very powerful indeed. For example, remote invocation could be used to 

control operations located on other devices within a distributed 

computing system. Scope for exciting development is certainly 

provided for. Ponder the notion of a pocket size computer that can 

cross multiple programming languages, and multiple operating 

systems!  

 

1.2 Project Goal 

 

It is apparent that while the handheld device makes a reasonable effort 

in its role as remote desktop window, modern PDAs offer sizeable 

margins for capitalising on their enhanced capacity, so that they can be 

used for something much more powerful. The aim of this project is to 

make a contribution to the task of closing the gap between using a 

handheld as an extension to a desktop computer, and using it as a 

portable access point to a distributed computing environment, or 

indeed fully incorporating it into a distributed system by including 

server side functionality so that the device itself can actually implement 

some of the system functionality. 

 

In particular, the goal of the project is to implement a version of the 

Object Management Groups (OMG) Common Object Request Broker 

Architecture (CORBA) standard middleware to achieve a cross-

platform, cross-programming language ORB implementation that 

enables a Palm III client application to communicate not only with a 

server application built on an identical computing architecture, but also 

with applications built on several different computing architectures. It 

should also enable the intercommunication of applications 

implemented in diverse programming languages. 
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1.3 Roadmap 

 

The remaining chapters in this thesis catalogue the project phases that 

were performed in order to realise the aforementioned goals. 

 

Chapter 2  CORBA and Handheld Devices 

This Chapter introduces handheld devices, their characteristics, and of 

course their limitations. These are things that must be considered when 

designing applications for PDAs. It also introduces the architecture and 

key features of the OMG’s CORBA standard, followed by a discussion 

on how the full CORBA standard can be stripped down to produce a 

minimal but compatible, standard set of implementation rules. The 

latter refers to the MinimumCORBA standard, which is also a 

recognised OMG standard that has been specially constructed for 

CORBA implementations on devices with limited resources. 

 

Chapter 3  Design 

The proposed extensible design of the CORBA ORB middleware, 

which adheres to the MinimumCORBA standard where possible, is 

described here. All omissions from the latter standard are documented 

and explained within this chapter. 

 

Chapter 4 Implementation  

This presents the important ORB implementation features and issues. It 

includes a section on the techniques employed to achieve consistent 

memory management of the Palm III device, which is key to the 

successful implementation of applications on such a limited piece of 

electronics. 

 

Chapter 5 Evaluation 

The evaluation chapter critically analyses the design and the 

implementation of the ORB application 
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Chapter 6 Conclusions 

A summary of the work done and knowledge gained is provided in the 

conclusion. This chapter also puts forward several ideas, which could 

be used to carry out further work on this CORBA ORB. 
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CHAPTER 2 

 

 

2. CORBA AND HANDHELD DEVICES 

 

As already discussed, handheld devices such as those running Palm OS 

provide a useful extension to desktop computers. Even though it is 

indeed possible to perform more complex tasks with handhelds, their 

main purpose is for viewing data and entering small amounts of data, 

rapidly and easily. Typically a desktop user will remain at their desk 

for a prolonged period of time, working on a dedicated task that is 

enabled by their desktop. Handheld devices on the other hand, tend to 

be used as an aside, which can be conveniently and speedily referred 

to, while almost all attention is focused on another core task. For this 

reason, handhelds require the following key features:  

 

• Small Size 

They must be small enough to be conveniently carried anywhere, for 

example, in a shirt pocket. 

 

• Ergonomic Interface 

A handheld device should have a fast and easy to use user interface. A 

handheld user should be able to comfortably and rapidly navigate the 

device during meetings, at business lunches and in situations where 

there is no convenient place to mount the device.  

 

• Desktop Integration 

It should be easy to synchronise a handheld device with a desktop 

computer. This serves several purposes. Firstly, it backs up important 

data. It also enables a user to input large amounts of data comfortably 

and rapidly on a desktop machines using a mouse and keyboard. This 

data can subsequently be transferred electronically to the handheld 
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device. This process avoids lengthy manual data entry on the latter’s 

limited input interface.    

[Foster ' 00] 

 

Clearly, a handheld device can be utili sed valuably in conjunction with 

a desktop computer, to enable the easy use of address book, memo-

pad, and other helpful organisational applications, away from the 

actual desk itself. It is now time to progress towards a discussion on 

the incorporation of handhelds into a distributed environment that 

encompasses multiple platforms, for example Unix or Windows, 

running applications implemented in diverse programming languages 

like Java, COBOL or C/C++. It is also of immense importance to 

highlight the restrictions of handheld devices. These restrictions must 

be considered when endeavouring to implement on a handheld, the 

manner of bulky and intricate, low level middleware code, that enables 

such interoperation.  

 

PalmORB [Roman ' 99], is a CORBA compliant middleware 

application that has been developed at the University of Illi nois, with a 

design that allows it to fit onto limited resource devices. PalmORB 

provides a seamless mobile data access mechanism using handheld 

devices and wireless links. It essentially extends a handheld device 

from something that simply acts as a smart organiser with stripped 

down versions of widely used desktop programs, to a device that is 

seamlessly integrated into a sophisticated distributed computing 

environment. This provides users with a unified image of a distributed 

system from a device that can conveniently fit inside a shirt pocket. 

 

Furthermore, the design of PalmORB, for use within the user centric 

2K distributed computing environment [Roman ' 99], which is also 

under development at the University of Illi nois, makes for what 

appears like an even more powerful handheld device. This unique 

amalgamation enables computation intensive tasks to be processed 

away from the handheld, on a separate machine within the 2K system. 
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Such technology has enabled sophisticated mechanisms such as video 

streaming to run on handheld devices. PalmORB is discussed in further 

detail in section 2.4.2.  

 

The ORB implemented for this thesis is different in that it was 

designed to run entirely on any handheld device, to which it has been 

commissioned, with no outsourcing of complex and demanding tasks. 

Such an ORB facili tates the possibili ty of a flexible handheld device 

that can interoperate within diverse distributed systems. The design is 

discussed in depth in chapter 3. 

 

2.1 Limitations of Handheld Devices  

 

Since the capabili ties of desktop computers and handheld devices 

differ significantly, the approach to designing a handheld application is 

much different to that for a desktop application. The following 

limitations should be kept in mind when designing for a handheld.  

 

• Performance Requirements 

Useful information should be available instantly, since unlike a user at 

a desktop, who is likely to remain at that machine for some time 

performing dedicated tasks, a handheld user is typically performing 

another more important task, and merely requires the handheld for a 

few small but crucial functions, like retrieving a telephone number, or 

jotting down key points at a meeting. Since there is a limit to the 

processing power of a handheld device, it is very important to ensure 

that their applications are small and efficient. Typically, handheld 

applications are implemented in C or C++ for its efficiency.  

 

• Battery and Processor Power 

Since handheld devices rely on batteries for power, they are limited to 

smaller processors than a plugged-in desktop computer. Such a 

processor is not ideal for running computation intensive applications. 
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One possible way to overcome this short coming would be to arrange 

for any intensive number crunching operations to be executed on a 

more powerful machine that is remote from the handheld. This 

approach is taken by PalmORB. 

 

• Limited Memory 

Limited memory space on a handheld means that things like deeply 

recursive routines. Large numbers of global variables, and huge 

dynamically allocated data structures are not handheld device friendly.  

 

• RAM as Permanent Data Storage 

Unlike desktops, where vast amounts of data can be stored on hard 

drives, with a handheld device all data must be stored in RAM, which 

means that storage space is much more limited. The reason for this is 

that data entry and access must be very fast. Space limitations mean 

that handheld applications must be as small as possible, and that 

infrequently used features should be left out. Also, any data to be 

stored persistently on a handheld should be packed tightly before being 

written to memory. The Palm III device used for this project has only 

2MB of RAM. 

 

Other elements that should be kept in mind when writing handheld 

applications include the limited input methods and the small screen 

size. The former element makes it tedious to input large amounts of 

data. For example, the Graffiti handwriting recognition software 

system that comes with PalmOS, is faster than many forms of 

handwriting recognition, but at a top speed of about thirty words per 

minute, it is still too slow for entering large amounts of data. Small 

screen size makes it diff icult to display large amounts of information, 

and complex user interfaces are out of the question. It becomes 

essential to strike a balance between showing an adequate amount of 

information, and keeping the interface looking uncluttered and easy to 

use.  
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Writing CORBA middleware is a difficult process. Obviously, writing 

such middleware for a restricted handheld device adds further 

complications. Such software tends to be bulky, and to involve the use 

of complicated structures and functions, and all other things that spell 

trouble when programming a limited resource, pocket sized device. 

The following subsections take a look at the CORBA standard, and 

then at the MinimumCORBA standard. The latter details ways of 

cutting down the former, in order to come up with a compliant set of 

rules for writing a minimal CORBA ORB, that fits onto a small 

handheld device, while remaining compatible with all other fully 

implemented, compliant CORBA ORBs.  

 

2.2 CORBA Middleware Background 

 

Typically, Computer Networks are heterogeneous. A network may, for 

example, have UNIX workstations for the support of software 

development, or a mainframe to handle database transactions, and of 

course, personal computers that run Windows and provide general 

office tools. 

 

One of the main reasons for this heterogeneity is the change in 

technology over time. The best technologies from different time 

periods tend to end up co-existing on networks. Another reason for 

network heterogeneity is that different combinations of computers, 

operating systems, and networking platforms will work best for 

different subsets of the computing activities performed within diverse 

networks. 

 

Of course, developing software for a heterogeneous distributed system 

is very complicated. The difficulties of application development for 

heterogeneous distributed systems can be eased to a large extent, by 

applying platform-independent models and abstractions to software 
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development, and by hiding as much low-level complexity as possible 

without unduly sacrificing performance.  

 

The Common Object Request Broker Architecture (CORBA) standard 

provides a set of rules for writing such platform independent 

middleware, in order to hide some of the difficulties associated with 

writing applications for distributed and heterogeneous systems. 

[Baker ' 97] 

2.1.1 OMG 

 

The Object Management Group (OMG) was formed in the late 1990s 

to address the problems of developing portable distributed applications 

for heterogeneous systems. The CORBA specification, written and 

maintained by the OMG, supplies a balanced set of flexible 

abstractions and concrete services needed to realise practical solutions 

for the problems associated with distributed heterogeneous computing. 

The CORBA standard has been reviewed on several occasions. The 

most up to date version is CORBA 2.3. [Henning ' 99] 

 

 

2.2.2 CORBA Architecture 

  

Object Request Broker middleware provides a means for writing 

distributed systems that can use different programming languages and 

operating systems, and integrate applications to provide new systems. 

‘On-the-wire’ format is a standard language and platform independent 

message format, that is used when transmitting messages for remote 

object invocation in a distributed system. 

 

The OMG has also defined CORBAservices and CORBAfacilities, which 

essentially hang from the ORB internal infrastructure, to extend the 

built-in support for applications.  
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The purpose of the CORBAservices, is to provide a set of utili ties that 

are useful for objects or low level distributed applications. A subset of 

these services have been grouped into categories and described below. 

 

• Distributed systems-related services: 

Naming Service: to allow a client to find remote objects that have been 

registered with the naming service. This extra level of indirection 

means that target objects can easily be moved from one host to another 

without breaking any of the references to that object that are held by 

clients. The only place where the host destination details will need 

updating, is at the naming service itself.  

 

Event Service: to allow a client or server to send a message or event to 

any number of receivers. 

 

Security Service: to ensure that only suitable privileged users can call 

specified operations on particular objects 

 

• Database-related services: 

Concurrency Service: to provide a locking mechanism to control the 

access to an object by concurrent callers. 

