CORBA Middlewarefor a Palm Operating
System

Mary Connolly
B.E.

A dissertation submitted to the University of Dublin,
in partial fulfill ment of the requirements for the degreeof

Master of Sciencein Computer Science

September 2001

Declar ation

| dedare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not previously been

submitted as an exercise for adegreeat this or any other university.

Signed:

Mary Connolly
September 2001

Permission to lend and/or copy

| agreethat Trinity College Library may lend or copy this dissertation
upon request.

Signed:

Mary Connally
September 2001

Acknowledgements

Many thanks to my supervisor, Mr. Alexis Donnelly, for his guidance
and advicethroughout the course of this projed.

Thanks to Raymond for his willi ngnessto help me with any questions
and problems that | had.

Thanks to the other members of the MSc dassfor their friendship and
for making the yea so enjoyable.

Finaly, a spedal thanks to my family and friends whose mnstant
support throughout the yearwas much appedated.

Abstract

Typicdly, Computer Networks are heterogeneous and therefore require
spedal middeware gplicaions in order to enable communication
aaosstheir diverse platforms. Middleware gplicaions make the task
of writing software gplicaions for heterogeneous g/stems easier, by
applying platform-independent models and abstradions, and by hiding
as much low-level complexity as possble without unduly saaificing

performance

The Common Objed Request Broker Architedure (CORBA) standard
provides a set of rules for writing such platform independent
middeware. CORBA applications require lots of functionality in order
to unite diverse platforms within a heterogeneous g/stem, and are
therefore bulky and computation intensive. Generally, they are used on
madines with considerable memory and processng resources, that can

cope with them.

The dalenge posed by this projed was to write a condensed and
extensible pieceof CORBA middieware, that could operate dfedively
on aresourcerestricted handheld device thus providing a portable data

access device that can conveniently fit into a shirt pocket.

Table of Figures

Fig 2.1 CORBA Architedure diagramcccueeveveiiieeeeennnnneennns 15
Fig 2.2 Structure of avalue of type Any..........cooveveviieiiiiiieeeeeieeees 18
Fig 2.3 Structure of a TypeCode pseudo-objedccccovevvevnnnenes 19
Fig 2.4 Minimum CORBA architedure............cccocevvviiieiiiiieeeenennnn. 27
Fig 2.5 Components of the TAO ORBcooovvviiiiiiiiiieeeeeiie e 29
Fig 2.6 GIOP MESSAQETYPES. ...cvvvieeeieeeeei e e eetee e et e et e e 32
Fig 3.1 Client ORB Architedure............cccooevvviiiiiiiiieeee e, 38
Fig 3.2 Client / Server ORB Architedure...........cccooeeevvvneeeerennnnnnn. 38
Fig 3.3 ORB Initialisation ClaSSeSvevveviieeiiii e ee e 39
Fig 3.4 GIOP Messaging Classes.......ooovvvvveviiiiieeeeeee e 42
Fig 3.5 Stub Implementation ClasSeSccvvvvieeiiiiieciiieee e 44
Fig 3.6 Downcall ClaSSes.........ccvvviiiiiiiiieiecee e 45
Fig 4.1 Request INVOCAION...........ooevuueieieiieeeeeee et e e e e 58
Fig 4.2 Objed Referencecontents............cccueeeeveiiiivieeineeeeiiieeeenns 61
Fig 4.3 Basic structure of aGIOP MESSAgEccvvvveveiieeeiiieeeennnn 64
Fig4.4 GIOP 1.2 message headercoovvvviiiiiiiii i 65
Fig 4.5 GIOP Request MESSATEuevvreneereeieeeerieeeeeeanaeeennnneeennnns 67
Fig 4.6 GIOP Reply MESSAJEuueverrnieeeriieeeeiiieeaesesnneesesnneesesnnendd O

Fig 6.1 Wrapper Facale............oovevviiiiieiiceeeeee e 79

Table of Contents

1. INTRODUCTION ...ttt e e e e e e s e nssae e e s e nasaeeas 1
11 FUTURE OF HANDHELD DEVICESIN DISTRIBUTED ENVIRONMENTS.............. 1
12 PROJECT GOAL ..ttt e ettt e e e e e et e e e e e e e annas 2.
1.3 ROADMAP ..ttt ettt et a e aean 3

2. CORBA AND HANDHELD DEVICES. ..o 5
2.1 LIMITATIONS OF HANDHELD DEVICES......ciiuuiiiiiieiiieeiiiee e e e e e e e 7.
2.2 CORBA MIDDLEWARE BACKGROUND.......cttuuitrieriineeeieennnnneennneennneennnns 9

22 0 R © 1Y [SRS 10
222 CORBA ArChITECIUNE ... nsnnnnnne 10
2.2.3 COrba FEAIUINES. nnnnnnnnnne 12
2.2.3.1 LD it 12
2232 LanQUagE MapiNgS. . .uueueeneeeeeeeen et e eneeet e et et e e e e aeaas 13
2233 ORB INMETACE. ..cuuiiiei et 13
2.2.3.4 Operation Invocation and Dispatch Facilities.............ccocveveeiiniiannen. 14
2235 ODJECt AQADLErS. . .uuieiieiee e 14
2236 INter-ORB ProtOCOl......ccueiuiiiiiie e e e e 15
224 INterface REPOSITOIYuuuuee e nnnnnnnnnnes 16
2.25 Implementation REPOSITONYuuuuuuuuuuiiii s nnnnnnnnnes 17
226 TheAny Typeand TYPECOUES..... . nnnnnnes 17
227 ORB TranSpar€NCi€S......uuuuuuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnssnnnnnnnnnnnnnnnnsnnnns 19
2.2.8 Common Data Representation FOrmat...........ccceeeeiiunnnnnnninnnnnnnnnnnnns 21
2.2.9 Interoperable Object REfEreNnCe.........ccoceriiiiiiiiiii e 22
2210 Server SAdeof AN ORB ... e 22
2.3 CORBA VS MINIMUM CORBA ...ttt 23
231 MinIMUMCORBA OMISSIONS.......uuuuuuuuuunnn 25
24 EXAMPLE IMPLEMENTATIONS OF CORBA MIDDLEWARE........cccuuvevennnen. 27
240 TAD . ittt 27
242 PalMORBoiii i e e e e e e ————— 29
25 [TOP AND GIOP ... oottt r e e eanas 31

3. ORB DESIGN... .ttt ettt e e s saae e e e e nnnaeeeeans 34
3.1l DESIGN GOALS. .. iitiiiittieei et et ae e et e et e e et e e et e e et e e era e e et e e ean e eannaees 34
3.2 STRIPAED DOWN CORBA STANDARD TO FIT PALM III DEVICE.................. 35
3.3 ORB CLASSDIAGRAMS.uitiiiiiitie ittt e et e e e aeean e eens 39

3.3 1 ORBINItIAlSAON ..vvveeeeeeeeeeiciiiieee e e e e e e eecre e e e e e e e e ssraree e e e e e e e e e nnnrnneeeeeeas 39
TG 7 €11 =1V 1557 T o 42
3.3.3 SUb IMPlEmMENtAtiON e 44
3.34 ORB DOWNCAING ... e 45
34 EXTENSIBILITY OF ORB DESIGNccuuiiiiiiiiiiiiieeeieeeeiin e e e e ennn 46

4, CODE IMPLEMENTATION ..ottt e e 48
4.1 DEVELOPMENT ENVIRONMENT L.cuuiiiiiiiiieeiineeiineeinineeereeenneeennaeesnaeennns 48
4.2 NETWORK CONNECTIVITY Luiituiituieineeinaeeneennnseeenseesnneesnneeenneesnanaeenns 49

4.3 EVENT DRIVEN PROGRAMMINGuetetninetee ettt eeeaeaaneaeeaeaeeneneneenens 510]

4.4 MEMORY MANAGEMENT FOR THE PALM DEVICE........cccovviviiiiiineiincien 50

4.4.1 Memory Allocation Of SIFiNGSccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 51
4.4.2 Memory Allocation of Classes..........cceeeeeeeiieeieeee e, 53
4.4.3 Reference CoUNtiNGcceeeeeeee e 53
4.4.4 Directional AfriDULEScccoiiiiiiiiiiiiie e 54
A5 USEOF TEMPLATES ..ittuiiiteieteeti e et e e eeas e e e et e et e e et e e eaanneean e eean e enes 55
46 BIGENDIAN VS LITTLEENDIAN.uiiitiiiii et eee et ea e b6
4.7 REQUEST INVOCATION . ..t ttiteitiee et e et e et aeaeet e e et s e et e e et e e ean e e enaanseeeneeeen 57
471 SUDS AN SKEIEIONScevieiiieieieiiiiiee e e e e e annnees 58
4.7.2 Creating an Object Referencefroman IOR ..., 59
4.7.3 Implementation of IOP and GIOPcccooeiiiiiiiiieeeeeeeeee e, 63
4731 GIOPMESSEHEAUENucveieci e e 64
4732 Request MeSSAJE FOrMaL.......ucvueenieiii e e e 66
4733 Reply MeSAgE FOrMat. ... ccuevniiii i ee e 69

5. EVALUATION ...ttt ettt e e s snae e e e e nnsaeeeeans 72
51 CRITIQUEOF DESIGN ...uiiuuiiiiiiiieeiie et eeeeis e et e e e et e e e ann e ea e e eannas 12
52 CRITIQUE OF IMPLEMENTATION ...tuuuiiitniieieeeteeeteeenaneeeanseeenseesnsesenneennn 73
5.3 OVERALL CORBA ORB INTEROPERABILITY ..uuiivuiiiieeiieeinneeeiiereeeneeens 75
6. CONCLUSIONS.. ... e e e nnrre e e e e nnees 76
6.1 SUMMARY OF WORKuiitiiiiiiiiiiiieiii e etieseesi e eeieeet e e et e eetn s e enaneeaneeeens 76
6.2 KNOWLEDGE GAINED ...ctuiiitieitieeiiaeetnsesnasnseeaneeesneesssessneessnnaeesneesnnns 7’7
6.3 FUTUREWORKiitiiiiii et ee et et s ee s e et e et e et e e e e e raa s e et s e et e e eenneees 7

7. BIBLIOGRAPHY ... 81

CHAPTER 1

1 INTRODUCTION

The origina idea behind handheld devices was to produce a small
(pocket sized), portable, easy to use device that could be used as an
extension to a less portable desktop computer. Handhelds provide a
window to desktop data. Once desktop data has been downloaded onto
a handheld, it can be viewed away from the desk, conveniently and
spedlily. Applications that make most use of this tend to be of the
personal organiser type. Examples include address books, to do lists
and memo pads. Email applicaions can aso exploit handhelds in the
same fashion, so that users do not necessarily have to be sitting at a

desktop in order to read their eledronic mail.

Over the yeas, handhelds have evolved at quite a high rate. For
example, the ealier Pam devices that date badk to 1996 were very
primitive, affording only 128KB of RAM, and little or no support for
communicaion with other devices. More receit models like the
Handspring Visor have up to 8MB of RAM and can communicate with

other devicesusing Infrared and TCF/IP.

Although handheld devices are still quite limited, it is obvious that they
are cetainly becoming powerful enough for broader and more

sophisticaed applicaions than those of a mere eledronic organiser.

11 Future of Handheld Devicesin Distributed Environments

One interesting advance for a handheld device is to broaden its
cgpabilities to enable it to operate in a distributed computing
environment, and to provide mobile data accesto an entire system,

rather than just a single desktop computer. After all, as we enter an age

that endeavours to achieve aywhere, anytime, anyhow computing, the

concept of a portable distributed systems beaomes crucial.

Such extended cgpabilities transform a handheld device into something
very powerful indeed. For example, remote invocation could be used to
control operations locaed on other devices within a distributed
computing system. Scope for exciting development is certainly
provided for. Ponder the notion of a pocket size mmputer that can
cross multiple programming languages, and multiple operating

systems!

1.2 Project Goal

It is apparent that while the handheld device makes a reasonable dfort
in its role & remote desktop window, modern PDAs offer sizedle
margins for capitalising on their enhanced cgpadty, so that they can be
used for something much more powerful. The am of this projed is to
make a ontribution to the task of closing the gap between using a
handheld as an extension to a desktop computer, and using it as a
portable acces point to a distributed computing environment, or
indeed fully incorporating it into a distributed system by including
server side functionality so that the device itself can adually implement

some of the system functionality.

In particular, the goal of the projed is to implement a version of the
Objea Management Groups (OMG) Common Objed Request Broker
Architedure (CORBA) standard middeware to adieve a €oss
platform, crossprogranming language ORB implementation that
enables a Pam 11l client application to communicae not only with a
server application huilt on an identicd computing architedure, but also
with applications built on several different computing architedures. It
should aso enable the intercommunicaion of applicaions

implemented in diverse progranming languages.

1.3 Roadmap

The remaining chapters in this thesis catalogue the projed phases that

were performed in order to redise the af orementioned goals.

Chapter 2 CORBA and Handheld Devices

This Chapter introduces handheld devices, their charaderistics, and of
course their limitations. These ae things that must be wnsidered when
designing applicaions for PDAs. It also introduces the achitedure and
key fedures of the OMG’s CORBA standard, followed by a discusson
on how the full CORBA standard can be stripped down to produce a
minimal but compatible, standard set of implementation rules. The
latter refers to the MinimumCORBA standard, which is also a
reagnised OMG standard that has been spedally constructed for

CORBA implementations on devices with limited resources.

Chapter 3 Design

The proposed extensible design of the CORBA ORB middeware,
which adheres to the MinimumCORBA standard where possble, is
described here. All omissons from the latter standard are documented

and explained within this chapter.

