
A Literate Programming Tool for Concurrent Clean

Glenn Strong
Glenn.Strong@cs.tcd.ie

May 15, 2001

Abstract

Literate programming has attracted some interest in the functional
programming community. This paper presents a prettyprinting algo-
rithm used in a literate programming tool for the functional language
Concurrent Clean, and discusses some of the issues involved in pretty-
printing layout based languages.

1 Literate programming

This section introduces the concept of literate programming for those
who are unfamiliar with it, and makes some suggestions as to the merits
of literate programming. There is some coverage of the topic from the
point of view of functional programming, which is the authors primary
interest.

1.1 What is literate programming?

Literate programming is a style of programming introduced by Donald
Knuth in his book of the same name [2]. The central idea of literate
programming is:

Instead of imagining that our main task is to instruct a com-
puter what to do, let us concentrate rather on explaining
to human beings what we want a computer to do.[7]

The exact features of the various literate programming systems vary,
but they have a number of common features.

1. They all provide some mechanism for writing both code and doc-
umentation in a single file, and extracting the program code in a
form suitable for compilation.

2. Most provide some form of automatic indexing of the program
code. The tools construct an index of identifiers and code frag-
ments, and generate cross reference information.

3. Most systems provide some mechanism for reordering the pro-
gram code, so that it can be presented in way the author wishes,
rather than in the order which the compiler requires. Tools are
used to automatically reorder the code for the compiler.

1

4. Finally, many systems provide some form of prettyprinting, to
improve the visual appearance of the program code.

In practice, literate programming revolves around the idea of writing a
program as discrete units of code (called chunks, fragments, or scraps),
each of which is accompanied by descriptive text, mathematics and di-
agrams which describes it’s purpose. Tools, generically called weave
and tangle produce respectively a document which describes the pro-
gram (and includes the source code), and the program source code in
a form suitable for compilation. Most literate programming systems
use the TEX formatter to produce the documentation.

1.2 The advantages of literate programming

Various advantages are claimed for literate programming. They can
be summarised under two main headings.

1.2.1 Improved programs

Most users of literate programming systems claim that they produce
better programs when they use literate programming techniques. In
general, the reasons for this vary, but include

1. The greater care that is taken when writing each section of the
program. Because the programmer is thinking about the reader
of the program (even if such a reader is completely hypothetical),
greater care is taken over each section of code as it is written.

2. The greater freedom allowed by the use of chunks. Sections of
code can be isolated without the need to place them within sepa-
rate functions (procedures, methods, whatever the programming
language allows). In general, it does not always make sense to
move a small section of code into a separate subroutine, even if
the clarity of the program might benefit from having the code
isolated. Put simply, it is not always practical to formulate ar-
guments and prepare a subroutine, even if the clarity of the code
might benefit from it.

3. The close association between the program code and the specifi-
cation for what the code should do. In most cases the documen-
tation for each code chunk acts not as a description of what the
code does, but what it should do. When the program does not
behave as the documentation says it should, it is the program
that is at fault. The division of the program into small chunks (a
typical chunk will be about a half-dozen to a dozen lines of code)
usually makes it quite simple to identify when a program is not
consistent with its specification.

1.2.2 Improved documentation

There is little question that literate programs are better documented
than programs produced by more usual means.

2

1. The documentation exists. This may seem trivial, but many soft-
ware projects are documented poorly if at all. Once the program
has been written, the job is usually seen as done. From the point
of view of programming this is correct, of course, but when it
becomes necessary to maintain the program the lack of documen-
tation can be a major problem. By forcing the documentation
to be developed at the same time as the program itself, literate
programming ensures that all code is documented.

2. The program documentation is usually correct. That it, the pro-
gram documentation usually describes the algorithms and data
structures used by the program accurately. The close association
between the code and documentation means that the documen-
tation is far more likely to be updated as the code is changed,
rather than at some future date (which often never arrives).

3. The program documentation is usually also far more usable than
normal documentation. The ability to present documentation
side by side with the actual code which implements the features
being discussed clarifies the situation greatly. Also, the naviga-
tion material produced by most literate programming tools (au-
tomatic indexing and cross referencing of identifiers, for instance,
or hypertext tools) improve comprehension of the program. This
is a great boon to program maintenance, as it allows a program-
mer to trace questionable sections of the program. Returning to
a program after an interval of, say, a year makes it clear how
useful this is.