 

Transaction Service: to control the commitment and abortion of 

transactions that span multiple databases, of the same or of different 

types. 

 

Persistent Object Service: to define an abstract framework for how a 

database and an object should communicate to store and restore the 

object to and from the database. 

 

• General services: 
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Licensing Service: to allow an object’s data to be converted to and 

from a stream of bytes, so that it can be copied to another location 

 

Time Service: to find the time of day or to obtain an event call after a 

specified time.  

 

CORBAfacili ties, on the other hand provide a higher level of support 

for applications. The latter refers to a new area of CORBA which has 

been designed to address information management, system 

management, task management and user interfaces. [Baker ' 97] 

 

 

2.2.3 Corba Features  

 

2.2.3.1 IDL 

 

In order to be able to invoke operations on a distributed object, a client 

must first of all know the interface related to the target object. Such an 

interface is composed of the operations it supports and the types of 

data that can be passed to and from those operations. 

 

The CORBA standard defines a set of rules for writing these object 

interfaces. These rules constitute what is known as the Interface 

Definition Language (IDL). IDL is not a programming language like 

C++ or Java, in the sense that objects and applications cannot be 

implemented in IDL. The latter merely allows object interfaces to be 

defined in a fashion that is independent of any particular programming 

language. This facili tates the interoperation of applications 

implemented in different programming languages, which is vital to the 

CORBA goal of supporting heterogeneous systems and integrating 

separately developed applications.  
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2.2.3.2 Language Mappings 

 

CORBA Language mappings specify exactly how the IDL object 

interface definitions are translated into each of the different 

programming languages supported by the CORBA standard. For each 

IDL construct, a language mapping defines which features of the 

programming language are used to make the construct available to 

applications. For example, for languages that support the ‘class’ 

construct, IDL interfaces are mapped to classes, and operations are 

mapped to the member functions of those classes. Implementation 

languages currently supported by the CORBA standard are C, C++, 

Smalltalk, COBOL, Ada and Java. This cross language support enables 

the implementation of different portions of a distributed system in 

different languages. For example, a server application requiring speed 

and efficiency in order to cope with large amounts of data, could be 

implemented in a fast language like C or C++, while its clients could 

be written using languages, such as Java or Visual Basic, which have 

strong support for the development of aesthetically pleasing graphical 

user interfaces.  

 

Most state of the art ORB implementations that use the CORBA 

standard have an IDL compiler associated with them, which generates 

stub and skeleton classes from the IDL definitions. These stubs and 

skeletons, which are discussed in further detail in section 4.7.1, provide 

the link between the client and server applications, and the ORB itself. 

 

2.2.3.3 ORB Interface 

 

The ORB interface provides a point at which a client can interface with 

the underlying ORB for purposes other than sending messages. For 

example, a client can pass an interoperable object reference, section 

2.2.9, for a remote object to the ORB via the ORB interface. Message 

invocations, on the other hand, go through client stubs. 
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2.2.3.4 Operation Invocation and Dispatch Facilities 

 

CORBA applications invoke operations on remote objects by sending 

requests to the target CORBA objects. At the server side, the request is 

processed and dispatched to the correct object adapter and servant 

combination. A reply is then sent back to the requesting client. A 

servant is an entity that implements one or more CORBA objects. 

Object adapters are discussed in further detail in section 2.2.3.5.  

 

The two general approaches to request invocation and dispatch are 

static and dynamic. With static invocation OMG IDL is translated into 

language-specific stubs (client-side request invocation functions) and 

skeletons (server-side request dispatch functions). Dynamic invocation 

is more complicated. It requires the construction and dispatch of 

CORBA requests at run time rather than at compile time. The creation 

and interpretation of requests requires the use of a mechanism such as 

an Interface Repository, discussed in section 2.2.4, to provide run time 

access to IDL definitions, and their interfaces and types. 

 

The latter approach can be useful for applications such as gateways or 

bridges, that receive and forward requests without having compile time 

knowledge of the types and interfaces involved. However, the static 

invocation approach provides a better programming model for 

application development in statically defined languages such as C++. 

 

2.2.3.5 Object Adapters 

 

An object adapter is an object that adapts the interface of one object to 

a different interface which is expected by a caller. It allows a caller to 

invoke requests on an object without knowing that object’s true 

interface. The three principal functions of CORBA object adapters are 

to create object references that allow clients to address objects, to 

ensure that every object is incarnated by a servant, and to direct 

requests to the servant that implements the object to be invoked. Object 
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Adapters facili tate the development of scalable, high performance 

server applications. 

 

Until version 2.1, CORBA contained specifications only for the Basic 

Object Adapter (BOA). The BOA was the original CORBA object 

adapter. CORBA 2.2 introduced the Portable Object Adapter (POA) as 

a means of improving the portabili ty and capabili ties of object adapters 

[OMG ' 01] chapter 11. The POA replaced the BOA.  

 

 

      Fig 2.1 CORBA Architecture diagram 

 

2.2.3.6 Inter-ORB Protocol 

 

In order to be CORBA compliant, an ORB implementation must be 

able to communicate with all other CORBA compliant ORBs, using a 

protocol known as the Internet Inter-ORB Protocol (IIOP). IIOP is 

defined to run on the widely available Transmission Control 

Protocol/Internet Protocol (TCP/IP). IIOP uses a messaging format 

called the General Inter-ORB protocol (GIOP). That is, IIOP is the 

GIOP message format sent over TCP/IP. GIOP can also be layered on 

other transport protocols, including specialised protocols for 

proprietary networks. This means that any CORBA client can 

communicate with any CORBA object to which it has the necessary 
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access privileges. However, to be CORBA compliant, an ORB must be 

able to use IIOP when communicating with objects on other ORBs. 

 

IIOP request packets contain the identity of the target object, the name 

of the operation to be invoked, and the parameters. This information is 

used automatically at the server side to find the target object, and call 

the correct function on it. [Henning ' 99] 

 

 

2.2.4 Interface Repository 

 

An Interface Repository (IFR), can be implemented as a component of 

a CORBA ORB to provide persistent storage for all IDL types such as 

modules and interfaces. The purpose of such a storage facili ty is to 

provide clients with runtime access to an object’s type information 

(and other information about that type), so that a client can invoke an 

operation on a remote object, without always needing to have compile 

time knowledge of the objects characteristics. 

 

A client application, wishing to invoke on a remote object, without 

having compile time knowledge of the objects type information, can 

use a Dynamic Invocation Interface (DII) to do so. The DII accesses 

information stored within the Interface Repository in order to construct 

a request message at runtime. 

 

The IFR provides a set of functions that enable a DII to browse and list 

its contents, and to determine an object’s type information. 

 

A Dynamic Skeleton Interface (DSI) is really the server-side 

equivalent of a DII , in that it allows a server to receive an operation 

invocation on an object, even one whose IDL interface is unknown at 

compile time. Instead of the server being linked with the skeleton code 

for an interface, it can use the DSI which will be informed of an 
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incoming operation invocation. The DSI then determines the identity 

of the object being invoked, the name of the operation, and the types 

and values of each of the parameters being passed. At that stage, it is 

possible for the operation being requested by the client to be executed, 

and the result returned. [Baker ' 97] 

 

 

2.2.5 Implementation Repository 

 

An Implementation Repository allows an ORB to locate and activate 

implementations of objects. The Implementation Repository maintains 

a mapping from a registered server name to the file name of the 

executable code which implements that server. The advantage of 

registering servers with an Implementation Repository, is that if an 

operation invocation is made on a object whose server is not running, 

or if a client attempts to bind to such an object, an ORB can 

automatically launch the server by consulting the Implementation 

Repository to obtain the servers executable code file name. [Baker ' 97] 

 

2.2.6 The Any Type and TypeCodes 

 
The IDL Any type provides a universal type the can hold a value of 

arbitrary IDL type. The Any type allows for values whose types are not 

fixed at compile time, to be sent and received at runtime.  Values of 

type Any maintain type safety, for example, the receiver of an Any type 

must treat its contents exactly as the sender intended. If the sender 

placed a float value in the Any type, the receiver must extract that value 

as a float type, other wise a runtime error will be generated. 

 

A value of type Any consists of two members, see figure 2.2. The first 

member is the actual value contained inside the Any. The second 

member is the TypeCode of the value (described below). [Baker ' 97] 
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    Value of type Any 

CORBA::TypeCode 

Describing the Value 

Actual Value 

 

  Fig 2.2 Structure of a value of type Any 

 

TypeCodes are used to carry runtime descriptions of IDL types. They 

are important for the dynamic aspects of CORBA such as type Any, the 

DII and the DSI. 

 

TypeCodes provide several useful functions. They help to preserve the 

type safety of CORBA, by ensuring that type mismatches are detected 

at run time. In addition, TypeCodes provide introspection. Given an 

Any containing a value whose type is unknown, this unknown type can 

be determined by extracting the TypeCode from the Any and 

interrogating it. Introspection is vital for programs requiring dynamic 

typing. Also, TypeCodes provide an ORB runtime at the receiving end 

with the information required to correctly unmarshal the values off the 

wire.  

 

A TypeCode, figure 2.3, essentially contains two values, the TCKind 

member and a description of the TypeCode. The TCKind is an 

enumeration that records the kind of type that is described by the 

TypeCode, for example a null, float, object reference or struct kind, 

among others. The description of the TypeCode depends on the values of 

TCKind. For example, if the TCKind is a struct, the description contains 

the name of the struct and the name and type of each member of the 

structure.  [Baker ' 97] 
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Value of type TypeCode 

TCKind 

Description 

 

         Fig 2.3 Structure of a TypeCode pseudo-object 

 

An example of an area where Typecodes and the Any type are very 

useful, is in the CORBA Event Service, where it must be possible to 

transport values whose IDL types are unknown to the service. Using 

Any types, the events can simply be values of type Any, and the Event 

Service can then act as a transport for these values without requiring 

compile time knowledge of the actual types contained in them. At the 

receiving end, Typecode introspection can be used in order to determine 

the type contained in the Any value. 

 

2.2.7 ORB Transparencies 

 

Request invocation for an ORB requires the following characteristics: 

 

• Location transparency 

The client should not need to know whether the target object is a local 

object in the same or a different address space, or if is implemented in 

a process on a different machine. Server processes do not necessarily 

remain on the same machine forever, it should be possible for them to 

be moved around from machine to machine without clients becoming 

aware of it. If a server process is moved, new IORs containing the new 

location details should be generated for each of the objects it supports. 

Once the client has obtained the updated IORs, the ORB should simply 

obtain the new server destination details, and use this information to 

send the client request to the correct location. 

 

• Server transparency 
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The client should not need to know which objects are implemented on 

which servers 

 

• Language independence 

The client should not be concerned with what language is used by the 

server. As an example, a C client should be able to call a Java 

implementation without being aware of the fact that it is invoking on a 

Java object.  

 

• Implementation independence 

The client should not need to be aware of how the object 

implementation works on the server. 

 

• Architecture independence 

The client should be unaware of the CPU architecture that is used by 

the server and should be shielded from such details as byte ordering 

and structure padding. This facili tates Palm / desktop communication, 

since Palm uses big-endian while intel based Pentium machines use 

little-endian. 

 

• Operating system independence 

The client should not be required to know what operating system is 

used by the server. The use of the standard on-the-wire message format 

means that a received message can be understood by any operating 

system. 

 

• Protocol independence 

The client should not need to know what communication protocol is 

used to send messages. Generally, if several protocols are available to 

communicate with the server, an ORB should transparently select a 

protocol at run time.  In order to be CORBA compliant, this ORB 

should be able to communicate IIOP messages over the TCP/IP 

protocol. [Henning ' 99] 
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2.2.8 Common Data Representation Format  

 

The Common Data Representation, defined by GIOP, is required for 

the binary layout of IDL types for transmission across a network. 