Chapter 4 Implementation

This presents the important ORB implementation feaures and isaues. It
includes a sedion on the techniques employed to achieve cnsistent
memory management of the Palm Ill device, which is key to the
succesdul implementation of applicaions on such a limited piece of

eledronics.

Chapter 5 Evaluation
The evauation chapter criticdly analyses the design and the
implementation of the ORB application

Chapter 6 Conclusions

A summary of the work done and knowledge gained is provided in the
conclusion. This chapter also puts forward several ideas, which could
be used to carry out further work on this CORBA ORB.

CHAPTER 2

2. CORBA AND HANDHELD DEVICES

As drealy discussed, handheld devices such as those running Pam OS
provide a useful extension to desktop computers. Even though it is
indeed possble to perform nore complex tasks with handhelds, their
main purpose is for viewing data and entering small amounts of data,
rapidly and easily. Typicdly a desktop user will remain at their desk
for a prolonged period of time, working on a dedicated task that is
enabled by their desktop. Handheld devices on the other hand, tend to
be used as an aside, which can be @nveniently and spedlily referred
to, while aimost all attention is focused on another core task. For this

reason, handhelds require the following key feaures:

. Small Size
They must be small enough to be cnveniently carried anywhere, for

example, in ashirt pocket.

. Ergonomic Interface

A handheld device should have afast and easy to use user interface A
handheld user should be &le to comfortably and rapidly navigate the
device during medings, at business lunches and in situations where

thereis no convenient placeto mount the device.

. Desktop Integration

It should be eay to synchronise a handheld device with a desktop
computer. This srves sveral purposes. Firgtly, it badks up important
data. It also enables a user to input large anounts of data comfortably
and rapidly on a desktop madines using a mouse axd keyboard. This
data can subsequently be transferred eledronicdly to the handheld

device This process avoids lengthy manual data entry on the latter’s
limited input interface
[Foster ' 0Q]

Clealy, a handheld device ca be utilised valuably in conjunction with
a desktop computer, to enable the eay use of address book, memo-
pad, and other helpful organisational applicaions, away from the
adual desk itself. It is now time to progresstowards a discusson on
the incorporation of handhelds into a distributed environment that
encompases multiple platforms, for example Unix or Windows,
running applicaions implemented in diverse programming languages
like Java, COBOL or C/C++. It is dso of immense importance to
highlight the restrictions of handheld devices. These restrictions must
be wnsidered when endeavouring to implement on a handheld, the
manner of bulky and intricae, low level middeware @de, that enables

such interoperation.

PaAmORB [Roman ' 99, is a CORBA compliant middware
application that has been developed at the University of 1llinois, with a
design that alows it to fit onto limited resource devices. PAAMORB
provides a seamless mobile data acces medhanism using handheld
devices and wireless links. It essntially extends a handheld device
from something that smply ads as a smart organiser with stripped
down versions of widely used desktop programs, to a device that is
seamlesdy integrated into a sophisticaed dstributed computing
environment. This provides users with a unified image of a distributed

system from a devicethat can conveniently fit inside a shirt pocket.

Furthermore, the design of PAmMORB, for use within the user centric
2K distributed computing environment [Roman ' 99], which is also
under development at the University of lllinois, makes for what
appeas like an even more powerful handheld device This unique
amalgamation enables computation intensive tasks to be processed

away from the handheld, on a separate machine within the 2K system.

Such tedhnology has enabled sophisticaed medanisms such as video
streaming to run on handheld devices. PAAMORB is discussed in further
detail in sedion 2.4.2.

The ORB implemented for this thesis is different in that it was
designed to run entirely on any handheld device, to which it has been
commissoned, with no outsourcing of complex and demanding tasks.
Such an ORB fadlitates the posshility of a flexible handheld device
that can interoperate within diverse distributed systems. The design is
discussed in depth in chapter 3.

21 Limitations of Handheld Devices

Since the caabilities of desktop computers and handheld devices
differ significantly, the gproach to designing a handheld applicaion is
much different to that for a desktop applicaion. The following
limitations should be keptin mind when designing for a hanche d.

. Performance Requirements

Useful information should be available instantly, since unlike auser at
a desktop, who is likely to remain at that machine for some time
performing dedicated tasks, a handheld user is typicdly performing
another more important task, and merely requires the handheld for a
few small but crucia functions, like retrieving a telephone number, or
jotting down key points at a meding. Since there is a limit to the
processng power of a handheld device it is very important to ensure
that their applicaions are smal and efficient. Typicdly, handheld

applicaions are implemented in C or C++ for its efficiency.

. Battery and Processor Power
Since handheld devices rely on betteries for power, they are limited to
smaler processors than a plugged-in desktop computer. Such a

procesr is not ided for running computation intensive gplications.

One possble way to overcome this sort coming would be to arrange
for any intensive number crunching operations to be exeauted on a
more powerful machine that is remote from the handheld. This
approach istaken by PAmORB.

. Limited Memory
Limited memory space on a handheld means that things like deeply
reaursive routines. Large numbers of global variables, and huge

dynamicdly allocated data structuresare not handhed device friendly.

. RAM as Permanent Data Storage

Unlike desktops, where vast amounts of data can be stored on hard
drives, with a handheld device d data must be stored in RAM, which
means that storage spaceis much more limited. The reason for this is
that data entry and access must be very fast. Space limitations mean
that handheld applications must be & snal as possble, and that
infrequently used feaures gould be left out. Also, any data to be
stored persistently on a handheld should be paded tightly before being
written to memory. The Palm 11l device used for this projed has only
2MB of RAM.

Other elements that should be kept in mind when writing handheld
applicaions include the limited input methods and the small screen
size The former element makes it tedious to input large amounts of
data. For example, the Graffiti handwriting reaognition software
system that comes with PamOS, is faster than many forms of
handwriting recognition, but at a top speed of about thirty words per
minute, it is gill too dow for entering large anounts of data. Small
screen size makes it difficult to display large anounts of information,
and complex user interfaces are out of the question. It becomes
essential to strike abalance between showing an adequate anount of
information, and keeing the interfacelooking uncluttered and easy to

use.

Writing CORBA middleware is a difficult process Obvioudy, writing
such middleware for a restricted handheld device alds further
complicaions. Such software tends to be bulky, and to involve the use
of complicated structures and functions, and all other things that spell
trouble when programming a limited resource pocket sized device
The following subsedions take alook at the CORBA standard, and
then at the MinimumCORBA standard. The latter details ways of
cutting down the former, in order to come up with a compliant set of
rules for writing a minimal CORBA ORB, that fits onto a small
handheld device, while remaining compatible with al other fully
implemented, compliant CORBA ORB:s.

2.2 CORBA Middleware Background

Typicdly, Computer Networks are heterogeneous. A network may, for
example, have UNIX workstations for the support of software
development, or a mainframe to handle database transadions, and of
course, persona computers that run Windows and provide general

officetoals.

One of the main reasons for this heterogeneity is the dange in
technology over time. The best technologies from different time
periods tend to end up co-existing on networks. Another reason for
network heterogeneity is that different combinations of computers,
operating systems, and networking platforms will work best for
different subsets of the computing adivities performed within diverse

networks.

Of course, developing software for a heterogeneous distributed system
is very complicated. The difficulties of application development for
heterogeneous distributed systems can be eaed to a large extent, by
applying platform-independent models and abstradions to software

development, and by hiding as much low-level complexity as possble

without unduly saaificing performarce.

The Common Objed Request Broker Architedure (CORBA) standard
provides a set of rules for writing such platform independent
middeware, in order to hide some of the difficulties associated with
writing applicaions for distributed and heterogeneous systems.

[Baker ' 97]

2.1.1 OMG

The Objed Management Group (OMG) was formed in the late 19905
to addressthe problems of developing portable distributed applications
for heterogeneous gstems. The CORBA spedfication, written and
maintained by the OMG, supdies a balanced set of flexible
abstradions and concrete services nealed to redise pradicd solutions
for the problems associated with distributed heterogeneous computing.
The CORBA standard has been reviewed on several occasions. The
most up to date version is CORBA 2.3. [Henning ' 99]

2.2.2 CORBA Architecture

Objea Request Broker middleware provides a means for writing
distributed systems that can use different programming languages and
operating systems, and integrate goplications to provide new systems.
‘On-the-wire’ format is a standard language and platform independent
message format, that is used when transmitting messages for remote

objed invocaion in adistributed system.
The OMG has adso defined CORBAservices and CORBAfacilities, which

esentially hang from the ORB interna infrastructure, to extend the

built-in support for applicaions.

10

The purpose of the CORBASservices, isto provide aset of utilities that
are useful for objeds or low level distributed applications. A subset of

these services have been grouped into caegories and de<cribed bel ow.

. Distributed systems-related services:

Naming Service to alow a dient to find remote objeds that have been
registered with the naming service This extra level of indiredion
means that target objeds can easily be moved from one host to another
without bre&king any of the references to that objed that are held by
clients. The only place where the host destination details will need

updating, isat the raming serviceitsdf.

Event Service to alow a dient or server to send a message or event to

any number of recavers.

Seaurity Service to ensure that only suitable privileged users can cal

spedfied operations on particular objeds

. Database-related services:
Concurrency Service to provide alocking mechanism to control the

accessto an objed by concurrent cdlers.

Transadion Service to control the commitment and abortion of

transadions that span multiple databases, of the same or of different
types.

Persistent Objea Service to define an abstrad framework for how a
database axd an objed should communicae to store and restore the
objed to and from the catabase.

. General services:

11

Licensing Service to alow an objed’s data to be cnverted to and

from a stream of bytes, so that it can be copied to another location

Time Service to find the time of day or to obtain an event cdl after a

spedfied time.

CORBAfadlities, on the other hand provide ahigher level of support
for applications. The latter refers to a new areaof CORBA which hes
been designed to address information management, system

management, task management and user interfaces. [Baker ' 97]

2.2.3 Corba Features

2231 IDL

In order to be &le to invoke operations on a distributed objed, a dient
must first of al know the interfacerelated to the target objed. Such an
interface is composed of the operations it supports and the types of

datathat can be passed to and from those operations.

The CORBA standard defines a set of rules for writing these objed
interfaces. These rules congtitute what is known as the Interface
Definition Language (IDL). IDL is not a programming language like
C++ or Java, in the sense that objeds and applicaions cannot be
implemented in IDL. The latter merely alows objed interfaces to be
defined in a fashion that is independent of any particular programming
language. This fadlitates the interoperation of applicaions
implemented in different programming languages, which is vital to the
CORBA goal of supporting heterogeneous s/stems and integrating
separately developed applicaions.

12

2.2.3.2 Language Mappings

CORBA Language mappings fedfy exadly how the IDL objed
interface definitions are trandated into ead of the different
programming languages supported by the CORBA standard. For eath
IDL construct, a language mapping defines which feaures of the
programming language ae used to make the wnstruct available to
applications. For example, for languages that support the ‘class
construct, IDL interfaces are mapped to classes, and operations are
mapped to the member functions of those dasses. Implementation
languages currently supported by the CORBA standard are C, C++,
Smalltalk, COBOL, Ada and Java. This crosslanguage support enables
the implementation of different portions of a distributed system in
different languages. For example, a server application requiring speed
and efficiency in order to cope with large anounts of data, could be
implemented in a fast language like C or C++, while its clients could
be written using languages, such as Jva or Visua Basic, which have
strong support for the development of aestheticdly pleasing graphicd

user interfaces.

Most state of the at ORB implementations that use the CORBA
standard have an IDL compiler assciated with them, which generates
stub and skeleton classes from the IDL definitions. These stubs and
skeletons, which are discussed in further detail in sedion 4.7.1, provide
the link between the client and server appli cations, and the ORB itsdlf.

2.2.3.3 ORB Interface

The ORB interfaceprovides a point at which a dient can interfacewith
the underlying ORB for purposes other than sending messages. For
example, a dient can pass an interoperable objed reference, sedion
2.2.9, for a remote objed to the ORB via the ORB interface Messge

invocations, on the other hand, go through client stubs.

13

2.2.3.4 Operation Invocation and Dispatch Facilities

CORBA applicaions invoke operations on remote objeds by sending
requests to the target CORBA objeds. At the srver Sde, the requestis
proceseed and dspatched to the wrred objed adapter and servant
combination. A reply is then sent badk to the requesting client. A
servant is an entity that implements one or more CORBA objeds.
Objea adapters are discussed in further detail in sedion 2.2.3.5.

The two genera approadies to request invocaion and dspatch are
static and dynamic. With static invocaion OMG IDL is trandated into
language-spedfic stubs (client-side request invocaion functions) and
skeletons (server-side request dispatch functions). Dynamic invocation
is more complicaed. It requires the @nstruction and dspatch of
CORBA requests at run time rather than at compile time. The aedion
and interpretation of requests requires the use of a mecdhanism such as
an InterfaceRepository, discussed in sedion 2.2.4, to provide run time

accessto IDL definitions, and their interfaces and types.

The latter approach can be useful for applications sich as gateways or
bridges, that receve and forward requests without having compile time
knowledge of the types and interfaces involved. However, the static
invocaion approach provides a better programming model for

applicaion development in staticdly defined languages such as C++.

2.2.35 Object Adapters

An objed adapter is an objed that adapts the interfaceof one objed to
a different interfacewhich is expeded by a cdler. It allows a cdler to
invoke requests on an objed without knowing that objed’s true
interface The three principa functions of CORBA objed adapters are
to crede objed references that alow clients to address objeds, to
ensure that every objed is incanated by a servant, and to dired

requests to the servant that implements the objed to beinvoked. Objed

14

Adapters fadlitate the development of scdable, high performance

server applicaions.