1.3 Literate Programming and Functional Program-
ming

Many functional programming systems provide special support for lit-
erate programming styles. Most of these systems use some variant of a
scheme designed by Richard Bird and Philip Wadler in their language
Orwell[6]. This style, variously known as “Bird tracks” or “literate
scripts”, is supported by various compilers for functional programming
languages. The Miranda1 system supports it, as does the language
Haskell (and its derivatives gofer and hugs). This scheme is simpler
than the approach described above, in that it does not require sepa-
rate tools to process the source file. Instead, it relies on an inverted
commenting scheme in which only lines which are explicitly marked
as containing program code are processed by the compiler, and others
are ignored (and therefore may contain any required documentation,
including any desired TEX formatting). Although this approach is ele-
gant, in practice it can lack some of the utility of styles based on weave
and tangle tools. In particular:

1. There is no explicit naming of code chunks. There is also no facil-
ity for code rearrangement. While modern functional languages
are mostly free from the need to order code for the convenience

1Miranda is a trademark of Research Software

3

of the compiler, it is not always convenient to separate sections of
code for individual discussion. Local definitions (where clauses),
for instance, cannot always be conveniently separated from the
functions they are local to.

2. The automatic indexing provided by the weave processor is lack-
ing in this style of programming. The lack of an automatic cross
reference of functions and types is a noticeable impediment to
reading large programs.

3. There are generally no prettyprinting facilities. Although the
Miranda system includes a basic code formatting tool which per-
forms keyword underlining, there is no tool for more advanced
code printing. A number of literate programming tools are dis-
tributed with the Glasgow Haskell compiler suite including a pret-
typrinter which performs a form of internal alignment based on
existing internal alignment in the source code.

Carroll Morgan presents an interesting application of this style of liter-
ate programming to produce a system for describing the development
of a program by interweaving Orwell code and the refinement calculus
[3].

1.4 Prettyprinting

Many literate programming systems provide prettyprinting facilities
of varying complexity. The usual arguments advanced in favour of
prettyprinting include

1. The program code can be expressed in a more logical form, with-
out the constraints of the standard ASCII character set. Ex-
amples include the use of standard mathematical symbols for
inequalities and logical operations.

2. The improved readability of code which has been properly typeset
over code which has been typeset in a limited monospace font.

3. Automatic indentation provides a consistent indentation style,
even over programs written by different people, over long periods
of time.

4. In particular, note that presenting code which has been prop-
erly typeset makes it blend more elegantly into the surrounding
documentation. The “special status” of code can be reduced by
prettyprinting.

Despite this, prettyprinting remains the most contentious issue
within the literate programming community. Some feel that liter-
ate programming tools are incomplete without some form of pretty-
printing, while others refuse to use tools which force their code to fit
a uniform style which they may not agree with. Also, the process
of prettyprinting is the most complex part of any set of literate pro-
gramming tools. The bulk of Knuths cweave program, for instance,
is devoted to preparing the TEX productions for prettyprinting the
source code. Prettyprinters also tend to be highly language dependent,

4

relying on an intimate knowledge of how the programming language
is constructed to do their jobs. All these factors have contributed
to producing a series of literate programming tools which provide no
prettyprinting at all. Possible the best known of these tools is Normal
Ramsey’s noweb tool.

2 The noweb literate programming tool

The noweb tool [4] is one of a number of literate programming tools
which can trace their ancestry directly back to Knuth’s original WEB
system. It has a number of advantages, however, over both WEB and
CWEB:

1. noweb is language independent. Unlike most literate program-
ming tools, it is possible to use noweb with any programming
language, and even to mix programming languages within a single
file. Sourec code is passed through the standard noweb tools es-
sentially unchanged, with only the ordering and chunk-expansion
performed. The principle casualty of this approach is the loss of
a prettyprinting facility, although the preparation of automatic
indices has suffered slightly as well.

2. noweb has a much simpler syntax than either of Knuth’s tools.
Many of the control sequences in both WEB and CWEB are not
required in noweb, making noweb a much easier tool for beginning
and casual literate programmers.