CDR-encoded data should be tagged to indicate the byte ordering of 

the data, which can be either big-endian or little-endian. This is 

necessary so that both big-endian and little-endian machines can send 

data in their native format, with the onus being on the receiver to 

undertake byte-swapping if it uses a different byte order to the sender. 

 

All data types require well-defined encodings in order to ensure 

interoperabili ty between ORBs. 

 

CDR requires the alignment of primitive data types along their natural 

byte boundaries. For example, short values should be aligned on a 2-

byte boundary, long values on a 4-byte boundary and double values on 

an 8-byte boundary. Strings and wide strings should be aligned as 

unsigned long types (aligned on a 4-byte offset), that indicates the 

length of the string, including its terminating NULL byte, followed by 

the bytes of the string, terminated by a NULL byte. Structures should 

be aligned as a sequence of structure members in the order in which 

they are defined in the IDL. This kind of alignment means that data can 

be marshalled and un-marshalled simply by pointing at a value stored 

in memory in its natural binary representation. This approach avoids 

expensive data copying during marshalli ng. 

 

CDR encoding requires an agreement between sender and receiver 

about the types of data that are exchanged. This agreement is 

established by the IDL definitions that are used to define the interface 

between sender and receiver. If the agreement is violated, the receiver 

has no way to prevent misinterpretation of the data. 
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Because CDR supports both little-endian and big-endian 

representations and aligns data on natural boundaries, it makes 

marshalli ng both simple and efficient. [Henning ' 99] 

 

 

2.2.9 Interoperable Object Reference 

 

Object references are the only way for a client to reach target objects. 

A client cannot communicate unless it holds an object reference. 

References are published by servers in several ways. The most 

common way for a client to acquire object references is to receive them 

in response to an object invocation. In that case, object references are 

parameter values and are no different from any other type of value, 

such as a string. Clients simply contact an object, and the object returns 

one or more object references. In this way, clients can navigate an 

“object web” in much the same way as following hyperlinks. Another 

common way for clients to obtain object references is for servers to 

advertise references in some well-known service, such as the Naming 

Service.  

 

Regardless of the origin of object references, they should always be 

created by the ORB server run time on behalf of the client, to which 

they should subsequently be made available. [Henning ' 99] 

 

 

2.2.10 Server Side of an ORB 

 

Whenever a server application creates an IOR object reference, the 

server-side run time embeds object key information inside the object 

reference, that supports binding of the object to the servant that 

implements it. An IOR is also provided with an IP address (or host 
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name) and TCP port number, to allow a client to correctly locate the 

host in which the remote object is implemented. The contents of an 

IOR are discussed in more detail in section 2.2.9. A server can insert 

its own address and port number into a reference to facili tate direct 

binding. A server can also employ indirect binding, which involves the 

use of an external location broker known as an Implementation 

Repository.  

 

At the server side of a request invocation, the ORB locates the IOR 

information that is encoded within the request message. If the server 

application for the object being invoked is not already running, the 

ORB activates it. The server side object adapter uses the IOR 

information retrieved from the request message, to dispatch the request 

to the servant that incarnates the target object. Any arguments that 

have been provided by the client invocation are also passed to the 

object, and the operation is invoked. If any of the arguments are out or 

inout values, they are returned to the client in a reply message, along 

with the return value. Out and inout parameters are further discussed in 

section 4.4.4. If the call fails, an exception, including any data 

contained in the exception, is returned to the client. 

 

2.3 CORBA Vs. Minimum CORBA 

 

The MinimumCORBA standard describes a subset of the CORBA 

standard, and is designed for systems with limited resources. 

Implementations of the full CORBA standard are too large to fit PDAs 

and other devices with limited resources. Acceptable performance 

levels are also an issue when considering the implementation of a 

CORBA ORB on a small device. Devices with resource restrictions 

require a cut-down version of CORBA, and this is provided by the 

MinimumCORBA standard. 
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The minimumCORBA specification supports all of OMG IDL. This 

allows maximum compatibili ty between minimumCORBA and full 

CORBA applications. 

 

Many of CORBAs features have much value in typical large scale 

CORBA applications, however there are also some cases where these 

features use up so many resources that their inclusion cannot be 

substantiated. Minimum CORBA omits many of the resource intensive 

features that are not typically essential to a basic CORBA 

implementation. However it is of course possible to implement such 

features within a minimal CORBA ORB, if they are required.  

 

Omitting features from CORBA represents a trade-off between 

usabili ty and conserving resources. Obviously, an implementation of 

the full CORBA standard has a greater degree of user-friendliness, but 

minimumCORBA facili tates the conservation of limi ted resources. 

 

The MinimumCORBA specification defines a single profile that 

preserves the key benefits of CORBA (portabili ty of applications and 

interoperabili ty between ORBs). The following goals were recognized 

when choosing this profile: 

 

• MinimumCORBA provides a profile that reserves broad 

applicabili ty within the world of limited resource systems. 

• MinimumCORBA should interoperate easily with CORBA so 

that applications running on either kind of ORB can interoperate as 

part of a larger system. 

• MinimumCORBA should support full IDL so that any CORBA 

application can be executed on either full CORBA or on 

minimumCORBA. 
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• Features that support the dynamic aspects of CORBA are 

omitted, as the systems for which minimumCORBA is targeted tend to 

make commitments at design-time rather than at runtime. 

 

There are several features included within the minimumCORBA 

profile that incur considerable cost, in terms of static ORB size and 

stub code size, even when they are not being used by the applications. 

These include TypeCodes, user and system exception features, and 

inheritance features. [OMG ' 01] chapter 23. 

 

 

2.3.1 MinimumCORBA Omissions 

 

• ORB Interface omissions 

A number of omissions are made from the ORB interface, particularly 

in areas to do with the dynamic features of CORBA. 

 

Operations related to accessing the Interface Repository are omitted 

since the majority of the Interface Repository itself is omitted. 

 

Operations that facili tate runtime type checking are omitted, as 

MinimumCORBA is only required to support design time resolution of 

type checking. 

 

• DII, DSI and dynamic Anys 

The entire Dynamic Invocation Interface, Dynamic Skeleton Interface, 

and dynamic Anys are omitted from minimumCORBA, as they support 

dynamic aspects of CORBA. 

 

• Interface Repository & TypeCodes 

The majority of the Interface Repository is omitted from 

minimumCORBA, as it is part of the dynamically typed programming 

model.  
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However, part of the TypeCode interface is retained for sending and 

receiving IDL types that are known at build time. The latter is used 

with the Interface Repository.  

 

• Portable Object Adapter 

MinimumCORBA supports a subset of the interfaces and policies 

defined by CORBA for the Portable Object Adapter. 

 

Features required for reasons of portabili ty and interoperabili ty are 

included. However, features that support a dynamic mode of POA 

operation are omitted. What remains is sufficient to achieve portabili ty 

and interoperabili ty between different minimumCORBA 

implementations and between minimumCORBA and full CORBA 

implementations. 

 

• Policies 

Only a subset of the server side policies are used in MinimumCORBA. 

Among these policies are all of the default policy values from the 

CORBA specification. In all other cases, only the policies required for 

basic ORB operation, portabili ty and interoperabili ty are included. 

 

• Interoperability 

The minimumCORBA specification has the same conformance criteria 

regarding interoperabili ty as CORBA. See section 2.5. 

 

• Language mappings 

MinimumCORBA implementations must support at least one language 

mapping as defined by the OMG.  

 

The CORBA Architecture and Specification document can be 

consulted for further details on feature omissions within 

MinimumCORBA. [OMG ' 01] chapter 23. 
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       Fig 2.4  Minimum CORBA architecture.  

       DII and DSI have been removed 
 

2.4 Example Implementations of CORBA Middleware 

 

For ill ustration purposes, two very different existing CORBA ORB 

implementations are presented here. TAO is a high-performance, real-

time ORB, which offers a fully CORBA compliant implementation, 

along with some of its own additional features which are added to 

enhance its middleware capabili ties. On the other hand, PalmORB is 

an ORB that implements only a subset of the CORBA standard 

features, in order to produce a middleware application that will fit 

comfortable on a restricted handheld device. 

 

2.4.1 TAO 

While experience would suggest that CORBA is well suited for 

standard RPC style applications that afford “best effort” quality of 

service (QoS), it is not really suited for high-performance, real time 

applications for a number of reasons. For example, there is no QoS 

specification interface to enable clients to indicate the relative 

priorities of their requests, and no QoS enforcement measures to 

prevent low priority requests from blocking the execution of higher 
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priority requests. CORBA also lacks real time programming features 

that could, for example, notify a client when transport level flow 

control occurs. If implemented, this could help prevent network 

congestion problems. TAO is an example of a CORBA ORB 

implementation that attempts to extend its ORB capabili ties in order to 

cater for some of CORBA’s weaknesses. 

 

As well as implementing all of the standard CORBA features discussed 

in chapter 2.2, TAO adds its own enhancements to the CORBA ORB 

specification, to enable clients to specify their QoS requirements to it, 

and to enforce QoS guarantees. TAO also endeavours to provide end-

to-end latency, bandwidth and reliabili ty guarantees to distributed 

applications, by integrating schemes for I/O subsystem architecture 

optimisations, into its middleware. These I/O subsystems are 

responsible for mediating ORB and application access to low-level 

network and OS resources such as device drivers, protocol stacks, and 

CPUs. In addition to all of the latter extras and enhancements, TAO 

also possesses a run-time scheduling service. This service is 

responsible for allocating CPU resources to meet the QoS requirements 

of the applications that share the ORB endsystem. It provides service 

guarantees for real time applications with deterministic QoS 

requirements, and tries to meet service guarantees within the desired 

tolerance, for real time applications with statistical QoS requirements.  

 

TAO’s ORB Core is based on the high-performance, cross platform 

ACE components [Schmidt ' 98] such as Acceptors and Connectors, 

Reactors, and Tasks. These components help to provide a suitable 

connection and concurrency model for predictably sharing the 

collective processing capacity of ORB endsystem components among 

the operations in one or more threads of control. This ORB Core can 

deal with multiple concurrent client requests and server replies, 

sending request and reply messages to the correct destinations, and 

passing requests at the server side to the object adapter for dispatch. 
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  Fig 2.5 Components of the TAO ORB 

 

It is evident that a huge amount of time and resources must have been 

spent on the construction of the TAO ORB. The entire TAO 

implementation took 50 person years to build, and spans over 680,000 

lines of code. Also, TAO’s large footprint requires powerful systems to 

run it. However its high level of sophistication means that is can be 

used in extreme mission critical applications. TAO has been employed 

by Boeing for use within its air traffic control system. Other significant 

users of TAO include Ericsson, Bellcore, Lucent, Motorola and 

Siemens. [Schmidt ' 98]. 

 

2.4.2 PalmORB 

 
The University of Illi nois have constructed PalmORB [Roman ' 99], a 

stripped down implementation of the CORBA standard for use on 

handheld devices. The client side CORBA features have been included 

in this ORB, but all server side functionality has been omitted, since 

the Palm is used mostly as a client. PalmORB is a very compact ORB, 

consisting of only 6000 lines of code, and occupying a mere 50KB of 
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memory in its compiled form. This is ideal for a limited memory 

device. 

 

The 2K distributed environment has also been implemented at Illi nois. 

2K provides a user centric organisation of a distributed system, by 

persistently storing user specific information in objects called an 

‘environments’ . Its operating system has been built on top of another 

fully implemented CORBA ORB (which is in fact, a modified version 

of TAO). The 2K system has been designed to dynamically adapt itself 

to the requirements of specific users that access it, providing each user 

with a customised view of the system that depends on their 

environment details. It also provides adaptable proxies, which can 

alleviate constrained devices from the execution of computation 

intensive software. 2K can decide what the original device and what 

the proxy should do, according to the hardware capabili ties and 

available resources of the device.  