Until version 2.1, CORBA contained spedfications only for the Basic
Objea Adapter (BOA). The BOA was the original CORBA objed
adapter. CORBA 2.2 introduced the Portable Objea Adapter (POA) as
a means of improving the portability and capabili ties of objed adapters
[OMG"' 01] chapter 11. The POA replaced the BOA.

™ (" ™
Client Application Object Implementation
v v
Stati Object
static [| ORB ORB 2 psi wee
Stub Interface Interface Skel Adapter
Client ORB Core Server ORB Core

W

Fig 2.1 CORBA Architedure diagram
2.2.36 Inter-ORB Protocol

In order to be CORBA compliant, an ORB implementation must be
able to communicate with al other CORBA compliant ORBSs, using a
protocol known as the Internet Inter-ORB Protocol (I1OP). I1OP is
defined to run on the widely avalable Transmisson Control
Protocol/Internet Protocol (TCP/IP). I1OP uses a messaging format
cdled the General Inter-ORB protocol (GIOP). That is, 11OP is the
GIOP message format sent over TCP/IP. GIOP can also be layered on
other transport protocols, including spedalised protocols for
proprietary networks. This means that any CORBA client can

communicae with any CORBA objed to which it has the necessary

15

aacessprivileges. However, to be CORBA compliant, an ORB must be

ableto use IlOP when communicating with objects on other ORBs

I1OP request padkets contain the identity of the target objed, the name
of the operation to be invoked, and the parameters. This information is
used automaticdly at the server side to find the target objed, and cal

the corred function anit. [Henning ' 99

2.2.4 Interface Repository

An InterfaceRepository (IFR), can be implemented as a mmponent of
a CORBA ORB to provide persistent storage for al IDL types such as
modules and interfaces. The purpose of such a storage fadlity is to
provide dients with runtime acces to an objed’s type information
(and other information about that type), so that a dient can invoke an
operation on a remote objed, without always needing to have mmpile

time knowledge of the objeds charaderistics.

A client application, wishing to invoke on a remote objed, without
having compile time knowledge of the objeds type information, can
use aDynamic Invocaion Interface (DIl) to do so. The DIl acceses
information stored within the InterfaceRepository in order to construct

arequest message at runtime.

The IFR provides a set of functions that enable aDIl to browse and list

its contents, and to determine an dojed’s typeinformation.

A Dynamic Skeleton Interface (DSI) is redly the server-side
equivaent of a DI, in that it allows a server to recave an operation
invocation on an objed, even one whose IDL interfaceis unknown at
compile time. Instead of the server being linked with the skeleton code

for an interface it can use the DSI which will be informed of an

16

incoming operation invocaion. The DSI then determines the identity
of the objed being invoked, the name of the operation, and the types
and values of ead of the parameters being passed. At that stage, it is
possble for the operation being requested by the dient to be exeauted,
and the result returned. [Baker ' 97]

2.2.5 Implementation Repository

An Implementation Repository allows an ORB to locae and adivate
implementations of objeds. The Implementation Repository maintains
a mapping from a registered server name to the file name of the
exeautable wde which implements that server. The alvantage of
registering servers with an Implementation Repository, is that if an
operation invocaion is made on a objed whose server is not running,
or if a dient attempts to bind to such an objed, an ORB can
automaticdly launch the server by consulting the Implementation

Repository to obtain the frvers exeautable codefile rame. [Baker ' 97]

2.2.6 The Any Type and TypeCodes

The IDL Any type provides a universal type the can hold a value of
arbitrary IDL type. The Any type dlows for values whose types are not
fixed at compile time, to be sent and recaved at runtime. Values of
type Any maintain type safety, for example, the recever of an Any type
must tred its contents exadly as the sender intended. If the sender
placal a float value in the Any type, the recever must extrad that vaue

as afloat type, other wise aruntime error will be generated.
A value of type Any consists of two members, seefigure 2.2. The first

member is the adua value mntained inside the Any. The second
member is the TypeCode of the value (described below). [Baker ' 97]

17

Value of type Any

CORBA::TypeCode

Describing the Value

Actual Value

Fig 2.2 Structure of avalue of type Any

TypeCodes are used to carry runtime descriptions of IDL types. They
are important for the dynamic aspeds of CORBA such as type Any, the
DIl and the DSI.

TypeCodes provide severa useful functions. They help to preserve the
type safety of CORBA, by ensuring that type mismatches are deteded
a run time. In addition, TypeCodes provide introspection. Given an
Any containing a value whose type is unknown, this unknown type can
be determined by extrading the TypeCode from the Any and
interrogating it. Introspedion is vital for programs requiring dynamic
typing. Also, TypeCodes provide an ORB runtime & the receving end
with the information required to corredly unmarshal the values off the

wire.

A TypeCode, figure 2.3, essentially contains two values, the TCKind
member and a description of the TypeCode. The TCKind is an
enumeration that records the kind of type that is described by the
TypeCode, for example anull, float, objea reference or struct kind,
among others. The description of the TypeCode depends on the \elues of
TCKind. For example, if the TCKind is a struct, the description contains
the name of the struct and the name axd type of ead member of the
structure. [Baker' 97]

18

Value of type TypeCode

TCKind

Description

Fig 2.3 Structure of a TypeCode pseudo-objed

An example of an area where Typecodes and the Any type ae very
useful, is in the CORBA Event Service, where it must be possble to
transport values whose IDL types are unknown to the service Using
Any types, the events can simply be values of type Any, and the Event
Service ca then ad as a transport for these values without requiring
compile time knowledge of the adual types contained in them. At the
recaving end, Typecode introspedion can be used in order to determine

the type contained in the Any value.

2.2.7 ORB Transparencies

Request invocation for an ORB requires the following charaderistics:

. L ocation transparency

The dient should not need to know whether the target objed is a locd
objed in the same or a different address pace or if isimplemented in
a process on a different madcine. Server processes do not necessarily
remain on the same madine forever, it should be possble for them to
be moved around from macdine to madine without clients becoming
aware of it. If a server processis moved, new 10ORs containing the new
locaion details ould be generated for ead of the objeds it supports.
Oncethe dient has obtained the updated |ORs, the ORB should simply
obtain the new server destination details, and use this information to

send the client request to the @rrect locdion.

. Server transparency

19

The dient should not need to know which objeds are implemented on

which servers

. L anguage independence

The dient should not be concerned with what language is used by the
server. As an example, a C client should be &le to cdl a Java
implementation without being aware of the fad that it is invoking on a
Javaobjed.

. I mplementation independence
The dient should not need to be awvare of how the objed

implementation works on the server.

. Architectureindependence

The dient should be unaware of the CPU architedure that is used by
the server and should be shielded from such details as byte ordering
and structure padding. This fadlitates Palm / desktop communication,
since Palm uses big-endian while intel based Pentium macdiines use

little-endian.

. Operating system independence

The dient should not be required to know what operating system is
used by the server. The use of the standard on-the-wire message format
means that a recaved message can be understood by any operating

system.

. Protocol independence

The dient should not need to know what communicaion protocol is
used to send messages. Generaly, if severa protocols are available to
communicae with the server, an ORB should transparently seled a
protocol a run time. In order to be CORBA compliant, this ORB
should be &le to communicae IIOP messages over the TCP/IP
protocol. [Henning ' 99

20

2.2.8 Common Data Representation Format

The Common Data Representation, defined by GIOP, is required for
the binary layout of IDL types for transmisgon aaoss a network.
CDR-encoded data should be tagged to indicate the byte ordering of
the data, which can be dther big-endian or little-endian. This is
necessary so that both big-endian and little-endian machines can send
data in their native format, with the onus being on the recaver to

undertake byte-swapping if it uses a different byte order to the sender.

All data types require well-defined encodings in order to ensure

interoperabili ty between ORBs.

CDR requires the dignment of primitive data types along their natural
byte boundaries. For example, short values sould be digned on a 2-
byte boundary, long values on a 4-byte boundary and double values on
an 8-byte boundary. Strings and wide strings sould be digned as
unsigned long types (aigned on a 4-byte offset), that indicaes the
length of the string, including its terminating NULL byte, followed by
the bytes of the string, terminated by a NULL byte. Structures sould
be digned as a sequence of structure members in the order in which
they are defined in the IDL. This kind of alignment means that data can
be marshalled and un-marshalled smply by pointing at a value stored
in memory in its natural binary representation. This approach avoids

expensive data copying during marshdli ng.

CDR encoding requires an agreament between sender and recever
about the types of data that are exchanged. This agreement is
established by the IDL definitions that are used to define the interface
between sender and recaver. If the agreement is violated, the recever

has no way to prevent misinterpretation of the data.

21

Becasse CDR supports both littleeendian and big-endian
representations and aligns data on natural boundaries, it makes

marshalli ng both simple and efficient. [Henning * 99]

2.2.9 Interoperable Object Reference

Objea references are the only way for a dient to read target objeds.
A client cannot communicate unless it holds an objed reference
References are published by servers in severa ways. The most
common way for a dient to aaquire objed refererces is to receve them
in response to an objed invocaion. In that case, objed references are
parameter values and are no different from any other type of value,
such as a string. Clients smply contad an objed, and the objed returns
one or more objed references. In this way, clients can ravigate an
“objed web” in much the same way as following hyperlinks. Another
common way for clients to obtain objed references is for servers to
advertise references in some well-known service, such as the Naming
Service

Regardless of the origin of objed references, they should always be
creaed by the ORB server run time on behalf of the dient, to which
they should subsequently be made available. [Henning ' 99]

2.2.10 Server Side of an ORB

Whenever a server applicaion creaes an IOR objed reference, the
server-side run time ambeds object key information inside the objed
reference, that supports binding of the objed to the servant that
implements it. An IOR is also provided with an IP address (or host

22

name) and TCP port number, to allow a dient to corredly locae the
host in which the remote objed is implemented. The cntents of an
IOR are discussd in more detail in sedion 2.2.9. A server can insert
its own address and port number into a reference to fadlitate dired
binding. A server can also employ indired binding, which involves the
use of an external locaion kroker known as an Implementation

Repository.

At the server side of a request invocation, the ORB locaes the IOR
information that is encoded within the request message. If the server
applicaion for the objed being invoked is not arealy running, the
ORB adivates it. The server side objed adapter uses the IOR
information retrieved from the request message, to dispatch the request
to the servant that incarnates the target objed. Any arguments that
have been provided by the dient invocaion are dso passd to the
objed, and the operation is invoked. If any of the aguments are out or
inout values, they are returned to the dient in a reply message, along
with the return value. Out and inout parameters are further discussed in
sedion 4.4.4. If the cd fals, an exception, including any data

contained in the exception, is returned to the dient.

23 CORBA Vs. Minimum CORBA

The MinimumCORBA standard describes a subset of the CORBA
standard, and is designed for systems with limited resources.
Implementations of the full CORBA standard are too large to fit PDAs
and other devices with limited resources. Acceptable performance
levels are dso an issue when considering the implementation of a
CORBA ORB on a smal device Devices with resource restrictions
require acut-down version of CORBA, and this is provided by the
MinimumCORBA standard.

23

The minimumCORBA spedficaion supports al of OMG IDL. This
alows maximum compatibility between minimumCORBA and full
CORBA applications.

Many of CORBAs feaures have much value in typicd large scde
CORBA applicaions, however there ae dso some caes where these
feaures use up so many resources that ther incluson cannot be
substantiated. Minimum CORBA omits many of the resource intensive
feaures that are not typicdly essntial to a basc CORBA
implementation. However it is of course possble to implement such
feaures within aminimal CORBA ORB, if they are required.

Omitting feaures from CORBA represents a trade-off between
usability and conserving resources. Obvioudy, an implementation of
the full CORBA standard has a greaer degree of user-friendliness but

minimumCORBA fadli tates the conservation of limited resources.

The MinmumCORBA spedficaion defines a single profile that
preserves the key benefits of CORBA (portability of applicaions and
interoperability between ORBs). The following goals were recognized

when choosing this profile:

. MinimumCORBA provides a profile that reserves broad
applicabili ty within the world of limited resource systems.

. MinimumCORBA should interoperate ealy with CORBA so
that applications running on either kind of ORB can interoperate &
part of alarger system.

. MinimumCORBA should support full IDL so that any CORBA
application can be eeauted on either ful CORBA or on
minimumCORBA.

24

. Feaures that support the dynamic easpeds of CORBA are
omitted, as the systems for which minimumCORBA s targeted tend to

make commitments at desgn-time rather than at runtime.

There ae several fedures included within the minimumCORBA
profile that incur considerable wst, in terms of static ORB size and
stub code size, even when they are not being used by the gplications.
These include TypeCodes, user and system exception feaures, and
inheritancefedures. [OMG ' 01] chapter 23.

2.3.1 MinimumCORBA Omissions

. ORB Interface omissions
A number of omissons are made from the ORB interface particularly

in areas to do with the dynamic feaures of CORBA.

Operations related to accessng the Interface Repository are omitted

sincethe majority of the InterfaceRepository itself is omitted.

Operations that fadlitate runtime type deding are omitted, as
MinimumCORBA is only required to support design time resolution of
type cheding.

. DIl, DSI and dynamic Anys

The eitire Dynamic Invocation Interface Dynamic Skeleton Interface
and dynamic Anys are omitted from minimumCORBA, as they support
dynamic aspeds of CORBA.

. Interface Repository & TypeCodes

The maority of the Interface Repostory is omitted from
mMiNiMumCORBA, as it is part of the dynamicdly typed programming
model.