3. The design of noweb is highly modular, which allows a great deal
of flexibility for the introduction of customised processing of the
source.

The noweb system is implemented as a series of separate programs,
which are linked together using the unix pipe operator (ports of noweb
to non-unix platforms provide various means to compose the various
programs). This modularity has the immediate advantage of allowing
the insertion of extra programs into the processing of the source to
perform operations not supplied by the core noweb system. A number
of additional utilities (called filters) are available for noweb to perform
activities such as automatic indexing of identifiers in several languages.
This modularity allows for the implementation of prettyprinting facili-
ties as a separate program which can be used as an optional part of the
weaving process. This allows those who are opposed to prettyprinting
to avoid having their code processed by the filter.

This modularity is provided by noweb’s use of an intermediate rep-
resentation for a web source file which is more suitable for automatic
processing than the original text file. A prettyprinter can be written
which simply adds appropriate markup to the code in this intermediate
format.

5

3 A Short Example Web

As an example of the literate programming style used in the noweb
system, a short program is presented here. In a program of this length,
many of the advantages of literate programming are not clear. For
those unfamiliar with literate programming, however, this example will
help to explain some of the concepts involved. Note that the code in
this section has been prettyprinted.

Our selected program uses the sieve of Eratosthenes method to
generate prime numbers. The algorithm is well known, and will not be
described here in any great detail.

The key step in the sieve of Eratosthenes is to take some prime
number, p, and eliminate all of its multiples from consideration.

6a 〈eliminate multiples of p 6a〉≡ (6e)

elim p xs ≡ [x\\x←xs | x mod p 6=0]
Defines:

elim, used in chunk 6b.

If we have a list of numbers, the first of which we know (or assume)
to be a prime, then we can generate a list of the remaining primes by
removing all multiples of this number from the list, and applying our
algorithm to the remaining list (the first element of which will now
be a prime). Note the references that have been automatically placed
around this chunk of code showing how it relates to the rest of the
program.

6b 〈generate prime numbers 6b〉≡ (6e)

sieve [p:rest] ≡ [p:sieve(elim p rest)]
Defines:

sieve, used in chunk 6c.
Uses elim 6a.

The entire list of prime numbers is then generated by
6c 〈list of all primes 6c〉≡ (6d)

(sieve [2. . .])
Uses sieve 6b.

When we run the program, we only want to see a certain number
of primes. The computer will generate prime numbers (to the limit of
its arithmetic), but we are unlikely to want to see all of them. Here,
we shall restrict ourselves to the first hundred primes.

6d 〈Top level function 6d〉≡ (6e)

Start ≡ take 100 〈list of all primes 6c〉
Finally, we place the previous code chunks in a module, with appro-
priate headers as required by the clean compiler.

6e 〈* 6e〉≡
module Primes
import StdEnv
〈eliminate multiples of p 6a〉
〈generate prime numbers 6b〉
〈Top level function 6d〉

6

4 A prettyprinter

It should be clear by now that a prettyprinting tool to assist with
functional programming using the noweb system would be useful. In
general, prettyprinting can be cleanly separated into two distinct ac-
tivities.

1. Typesetting special characters in the source code. This includes
displaying reserved words in a different font to normal code, re-
placing some operators and symbols with symbols not normally
available in ASCII (such as ≤ for the less-than-or-equal operator).

2. Making changes to the layout of the code, such as reindenting
lines, or breaking long lines of code.

For most cases, changing the appearance of special symbols and re-
served words can be done in a language independent way, using a
simple table of changes to be made. Changing the layout of code,
however, usually requires a great deal of knowledge about the lexical
(and sometimes semantic) structure of the programming language in
question.

4.1 design goals

The primary design considerations of the prettyprinter described in
this document were:

1. It should operate with the noweb literate programming tools,
preferably as a filter in the weave stage of processing.

2. It should require a bare minimum of changes to the source code
of the program being prettyprinted. Many systems, such as CWEB
require the programmer to place markup in the source code as it
is written to indicate preferred forms of prettyprinting. Ideally,
however, it will be possible to prettyprint an existing program
without making any changes.

3. Additionally, should the user decide to stop using the prettyprinter,
it should be easy to do so. No changes to the source code of the
program should be required to produce a valid document.