 

One of the key ideas behind the 2K system is that it can be accessed 

from numerous different platforms like Windows NT, Solaris and Palm 

OS. The fact that the Palm OS platform can be used to access 2K, is of 

particular interest here.  Originally a gap existed between PalmORB 

enabled handhelds and the adaptable 2K distributed system with its 

customisable CORBA based services and resources, however a 

bridging application called PalmShell was specially designed to fill 

this gap. The result offers flexible and powerful Palm clients, which 

can dynamically add and remove components from their own tailored 

environments. Not only can Palm applications interoperate as part of 

an extensive cross platform distributed system, providing a mobile data 

access mechanism, but they can also avail of 2K’s adaptable proxies 

which are of particular use to such restricted devices. Proxies enable 

the Palm to run more powerful applications than could otherwise be 

deemed possible for such a small device. 
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PalmORB on its own permits a Palm device to communicate across 

diverse platforms with relatively simple applications. A more 

sophisticated type of application that has been enabled on a Palm 

device as a result of its integration into the 2K environment is that of 

video streaming. 2K proxies take care of the intensive decompression 

of video frames, and also reduce the size, rate and colour of these 

frames to something that can be handled with relative ease by a 

handheld device.  

 

2.5 IIOP and GIOP 

 

GIOP is defined as the basic interoperabili ty framework for CORBA, 

that enables all CORBA compliant ORB communication. GIOP is not 

a concrete protocol that can be used directly to communicate between 

ORBs. Rather, it describes how specific protocols can be created to fit 

within the GIOP framework. The Internet Inter-ORB protocol (IIOP), 

which is specific to TCP/IP, is one solid realisation of GIOP. All 

CORBA 2.0 compliant interoperable ORBs must implement GIOP and 

IIOP, and almost all contemporary ORBs do so. 

 

Not only does ORB interoperabili ty require a network communication 

protocol, it also requires standardised object reference formats. Object 

references are opaque to applications. In fact, they are even partially 

opaque to client side ORBs wishing to invoke on the object that the 

reference refers to, but they also contain information that ORBs need 

in order to establish communication between clients and target objects. 

The standard object reference format, called the Interoperable Object 

Reference (IOR), can store information for almost any inter-ORB 

protocol imaginable. An IOR identifies at least one supported protocol 

and, for each protocol supported, contains information specific to that 

protocol. New protocols can also be added to CORBA without 

breaking existing applications.  
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For IIOP, an IOR contains a host name, a TCP/IP port number, and an 

object key (the opaque part). The object key is used by the portable 

object adapter at the host referred to in the IOR (which is also the host 

that created that IOR), in order to identify the target object at that host 

name and port combination.    

 

There are three versions of GIOP: versions 1.0, 1.1 and 1.2. GIOP and 

IIOP were initially defined by CORBA 2.0. They were revised with 

CORBA 2.1 in order to provide support for message fragmentation. A 

subsequent revision with CORBA 2.3 added support for bi-directional 

communication. The latter enables role reversal of the client and 

server, without the need to open a separate connection that may be 

blocked by a firewall. 

 

GIOP has eight message types.  

 

Message Type Originator 

Request Client 

Reply Server 

Cancel Request Client 

Locate Request Client 

Locate Reply Server 

CloseConnection Server 

MessageError Client or Server 

Fragment Client or Server 

 

        Fig 2.6 GIOP Message types 

 

Request and Reply type messages are by far the most commonly used 

because they implement the basic RPC mechanism.  
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The Request message is sent from the client to the server, and is used 

to invoke an operation or to read or write an attribute. 

 

A Reply message is always sent from the server to the client, and only 

in response to a previous request. It contains the result of an operation 

invocation. If an operation raises an exception, the Reply message 

contains the exception that was raised. [Henning ' 99] 
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CHAPTER 3 

 

 

3.  ORB DESIGN 

 

A good place to start with the discussion of the ORB design would be 

to compare it with the two ORBs that have been ill ustrated in section 

2.4, namely TAO and PalmORB. TAO provides a very advanced and 

complicated QoS oriented CORBA implementation. It implements the 

entire CORBA standard, along with some of its own added features 

and enhancements. While TAO is crucial for real-time mission-critical 

applications, it is obvious that much of its functionality would be 

absolutely superfluous for use on a handheld device, even if it was 

small enough to fit. A much more realistic comparison can be drawn 

between the designs for this ORB and those for PalmORB. By 

omitting server side functionality, PalmORB uses a subset of the 

features provided by the MinimumCORBA standard. It does however 

implement a minimal client side ORB that can invoke operations on 

remote CORBA objects. The ORB design for this thesis includes a 

similar set of ORB features to PalmORB. The main difference being 

that a PalmShell type application design, to integrate the ORB into a 

distributed environment was not included.  

 

3.1 Design Goals 

 

One of the main considerations taken while designing the ORB, was 

that it had to fit comfortably on to a Palm III device with only 2MB of 

memory. This memory had to provide storage for application data, like 

address book information, as well as for dynamic memory. This put 

limits on the size of the executable code that could be downloaded onto 

the handheld device, and on the kind of memory intensive structures 

that could be employed to construct the ORB.  
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Another key design goal was to implement an extensible ORB, to 

which additional middleware functionality could be added with relative 

ease, for future use on a more resourceful Palm device than the Palm 

III , for instance, a Handspring Visor with 8MB. 

 

3.2 Stripped down CORBA standard to fit Palm III Device 

  

• Server-side omission 

In a similar fashion to the PalmORB design, the MinimumCORBA 

client side functionality was included in this ORB, while server side 

functionality was eliminated. The Palm III presents itself as one of the 

more primitive of the Palm OS family of handheld devices, and while 

server side functionality would indeed provide a strong edge on 

PalmORB, it was deemed unsuitable for the device, which would serve 

much better as a client in most situations. A decision was therefore 

made, to concentrate on implementing a solid client side ORB. 

However an extensible ORB design provided a degree of 

compensation, with its aim to enabling the easy addition of extended 

ORB functionality for future use on one of the more modern Palm 

devices. 

 

Another motivation for implementing just a client side ORB, was to 

avoid the 32KB restriction which puts yet further limitations on the 

development of applications for Palm devices. This restriction prevents 

Palm applications whose compiled code exceeds 32KB, from operating 

correctly on the Palm device. The Motorola DragonBall processor that 

is used in Palm OS handhelds uses 16-bit memory addresses, which 

limits it to relative jumps of 32KB. If an application tries to call a 

function located more than 32KB away from it within the same code 

resource, the call will fail. While this 32KB restriction can be lifted to 

an extent, by changing the link order of the source files to avoid jumps 

exceeding 32KB, an absolute limit of 64KB still remains for any code 

resource.  
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Of course, applications exceeding 64KB are also possible for Palm 

handhelds, but their code must be divided into multiple segments so 

that no segment exceeds 64KB in its compiled form. This multi 

segmentation technique also requires the use of special runtime 

libraries that take up even more space. It was very important therefore 

to try to avoid using multi segmentation on the Palm III , in order to 

preserve as much of its 2MB of memory as possible, for permanent 

data storage, and for the dynamic allocation required by running 

applications. Omitting server side functionality helped to keep the 

ORB footprint small. [Henning ' 99] 

 

 

• Omission of DII  

Features that support the dynamic aspects of CORBA are omitted by 

MinimumCORBA, since the systems for which the standard is targeted 

make commitments at design-time rather than runtime. Thus, a 

decision was made to abide by MinimumCORBA and omit the DII .  

[OMG ' 01] chapter 23. 

 

• Omission of dynamic Anys 

The dynamic Any types outlined in section 2.2.6, are omitted from the 

MinimumCORBA standard, and hence they are also excluded from 

this ORB design. 

 

• TypeCode, exception and inheritance omissions 

There are several features included within the minimumCORBA 

profile that incur considerable cost, in terms of static ORB size and 

stub code size, even when they are not being used by the applications. 

Among these features are TypeCodes, user and system exception 

features, and inheritance features.  
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Some limited support for TypeCodes is included as part of the 

MinimumCORBA standard, however the support provided was not 

considered to be of particular use to this ORB. Thus, a decision was 

made to omit TypeCodes entirely from the design, in favor of saving 

on RAM. 

 

System exception features were minimized for this ORB. In any case, 

the ORB code generated had to be quite small in order to fit onto a 

handheld, and small code requires reduced exception processing 

functionality. 

 

The use of inheritance was minimized within the ORB design, 

however there were certain cases where it had to be included, one of 

the main areas being in the design of the stub classes. Inheritance 

provided a clean and easy way of seamlessly linking application 

specific stub code with ORB stub code, so that any application which 

implemented its own stubs could inherit from the ORB’s stubs, and 

hence use the ORB to invoke operations on remote objects. The stub 

design is discussed in further detail in section 3.3. 

 
• Other omissions 

Limited memory space on a handheld means that things like deeply 

recursive routines, large numbers of global variables, and huge 

dynamically allocated data structures are not handheld device friendly. 

The ORB was designed to avoid the over use of global variables, and 

recursive routines. Data structures were designed to be as small as 

possible, only including features that are required for basic ORB 

operation. 

 

Figure 3.1 presents the resulting ORB architecture with excess features 

removed. 
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       Fig 3.1 Client ORB Architecture 

 

 
While server side ORB functionality has not been included in this 

design, figure 3.2 depicts a MinimumCORBA compliant client/server 

architecture. The Portable Object Adapter offers a subset of the 

functionality provided by a full CORBA implementation. Items that 

support the dynamic mode of the POA are omitted, in keeping with the 

minimum standards aim to omit dynamic aspects of CORBA. The 

dynamic skeleton interface is also omitted. 

 

 

            Fig 3.2 Client / Server ORB Architecture 
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3.3 ORB Class Diagrams 

 

The key components of the ORB design have been spread over the 

following four different class diagrams. The design has been broken 

down into these four major areas in order to enhance the clarity of 

presentation.  

 

3.3.1 ORB Initialisation 

 

Before the client can invoke on a remote operation, it calls on the 

methods that initialise an ORB instance. Once the ORB has been 

initialised, the client can call operations that kick-start the ORB into 

processing remote object references, and then marshalli ng a message to 

send to the target object. 

 

 

   Fig 3.3 ORB Initialisation classes 
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• ORB_init is called by the Client application. It initialises the 

ORB run-time and returns a reference to the ORB object. ORB_init 

expects three arguments, argc, argv and orb_identifier. Argc holds the 

number of entries in argv, which in turn holds ORB-specific options. 

Orb_identifier identifies the particular ORB to be initialised. These 

arguments are useful if an application needs to initialise more than one 

ORB run-time environment. For example, it is possible for different 

ORB instances to have different policies and services associated with 

them, each instance being of particular advantage to a possible subset 

of client invocation requests. Argc, argv and orb_identifier, were not fully 

utili sed by the ORB developed for this thesis however, since its client 

application only required a single ORB. However, they were included 

in the code in order to facili tate the easy extension of the ORB, to 

produce multiple different ORB instances for a single client 

application, as mentioned above, for a Palm device with more RAM 

and processing power than the Palm III .  

 

• The ORB_impl class provides the ORB run-time with access to 

an object factory class that can be used by the ORB to create an IOR 

object from an IOR string. This class has been structured to allow for 

the addition of things like more factory classes, the Initial Service 

Manager, and the POA Manager [OMG ' 01] chapter 11, for server side 

functionality, on a more advanced Palm device. 