25

However, part of the TypeCode interfaceis retained for sending and
recaving IDL types that are known at build time. The latter is used
with the InterfaceRepository.

. Portable Object Adapter
MinimumCORBA supports a subset of the interfaces and policies
defined by CORBA for the Portable Objed Adapter.

Feaures required for reasons of portability and interoperability are
included. However, feaures that support a dynamic mode of POA
operation are omitted. What remains is aufficient to achieve portability
and interoperability between different mMinimumCORBA
implementations and between minimumCORBA and full CORBA

implementations.

. Policies

Only a subset of the server side policies are used in MinimumCORBA.
Among these policies are dl of the default policy values from the
CORBA gspedfication. In all other cases, only the policies required for
basic ORB operation, portability and interoperabili ty are included.

. Interoperability
The minimumCORBA spedficaion has the same @nformance citeria

regarding interoperability as CORBA. Seesedion 2.5.

. L anguage mappings
MinimumCORBA implementations must support at least one language
mapping as defined by the OMG.

The CORBA Architedure and Specification document can be

consulted for further details on fedure omissons within
MinimumCORBA. [OMG " 01] chapter 23.

26

Client Application Object Imple mentation

Static ORB ORB S| Object
Adapter

Stub Interface Interface

Client ORB Core Server ORB Core

W

Fig 2.4 Minimum CORBA architedure.

DIl andDSl havebeenremoved

24 ExampleImplementationsof CORBA Middleware

For illustration purposes, two very different exissing CORBA ORB
implementations are presented here. TAO is a high-performance, red-
time ORB, which offers a fully CORBA compliant implementation,
along with some of its own additional feaures which are alded to
enhance its middleware cagabilities. On the other hand, PAmORB is
an ORB that implements only a subset of the CORBA standard
feaures, in order to produce amiddeware gplicaion that will fit
comfortable on arestricted handheld device.

24.1 TAO

While experience would suggest that CORBA is well suited for
standard RPC style gplications that afford “best effort” quality of
service (QoS), it is not redly suited for high-performance, red time
applicaions for a number of reasons. For example, there is no QoS
spedficaion interface to enable dients to indicae the relative
priorities of their requests, and no QoS enforcement measures to

prevent low priority requests from blocking the exeaution of higher

27

priority requests. CORBA also lacs red time programming fedures
that could, for example, notify a dient when transport level flow
control occurs. If implemented, this could help prevent network
congestion problems. TAO is an example of a CORBA ORB
implementation that attempts to extend its ORB cgpabilities in order to

caer for some of CORBA’swe&nesss.

As well as implementing all of the standard CORBA feaures discussd
in chapter 2.2, TAO adds its own enhancements to the CORBA ORB
spedfication, to enable dients to spedfy their QoS requirements to it,
and to enforce QoS guarantees. TAO also endeavours to provide end-
to-end latency, bandwidth and reliability guarantees to distributed
applicaions, by integrating schemes for I/O subsystem architedure
optimisations, into its middeware. These 1/O subsystems are
responsible for mediating ORB and applicaion access to low-level
network and OS resources such as device drivers, protocol stadks, and
CPUs. In addition to all of the latter extras and enhancements, TAO
aso poseses a runtime scheduling service This srvice is
responsible for alocaing CPU resources to med the QoS requirements
of the gplications that share the ORB endsystem. It provides srvice
guarantees for red time @plicaions with deterministic QoS
requirements, and tries to med service guarantees within the desired

tolerance, for red time apgicationswith statistica QoS requirements.

TAQO’s ORB Core is based on the high-performance cross platform
ACE components [Schmidt ' 98] such asAcceptors and Connectors,
Reactors, and Tasks. These acmponents help to provide a suitable
conredion and concurrency model for predictably sharing the
colledive processng capadty of ORB endsystem components among
the operations in one or more threads of control. This ORB Core can
ded with multiple @ncurrent client requests and server replies,
sending request and reply messages to the mrred destinations, and
passng requests at the srver side to the objed adapter for dispatch.

28

Client Object Implementations

Object
Dl Stub ORB ORB Skel DSl]
Interface Interface Adapter
A
Connection Request /Connection Connection
| Handler * Handler Handler
¥ T Response
Operation
Har;iler Cached N
/ Connect Thread
Strategy ¢ | Strategy >

Connecton

» Strategy Activation
\Acceptor fReactor Stratgey

TAO ORB Core TAO ORB Core

IfO Subsystem /O Subsystem

Fig 2.5 Components of the TAO ORB

It is evident that a huge anount of time and resources must have been
spent on the onsruction of the TAO ORB. The atire TAO
implementation took 50 person yeas to build, and spans over 680,000
lines of code. Also, TAO's large footprint requires powerful systemsto
run it. However its high level of sophisticaion means that is can be
used in extreme misgon criticd applications. TAO has been employed
by Boeing for use within its air traffic control system. Other significant
users of TAO include Ericson, Bellcore, Lucent, Motorola ad

Siemens. [Schmidt * 98].

2.4.2 PalmORB

The University of Illinois have constructed PAMORB [Roman ' 99|, a
stripped down implementation of the CORBA standard for use on
handheld devices. The dient side CORBA fedaures have been included
in this ORB, but al server side functionality has been omitted, since
the Palm is used mostly as a dient. PAAMORB is a very compad ORB,
consisting of only 6000 lines of code, and occupying a mere 50KB of

29

memory in its compiled form. This is ided for a limited memory

device

The 2K distributed environment has also been implemented at 1lli nois.
2K provides a user centric organisation of a distributed system, by
persistently storing user spedfic information in objeds cdled an
‘environments'. Its operating system has been huilt on top of another
fully implemented CORBA ORB (which is in fad, a modified version
of TAO). The 2K system has been designed to dynamicaly adapt itself
to the requirements of spedfic users that accessit, providing ead user
with a astomised view of the system that depends on their
environment details. It also provides adaptable proxies, which can
dleviate ongtrained devices from the exeaution of computation
intensive software. 2K can dedde what the original device and what
the proxy should do, acording to the hardware caabilities and

available resources of the device

One of the key ideas behind the 2K system is that it can be accesd
from numerous different platforms like Windows NT, Solaris and Pam
OS. The fad that the Pam OS platform can be used to access 2K, is of
particular interest here. Originaly a gap existed between PamORB
enabled handhelds and the adaptable 2K distributed system with its
customisable CORBA based services and resources, however a
bridging application cdled PamShel was gpedally designed to fill
this gap. The result offers flexible and powerful Palim clients, which
can dynamicdly add and remove @mponents from their own tailored
environments. Not only can Palm applications interoperate & part of
an extensive aoss platform distributed system, providing a mobile data
access mecdhanism, but they can also avail of 2K’s adaptable proxies
which are of particular use to such restricted devices. Proxies enable
the Palm to run more powerful applications than could otherwise be

deamed possblefor such asmdl device

30

PamORB on its own permits a Pam device to communicate acoss
diverse platforms with relatively smple @plicaions. A more
sophisticaed type of applicaion that has been enabled on a Palm
device & a result of its integration into the 2K environment is that of
video streaming. 2K proxies take cae of the intensive decompresson
of video frames, and also reduce the size rate axd colour of these
frames to something that can be handled with relative eae by a
handheld device.

25 [IOPand GIOP

GIOP is defined as the basic interoperability framework for CORBA,
that enables al CORBA compliant ORB communication. GIOP is not
a oncrete protocol that can be used dredly to communicate between
ORB:s. Rather, it describes how spedfic protocols can be aeded to fit
within the GIOP framework. The Internet Inter-ORB protocol (I110P),
which is gedfic to TCP/IP, is one solid redisation of GIOP. All
CORBA 2.0 compliant interoperable ORBs must implement GIOP and
[1OP, and dmost al contemporary ORBs do so.

Not only does ORB interoperability require anetwork communicaion
protocol, it also requires dandardised objed reference formats. Objed
references are opaque to applicaions. In fad, they are even partially
opague to client side ORBs wishing to invoke on the objed that the
reference refers to, but they also contain information that ORBs neal
in order to establish communication between clients and target objeds.
The standard objed reference format, cdled the Interoperable Objed
Reference (IOR), can store information for amost any inter-ORB
protocol imaginable. An IOR identifies at least one supported protocol
and, for ead protocol supported, contains information spedfic to that
protocol. New protocols can aso be alded to CORBA without
bre&ing existing applicaions.

31

For I1OP, an IOR contains a host name, a TCP/IP port number, and an
objed key (the opagque part). The objed key is used by the portable
objed adapter at the host referred to in the IOR (which is also the host
that creaed that IOR), in order to identify the target objed at that host

name and port combination.

There ae threeversions of GIOP: versions 1.0, 1.1 and 12. GIOP and
IIOP were initially defined by CORBA 2.0. They were revised with
CORBA 2.1 in order to provide support for message fragmentation. A
subsequent revision with CORBA 2.3 added support for bi-diredional
communicdion. The latter enables role reversal of the dient and
server, without the need to open a separate wnnedion that may be
blocked by afirewall.

GIOP has eight message types.

Message Type Originator
Request Client

Reply Server

Cancel Request Client

Locate Request Client

Locate Reply Server
CloseConnection Server
MessageError Client or Server
Fragment Client or Server

Fig 2.6 GIOP Message types

Request and Reply type messages are by far the most commonly used

because they implement the kasic RPC mechanism.

32

The Request message is ent from the dient to the server, and is used

to invoke an operation or to read or write an attribute.

A Reply message is aways ent from the server to the dient, and only
in response to a previous request. It contains the result of an operation
invocation. If an operation raises an exception, the Reply message

contains the exception that was raised. [Henning ' 99

33

CHAPTER 3

3. ORB DESIGN

A good placeto start with the discusson of the ORB design would be
to compare it with the two ORBs that have been ill ustrated in sedion
2.4, namely TAO and PAMORB. TAO provides a very advanced and
complicaed QoS oriented CORBA implementation. It implements the
entire CORBA standard, along with some of its own added feaures
and enhancements. While TAO is crucia for red-time misson-critica
applicaions, it is obvious that much of its functionality would be
absolutely superfluous for use on a handheld device, even if it was
smal enough to fit. A much more redistic comparison can be drawn
between the designs for this ORB and those for PamORB. By
omitting server side functionality, PAmORB uses a subset of the
feaures provided by the MinimumCORBA standard. It does however
implement a minimal client side ORB that can invoke operations on
remote CORBA objeds. The ORB design for this thesis includes a
smilar set of ORB feaures to PAMORB. The main difference being
that a PamShell type goplication design, to integrate the ORB into a

distributed environment was not included.

3.1 Design Goals

One of the main considerations taken while designing the ORB, was
that it had to fit comfortably on to a Pam IlI device with only 2MB of
memory. This memory had to provide storage for applicaion data, like
address book information, as well as for dynamic memory. This put
limits on the size of the exeautable ade that could be downloaded onto
the handheld device and on the kind of memory intensive structures
that could be employed to construct the ORB.

34

Another key design goa was to implement an extensble ORB, to
which additional middleware functionality could be added with relative
ease, for future use on a more resourceful Pam device than the Palm

[, for instance, a Handspring Visor with 8MB.

3.2 Stripped down CORBA standard to fit Palm I 11 Device

. Server-side omission

In a smilar fashion to the PAMORB design, the MinimumCORBA
client side functionality was included in this ORB, while server side
functionality was eliminated. The Palm Il presents itself as one of the
more primitive of the Palm OS family of handheld devices, and while
server sde functionality would indeed provide a strong edge on
PamORB, it was deamed unsuitable for the device, which would serve
much better as a dient in most situations. A dedsion was therefore
made, to concentrate on implementing a solid client side ORB.
However an extensble ORB design provided a degree of
compensation, with its aim to enabling the eay addition of extended
ORB functionality for future use on one of the more modern Palm

devices.

Another motivation for implementing just a dient sde ORB, was to
avoid the 32KB restriction which puts yet further limitations on the
development of applications for Pam devices. This restriction prevents
Palm applications whose compiled code exceals 32KB, from operating
corredly on the Pam device The Motorola DragonBall procesor that
is used in Pam OS handhelds uses 16-bit memory addresses, which
limits it to relative jumps of 32KB. If an applicaion tries to cdl a
function located more than 32KB away from it within the same ade
resource, the cd will fail. While this 32KB restriction can be lifted to
an extent, by changing the link order of the sourcefiles to avoid jumps
excealing 3XKB, an absolute limit of 64KB till remains for any code

resource.

35

Of course, applications excealing 64KB are dso posshle for Palm
handhelds, but their code must be divided into multiple segments
that no segment exceals 64KB in its compiled form. This muilti
segmentation technique dso requires the use of spedal runtime
libraries that take up even more space It was very important therefore
to try to avoid using multi segmentation on the Palm 111, in order to
preserve @& much of its 2MB of memory as possble, for permanent
data storage, and for the dynamic dlocaion required by running
applicaions. Omitting server side functionality helped to kee the
ORB footprint small. [Henning* 99

. Omission of DIl

Feaures that support the dynamic aspeds of CORBA are omitted by
MinimumCORBA, since the systems for which the standard is targeted
make @mmitments at design-time rather than runtime. Thus, a
dedsion was made to abide by MinimumCORBA and omit the DII.
[OMG" 01] chapter 23.

. Omission of dynamic Anys

The dynamic Any types outlined in sedion 2.2.6, are omitted from the
MinimumCORBA standard, and hence they are dso excluded from
this ORB design.