4. Wherever possible the prettyprinter should be language indepen-
dent.

5. When language dependence is required, the programming lan-
guage Concurrent Clean 1.1 is the desired language[8].

6. The prettyprinter should be configurable. It should be possible to
specify how various parts of the program can be typeset through
some simple mechanism.

4.2 Implementation decisions

With the design goals in mind, some more concrete implementation
decisions could be made. First, the process of prettyprinting is divided
into two parts, as noted above.

7

1. Typesetting of elements of the source code is performed using a
simple lookup table containing two items; a token to be found
in the source code, and a string containing TEX formatting com-
mands to replace the token with. Some facility will be provided
to load these definitions. This allows different replacement tables
to be used for different programming languages.

2. Indentation is performed for the language Clean. This allows
analysis of the source code to determine the required indentation
to be performed without excessive parsing of the source code.

Mechanisms can also be decided upon at this point to implement the
desired features of the prettyprinter.

1. The prettyprinter can be configured while it is processing the
document containing the source code. This configuration is per-
formed by “directives” embedded in the document. In order to al-
low the document to be processed without use of the prettyprinter
the directives are hidden within TEX comments.

2. Directives are provided to control all of the major operations of
the prettyprinter. In particular, directives are available to define
and undefine textual replacements in the source code, and to load
large tables of replacements from external files.

3. The default operating mode of the prettyprinter is to assume
that code is in the language Clean. This means that the pret-
typrinter will start by loading definitions for that language, and
will attempt to indent code chunks. If another language is used,
a directive must be embedded in the source file which will cause
the prettyprinter to load a file containing definitions for this lan-
guage.

Within the constraints of these decisions (some of which were taken to
simplify the implementation of the tool), quite a bit can be done to
improve the printed appearance of code. Simply performing stage 1
of the prettyprinting process, and selecting some appropriate fonts for
the standard appearance of code has a great deal of impact on the
appearance of the code chunks. For those cases where indentation is
not performed, simply obeying the indentation provided by the user is
sufficient.

Unfortunately, for languages like Clean (in general, languages which
have some form of layout, or “offside” rule), simply duplicating the
whitespace provided by the user is insufficient when proportional fonts
are used. This is primarily due to the fact that languages with such
a rule impose more complex restrictions on indentation than simply
requiring lines to have more or less leading whitespace than preceding
lines. Many lines require an amount of indentation which depends on
the position of some token in a preceding line. Consider, for example,
a function

f α β | α = β ≡ True
| otherwise≡ False

8

In this function, the indentation of the second function guard is depen-
dent on the position of the guard character in the first line. Similarly,
the function right hand sides introduced by the symbol ≡must be lined
up, although their exact position is not known until the width of all
the guards has been calculated. This renders some kind of automatic
indentation necessary if any prettyprinting is to be done at all.

Note that Clean in fact has two mutually exclusive sets of syntax
rules. One uses a layout rule to control scope, the other explicitly
delimits scope using brace characters ({}) and semicolons. A simple
set of rules can be used to convert between programs written in either
style. The language Haskell has a similar set of rules. In practice, most
programs are written using the layout rule, and the brace notation is
typically reserved for programs which are automatically generated by
some form of code generator. This prettyprinter only deals with code
written using the layout rule.

4.3 Replacements

A table of replacements is maintained by the prettyprinter which is
used to identify ‘special case’ translations of sections of code. For
instance,

-> \rightarrow →
= \equiv ≡
>= \geq ≥

The program code is advanced through by three mechanisms:

1. A built in algorithm which treats some sections of code, such as
strings and comments, specially

2. An algorithm which attempts to identify code from the replace-
ment table, and perform the required substitutions

3. A default algorithm which attempts to give basic typographic
treatment to all other parts of the program. To avoid errors
in the matching of the replacement table, this algorithm uses a
heuristic to skip over entire identifiers

Replacements are located in the table using a longest matching token
policy which attempts to replace as much text as possible. For alphanu-
meric matches complete identifiers must be matched. For example, if
the replacement table contains entries for “alpha” and “alphanumeric”,
then in the text “alphanumeric a b” the match is “alphanumeric”. In
the text “alphabetic a b” there is no match.