 

• All proxy objects (i.e. local interfaces that represent remote 

objects, having an identical signature), inherit from the Object class. 

This allows generic operations that expect object types, to accept and 

return object references to these arbitrary proxy interface types. An 

Object instance contains references to the ORB, the IOR it corresponds 

to, and to its Stub Implementation, see section 4.7.1. An Object 

instance can be narrowed to represent its proxy subclass. The proxy 

retains the ORB, IOR and Stub Implementation references, which are 
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used to marshal request messages and to send then to the correct 

destination.  

 

• The ObjectFactory generates IOR objects from their string 

representations. The ORB uses these IOR objects to direct request 

messages to the correct destination. To do this, the ObjectFactory 

implements the StringtoObject operation, that calls the 

CORBAObjectLocator class, which converts the string to an object. This 

conversion process is discussed in further detail in the implementation 

section. 

 

• The RefCount class provides a painless mechanism for keeping 

a count of the number of references that have been made to objects that 

are referenced frequently throughout the ORB code. These reference 

counts can then be monitored, so that objects can be deleted when their 

count drops to zero, thus freeing up valuable memory.  

 

• The RefCountedIOR class contains a reference counted IOR 

object reference. 
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3.3.2 GIOPMessaging 

 

 

    Fig 3.4 GIOP Messaging classes 

 

• The GIOPOutgoingMessage class is responsible for writing 

GIOP request messages to the output stream. These messages are then 

sent from the output stream to the server side ORB.  

 

• The GIOPIncomingMessage class is responsible for reading, 

from the input stream, a GIOP reply message that has been sent to it by 

the server side ORB. This message is then interpreted to see if the 

corresponding remote object request has been executed successfully, or 

if problems were encountered.  
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Details of the GIOP request and reply message formats are discussed in 

detail in section 4.7.3. 

 

• The OutputStream class contains methods to align all data types 

on their natural boundaries when writing them to the output stream. 

This kind of alignment is necessary so that the message can be 

correctly de-marshalled when sent to the server side. The InputStream 

class contains methods that can read naturally aligned data types, from 

reply messages received into the input stream.  

 

Data alignment is discussed in further detail in section 2.2.8. 

 

• The input and output streams use instances of the BufferImpl 

class to store data. This class also contains useful methods and holders 

for determining buffer data positions, in order to facili tate reading of 

messages from, and the writing of messages to, the input and output 

streams.  

 

• The ProfileInfo structure is constructed from the profile 

information retrieved from the IOR string. Profile information is 

included in all client request messages. When a request message is 

picked up by the server side ORB, the POA uses the profile 

information to determine which object the request is intended to invoke 

on.  
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3.3.3 Stub Implementation 

 

   Fig 3.5 Stub Implementation classes 

 
• StudentDetails is the name of the target object that can be 

invoked remotely. The StudentDetails interface class (not shown in 

figure 3.5) on the client side, provides the interface between the client 

application and the stub code that passes a request for a remote object 

to the ORB core. It contains the outputStudentDetails operation that has 

a signature identical to that of the remote operation being targeted.  

 
• The StubImplBase class provides a reference counted base class 

for all stub implementation classes. A stub is a client side function that 

allows a request invocation to be made via a normal looking local 

function call. 
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• The MarshalStubImpl_StudentDetails class implements the client 

application specific proxy code that initiates the passing of a remote 

object invocation request to the ORB. MarshalStubImpl_StudentDetails 

inherits from the StubImpl_StudentDetails class, which provides a 

facili ty for keeping a reference count on the former’s instances. It also 

inherits from the MarshalStubImpl class, which is a generic ORB stub 

class which implements operations that pass a remote object request 

down to the ORB core, for marshalli ng and dispatching. 

 

3.3.4 ORB Downcalling 

 

 

Fig 3.6 Downcall classes 

 



 46   

• The Downcall class gives a request message an identification 

number. It also prompts the writing of a request message to the output 

stream, and subsequently calls the transport layer to send the message 

to the server side ORB. 

 

• Transport_impl implements methods to open, write to, read from, 

and close the Palm device’s serial port. This serial port provides a link 

from the Palm to a remote application that implements a socket 

connection, for IIOP, to a server side ORB, as detailed in section 4.2. 

Transport_impl also interprets replies to request messages that are 

received from the server side ORB, in order to determine whether or 

not the request was successfully honoured. Transport_impl effectively 

acts as the ORBs transport layer, sending messages to, and receiving 

messages from a server side ORB. 

 

3.4 Extensibility of ORB Design 

 

• Section 3.3.1, on the ORB initialisation design, explains how 

the initialisation code was designed in order to facili tate the easy 

extension of the ORB, to enable single clients to use different ORB 

instances to deal with various remote object invocations, that could 

require slightly varying ORB characteristics, during the same 

execution session. 

 

The ORB initialisation classes were also structured to simplify the 

addition of things like more factory classes, the Initial Service 

Manager, and the POA Manager [OMG ' 01] chapter 11, to provide 

server side functionality for a Palm device with more resources 

available to it than the Palm III . 

 

• This ORB was designed to support GIOP 1.1 and 1.2. 

However, the structure of the GIOP class would allow for its easy 

extension, to include future versions of the standard, or indeed to 
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support the older version if required. This would merely require the 

insertion of a new case into the GIOP messaging method, to enable the 

construction of a message under the new version of GIOP. The IOR 

and reply message interpretation code could also be extended in a 

similar fashion. 

 

• At the time of writing, this PalmOS ORB was only capable of 

interpreting IIOP messages related to the TCP/IP communication 

protocol. However it did have the capacity to read IORs containing 

multi protocol data. This was achieved by creating a sequencing data 

structure into which the IOR profile data could be read. Each entry in 

the sequence would contain information relating to a different 

communication protocol. Thus, extending the ORB to interpret 

communication protocols other than just TCP/IP, would simply require 

the insertion of additional C++ functions, to interpret these protocols. 

 

• The transport class was put in place within the ORB code in 

order to implement the serial / socket connection. Replacing the latter 

with a pure socket connection would simply involve modifying the 

transport class code to implement pure socket functions, rather than 

serial functions.  
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CHAPTER 4 

 

 

4. CODE  IMPLEMENTATION 

 

Before delving into the actual implementation details of this ORB 

middleware, it is worth emphasising the fact that implementing such a 

low level application is a particularly frustrating and exhausting task. 

To make matters worse, little previous knowledge of the CORBA 

standard or indeed of the C/C++ programming languages was had prior 

to undertaking the project, which created even more difficulties. 

However, in the end, hard work and persistence overcame these 

obstacles, and all to make life easier for the writers of distributed 

applications! 

 
4.1 Development Environment 

 

As previously mentioned, a Palm III device, with a Motorola 

MC68328 “DragonBall” processor was used to develop the 

middleware for the purposes of this thesis. This provided a big 

challenge, since, while a Palm III possesses much more in terms of 

resources than some of its predecessors, it is still limi ted to a rather 

diminutive 2MB of memory. The ORB had to be made small enough, 

to fit easily onto this Palm III device, while leaving a reasonable 

amount of free memory available for the development of other regular 

Palm applications, and indeed for other client applications to be used in 

conjunction with the ORB itself. 

 

Metrowork’s CodeWarrior for Palm Computing platforms was used for 

the code development. CodeWarrior, which is the official development 

environment supported by Palm Computing, provides a number of 

useful development tools along with the basic source code editor. 

Those used for the purposes of this project included: 
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• Constructor for Palm OS 

This is a resource editor with a graphical interface, that facili tates the 

development of Palm user interface elements. These elements are 

combined with the source code to create the finished product. 

 

• Palm OS Emulator   

This is also known as POSE. It imitates most of the hardware and 

software functions of an actual Palm handheld, and can be downloaded 

onto a desktop computer for use. One of POSE’s most useful features 

is its accurate emulation of the processors used in a range of Palm 

devices (including the Palm III) . This means that real Palm OS 

applications can be loaded directly onto POSE for debugging purposes. 

Debugging on the emulator is faster than on the actual Palm device, 

and of course, it provides worthwhile savings on batteries! 

 

4.2 Network Connectivity 

 

The Palm III device for which the ORB was developed did not possess 

a direct networking facili ty to enable TCP/IP connectivity to other 

computers. In order to emulate such a network connection, a 

combination of serial and TCP/IP communication capabili ties were 

employed. The Palm device was connected to COM1 of a desktop 

computer via its serial cable. TCP/IP Sockets were implemented on the 

desktop to provide the applications on the Palm with indirect access to 

all other TCP/IP enabled devices on the network. It is obvious that the 

latter implementation was not ideal, in that it reduced the mobili ty of 

the Palm since it had to be physically connected to a TCP/IP enabled 

device in order to communicate with other devices on the network. 

However, the ORB was developed to be extensible and to operate on 

any Palm OS device, and so, it would be relatively easy to install i t on 

a larger more up to date, TCP/IP enabled Palm device. 
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4.3 Event Driven Programming 

 

Palm OS applications are event driven, receiving events from the OS 

and either handling them or passing them back to be handled by the OS 

itself. An event structure describes the type of event that has taken 

place (for example, a stylus tap on a screen button), as well as 

information related to that event, such as the screen coordinates of a 

stylus tap. During a normal application launch, execution is passed to 

the application’s event loop, which retrieves events from the event 

queue and dispatches them according to the type of event. The event 

loop passes most events back to the OS, because the system already 

has facili ties for dealing with common tasks such as displaying menus 

or determining what button on the screen was tapped. Those events 

that are not handled by the OS go to the application’s own event 

handler, which either handles the events if they are interesting to the 

application, or passes them back to the event loop. 

 

An application event loop was incorporated into the client application 

that was written to use this ORB. A CodeWarrior facili ty was used to 

generate the bones of an application loop. Functions were then written 

to handle the event loop events that required processing by the 

application. These events were handled in a way that was specific to 

the client application’s requirements. For example, if the remote 

invocation application’s main GUI icon was tapped, that event 

prompted the opening of the main application form, which indicated 

what objects were available for invoking on remotely. If such an object 

was selected, this prompted the initialisation of the ORB. The ORB 

subsequently interpreted that object’s IOR and marshalled a GIOP 

message, which it then sent to the correct destination.  

  

 

4.4 Memory Management for the Palm Device  
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Memory management is very important for a Palm OS device with 

limited memory resources. It is imperative that as much memory as 

possible be available for allocation at all times. The following 

paragraphs outline a number of memory management features that 

were put in place, in order to minimise the possibili ty of memory leaks, 

and to ensure that memory would be freed as soon as it was no longer 

required by either the ORB, or the client application.  

 

4.4.1 Memory Allocation of Strings 

 
For normal desktops, writing to incorrect memory addresses can cause 

dramatic application failures, but won’t normally affect permanently 

stored data, because it resides on a separate storage device from the 

systems main memory. For Palm OS devices on the other hand, the 

same RAM is used for both data storage and for dynamic memory.  

 

Using RAM for storage provides faster access to data, however, a 

rigorous means of memory management had to be availed of to prevent 

the possibili ty of corrupting permanently stored data. Palm OS APIs 

were used for allocating memory for strings, in order to prevent the 

loss of permanent data.  