. TypeCode, exception and inheritance omissions

There ae several fedures included within the minimumCORBA
profile that incur considerable st, in terms of static ORB size and
stub code size, even when they are not being used by the gplications.
Among these feaures are TypeCodes, user and system exception

feaures, and inheritancefeaures.

36

Some limited support for TypeCodes is included as part of the
MinimumCORBA standard, however the support provided was not
considered to be of particular use to this ORB. Thus, a dedsion was
made to omit TypeCodes entirely from the design, in favor of saving
on RAM.

System exception fedures were minimized for this ORB. In any case,
the ORB code generated had to be quite small in order to fit onto a
handheld, and small code requires reduced exception processng

functionality.

The use of inheritance was minimized within the ORB design,
however there were cetain cases where it had to be included, one of
the main aress being in the design of the stub classes. Inheritance
provided a dean and eassy way of seamlesdy linking application
spedfic stub code with ORB stub code, so that any applicaion which
implemented its own stubs could inherit from the ORB’s gubs, and
hence use the ORB to invoke operations on remote objeds. The stub

designisdiscussd in further detail in sedion 3.3.

. Other omissions

Limited memory space on a handheld means that things like deeply
reaursive routines, large numbers of global variables, and huge
dynamicdly allocated data structures are not handheld device friendly.
The ORB was designed to avoid the over use of globa variables, and
reaursive routines. Data structures were designed to be @& snal as
possble, only including fedures that are required for basc ORB

operation.

Figure 3.1 presents the resulting ORB architedure with excess feaures

removed.

37

While server side ORB functionality has not been included in this
design, figure 3.2 depicts a MinimumCORBA compliant client/server
architedure. The Portable Objed Adapter offers a subset of the
functionality provided by a full CORBA implementation. Items that
support the dynamic mode of the POA are omitted, in kegping with the

minimum standards am to omit dynamic aspeds of CORBA. The

&

Client Application

F 3

h 4
Static
Stub

ORB

Interface

Client ORB Core

Fig 3.1 Client ORB Architedure

dynamic skeleton interfaceis also omitted.

Client Application

Static
Stub

Object Imple mentation

ORB

Interface

ORB

Interface

Dsl

Object
Adapter

Client ORB Core

Server ORB Core

W

Fig 3.2 Client / Server ORB Architedure

38

3.3 ORB ClassDiagrams

The key components of the ORB design have been spread over the
following four different class diagrams. The design has been kroken
down into these four major areas in order to enhance the darity of

presentation.

3.3.1 ORSB Initialisation

Before the dient can invoke on a remote operation, it cdls on the
methods that initialise an ORB instance Once the ORB has been
initialised, the dient can cdl operations that kick-start the ORB into
processng remote objed references, and then marshalling a message to

send to the target objed.

ORB_implkORBE
ORB_init ORE id
ORB_id ORBInstance
QRB_implD) objectFactony
string_to_objech’)
___,———‘_’___J RefCount
Dbject refereneeCount
ORBInstancz inoRefCount)
refCounted|OR decRefCount)
stublmp B ase ObjectFactany
ger_stublmplBazer) ORBlInstance
get_marshalStublmpl() get ORBInstance))
createhd arshal Stublbdpl) string ToObje o))
duplicater) cre ateObjed

RefCoubntedlOR

IOR
\ CORBAObj2dLacator
objectRefString

duplicater)
parse ObjectrefSting)
|0Rto Obje o)

Fig 3.3 ORB Initidisation classes

39

. ORB_init is cdled by the Client applicaion. It initialises the
ORB run-time and returns a reference to the ORB objed. ORB_init
expeds three aguments, argc, argv and orb_identifier. Argc holds the
number of entries in argv, which in turn holds ORB-spedfic options.
Orb_identifier identifies the particular ORB to be initiaised. These
arguments are useful if an application nedls to initialise more than one
ORB run-time environment. For example, it is possble for different
ORB instances to have different policies and services associated with
them, ead instance being of particular advantage to a possble subset
of client invocaion requests. Argc, argv and orb_identifier, were not fully
utilised by the ORB developed for this thesis however, since its client
applicaion only required a single ORB. However, they were included
in the mde in order to fadlitate the eay extension of the ORB, to
produce multiple different ORB instances for a single dient
applicaion, as mentioned above, for a Pam device with more RAM

and processng power than the Palm 111 .

. The ORB_impl class provides the ORB run-time with accessto
an objed fadory classthat can be used by the ORB to creae an IOR
objed from an IOR string. This class has been structured to allow for
the aldition of things like more fadory classs, the Initia Service
Manager, and the POA Manager [OMG ' 01] chapter 11, for server side

functionality, on amore advanced PAm device.

. All proxy objeds (i.e. locd interfaces that represent remote
objeds, having an identicd signature), inherit from the Object class
This allows generic operations that exped object types, to accet and
return objed references to these abitrary proxy interface types. An
Object instance ®ntains references to the ORB, the IOR it corresponds
to, and to its Stub Implementation, see sedion 4.7.1. An Object
instance ca be narrowed to represent its proxy subclass The proxy

retains the ORB, IOR and Stub Implementation references, which are

40

used to marshal request messages and to send then to the wrred
destination.

. The ObjectFactory generates IOR objeds from their string
representations. The ORB uses these IOR objeds to dired request
messages to the @rred destination. To do this, the ObjectFactory
implements the StringtoObject operation, that cdls the
CORBAODbjectLocator class which converts the string to an objed. This
conversion processis discussd in further detail in the implementation

sedion.

. The RefCount class provides a painless mechanism for keegping
a ount of the number of references that have been made to objeds that
are referenced frequently throughout the ORB code. These reference
counts can then be monitored, so that objeds can be deleted when their

count dropsto zero, thus freang up va uable mamory.

. The RefCountedlOR class contains a reference ounted 10R

objed reference

41

3.3.2 GIOPMessaging

F|0PIncominghessage InputStre am
inputStream Buffar
wersion HutputStre am ariginal CurPosition
byteCider Buffer ariginalByte Order
Siza d ataiiriter byteOrder
get wersion() et _buffen] dataReader
get_byteOrder) zet bufferPosiion) duplicate()
get msg_typed) D"!p"catEO get buffen]
get sizel) writeBoslean() get bufferP osition)
extractHeaden]) u‘-.lr!telzletehj readByteOnden)
readReplyHeaden) wr!teSh-:-rh:j =set_byteSwapl)
writeLong() re adBoole ani)
. write LongLongd) readOctetr)
0P Outg oinghdessage writeChar)
readShor)
outputStream vurite Charfrray)
profilelnfo writeFlo atr) readlongl)
writeHeaderhdessage) write D oublaf) readlonglengl)
write RequestHe aden) writeLongDouble) readChar)
4 readCharfrray’)
write Sting) readFloaty)
vurite Obje ct) readloubled
FrofileInfe readlongDoubled)
by .
e Buffermpl re ad Stringi
. buffar readObjech’)
index m axBufSize +
currentPosition RefCount
components
marshal() get bufferlatal) referenceCount
unmarshal() get lengthi incRefCount’)
is_full(decRefCount’)
Fig 3.4 GIOP Messaging classes
. The GIOPOutgoingMessage class is responsible for writing

GIOP request messages to the output stream. These messages are then

sent from the output stream to the server side ORB.

. The GlOPIncomingMessage class is responsible for reading,
from the input stream, a GIOP reply message that has been sent toit by
the server sde ORB. This message is then interpreted to see if the
corresponding remote objed request has been exeauted successully, or

if problems were encountered.

42

Details of the GIOP request and reply message formats are discussed in
detail in sedion 4.7.3.

. The OutputStream class contains methods to aign all data types
on their natural boundaries when writing them to the output stream.
This kind of aignment is necessary so that the message can be
corredly de-marshalled when sent to the server side. The InputStream
class contains methods that can read naturally aligned data types, from

reply messages receaved into the input stream.

Datadignmentis discussedin further detall in sedion 2.2.8

. The input and output streams use instances of the Bufferimpl
classto store data. This classalso contains useful methods and holders
for determining buffer data positions, in order to fadlitate realing of
messages from, and the writing of messages to, the input and output

streams.

. The Profilelnfo structure is constructed from the profile
information retrieved from the IOR string. Profile information is
included in al client request messages. When a request message is
picked up by the server sde ORB, the POA uses the profile
information to determine which objed the request is intended to invoke

on.

43

3.3.3 Stub Implementation

Hella

M arrou)

createhd arshal Stublmpl()

outputStudenthetails’

Stublmpl_Stud entD etails

duplicater)

outputStudentlet ailal)

A

duplicate’)

Object

ORBlInstanca
refCountedIOR
stublmplB ase

StublmplBase

i

RefCount

referenceCount
inchefCount’)
decRefCountl

M arsh alStubimpl

ORBInstance

ger_stublmplBase)
get_marshalStublmpl
createhd arshal StublMpl()
duplicater)

mdarsh alStublm plStode it etails

duplicate)
outputstudentletails’

. StudentDetails is the name of the target objed that can be
invoked remotely. The StudentDetails interface ¢ass (not shown in
figure 3.5) on the dient side, provides the interface between the dient
applicaion and the stub code that passes a request for a remote objed

to the ORB core. It contains the outputStudentDetails operation that has

10R

Get |ORP rofilel)
cre ate Down calll)
Fremarshall)
zendR equest])

Fig 3.5 Stub Implementation classes

asignature identicd to that of the remote operation being targeted.

. The StublmplBase class provides a reference @unted base dass
for al stub implementation classes. A stub is a dient side function that
allows a request invocaion to be made via a norma looking locd

function cdl.

44

. The MarshalStublmpl_StudentDetails class implements the dient
applicaion spedfic proxy code that initiates the passng of a remote
objed invocdion request to the ORB. MarshalStubimpl_StudentDetails
inherits from the Stubimpl_StudentDetails class which provides a
fadlity for keguing a reference @unt on the former’s instances. It also
inherits from the MarshalStublmpl class which is a generic ORB stub
class which implements operations that pass a remote objed request

down to the ORB core, for marshalling and dispatching.

3.3.4 ORB Downcalling

Downcall
OREInstance \‘
prafilzlnfo RafCaount
Tranzsport_impl request|Dr referancelonnt
conneched operation incRefCount
partiDl reaponseExpected decRefCount)
zendl) outputStream
openSerialP o] inputStream
vurite SerialPart]) get requestiD OutputStre am
close SerialF o] get operation) buffar
readSerialP o) get responseExpectedi d ataiiriter
get connected() get outputStreami get buffen)
get portll get inputStre am) get bufferPasition)
set connected() get profilelnfol) duplicater)
zat-portiD) duplicated) wurite Boolean()
urite O otet)
urite Shorh)
uriteLangll
Brufferimpl uurite Lo ngLong
bruffer Frafilelrfa urite Cham
maxBufSize key urite CharArray
currentFosition majar uriteFlo gh7)
get bufferlatal) minar urite Craubled)
get lengthy indes: urite LangCraublel)
i=_full() components urite Sting
marshal() unrite Obje o’y
unmarshal(l

Fig 3.6 Downcdl classes

45

. The Downcall class gives a request message an identificaion
number. It also prompts the writing of a request message to the output
stream, and subsequently cdls the transport layer to send the message

to the server side ORB.

. Transport_impl implements methodsto open, write to, read from,
and close the Palm devices sria port. This sria port provides a link
from the Pam to a remote gplicaion that implements a socket
connedion, for I10OP, to a server side ORB, as detailed in sedion 4.2,
Transport_impl also interprets replies to request messages that are
receved from the server side ORB, in order to determine whether or
not the request was siccessully honoured. Transport_impl effedively
ads as the ORBs transport layer, sending messages to, and receaving

messages from a server side ORB.

34 Extensbility of ORB Design

. Sedion 3.3.1, on the ORB initiadlisation design, explains how
the initidlisation code was designed in order to fadlitate the eay
extension of the ORB, to enable single dients to use different ORB
instances to ded with various remote objed invocations, that could
require dightly varying ORB charaderistics, during the same

exeaution sesson.

The ORB initialisation classes were dso structured to smplify the

addition of things like more fadory classes, the Initia Service

Manager, and the POA Manager [OMG ' 01] chapter 11, to provide
server side functionality for a Pam device with more resources

availableto it than the FAm III.

. This ORB was designed to support GIOP 1.1 and 12.

However, the structure of the GIOP class would alow for its easy

extension, to include future versions of the standard, or indeda to

46

support the older version if required. This would merely require the
insertion of a new case into the GIOP messaging method, to enable the
construction of a message under the new version of GIOP. The IOR
and reply message interpretation code wuld aso be extended in a

similar fashion.

. At the time of writing, this PAmOS ORB was only cgpable of
interpreting 11OP messages related to the TCP/IP communicaion
protocol. However it did have the caadty to read 10ORs containing
multi protocol data. This was achieved by creding a sequencing data
structure into which the 10R profile data culd be read. Each entry in
the sequence would contain information relating to a different
communicaion protocol. Thus, extending the ORB to interpret
communicaion protocols other than just TCP/IP, would smply require

the insertion of additional C++ functions, to interpret these protocols.

. The transport class was put in place within the ORB code in
order to implement the serial / socket connedion. Repladng the latter
with a pure socket connedion would simply involve modifying the
transport class code to implement pure socket functions, rather than

serial functions.

47

CHAPTER 4

4. CODE IMPLEMENTATION

Before delving into the adua implementation details of this ORB
middeware, it is worth emphasising the fad that implementing such a
low level applicaion is a particularly frustrating and exhausting task.
To make matters worse, little previous knowledge of the CORBA
standard or indeed of the C/C++ programming languages was had prior
to undertaking the projed, which creaed even more difficulties.
However, in the end, hard work and persistence overcame these
obstades, and al to make life eaier for the writers of distributed

applications!