4.4 Indentation

For languages like C no indentation is performed, and whitespace in
the source is preserved. If the program has been correctly indented by
the programmer this is preserved. This allows the prettyprinter to be
used as a simple multi-lingual tool, since indentation can be uniquely
determined by the depth of the first token on a line in many imperative
languages.

9

For the language Clean, however, the situation is more complex. In-
dentation in a layout-sensitive language like Clean relies on more than
just the leading whitespace depth on the line. As shown in the pre-
vious code fragment, indentation frequently relies on lining up certain
tokens which may be embedded in a line.

The indentation scheme used in this prettyprinter is based on the
idea of identifying certain significant tokens in the source, and indent-
ing the source code appropriately. A function such as

f a b | a == 0 = b
| otherwise = f (a-1) (b*b)

can be seen as consisting of three distinct parts from the point of view
of indentation.

f a b | a == 0 = b
| otherwise = f (a-1) (b*b)

Where the material in each of the parts (or “columns”) should be left
aligned within their columns.

If we ignore the possibility of breaking long lines, then the indenta-
tion operation devolves to selecting the correct column for any section
of code based on:

1. Special characters which introduce new indentation levels (like
the guard character “|”).

2. Leading whitespace characters which make a line belong to a cer-
tain part of the program (this is the layout rule which gives some
semantic meaning to whitespace). For instance, if we rewrite the
previous code fragment as

f a b | a == 0 = b
| otherwise = f (a-1)

(b*b)

We have not yet mentioned how local definitions within functions are
treated. In fact, it should be obvious that they can be handled quite
straightforwardly by recursively embedding further columns.

f a b | a == 0 = b
| otherwise = g

where
g |True =f (a-1) (b*b)

Note that “where” clauses appear aligned with function right hand
sides. This can cause problems with very long local definitions. In
many cases, it makes more sense to use the code rearrangement facil-
ities of a system like noweb to move such large definitions out of such
a code chunk and discuss them separately.

This approach has a superficial resemblance to the well known
prettyprinting algorithm [5] which places indent and outdent opera-
tions in the source code. There are some critical differences, however,
as this algorithm is implicitly based on “standard” imperative lan-
guages.

10

1. Line breaks are usually treated as being just another whitespace
character (i.e. as just a single space character). This is appropri-
ate for free format languages (like modern imperative languages),
but is not for layout sensitive languages like Clean where leading
whitespace (i.e. the first set of whitespace characters on a line)
have semantic significance which must be preserved.

2. Most prettyprinting models do not allow indentation to occur
within a line, which is necessary if we are to line up, for instance,
the right hand sides of function equations which have guards.

4.5 Implementation

The most difficult part of the indentation process is identifying which
column to place each piece of code in, and what to do with any empty
columns which are formed. We shall require only five operations to do
this:

movetoguard Which can be used to move from column one to column
two, which is used to set guards. If the current column is not
column one, then this operation has no effect.

movetorhs Which changes the current column to be the third col-
umn, which is used to set function right-hand-sides (and local
definitions). This operation has no effect if the current position
is column three.

pushtabs Which embeds a new series of columns within column three
of the current columns. Until a corresponding poptabs operation
is seen, all movement operations will refer to this inner set of
columns.

poptabs Which ends an embedded series of columns. The pushtabs
and poptabs operations should appear in matching pairs.

endline Which returns the current position to column one, and starts
a new row of text. When linebreaks are not being inserted by the
prettyprinter, there is no trouble in placing this operation; it
appears at each linebreak in the source file, and nowhere else.

Consider now how we can place these operations in a code chunk to
produce correct indentation.

Before the first piece of text from the chunk is set, a pushtabs
operation should be issued, to create the columnar environment in
which the code will be set. The first section of code entered will appear
in column one; column one is not left until

1. a guard introduction character (|) is seen. This will cause the
current column to be moved to column two. The line position in
the source file where the guard character was seen in is also noted.
In more recent versions of the Clean language a form of local name
re-use has been included, introduced by the # character. This
should be typeset identically to a guard and is simply treated
as an alternative form of guard introduction for the purposes of
typesetting.