 

Two different types of memory manipulation functions for Palm OS 

devices are available for allocating memory for strings, and other 

straightforward data structures. These are pointer functions and handle 

functions. The MemPtrNew and MemPtrFree functions are provided to 

allocate and de-allocate pointers, in place of the C standard library 

calls, malloc and free. However, a decision was taken to implement the 

handle functions, based on the following argument: 

 

The Palm operating system has the abili ty to efficiently manage the 

small amount of dynamic RAM it has available, by shifting chunks of 

data around with an aim to creating large chunks of contiguous space. 
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This is obviously preferable to having lots of small fragments of free 

space scattered around the memory, which cannot be used if a new 

data record fails to fit into any of them individually. Pointers use only 

unmoveable memory chunks, and so they do not avail of the latter 

memory management facili ty. However, handle functions allow 

applications to manipulate chunks of memory that may be moved by 

the operating system. If the operating system needs to allocate 

memory, it can move handles around until there is enough contiguous 

memory for the new data to be allocated. New memory can be 

allocated with the MemHandleNew function and freed using the 

MemHandleFree function. Also, because the operating system may 

freely decide to move the memory associated with a handle at any 

time, the handle must first be locked with the MemHandleLock function 

before it can be read from, or written to. While the handle is locked, 

the operating system will not move its memory to another location. 

The handle can subsequently be unlocked using the MemHandleUnlock 

function, when the read or write operation has been completed. This 

approach greatly increases the efficient use of the limited memory on a 

Palm device. [Foster ' 00] 

 

In addition to using Palm OS handles for allocating memory for 

strings, a String_var class has also been implemented to provide a 

memory management  wrapper for char * . [Henning ' 99]. Indeed, the 

internals of the String_var allocation mechanisms utili se memory 

handles to ensure the safe and efficient allocation of memory for 

strings. String_vars can be used in situations where keeping track of 

the number of references to allocated stings is diff icult for the ORB 

programmer. This class stores a pointer to a memory allocated string in 

a private variable, and takes responsibili ty for managing the string’s 

memory. The String_var uses a destructor to ensure de-allocation of 

memory when a string that it wraps goes out of scope.  
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4.4.2 Memory Allocation of Classes 

 
The new and delete operators in C++ facili tate the dynamic allocation 

of memory for structures whose sizes aren’ t known until runtime. 

Since support for the latter operators was included in the version of 

CodeWarrior used to develop this ORB (though not in previous 

versions), they were both used in the allocation and de-allocation of 

memory for class structures. 

 

However, as for string referencing, creating references to and 

removing references from such classes complicates the issue of when 

dynamic memory can be de-allocated. Normally, a programmer must 

keep track of the number of references to an object, so that the object 

can be explicitly de-allocated when there are no remaining references 

to it. This point represents a memory management issue that puts extra 

workload on the programmer, and runs the risk of producing memory 

leaks. 

 

A set of smart pointer classes known as var types, that use the same 

principles as String_var, have been implemented [Henning ' 99], to 

alleviate the burden of having to explicitly de-allocate variable-length 

structures and to make memory leaks less likely. This works by 

associating a _var class with each normal class type. The class provides 

the required functionality, while the _var class acts as a memory 

management wrapper around the former. This means that the _var class 

takes care of de-allocating normal instances at the appropriate times. 

This de-allocation process uses reference counters to keep track of the 

number of references to each of its class instances.  

 

4.4.3 Reference Counting 

 
Each CORBA object has a reference count that indicates the number of 

local references that refer to it. This reference count is incremented 

each time a new local reference to the object is created, and 
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decremented when a local reference to the object is deleted. The idea 

behind this is that once the object’s reference count falls to zero, it is 

automatically de-allocated. This helps to prevent memory leaks. 

 

• _ptr types: When assigning between two _ptr type object  

references , the reference count is incremented explicitly using a 

_duplicate function. A _duplicate function has been implemented for all 

of the objects that require its use. A release function is used to 

explicitly decrement the reference count for _ptr types. 

 

• var types: _var types can handle reference counts 

automatically. Therefore, for objects with associated _var types, the 

burden of explicitly incrementing and decrementing reference types is 

eliminated. In a _var type, the ‘=’ operator is overloaded, so that when 

such a type is assigned a value using the ‘=’ operator, its reference 

count is automatically incremented. Also, when the _var type goes out 

of scope, its reference count is automatically decremented in its 

destructor. [Henning ' 99] 

 

4.4.4 Directional Attributes 

 
In compliance with the CORBA standard, three types of parameter 

attributes were made available to clients who wish to pass parameters 

as part of a remote invocation. These are:  

 

• in 

The in attribute indicates that the parameter is sent from the client to 

the server. 

 

• out 

The out attribute indicates that the parameter is sent from the server to 

the client 

 

• inout 
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The inout attribute indicates a parameter that is initialised by the client 

and sent to the server. The server can modify the parameter value, so 

after the operation completes, the client parameter value may have 

been changed by the server.  

 

Directional attributes are required for two reasons. They are necessary 

in order to know when a parameter must be sent from a client to a 

server or vice versa. This enables some savings in transmission costs. 

Also, directional attributes are required to assist in memory 

management. For example, the client application implemented as part 

of this thesis includes inout string parameters to be read and/or 

modified by the target object on the server side. This means that 

ownership of the string parameters in this application is temporarily 

given to the server so that the server can de-allocate and re-allocate the 

strings in order to modify them. After the invocation however, 

ownership of the strings is returned to the client. To ensure de-

allocation of the string parameters after target object invocation, the 

strings are declared as String_vars, so that they will be automatically 

de-allocated when they go out of scope. 

 

Memory management for operation parameters varies with the 

direction and type of parameter. Directional attributes control whether 

the client or the server is responsible for allocating and de-allocating 

memory for parameters. Memory management details for in and out 

parameters can be obtained from most common CORBA textbooks. 

[Baker ' 97] 

   

All of the above memory management mechanisms help to prevent 

memory leakage. 

 

 

4.5 Use of Templates 
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Template classes, which provide one of C++’s most powerful 

capabili ties for software reuse, were implemented to enable the 

specification, within a single code segment, of an entire range of 

related classes. 

 

At runtime, templates are used to create the _var objects, described in 

section 4.4.2. Rather than reproducing similar _var type code for all 

objects that require a _var wrapper, these objects were divided into 

object groups containing similar characteristics. A template was then 

produced for each such group. At runtime, any object requiring a _var 

wrapper for memory management purposes, is passed into its 

respective _var template class, where it is subsequently assigned a 

private variable that holds a pointer to the class type that the wrapper 

encapsulates. This approach reduced the amount of code that had to be 

written and also minimised the resulting code footprint. 

 

4.6 Big Endian Vs. Little Endian 

 
An important fact that had to be kept in mind during the Palm OS 

program design and implementation, was that all data entering or 

leaving the device was arranged in Motorola’s big-endian byte order. 

In other words, multi-byte data types such as long integers were 

arranged with their most significant bytes at the lowest memory 

address, and vice versa. This detail was very important when 

connecting to Intel-based machines, all of which use little-endian byte 

ordering.  

 

The CORBA standard states that byte swapping should only occur on 

the receiver side of a sent message. A device sending a message, can 

therefore send using its own natural byte-order format, however, a 

special message field is set aside to allow the sender to indicate the 

byte-order that they use. At the receiver end, this byte-order field is 

examined. If the byte-order for sender and receiver are the same, the 

receiver has nothing to worry about, but if the byte-orders are different, 
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then the burden is on the receiver to swap the bytes so that the intended 

message can be correctly interpreted.  

 

A byte swapping facili ty was introduced into the ORB code in order to 

deal with the inevitable byte-ordering problem that arose when the 

Motorola processor attempted to communicate with an Intel device. It 

was implemented using bitwise left shift and right shift operators, and 

the bitwise-inclusive-or operator. [Lazzarotto] 

 

4.7 Request Invocation 

 

A client is an entity that invokes a request on a CORBA object.  

A client application was written for the Palm device. This client 

manipulates a remote object by sending messages to it. The ORB sends 

the message to the object whenever the client invokes an operation on 

the object. To send the message, the client needs to hold an object 

reference (IOR) for the object. The object reference uniquely identifies 

the target object and encapsulates all of the information required by the 

ORB to send the message to the correct destination. IORs are discussed 

in further detail later in this chapter. [Henning ' 99] 

 

The entire request invocation mechanism was implemented to be 

completely transparent to the client, for whom a request to a remote 

object looks like an ordinary method invocation on a local C++ object:  

 

Student->outputStudentDetails(name, student_number); 

 

In the above example, Student corresponds to the remote object, 

outputStudentDetails to the remote operation, and name and 

student_number are the parameters that were passed to the remote 

operation. A client side call to the remote operation (as above), results 

in a call to a client side stub, which in turn passes the request to the 

ORB, which then marshals the object name, operation and parameters, 

and sends the resulting request package to the correct server machine, 
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where it was de-marshalled and serviced. Stubs and skeletons are 

discussed in detail in the following section. [Baker '97] 

 

 

 

      Fig 4.1 Request Invocation 

 

4.7.1 Stubs and Skeletons 

 

To invoke an operation on a remote object the client first instantiates a 

proxy object in its own address space. The proxy is a C++ instance that 

provides the client with an interface to the target object. It contains 

references to the ORB, the IOR and to the stub Implementation. The 

signature on the proxy interface is the same as the signature on the 

implementation of the remote object on the server side.  

 

A reference to the proxy object is analogous to a C++ class instance 

pointer, but denotes an object implemented in a different process, and 

on another machine. When the client invokes an operation on the proxy 

via the proxy reference,  

 

Student->outputStudentDetails(name, student_number); 
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the proxy’s stub then sends a corresponding message to the remote 

servant via the ORB.  

 

MarshalStubImpl_ Student::outputStudentDetails (CORBA::Long& _ob_a0, char*& 

_ob_a1, char*& _ob_a2) 

 

It is actually the ORB that marshals the message, locates the server and 

establishes network connections transparently on behalf of the client. 

[Baker ' 97] 

 

void   MarshalStubImpl_ Student:: outputStudentDetails (CORBA::Long& _ob_a0,  

char*& _ob_a1, char*& _ob_a2) 

{ 

OB::Downcall_var _down = createDowncall("outputStudentDetails ", true); 

           

OB::OutputStreamImpl* _out = _preMarshal(_ob_down); 

               

_out -> write_long(_ob_a0); 

_out -> write_string(_ob_a1); 

_out -> write_string(_ob_a2); 

               

_postMarshal(_ob_down); 

_request(_ob_down); 

} 

 

The above code creates a down call to the ORB to marshal a request 

message. It also writes the parameters that are to be passed to the 

remote object to the output stream. 

 

Once the request data has been marshalled and aligned on the output 

stream buffer, it is then sent by the ORB via a serial / socket 

connection to the server implementing the required object. The 

destination host and port details are obtained from the object’s IOR. 

[Baker ' 97] 

4.7.2 Creating an Object Reference from an IOR 
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In order to use an object reference, the ORB takes the string 

representation of the IOR, that is provided by the server that supports 

the object to be invoked. This IOR string, which is initially in 

hexadecimal format, is then converted into an IOR object using the 

object_to _string ORB operation. This involves firstly converting the 

IOR string from hexadecimal to decimal format. The decimal string is 

then converted to its ASCII representation by casting it to an unsigned 

char type. The contents of the unsigned char string are then used to 

create the IOR object. From this point on, the IOR is in a format that 

can be used directly by the ORB. An IOR object generally contains 

three major pieces of information. In this case, the Repository ID 

information was omitted from the IOR object since an interface 

repository facili ty was not implemented. The two pieces of information 

contained by this minimal ORB’s IOR objects were as follows: 

 

• Endpoint information 

This field provides the ORB with all of the information it needs in 

order to establish a physical connection to the server implementing the 

target object. The endpoint information indicates which protocol to use 

when attempting to invoke an operation on the object represented by 

the IOR. It also contains physical addressing information appropriate 

for a particular transport. Since this ORB uses IIOP only, the endpoint 

information contains an Internet domain name or IP address and a TCP 

port number. The Endpoint Information field could also contain the 

address of an Implementation Repository to be consulted to locate the 

correct server on which the requested object runs. This extra level of 

indirection would enable server processes to move from one machine 

to another, without breaking existing references held by clients. 