4.1 Development Environment

As previousy mentioned, a Pam Il device with a Motorola
MC68328 “DragonBall” procesoor was used to develop the
middeware for the purposes of this thesis. This provided a big
challenge, since, while aPam Il posssses much more in terms of
resources than some of its predecessors, it is dill limited to a rather
diminutive 2MB of memory. The ORB had to be made small enough,
to fit easly onto this Pam Il device while leaving a reasonable
amount of free memory available for the development of other regular
Palm applications, and indeed for other client applicaions to be used in
conjunction with the ORB itself.

Metrowork’s CodeWarrior for PAm Computing platforms was used for
the ade development. CodeWarrior, which is the official development
environment supported by Palm Computing, provides a number of
useful development tools along with the basic source ®de dlitor.
Those used for the purposes of this projed included:

48

. Constructor for Palm OS
This is a resource alitor with a graphicd interface that fadlitates the
development of Pam user interface éements. These dements are

combined with the source code to createthefinished product.

. Palm OS Emulator

This is aso known as POSE. It imitates most of the hardware and
software functions of an adual Palm handheld, and can be downloaded
onto a desktop computer for use. One of POSE’s most useful feaures
is its acarate enulation of the processors used in a range of Palm
devices (including the Pam IIl). This means that red Pam OS
applicaions can be loaded dredly onto POSE for debuggng purposes.
Debuggng on the amulator is faster than on the adual Palm device,

and of course, it provides worthwhile savings on betteries!

4.2 Network Connectivity

The Pam Il device for which the ORB was developed dd not possess
a diread networking fadlity to enable TCP/IP connedivity to other
computers. In order to emulate such a network conredion, a
combination of seridl and TCP/IP communicaion cgpabilities were
employed. The Pam device was conneded to COM1 of a desktop
computer viaits srial cable. TCP/IP Sockets were implemented on the
desktop to provide the goplicaions on the Pam with indired accessto
all other TCP/IP enabled devices on the network. It is obvious that the
latter implementation was not ided, in that it reduced the mobility of
the Pam since it had to be physicadly conneded to a TCP/IP enabled
device in order to communicate with other devices on the network.
However, the ORB was developed to be extensible and to operate on
any Palm OS device and so, it would be relatively easy to install it on
alarger more upto date, TCP/IP enabled Palm device

49

4.3 Event Driven Programming

Pam OS applicaions are event driven, receaving events from the OS
and either handling them or passng them bad to be handled by the OS
itself. An event structure describes the type of event that has taken
place (for example, a stylus tap on a screen hutton), as well as
information related to that event, such as the screen coordinates of a
stylus tap. During a normal applicaion launch, exeaution is passed to
the gplicaion’s event loop, which retrieves events from the event
gqueue and dspatches them acmrding to the type of event. The event
loop pases most events badk to the OS, because the system arealy
has fadlities for deding with common tasks such as displaying menus
or determining what button on the screen was tapped. Those events
that are not handled by the OS go to the gplicaion’s own event
handler, which either handles the events if they are interesting to the

application, or passes them bad to the event loop.

An applicaion event loop was incorporated into the dient applicaion
that was written to use this ORB. A CodeWarrior fadlity was used to
generate the bones of an applicaion loop. Functions were then written
to handle the event loop events that required processng by the
applicaion. These events were handled in a way that was gedfic to
the dient applicaion’s requirements. For example, if the remote
invocation applicaion’'s main GUI icon was tapped, that event
prompted the opening of the main application form, which indicated
what objeds were available for invoking on remotely. If such an objeda
was leded, this prompted the initidisation of the ORB. The ORB
subsequently interpreted that objed’s IOR and marshaled a GIOP

message, which it then sent to the wrred destination.

4.4 Memory M anagement for the Palm Device

50

Memory management is very important for a PAm OS device with
limited memory resources. It is imperative that as much memory as
possble be available for dlocaion at al times. The following
paragraphs outline a number of memory management features that
were put in place in order to minimise the possbility of memory le&s,
and to ensure that memory would be freed as oon as it was no longer

required by either the ORB, or the client appli cation.

4.4.1 Memory Allocation of Strings

For normal desktops, writing to incorred memory addresses can cause
dramatic gpplicaion failures, but won't normally affed permanently
stored data, because it resides on a separate storage device from the
systems main memory. For Palm OS devices on the other hand, the

same RAM is used for both data storage and for dynamic menory.

Using RAM for storage provides faster access to data, however, a
rigorous means of memory management had to be availed of to prevent
the posshility of corrupting permanently stored data. Pam OS APIs
were used for alocaing memory for strings, in order to prevent the

lossof permanent data.

Two different types of memory manipulation functions for Pam OS
devices are available for allocating memory for strings, and other
straightforward data structures. These ae pointer functions and handle
functions. The MemPtrNew and MemPtrFree functions are provided to
dlocae and de-alocae pointers, in place of the C standard library
cdls, malloc and free. However, a dedsion was taken to implement the

handle functions, based on the following argument:
The Palm operating system has the aility to efficiently manage the

smal amount of dynamic RAM it has available, by shifting chunks of

data aound with an aim to creding large dunks of contiguous space

51

This is obvioudy preferable to having lots of small fragments of free
gpace scatered around the memory, which cannot be used if a new
data record fails to fit into any of them individually. Pointers use only
unmoveable memory chunks, and so they do not avail of the latter
memory management fadlity. However, handle functions alow
applicaions to manipulate dunks of memory that may be moved by
the operating system. If the operating system needs to alocae
memory, it can move handles around until there is enough contiguous
memory for the new data to be docaed. New memory can be
dlocaed with the MemHandleNew function and freed using the
MemHandleFree function. Also, because the operating system may
fredy dedde to move the memory assciated with a handle & any
time, the handle must first be locked with the MemHandleLock function
before it can be read from, or written to. While the handle is locked,
the operating system will not move its memory to another locaion.
The handle can subsequently be unlocked using the MemHandleUnlock
function, when the real or write operation hes been completed. This
approach grealy increases the dficient use of the limited memory on a
Palm device [Foster ' 0Q]

In addition to usng Pam OS handles for alocaing memory for
strings, a String_var class has aso been implemented to provide a
memory management wrapper for char *. [Henning ' 99]. Indedd, the
internals of the String_var alocaion medanisms utilise memory
handles to ensure the safe and efficient allocaion of memory for
strings. String_vars can be used in situations where keeping tradk of
the number of references to alocaed stings is difficult for the ORB
programmer. This class $ores a pointer to a memory allocaed string in
a private variable, and takes responsbility for managing the string’s
memory. The String_var uses a destructor to ensure de-alocaion of

memory when a string that it wraps goes out of scope.

52

4.4.2 Memory Allocation of Classes

The new and delete operators in C++ fadlitate the dynamic dlocation
of memory for structures whose sizes aren't known until runtime.
Since support for the latter operators was included in the version of
CodeWarrior used to develop this ORB (though mnot in previous
versions), they were both used in the docaion and de-allocation of

memory for classstructures.

However, as for string referencing, creaing references to and
removing references from such classes complicates the issue of when
dynamic memory can be de-allocaed. Normally, a programmer must
keep tradk of the number of references to an objed, so that the objed
can be eplicitly de-allocaed when there ae no remaining references
to it. This point represents a memory management issue that puts extra
workload on the programmer, and runs the risk of producing memory
le&ks.

A set of smart pointer classes known as var types, that use the same
principles as String_var, have been implemented [Henning ' 99|, to
dleviate the burden of having to explicitly de-alocae variable-length
structures and to make memory le&ks less likely. This works by
asociating a _var classwith ead normal classtype. The dassprovides
the required functiondity, while the _var class ads as a memory
management wrapper around the former. This means that the _var class
takes care of de-alocaing norma instances at the gpropriate times.
This de-alocaion processuses reference munters to keep tradk of the

number of referencesto ead of its classinstances.

4.4.3 Reference Counting

Eadh CORBA objed has areference ount that indicates the number of
locd references that refer to it. This reference @unt is incremented

eat time a new locd reference to the objed is creded, and

53

deaemented when a locd reference to the objed is deleted. The idea
behind this is that once the objed’s reference @unt falls to zero, it is

automaticdly de-allocaed. This helpsto prevent memory le&s.

. _ptr types: When assgning between two _ptr type objed
references , the reference ®unt is incremented explicitly using a
_duplicate function. A _duplicate function has been implemented for all
of the objeds that require its use. A release function is used to

explicitly deaement the reference count for _ptr types.

. var types. _var types can handle reference ®unts
automaticdly. Therefore, for objeds with associated _var types, the
burden of explicitly incrementing and deaementing reference types is
eliminated. In a _var type, the ‘=" operator is overloaded, so that when
such a type is assgned a value using the ‘=" operator, its reference
count is automaticaly incremented. Also, when the _var type goes out
of scope, its reference ®unt is automaticdly deaemented in its
destructor. [Henning " 99

4.4.4 Directional Attributes

In compliance with the CORBA standard, three types of parameter
attributes were made available to clients who wish to pass parameters

as part of aremote invocaion. These are:

e in
The in attribute indicaes that the parameter is snt from the dient to

the server.

. out

The out attribute indicates that the parameter is snt from the server to

theclient

* inout

54

The inout attribute indicaes a parameter that is initialised by the dient
and sent to the server. The server can modify the parameter value, so
after the operation completes, the dient parameter value may have

been changed by the server.

Diredional attributes are required for two reasons. They are necessary
in order to know when a parameter must be sent from a dient to a
server or vice versa. This enables sme savings in transmisson costs.
Also, dirediona attributes are required to asdst in memory
management. For example, the dient applicaion implemented as part
of this thesis includes inout string parameters to be read and/or
modified by the target objed on the server side. This means that
ownership of the string parameters in this application is temporarily
given to the server so that the server can de-alocae and re-allocae the
strings in order to modify them. After the invocaion however,
ownership of the strings is returned to the dient. To ensure de
alocation of the string parameters after target objed invocaion, the
strings are dedared as String_vars, so that they will be automatically
de-allocated when they go out of scope.

Memory management for operation parameters varies with the
diredion and type of parameter. Diredional attributes control whether
the dient or the server is responsble for alocaing and de-alocaing
memory for parameters. Memory management details for in and out
parameters can be obtained from most common CORBA textbooks.
[Baker ' 97]

All of the a&ove memory management medanisms help to prevent

memory legkage.

45 Useof Templates

55

Template dasses, which provide one of C++s most powerful
cgpabilities for software reuse, were implemented to enable the
spedfication, within a single wde segment, of an entire range of
related classs.

At runtime, templates are used to creae the _var objeds, described in
sedion 4.4.2. Rather than reproducing smilar _var type ade for all
objeds that require a_var wrapper, these objeds were divided into
objed groups containing smilar charaderistics. A template was then
produced for ead such group. At runtime, any objed requiring a _var
wrapper for memory management purposes, is passd into its
respedive _var template dass where it is subsequently assgned a
private variable that holds a pointer to the dasstype that the wrapper
encgpsulates. This approach reduced the anount of code that had to be

written and also minimised the resulting code footprint.

4.6 BigEndian Vs. Little Endian

An important fad that had to be kept in mind duing the Pam OS
program design and implementation, was that al data eitering or
leaving the device was arranged in Motorola' s big-endian byte order.
In other words, multi-byte data types sich as long integers were
arranged with their most significant bytes at the lowest memory
address and vice versa. This detall was very important when
conreding to Intel-based machines, all of which use little-endian byte

ordering.

The CORBA standard states that byte swapping should only occur on
the recaver side of a sent message. A device sending a message, can
therefore send using its own nretural byte-order format, however, a
spedal message field is %t aside to alow the sender to indicate the
byte-order that they use. At the recaver end, this byte-order field is
examined. If the byte-order for sender and recever are the same, the

recaver has nothing to worry about, but if the byte-orders are different,

56

then the burden is on the receaver to swap the bytes so that theintended

message can e corredly interpreted.

A byte swapping fadlity was introduced into the ORB code in order to
ded with the inevitable byte-ordering problem that arose when the
Motorola processor attempted to communicate with an Intel device It
was implemented using bitwise left shift and right shift operators, and

the bitwise-inclusive-or operator. [Lazzaotto]

4.7 Request Invocation

A client isan entity that invokes arequest on a CORBA objed.

A client application was written for the Pam device This client
manipulates a remote objed by sending messages to it. The ORB sends
the message to the objed whenever the dient invokes an operation on
the objed. To send the message, the dient neals to hold an objed
reference (I0OR) for the objed. The objed reference uniquely identifies
the target objed and encapsulates al of the information required by the
ORB to send the message to the corred destination. IORs are discussed
in further detail later in this chapter. [Henning ' 99

The aitire request invocaion mecdhanism was implemented to be
completely transparent to the dient, for whom a request to a remote

objed lookslike an ordinary methodinvocation an alocd C++ objed:

Student->outputStudentDetails(name, student_number);

In the dove example, Student corresponds to the remote objed,
outputStudentDetails to the remote operation, and name and
student_number are the parameters that were passed to the remote
operation. A client side cdl to the remote operation (as above), results
in a cdl to a dient sde stub, which in turn passes the request to the
ORB, which then marshals the objed name, operation and parameters,

and sends the resulting request pacage to the wrred server macine,

57

where it was de-marshalled and serviced. Stubs and skeletons are

discussed in detail in the following sedion. [Baker '97]

Client }[Object Implementation }

£\

8
ORB ORB k Object
Interface Interface e Adapter
|
\/ ORB Core ORB Core
| Request Message o
W

Fig 4.1 Request Invocation

SEER

o-:'*wl

4.7.1 Stubs and Skeletons

To invoke an operation on a remote objed the dient first instantiates a
proxy objed inits own address gace The proxy is a C++ instance that
provides the dient with an interfaceto the target objed. It contains
references to the ORB, the IOR and to the stub Implementation. The
signature on the proxy interfaceis the same & the signature on the

implementation of the remote objed on the server side.

A reference to the proxy objed is analogous to a C++ dassinstance
pointer, but denotes an objed implemented in a different process and
on another machine. When the dient invokes an operation on the proxy

viathe proxy reference,

Student->outputStudentDetails(name, student_number);

58

the proxy’s gub then sends a @rresponding message to the remote

servant viathe ORB.

MarshalStublmpl_ Student::outputStudentDetails (CORBA::Long& _ob_a0, char*&
_ob_al, char*& _ob_a?2)

It is adually the ORB that marshals the message, locaes the server and
establishes network connedions transparently on behalf of the client.
[Baker ' 97]

void MarshalStublmpl_ Student:: outputStudentDetails (CORBA::Long& _ob_a0,
char*& _ob_al, char*& _ob_a2)
{

OB::Downcall_var _down = createDowncall("outputStudentDetails ", true);
OB::OutputStreamIimpl* _out = _preMarshal(_ob_down);

_out -> write_long(_ob_a0);
_out -> write_string(_ob_al);
_out -> write_string(_ob_a2);

_postMarshal(_ob_down);
_request(_ob_down);

The @ove wmde aedes a down cdl to the ORB to marsha a request
message. It also writes the parameters that are to be passd to the

remote objed to the output stream.

Once the request data has been marshalled and aligned on the output
stream buffer, it is then sent by the ORB via a seria / socket
conredion to the server implementing the required objed. The
destination host and port detail s are obtained from the objed’s IOR.
[Baker ' 97]

4.7.2 Creating an Object Reference from an IOR

59

In order to use an objed reference the ORB takes the string
representation of the I0OR, that is provided by the server that supports
the objed to be invoked. This IOR string, which is initialy in
hexadedmal format, is then converted into an IOR objed using the
object_to _string ORB operation. This involves firstly converting the
IOR string from hexadedmal to dedmal format. The dedmal string is
then converted to its ASCII representation by casting it to an unsigned
char type. The ontents of the unsigned char string are then used to
creae the IOR object. From this point on, the IOR isin a format that
can be used dredly by the ORB. An IOR objed generaly contains
three major pieces of information. In this case, the Repository ID
information was omitted from the IOR objed since an interface
repository fadlity was not implemented. The two pieces of information

contained by this minimal ORB'’s |OR objeds were asfollows:

. Endpoint information

This field provides the ORB with al of the information it needs in
order to establish a physicd connedion to the server implementing the
target objed. The endpoint information indicates which protocol to use
when attempting to invoke an operation on the objed represented by
the IOR. It also contains physicd addressng information appropriate
for a particular transport. Since this ORB uses |1 OP only, the endpoint
information contains an Internet domain name or |IP addressand a TCP
port number. The Endpoint Information field could aso contain the
address of an Implementation Repository to be cnsulted to locate the
corred server on which the requested objed runs. This extra level of
indiredion would enable server processes to move from one macine
to another, without bre&ing existing references held by clients.
However, due to the memory constraints of the Palm Il device used
here, the Implementation Repository was omitted from this ORB, and
so the Endpoint Information field dredly contains the addressand port
number of the server that implements the objed. Thus if a server

process moves location to a different macdine, a new 10R containing

60

the new objed locaion details would had to be provided for the Pam

device

The CORBA standard aso alows information for several different
protocols and transports to be anbedded in the reference, permitting a
single reference to support more than one protocol. Since the ORB
developed for our Palm device used only 11 OPR, the TCP/IP information

alone was extraded from the IOR for use.

. Object key

Unlike the endpoint information, which is gandardised, the objea key
contains proprietary information. The arangement and usage of this
information is unique for different ORB implementations. All ORBs
have an applicaion-spedfic objed identifier that is embedded inside
the objed key by the server, when the server credes the reference
When the objed identifier is recaeved by the server-side ORB from a
client request message, it is used by that ORB and its objed adapter (or
one of its objed adapters) to identify the target objed in the server,
upon which an operation invocation had been requested, from within
the message. The dient-sde simply sends the key as a transparent
block of binary data with every request it makes. Since for al intents
and puposes, the key remains an opaque block of information to the
client, it does not matter that the reference dataisin proprietary format.
It is never looked at by any ORB, except the ORB hosting the target
objed (i.e. the very ORB that creded the objed reference with the
proprietary objed key in thefirst place.

Object Reference

Repository ID

m
>
o
=]
Q.
>
=
=1
=
o
o
K=}
[0}
(o]
=
~
o}
<

Fig 4.2 Objed Reference contents

61

The following pseudo IDL shows how the information required to send
areguest to the crred target objed, is encoded within an IOR objed
that has been generated by the ORB from an 10OR string.

module I0P{
typedef unsigned long Profileld;
const Profileld TAG_INTERNET_IOP=0;
const Profileld TAG_MULTIPLE_COMPONENTS=1;

struct TaggedProfile{

Profileld tag;
Sequence<octet> profile_data;
%
struct IOR{
string type_id;
TaggedProfile profile

[OMG"' 01] chaptei3

struct IOR, which is the main data type within the generated 1OR objed,
defines the basic encoding of an IOR as a string followed by a
sequence of profiles. The type_id string contains the interface type of
the IOR in a standard CORBA format. The profiles field spedfies the
IIOP protocol profile that is to be used to send al messages to the
objed referenced by the IOR. An ORB that supports multiple profiles
could contain a sequence of protocol profiles within the profiles field,
one for ead protocol supported by the target objed and the dient
itself.

This ORB supports only I10P, so the type id is followed by a single

profile mntaining a structure of type TaggedProfile. A tagged profile

contains a tag field and an octet sequencethat contains the profile body

62

identified by the tag. As an example, for I10OP 1.1 and IIOP 1.2, the tag
is TAG_INTERNET _IOP (zero), and the profile_data member encodes
astructure of type 11 OP::ProfileBody as shown bdow.

Module 11OP{
struct Version {

octet major;
octet minor;

struct ProfileBody_1_ 1 {

Version iiop_version;

string host;
unsigned short port;
sequence<octet> object_key;
sequence<|OP::TaggedComponent> components;

[OMG"' 01] chapter 15

This ORB supports CORBA versions 1.1 and 12. The Version field
enables the ORB to identify what version of CORBA generated the
IOR. This information is used by the ORB when dedding how to
marshal arequest to a rver objed.

The objed host and port information is used to send CORBA requests
over TCP/IP. And, as arealy mentioned, the objed_key field, which is
included in all CORBA request messages, contains information on how
to identify the POA and that servant that implements the objed at the

server side.

4.7.3 Implementation of IOP and GIOP

63

Support for GIOP and 110OP versions 1.1 and 1.2 was implemented

within the ORB code. The implementation followed the CORBA

spedfication exadly. This support fadlitates the transformation of IOR

strings to 10R objeds, and the generation of request messages, for

inter-ORB communicaion using either version. It also fadlitates, for

both versions, the interpretation of reply messages receved from the

server-side, which determines if a remote operation invocaion hes

been succesful or not. The CORBA Architedure and Spedficaion

[OMG ' 01] can be mnsulted for details of version 1.0 of the latter
standards, if desired.

Figure 4.3 shows the basic structure of a GIOP 1.1 or GIOP 1.2

message.

12-byte GIOP Message Header Variable-length GIOP Message Body

0 12

Fig 4.3 Basic structure of a GIOP Message

Request and Reply type messages only, were implemented since these
two are by far the most commonly used, and becaise they alone
implement the basic RPC mecdhanism. Also, support for fragmentation
(introduced in GIOP 1.1) and for bi-diredional communicaion (GIOP
1.2) was omitted. However, it was felt that given more time, and a
more powerful PalmOS based PDA, both of these feaures could have

been implemented without undue eff ort.

4.7.3.1 GIOP Message Header

The following describes the implementation of the message header in

pseudo IDL. It isthe same for versions 1.1 and 1.2

module GIOP {

struct Version {

64

octet major;
octet minor;

enum MsgType_1 1{
Request

struct MessageHeader_1_1{

char magic[4];
Version GIOP_version;

Octet flags;

Octet message_type;
Unsigned long message_size;

[OMG"' 01] chapter 15

G | o P 1 2 0 0 4-Byte Message Size

Fig 4.4 GIOP 1.2 message header

The message header layout is asfollows:

. The first 4 bytes of a message header are dways the charaders
GIOP, which indicae that the message is a GIOP message. They aso
serve to define message boundaries.

. The 4th and 5" bytes are the major and minor version rumbers

represented as 8-bit binary values.

. The 6™ byte is a flag byte. The least significant bit of the flag
byte is used to spedfy whether the remainder of the message is in hig-
endian or little-endian format. The Pam device uses big-endian
(indicated by a 0). The second-least significant bit indicates whether or

not a message uses fragmentation. A value of 1 indicaes that the

65

message is a fragment of a larger message, and that there ae more
fragments to follow. A value of zero (as in the dove cae, figure 4.4)
indicates that the message is a cmplete message or that it is the last

message in a sequence of fragments.

. The 7" byte indicates the message type. For example, the value

0 indicaes a Request message.

. Bytes 8-11 contain a 4-byte unsigned value that indicaes the
size of the remainder of the message, which constitutes the GIOP
message body, (e.g. for a Request message, these bytes would indicae

the size of the Request Healer and the Request Body combination).

The GIOP message body consists of the message header and body
type, that are spedfic to the type of message that it encompasses. For
example, for a Request message, the GIOP message body consists of
the Request message Header and the Request message Body.

The implementation of Request and Reply messages is described in the

following subsedions.
4.7.3.2 Request M essage For mat

The Request message formats for GIOP 1.2 and 11 dffer dightly,
however the ideass behind both are smilar. For this reason, a
description of how the more receit version 1.2 was implemented, has
been included in this document, while details of the implementation of
verson 1.1 have been omitted. If desired, they can be obtained form
the CORBA Architedure and Soedfication document [OMG" 01].

The Request message consists of three @rts & shown in figure 4.5.

12-byte GIOP Header Variable-length GIOP Request Header Variable-length GIOP Request Body
0 12 12 + length of Request Header

66

Fig 4.5 GIOP Request message

The Request message, which contains a Request header and a Request
body, follows the GIOP header. The Request healer is gructured as

follows:

Module GIOP {

struct RequestHeader_1 2 {

unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;

string operation;

IOP::ServiceContextList service_context;

h
[OMG"' 01] chapter 15

The fields within the Request header are asfollows:

. request_id

The dient uses this field in order to relate arequest with its response.
The request_id is %t to a unique number when a request is being sent.
Reply messages also have arequest_id field, in which they include the
identification number of the request that they are responding to. This
means that the dient can have replies for more than one request

outstanding at any onetime.

. response_flags
The response_flags field can be set to indicae whether or not a reply
message isto be expected from the srver-side of an invocation.

. reserved

67

As part of the CORBA standard, the three bytes of the reserved field
are reserved for future use and are dways st to zero for GIOP 1.1 and
1.2.

target

The target field is a union type, which identifies the objed that is the
target of the invocaion. It contains a key address profile addressand

referenceaddress

The key address contains the object_key field, obtained form the
transport spedfic IOR generated by the target objeds srver. It is only

meaningful to the server and isnot interpreted by the client.

The profile addressfield is the transport spedfic GIOP profile seleded
from the target’s IOR by the dient ORB. Itindicats to the ®rver Sde
ORB the type of transport being used by the dient side ORB.

The reference aldressng information contains the full 1OR of the
target objed. It is used by the server to identify the POA and servant of

the objed on which an operation isto be invoked.

operation

This field contains a string that indicaes the name of the operation to
be invoked.

service_context

The service_context field contains ORB service data being passed from
the dient to the server. It could contain, for example, data for
transadion services, codeset negotiations <ervices, or bridging
services. This field is not used by this ORB. It is st to the value of 0,
so that it will be skipped over by the ORB at the srver sde.

In GIOP version 1.1, request bodies immediately follow the Request
Header. In GIOP version 1.2, the message body is always aligned on an

68

8-octet boundary. Since GIOP spedfies that the maximum alignment
for any primitive type is 8, this guarantees that the request body will
not require any re-marshalling if the message header or request header
are modified. The data for the request body includes al in and inout
parameters, marshalled as if they were members of a structure, in the
order in which they are spedfied in the operations OMG IDL
definition, from left to right.

The request body for the operation used to demonstrate this CORBA
ORB:

void outputStudentDetails(inout string name, inout long student_number);

Would be equivalent to the following structure:

struct outputStudentDetails _body{

string name; /lleftmost inout parameter
long student_number; // rightmost parameter

4.7.3.3 Reply M essage Format

A Reply messge is ent from a server to a dient in response to a
client’s Request message, provided that the response_expected flag of
the request is %t to true. Since this minimal ORB implements only
client side functionality, it does not need to generate Reply messages to
send to other hosts. However, the ORB implementation is cgpable of
interpreting and processng Reply messages recaved from the host

madines of objedsthat it invokes.
As with Request messages, Reply messages in GIOP versions 1.1 and

1.2 are dightly different. Functionality to interpret both message

versons has been included in the de, but only verson 1.2 is

69

described in detail in this document. For details on version 1.1, seethe
CORBA Architedure and Spedfication document [OMG ' 01] chapter
15.