However, due to the memory constraints of the Palm III device used 

here, the Implementation Repository was omitted from this ORB, and 

so the Endpoint Information field directly contains the address and port 

number of the server that implements the object. Thus if a server 

process moves location to a different machine, a new IOR containing 
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the new object location details would had to be provided for the Palm 

device.  

 

The CORBA standard also allows information for several different 

protocols and transports to be embedded in the reference, permitting a 

single reference to support more than one protocol. Since the ORB 

developed for our Palm device used only IIOP, the TCP/IP information 

alone was extracted from the IOR for use.  

 

• Object key 

Unlike the endpoint information, which is standardised, the object key 

contains proprietary information. The arrangement and usage of this 

information is unique for different ORB implementations. All ORBs 

have an application-specific object identifier that is embedded inside 

the object key by the server, when the server creates the reference. 

When the object identifier is received by the server-side ORB from a 

client request message, it is used by that ORB and its object adapter (or 

one of its object adapters) to identify the target object in the server, 

upon which an operation invocation had been requested, from within 

the message. The client-side simply sends the key as a transparent 

block of binary data with every request it makes. Since for all intents 

and purposes, the key remains an opaque block of information to the 

client, it does not matter that the reference data is in  proprietary format. 

It is never looked at by any ORB, except the ORB hosting the target 

object (i.e. the very ORB that created the object reference with the 

proprietary object key in the first place). 

 

    Object Reference 

    

 

 

 

 

Fig 4.2 Object Reference contents 

Repository ID  Endpoint Info Object Key 
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The following pseudo IDL shows how the information required to send 

a request to the correct target object, is encoded within an IOR object 

that has been generated by the ORB from an IOR string. 

 

module IOP{    

 

 typedef unsigned long  ProfileId; 

 const ProfileId   TAG_INTERNET_IOP=0; 

const ProfileId   TAG_MULTIPLE_COMPONENTS=1; 

 

 struct TaggedProfile{ 

  ProfileId   tag; 

Sequence<octet>  profile_data; 

}; 

 

 struct IOR{ 

  string   type_id; 

  TaggedProfile  profile 

}; 

 

}; 

 

[OMG ' 01] chapter 13 

 

struct IOR, which is the main data type within the generated IOR object, 

defines the basic encoding of an IOR as a string followed by a 

sequence of profiles. The type_id string contains the interface type of 

the IOR in a standard CORBA format. The profiles field specifies the 

IIOP protocol profile that is to be used to send all messages to the 

object referenced by the IOR. An ORB that supports multiple profiles 

could contain a sequence of protocol profiles within the profiles field, 

one for each protocol supported by the target object and the client 

itself. 

 

This ORB supports only IIOP, so the type id is followed by a single 

profile containing a structure of type TaggedProfile. A tagged profile 

contains a tag field and an octet sequence that contains the profile body 
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identified by the tag. As an example, for IIOP 1.1 and IIOP 1.2, the tag 

is TAG_INTERNET_IOP (zero), and the profile_data member encodes 

a structure of type IIOP::ProfileBody as shown below. 

 

Module IIOP{    

 

 struct Version { 

  octet major; 

  octet minor; 

 }; 

 

 struct ProfileBody_1_1 { 

  Version     iiop_version; 

  string      host; 

  unsigned short     port; 

  sequence<octet>    object_key; 

  sequence<IOP::TaggedComponent>  components; 

}; 

 

}; 

 

[OMG ' 01] chapter 15 

 

This ORB supports CORBA versions 1.1 and 1.2. The Version field 

enables the ORB to identify what version of  CORBA generated the 

IOR. This information is used by the ORB when deciding how to 

marshal a request to a server object.  

 

The object host and port information is used to send CORBA requests 

over TCP/IP. And, as already mentioned, the object_key field, which is 

included in all CORBA request messages, contains information on how 

to identify the POA and that servant that implements the object at the 

server side.  

 

 

4.7.3 Implementation of IIOP and GIOP 
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Support for GIOP and IIOP versions 1.1 and 1.2 was implemented 

within the ORB code. The implementation followed the CORBA 

specification exactly. This support facili tates the transformation of IOR 

strings to IOR objects, and the generation of request messages, for 

inter-ORB communication using either version. It also facili tates, for 

both versions, the interpretation of reply messages received from the 

server-side, which determines if a remote operation invocation has 

been successful or not. The CORBA Architecture and Specification 

[OMG ' 01] can be consulted for details of version 1.0 of the latter 

standards, if desired. 

 

Figure 4.3 shows the basic structure of a GIOP 1.1 or GIOP 1.2 

message. 

 

12-byte GIOP Message Header Variable-length GIOP Message Body 

0 0            12  

 

              Fig 4.3 Basic structure of a GIOP Message 

 

Request and Reply type messages only, were implemented since these 

two are by far the most commonly used, and because they alone 

implement the basic RPC mechanism. Also, support for fragmentation 

(introduced in GIOP 1.1) and for bi-directional communication (GIOP 

1.2) was omitted. However, it was felt that given more time, and a 

more powerful PalmOS based PDA, both of these features could have 

been implemented without undue effort.  

 

4.7.3.1 GIOP Message Header 

 

The following describes the implementation of the message header in 

pseudo IDL. It is the same for versions 1.1 and 1.2: 

 

module GIOP { 

 

 struct Version { 
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octet  major; 

  octet  minor; 

}; 

 

 enum MsgType_1_1 { 

  Request 

}; 

 

struct MessageHeader_1_1 { 

 char    magic[4]; 

 Version  GIOP_version; 

Octet   flags; 

Octet    message_type; 

Unsigned long  message_size; 

}; 

 

}; 

 

[OMG ' 01] chapter 15 

 

G I O P 1 2 0 0 4-Byte Message Size 

0         1          2          3           4         5           6          7          8 

     

Fig 4.4 GIOP 1.2 message header 

 

The message header layout is as follows: 

 

• The first 4 bytes of a message header are always the characters 

GIOP, which indicate that the message is a GIOP message. They also 

serve to define message boundaries. 

• The 4th and 5th bytes are the major and minor version numbers 

represented as 8-bit binary values. 

 

• The 6th byte is a flag byte. The least significant bit of the flag 

byte is used to specify whether the remainder of the message is in big-

endian or little-endian format. The Palm device uses big-endian 

(indicated by a 0). The second-least significant bit indicates whether or 

not a message uses fragmentation. A value of 1 indicates that the 
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message is a fragment of a larger message, and that there are more 

fragments to follow. A value of zero (as in the above case, figure 4.4) 

indicates that the message is a complete message or that it is the last 

message in a sequence of fragments. 

 

• The 7th byte indicates the message type. For example, the value 

0 indicates a Request message. 

 

• Bytes 8-11 contain a 4-byte unsigned value that indicates the 

size of the remainder of the message, which constitutes the GIOP 

message body, (e.g. for a Request message, these bytes would indicate 

the size of the Request Header and the Request Body combination).  

 

The GIOP message body consists of the message header and body 

type, that are specific to the type of message that it encompasses. For 

example, for a Request message, the GIOP message body consists of 

the Request message Header and the Request message Body.   

 

The implementation of Request and Reply messages is described in the 

following subsections. 

 

4.7.3.2 Request Message Format  

 

The Request message formats for GIOP 1.2 and 1.1 differ slightly, 

however the ideas behind both are similar. For this reason, a 

description of how the more recent version 1.2 was implemented, has 

been included in this document, while details of the implementation of 

version 1.1 have been omitted. If desired, they can be obtained form 

the CORBA Architecture and Specification document [OMG ' 01]. 

 

The Request message consists of three parts as shown in figure 4.5.  

 

12-byte GIOP Header Variable-length GIOP Request Header Variable-length GIOP Request Body 

0    12                 12 + length of Request Header 



 67   

 

    Fig 4.5 GIOP Request message 

 

The Request message, which contains a Request header and a Request 

body, follows the GIOP header. The Request header is structured as 

follows: 

 

Module GIOP { 

 

 struct RequestHeader_1_2 { 

   

unsigned long   request_id; 

octet    response_flags; 

octet    reserved[3]; 

TargetAddress   target; 

string    operation; 

IOP::ServiceContextList  service_context; 

}; 

}; 

[OMG ' 01] chapter 15 

 

The fields within the Request header are as follows: 

 

• request_id 

The client uses this field in order to relate a request with its response. 

The request_id is set to a unique number when a request is being sent. 

Reply messages also have a request_id field, in which they include the 

identification number of the request that they are responding to. This 

means that the client can have replies for more than one request 

outstanding at any one time.  

 

 

• response_flags 

The response_flags field can be set to indicate whether or not a reply 

message is to be expected from the server-side of an invocation. 

 

• reserved 
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As part of the CORBA standard, the three bytes of the reserved field 

are reserved for future use and are always set to zero for GIOP 1.1 and 

1.2. 

 

• target 

The target field is a union type, which identifies the object that is the 

target of the invocation. It contains a key address, profile address and 

reference address. 

 

The key address contains the object_key field, obtained form the 

transport specific IOR generated by the target objects server. It is only 

meaningful to the server and is not interpreted by the client.  

 

The profile address field is the transport specific GIOP profile selected 

from the target’s IOR by the client ORB.  It indicates to the server side 

ORB the type of transport being used by the client side ORB. 

 

The reference addressing information contains the full IOR of the 

target object. It is used by the server to identify the POA and servant of 

the object on which an operation is to be invoked. 

 

• operation 

This field contains a string that indicates the name of the operation to 

be invoked.  

 

• service_context 

The service_context field contains ORB service data being passed from 

the client to the server. It could contain, for example, data for 

transaction services, codeset negotiations services, or bridging 

services. This field is not used by this ORB. It is set to the value of 0, 

so that it will be skipped over by the ORB at the server side. 

 

In GIOP version 1.1, request bodies immediately follow the Request 

Header. In GIOP version 1.2, the message body is always aligned on an 
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8-octet boundary. Since GIOP specifies that the maximum alignment 

for any primitive type is 8, this guarantees that the request body will 

not require any re-marshalli ng if the message header or request header 

are modified. The data for the request body includes all in and inout 

parameters, marshalled as if they were members of a structure, in the 

order in which they are specified in the operations OMG IDL 

definition, from left to right. 

 

The request body for the operation used to demonstrate this CORBA 

ORB: 

 

void outputStudentDetails(inout string name, inout long student_number); 

 

Would be equivalent to the following structure: 

 

struct outputStudentDetails _body{ 

 

 string  name;  //leftmost inout parameter 

 long  student_number; // rightmost parameter 

 

}; 

 

4.7.3.3 Reply Message Format  

 

A Reply message is sent from a server to a client in response to a 

client’s Request message, provided that the response_expected flag of 

the request is set to true. Since this minimal ORB implements only 

client side functionality, it does not need to generate Reply messages to 

send to other hosts. However, the ORB implementation is capable of 

interpreting and processing Reply messages received from the host 

machines of objects that it invokes. 

 

As with Request messages, Reply messages in GIOP versions 1.1 and 

1.2 are slightly different. Functionality to interpret both message 

versions has been included in the code, but only version 1.2 is 
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described in detail in this document. For details on version 1.1, see the 

CORBA Architecture and Specification document [OMG ' 01] chapter 

15. 

 

Like a Request message, a Reply message is also made up of three 

parts. The Reply header and body follow the GIOP header, and together 

form the GIOP message body. 