Like aRequest message, a Reply message is aso made up of three
parts. The Reply header and body follow the GIOP healer, and together
form the GIOP message body.

12-byte GIOP Header Variable-length GIOP Reply Header Variable-length GIOP Reply Body
0 12 12 + length of Reply Header

Fig 4.6 GIOP Reply message

The following defines the Reply header structure:

Module GIOP {
Enum ReplyStatusType_1 2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,
NEEDS_ADDRESSING_MODE

struct ReplyHeader_1 2 {
Unsigned long request_id;

ReplyStatusType reply_status;
IOP::ServiceContextList service_context;

70

When a Reply message is recaved from a server by the Pam client, its
reply_status field value is extraded in order to determine whether or not
the remote operation invocaion was siccesdul. For example, a
NO_EXCEPTION vaue would indicate that the request completed
succesdully, while aUSER_EXCEPTION request would imply a user

exception.

Extradion of the Request_id field from the Reply message dlows the
Pam client to associate that Reply with one of its own Request

messages.
The Reply body would contain the return value of the remote operation,
followed by al of the operations out and inout parameters if

applicable.

As with a Response body, GIOP 1.2 aso aligns Reply bodies on an 8-
byte boundary rather than diredly after the Reply header.

71

CHAPTERS

S. EVALUATION

This chapter criticdly examines the design and implementation of the
applicaion that was developed for the purposes of this thesis, which
amed to produce ax ORB for operation on a restricted Pam OS
device Strong areas are highlighted, and areess that offer room for
further development are dso discussed, along with suggestions on how

to addressthem.

5.1 Critiqueof Design

. The key to designing middieware for the Pam Il deviceliesin
keeping the cde small and avoiding the use of complex structures and
medanisms that ea heavily into memory. This essential design fador
can reason out many of the shortcomings associated with the ORB
design. For example, the use of server side functionality would have
been particularly motivating, espedaly since it was not included in
PamORB. This would have given our ORB a definite edge over the
latter. Also, considering the speed at which modern technology is
continually increasing the power of eledronic devices, it is only a
matter of time before the notion of a two-way communications, pocket
sized device will be caitalised on. Had our ORB been developed on
one of the newer Pam devices, such as a Handspring Visor beaing
8MB RAM and a more powerful processor, then implementing server
side caabilities would have been a lot more feasible. As mentioned on
several occasions throughout this thesis, a valuable dternative was
instead employed, in the form of an extensible design, fashioned to

acommodate the relatively easy addition of server side functionality.

72

A sewmond viewpoint could however, argue the advantages of
applicaion development on a device with such low memory resources
as the Palm 1ll. This kind of constraint forces the design of a very
compad ORB applicaion. A handheld having more RAM available to
play about with, could have resulted in the development of a looser
middeware gplicaion. The restrictions imposed by a 2MB device

forces developersto kegp avery close eye on conserving resources.

It is hoped that this ORB implementation will provide the best of two
worlds. That is, a finely tuned and condensed middeware gplicaion

with lots of scope for functionality extensions.

It is aso worth mentioning that the final code in its compiled form,
occupies 55KB of memory (similar to that of PAlmORB which requires
50KB RAM). This implies that the ORB applicaion uses three percent
of the available RAM, leaving a cwmfortable proportion available for
permanent data storage, other applicaions, and of course for the
dynamic memory dlocaion of running applications. The
implementation of server side functionality, which would likely brea
the 64KB barrier, resulting in multi-segmentation and the need for
resource intensive runtime libraries, as discussed in sedion 3.2, might
not leave such a seaure proportion of free RAM. Again, for the more
modern Palms, the extra memory required for these runtime libraries
would bemme less of an isaue, and the ORB applicaion could be
divided into as many segments as necessry so that ead segment
would be lessthan 64KB.

5.2 Critique of Implementation

There are ®veral areas of theimplementation to be xaminedhere.
. Firstly, much of the implementation effort focused on memory

management isaies, since preserving free memory is of major

importance to a handheld device Tedniques employed to fadlitate

73

succesgul management and freeng up of memory have been discussed
a length in sedion 4.4. Extensive use is made of references in order to
avoid making multiple copies of data structures that use up valuable

memory resources.

The drcular theory refers to the situation where two objed references
are left pointing to ead other. The result of this, is that neither
reference will ever be broken, and so the two objeds will remain in
existence indefinitely. This theory would suggest that using references
to the large extent that this ORB does, could result in the latter kind of
situation, thus giving rise to a memory le&k. However, since aPalm Il
is an extremely limited device in terms of memory (among other
things), it was deamed more important to try to ensure that measures
were taken to reduce dynamic memory usage & much as possble, by
using references rather than making expensve @pies of data
structures. It was also argued that if the circular objed problem were to
occur, it would happen only very rarely, and if after an extended period
of time, performance problems were encountered then it would be
possble to clea out the Palm memory by exeauting a soft reset. This
was regarded as acceptable, sinceit is believed that such a reset would,

at worst, be required only on very rare occasions.

. Next of al the asence of a network card meant that the Pam
device ®uld not be used in a truly mobile fashion. Instead, the Palm
had to be physicdly conneded to a network enabled device using its
docking cradle. This placel the onus on the second device to adually
make the socket conredion with the server side ORB. To adhieve true
mobile data acces using the handheld would require a suitable
network cad, aong with some relatively minor changes to the

transport implementation code.

. Finaly, the aurrent ORB implementation consists of a Palm OS
platform spedfic exeautable file that must be integrated into ead new

74

client applicaion that requires platform interoperability. This manner
of code replicaion causes major memory resource problems when
more than one dient application reeds to use the ORB, undoing al of
the hard work that went into creaing resource saving middleware. The
good news is that this problem can be eaily remedied. The ORB
applicaion could be saved as a PaAm OS shared library class Such
clases can be used by any number of programs, thus eliminating the

need for a separate copy of the ORB for eachclient program.

5.3 Overall CORBA ORB Interoperability

The overal ORB implementation was tested with the Orbacus ORB
from lona technologies. The purpose of this was to seeif our ORB
could interoperate with another CORBA compliant ORB. The result
was a success A client applicaion on the Palm device was able to
remotely invoke an operation on an objed that was implemented by a
servant running on the Orbaaus ORB. A client request was snt to the
server side, and a reply was subsequently receved from the server by
the dient, indicating that the invocaion had been a success This result
would also suggest that the ORB should be caable of interoperating
with any CORBA compliant ORB.

75

CHAPTERG

6. CONCLUSIONS

The purpose of this chapter is to summarise the work caried out
during the @urse of the projed, along with the knowledge that was
gained with regard to writing CORBA middieware. Ideas for future
work that could be caried out on the ORB applicaion are dso

suggested.

6.1 Summary of Work

The ORB implementation was condensed enough to ensure that it
would not consume an undue amount of the Palm 1ll1’s memory. This
left room for the development of other Palm applicaions, and for
plenty of dynamic memory allocaion. It aso ensured that there would
be no shortage of free memory for the entry of Pam applicaion data

such as addressbook data, e-mail messages, meeing minutes etc.

Extensive memory management cgpabilities were put in placeto help

ensure the maximum possble availabili ty of memory atal times.

ORB stub code was implemented in a way that allowed al client
applicaions to seamlesdy interface with the ORB applicaion. This
meant that the ORB could be used with diverse dient applicaions

without ever requiring any modifications toits code.
Functionality was incorporated to alow the ORB to interpret IOR

strings provided by server side ORBs. This was required so that the
ORB could determine where target objeds were hosted.

76

The GIOP/11OP protocol was fully implemented to allow the ORB to
interoperate with other CORBA ORBs that use the TCP/IP
communicaion protocol. The ORB was cgpable of marshalling request
messages, and interpreting replies messages, in order to determine if
requests were successully honoured. This was demonstrated by
succesdully sending a GIOP/IIOP request from this ORB to lona's
Orbaaus ORB.

6.2 Knowledge Gained

An in depth knowledge of the dient side feaures of the
MinimumCORBA standard was gained duing the ourse of this
projed. This also covered low level medianisms like CDR data
aignment and byte swapping. Preliminary realing of the origina
CORBA spedficaion also provided a solid grasp on the principles
behind the complete standard, and the components required to build a
fully compliant CORBA ORB. A high level understanding of the
CORBA services that could be implemented to enhance an ORB was
also achieved.

Tadling the Palm OS style of programming provided good experience
in event-based programming which is very different to purely class

based or procedural programming.

6.3 FutureWork

Writing a @wmplete CORBA compliant ORB is an immense task.
Writing a minimal ORB reduces the required effort somewhat, and
leaves plenty of scope for extending functiondity, given sufficient

hardware resources.

. The most obvious pieceof future work would of course involve

extending the ORB to include server side functionality, particularly as

77

handheld devices are ntinualy being developed to offer greaer

memory resources and processng power.

. Dynamic feaures like the DIl and DSI are omitted from the
MinimumCORBA standard. However, it would be very interesting to
add some dynamic cgpabilities to a handheld, and move avay from the
idea of a PDA as a device that only makes dedsions at design time.
The adility to make run time dedsions would certainly broaden the use
of handheld devices in large distributed environments, to which new
components are @nstantly being added. TypeCodes and Any types
could be used to fadlitate the implementation of the DIl and DSI. The
DIl could then flexibly consult an interface repository caalogue, to
invoke on remote objeds of which it has no compile time knowledge.
The DSI could use an implementation repository in a similar fashion,

to implement objeds not known to it at compile time.

Another areafor development could involve incorporating some of the
CORBA Services outlined in sedion 2.2.2. The Naming Service might
be auseful one to start with. It would be remote from the Palm itself,
and therefore not impad seriousdy on RAM resources. A Naming
Service would allow a dient to find references to al objeds that have
been registered with it, eliminating the neal for IORs to be explicitly
transferred to the ORB when required for remote invocaion. It would
also provide an extra level of indiredion, alowing target objeds to
easly move aound from host to host, without breging any of the
references to that objed, that are held by clients. The only placewhere
the host destination details would need upditing would be & the
Naming Serviceitself.

. The ORB developed for the purposes of this thesis has been
designed to run solely on Palm OS platforms. It would however, be
nice if the ORB could be ported to other diverse handheld devices,
such as the IPAQ pocket PC. One way of extending this ORB to enable

78

cross platform portability, would involve utilising the Wrapper Facale
pattern [Schmidt ' 99] to encgpsulate lowevel functions and other
Pam OS spedfic functions and data structures, with objed-oriented
classinterfaces. Wrapper facales provide methods that forward client
invocations to non-portable functions, so that such functions do not

have to be accesed diredly. Seefigure 6.1.

client
method_k{)
r
Wrapper function_ki)
Facade » Non-Portable
Functions

method_1{)
function_1{)

method_Ni)
function_N{}

Fig 6.1 Wrapper Facale

Another areafor investigation would involve implementing interpreted
stubs and skeletons with dynamic qualities, to replace the arrent
compiled stubs and skeletons that have astatic knowledge of the types
they marshal and unmarshal. This interpretation concept is examined
and evauated in an INFOCOM ‘99 paper [Gokhale ' 99]. The
evaluation determined that the ade size for stubs and skeletons that
use interpretive schemes is smaller in size mmpared to the compiled
form. This point is particularly interesting when considering devices

with limited memory.

As a fina note, the time @nstraints on this thesis did not leave avy

time for implementing an IDL compiler spedfic to this ORB. As it

79

stands, applicaion programmers using the ORB would be required to
know how to write dient applicaion spedfic stub interfaces, in order
to interface with the ORB. An interesting projed would involve
implementing an IDL compiler to remove this burden from the dient

applicaion programmer.

80

7. Bibliography

[Baker ' 97] Sean Baker, CORBA Distributed Objeds Using Orbix,
Addison-Wesley, 1997

[Foster ' 00] Lonnon R. Foster, PaAm OS Programming Bible, IDG
Books Worldwide, 2000

[Gokhale' 99| Aniruddha Gokhale, Douglas C. Schmidt, Techniques
for Optimizing CORBA Middeware for Distributed
Systems, INFOCOM March 1999

[Henning ' 99Michi Henning, Steve Vinoski, Advanced CORBA
Programming with C++, Addison-Wedley, 1999

[Lazzaotto] Patrick Lazzaotto, Bitwise Logicd Operationsin CA-
Visual Objeds,
http://www.cavo.com/newsletter/vo19991 Zbitwise.pdf

[OMG' 01] Objea Management Group, The Common Objed
Request Broker Architedure, February 2001

[Rhodes’ 99 Neil Rhodes, Julie Mc Keehan, Pam Programming, The
Developers Guide, O' Rellly, 1999

[Roman ' 99 Manuel Roman, Ashish Singhai, Dulcineia Carvalho,
Christopher Hess Roy H. Campbell, Integrating PDAS
into Distributed Systems: 2K and PAlmORB, HUC 1999

[Schmidt] Douglas C. Schmidt, TAO Architedure, http://
www.cs.wustl.edu/~schmidt/TAO-architedure.html

[Schmidt * 98] Douglas C. Schmidt, David L. Levine, Chris Cledand,
Architedures and Patterns for Developing High-

81

Performance, Red-time ORB Endsystems, Advancesin
Computers 1999

[Schmidt * 99] Douglas C. Schmidt, Wrapper Facale, A structural
Pattern for Encgpsulating Functions within Classes,
C++ Report Magazne Feb 1999

[Schmidt * 99] Douglas C. Schmidt, Chris Cledand, Applying a
Pattern Language to Develop Extensible ORB
Middleware, Design Pattersin Communication,

Cambridge University Press2000

82