 

 

12-byte GIOP Header Variable-length GIOP Reply Header Variable-length GIOP Reply Body 

0    12                 12 + length of Reply Header 

 

 Fig 4.6 GIOP Reply message 

 

The following defines the Reply header structure: 

 

Module GIOP { 

 

 Enum ReplyStatusType_1_2 { 

 

  NO_EXCEPTION,  

USER_EXCEPTION, 

SYSTEM_EXCEPTION, 

LOCATION_FORWARD, 

LOCATION_FORWARD_PERM, 

NEEDS_ADDRESSING_MODE 

 

 }; 

 

struct  ReplyHeader_1_2 { 

 

Unsigned long   request_id; 

 ReplyStatusType  reply_status; 

 IOP::ServiceContextList service_context;  

 

}; 

 

}; 
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When a Reply message is received from a server by the Palm client, its 

reply_status field value is extracted in order to determine whether or not 

the remote operation invocation was successful. For example, a 

NO_EXCEPTION value would indicate that the request completed 

successfully, while a USER_EXCEPTION request would imply a user 

exception. 

 

Extraction of the Request_id field from the Reply message allows the 

Palm client to associate that Reply with one of its own Request 

messages. 

 

The Reply body would contain the return value of the remote operation, 

followed by all of the operations out and inout parameters if 

applicable. 

 

As with a Response body, GIOP 1.2 also aligns Reply bodies on an 8-

byte boundary rather than directly after the Reply header. 
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CHAPTER 5 

 

 

5. EVALUATION 

 
This chapter critically examines the design and implementation of the 

application that was developed for the purposes of this thesis, which 

aimed to produce an ORB for operation on a restricted Palm OS 

device. Strong areas are highlighted, and areas that offer room for 

further development are also discussed, along with suggestions on how 

to address them. 

 

5.1 Critique of Design 

 

• The key to designing middleware for the Palm III device lies in 

keeping the code small and avoiding the use of complex structures and 

mechanisms that eat heavily into memory. This essential design factor 

can reason out many of the shortcomings associated with the ORB 

design. For example, the use of server side functionality would have 

been particularly motivating, especially since it was not included in 

PalmORB. This would have given our ORB a definite edge over the 

latter. Also, considering the speed at which modern technology is 

continually increasing the power of electronic devices, it is only a 

matter of time before the notion of a two-way communications, pocket 

sized device, will be capitalised on. Had our ORB been developed on 

one of the newer Palm devices, such as a Handspring Visor bearing 

8MB RAM and a more powerful processor, then implementing server 

side capabili ties would have been a lot more feasible. As mentioned on 

several occasions throughout this thesis, a valuable alternative was 

instead employed, in the form of an extensible design, fashioned to 

accommodate the relatively easy addition of server side functionality. 
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A second viewpoint could however, argue the advantages of 

application development on a device with such low memory resources 

as the Palm III . This kind of constraint forces the design of a very 

compact ORB application. A handheld having more RAM available to 

play about with, could have resulted in the development of a looser 

middleware application. The restrictions imposed by a 2MB device 

forces developers to keep a very close eye on conserving resources.  

 

It is hoped that this ORB implementation will provide the best of two 

worlds. That is, a finely tuned and condensed middleware application 

with lots of scope for functionality extensions. 

 

It is also worth mentioning that the final code in its compiled form, 

occupies 55KB of memory (similar to that of PalmORB which requires 

50KB RAM). This implies that the ORB application uses three percent 

of the available RAM, leaving a comfortable proportion available for 

permanent data storage, other applications, and of course for the 

dynamic memory allocation of running applications. The 

implementation of server side functionality, which would likely break 

the 64KB barrier, resulting in multi-segmentation and the need for 

resource intensive runtime libraries, as discussed in section 3.2, might 

not leave such a secure proportion of free RAM. Again, for the more 

modern Palms, the extra memory required for these runtime libraries 

would become less of an issue, and the ORB application could be 

divided into as many segments as necessary so that each segment 

would be less than 64KB. 

 

5.2 Critique of Implementation 

 
There are several areas of the implementation to be examined here.  

 

• Firstly, much of the implementation effort focused on memory 

management issues, since preserving free memory is of major 

importance to a handheld device. Techniques employed to facili tate 
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successful management and freeing up of memory have been discussed 

at length in section 4.4. Extensive use is made of references in order to 

avoid making multiple copies of data structures that use up valuable 

memory resources. 

 

The circular theory refers to the situation where two object references 

are left pointing to each other. The result of this, is that neither 

reference will ever be broken, and so the two objects will remain in 

existence indefinitely. This theory would suggest that using references 

to the large extent that this ORB does, could result in the latter kind of 

situation, thus giving rise to a memory leak. However, since a Palm III 

is an extremely limited device in terms of memory (among other 

things), it was deemed more important to try to ensure that measures 

were taken to reduce dynamic memory usage as much as possible, by 

using references rather than making expensive copies of data 

structures. It was also argued that if the circular object problem were to 

occur, it would happen only very rarely, and if after an extended period 

of time, performance problems were encountered then it would be 

possible to clear out the Palm memory by executing a soft reset. This 

was regarded as acceptable, since it is believed that such a reset would, 

at worst, be required only on very rare occasions. 

 

• Next of all the absence of a network card meant that the Palm 

device could not be used in a truly mobile fashion. Instead, the Palm 

had to be physically connected to a network enabled device using its 

docking cradle. This placed the onus on the second device, to actually 

make the socket connection with the server side ORB. To achieve true 

mobile data access using the handheld would require a suitable 

network card, along with some relatively minor changes to the 

transport implementation code. 

 

• Finally, the current ORB implementation consists of a Palm OS 

platform specific executable file that must be integrated into each new 



 75   

client application that requires platform interoperabili ty. This manner 

of code replication causes major memory resource problems when 

more than one client application needs to use the ORB, undoing all of 

the hard work that went into creating resource saving middleware. The 

good news is that this problem can be easily remedied. The ORB 

application could be saved as a Palm OS shared library class. Such 

classes can be used by any number of programs, thus eliminating the 

need for a separate copy of the ORB for each client program.  

 

5.3 Overall CORBA ORB Interoperability 

 
The overall ORB implementation was tested with the Orbacus ORB 

from Iona technologies. The purpose of this was to see if our ORB 

could interoperate with another CORBA compliant ORB. The result 

was a success. A client application on the Palm device was able to 

remotely invoke an operation on an object that was implemented by a 

servant running on the Orbacus ORB. A client request was sent to the 

server side, and a reply was subsequently received from the server by 

the client, indicating that the invocation had been a success. This result 

would also suggest that the ORB should be capable of interoperating 

with any CORBA compliant ORB.  
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CHAPTER 6 

 

 

6. CONCLUSIONS 

 

The purpose of this chapter is to summarise the work carried out 

during the course of the project, along with the knowledge that was 

gained with regard to writing CORBA middleware. Ideas for future 

work that could be carried out on the ORB application are also 

suggested. 

 

6.1 Summary of Work 

 

The ORB implementation was condensed enough to ensure that it 

would not consume an undue amount of the Palm III ’s memory. This 

left room for the development of other Palm applications, and for 

plenty of dynamic memory allocation. It also ensured that there would 

be no shortage of free memory for the entry of Palm application data 

such as address book data, e-mail messages, meeting minutes etc.  

 

Extensive memory management capabili ties were put in place to help 

ensure the maximum possible availabili ty of memory at all times. 

 

ORB stub code was implemented in a way that allowed all client 

applications to seamlessly interface with the ORB application. This 

meant that the ORB could be used with diverse client applications 

without ever requiring any modifications to its code.  

 

Functionality was incorporated to allow the ORB to interpret IOR 

strings provided by server side ORBs. This was required so that the 

ORB could determine where target objects were hosted. 
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The GIOP/IIOP protocol was fully implemented to allow the ORB to 

interoperate with other CORBA ORBs that use the TCP/IP 

communication protocol. The ORB was capable of marshalli ng request 

messages, and interpreting replies messages, in order to determine if 

requests were successfully honoured. This was demonstrated by 

successfully sending a GIOP/IIOP request from this ORB to Iona’s 

Orbacus ORB. 

 

6.2 Knowledge Gained 

 

An in depth knowledge of the client side features of the 

MinimumCORBA standard was gained during the course of this 

project. This also covered low level mechanisms like CDR data 

alignment and byte swapping. Preliminary reading of the original 

CORBA specification also provided a solid grasp on the principles 

behind the complete standard, and the components required to build a 

fully compliant CORBA ORB. A high level understanding of the 

CORBA services that could be implemented to enhance an ORB was 

also achieved.  

 

Tackling the Palm OS style of programming provided good experience 

in event-based programming which is very different to purely class 

based or procedural programming.  

 

 

6.3 Future Work 

 
Writing a complete CORBA compliant ORB is an immense task. 

Writing a minimal ORB reduces the required effort somewhat, and 

leaves plenty of scope for extending functionality, given sufficient 

hardware resources. 

 

• The most obvious piece of future work would of course involve 

extending the ORB to include server side functionality, particularly as 
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handheld devices are continually being developed to offer greater 

memory resources and processing power. 

 

• Dynamic features like the DII and DSI are omitted from the 

MinimumCORBA standard. However, it would be very interesting to 

add some dynamic capabili ties to a handheld, and move away from the 

idea of a PDA as a device that only makes decisions at design time. 

The abili ty to make run time decisions would certainly broaden the use 

of handheld devices in large distributed environments, to which new 

components are constantly being added. TypeCodes and Any types 

could be used to facili tate the implementation of the DII and DSI. The 

DII could then flexibly consult an interface repository catalogue, to 

invoke on remote objects of which it has no compile time knowledge. 

The DSI could use an implementation repository in a similar fashion, 

to implement objects not known to it at compile time. 

 

Another area for development could involve incorporating some of the 

CORBA Services outlined in section 2.2.2. The Naming Service might 

be a useful one to start with. It would be remote from the Palm itself, 

and therefore not impact seriously on RAM resources. A Naming 

Service would allow a client to find references to all objects that have 

been registered with it, eliminating the need for IORs to be explicitly 

transferred to the ORB when required for remote invocation. It would 

also provide an extra level of indirection, allowing target objects to 

easily move around from host to host, without breaking any of the 

references to that object, that are held by clients. The only place where 

the host destination details would need updating would be at the 

Naming Service itself. 

 

• The ORB developed for the purposes of this thesis has been 

designed to run solely on Palm OS platforms. It would however, be 

nice if the ORB could be ported to other diverse handheld devices, 

such as the IPAQ pocket PC. One way of extending this ORB to enable 
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cross platform portabili ty, would involve utili sing the Wrapper Facade 

pattern [Schmidt ' 99] to encapsulate low-level functions and other 

Palm OS specific functions and data structures, with object-oriented 

class interfaces. Wrapper facades provide methods that forward client 

invocations to non-portable functions, so that such functions do not 

have to be accessed directly. See figure 6.1.  

 

 

   Fig 6.1 Wrapper Facade 

 

 

Another area for investigation would involve implementing interpreted 

stubs and skeletons with dynamic qualities, to replace the current 

compiled stubs and skeletons that have a static knowledge of the types 

they marshal and unmarshal. This interpretation concept is examined 

and evaluated in an INFOCOM ‘99 paper [Gokhale ' 99]. The 

evaluation determined that the code size for stubs and skeletons that 

use interpretive schemes is smaller in size compared to the compiled 

form. This point is particularly interesting when considering devices 

with limited memory. 

 

As a final note, the time constraints on this thesis did not leave any 

time for implementing an IDL compiler specific to this ORB. As it 
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stands, application programmers using the ORB would be required to 

know how to write client application specific stub interfaces, in order 

to interface with the ORB. An interesting project would involve 

implementing an IDL compiler to remove this burden from the client 

application programmer. 
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