11

2. a single equals sign (=) is seen, which introduces a function right-
hand-side. This is possible if there is no guard. This causes
the column position to be moved to column three, and the line
position where the “=” symbol was seen is recorded. Note that
it is important that this use of equals is not confused with any
of the operators in the Clean language which are partially made
from the “=” symbol, such as “:==”.

3. The end of line is located.

Following the first line, the amount of leading whitespace on each line
is examined, and if it exceeds the position where either the guard
character was noted, or the function right-hand-side symbol was noted,
then the current position is moved to the appropriate column. To see
the need for this, consider the following code fragment:

f a b | a == 0 = b
| otherwise =(somefunction a) +

(someotherfunction b)

The only reliable way to identify this kind of continued expression is
to observe the indentation depth of the continued characters, and see
which section of the function they belong to, as both left-hand-sides
and guards can be continued in this manner.

4.6 Worked example of lineup

Consider an example of how we might embed the operations described
above in a sample function. As written by the programmer, the func-
tion might appear as

func a b | valid b = make_adjustment_function a
(\c -> map c [1..b])

| otherwise = error_message
where
error_message = abort "error!\n"

Selecting columns for the material on the first line is easy. Note the
initial push operation, to create the initial set of columns.

<push>func a b <2>| valid b <3>= make_adjustment_function a<nl>

The second line can be dealt with by examining the indentation of the
first non-whitespace character on the line. As it is as deeply indented
as the function right-hand-side on the previous line, it is assumed to
be a continuation of this line.

<3> (\c -> map c [1..b])<nl>

Note that column three is introduced at the appropriate whitespace
depth, and not immediately before the first character of the line. This
allows a certain amount of further indentation on continued lines,
which is desirable. The guard character on the next line is indented
much as the first

<2>| otherwise <3>= error_message<nl>

12

The keyword “where” is recognised on the next line, and is placed in
column three, even though it is only placed as deeply as the guards.

<3>where<push><nl>

This keyword also causes a further set of columns to be nested within
the right hand side to line up the local definitions. The local definitions
are then placed in columns as normal. The columns referred to are now
those produced by the pushtabs operation.

error_message <3>= abort "error!\n"<nl>

If a token is seen which is indented less deeply than the position of the
“where” keyword which introduced the nested columns, a pop opera-
tion is placed at the end of the previous line.

When producing LATEX formatting commands to typeset this func-
tion, push operations are translated to “tabular” environments, and
operations to change columns are translated to the appropriate num-
ber of LATEX column changing commands (“&”). At the end of each
code chunk, a sufficient number of pop operations are generated to
close any open indentation levels. When the above example is typeset
(including appropriate font selection), it appears as

func a b|valid b =make adjustment function a
(λc → map c [1 . . . b])

|otherwise=error message
where
error message= abort “error!\n”

4.7 Not everything is a function

So far, we have seen how we can correctly line up the elements of
a function. Although functions play a major role in a language like
Clean, they are not the only artifacts to appear in a program. In
particular, some kinds of type definition require treatment to be lined
up correctly. Algebraic type specifications will require this kind of
treatment, as will most record definitions.

Layout of algebraic type specifications can, in fact, almost be con-
trolled using only the rules described above. The alternate cases of an
algebraic type, for example,

:: Dayoff = Saturday
| Sunday
| Holiday

can be indented simply be treating the “|” character which introduces
the various cases as a guard introduction character, and placing it
in column two. To avoid a large blank region on the first line, the
“=” character which introduces the first case should also be placed
in column two. The need for this can be detected by examining the
first token on the line, as “::” can never appear as the first character
in a function definition. In fact, lineup is seldom required in these
cases, as the programmer has usually lined up cases in an algebraic
type correctly anyway.

13

Record definitions require slightly different treatment. Consider a
record such as

:: Rec = {
field :: Int,
otherfield :: Real,
lastfield :: String
}

Clearly, it is desirable to line up the various fields. In particular, the
types of each field should be lined up. This presents a similar problem
to lining up various function equations; the typeset width of each field
name is not known when the typesetting commands are generated.
One solution is to place the introductory material in column one, the
field names in column two and the types in column three. This requires
treating the “::” character in a field definition similarly to the “=” in a
function definition within records, and treating the first non-whitespace
character on the line as a guard. When a leading “::” is detected on a
line and the first character following the next “=” sign is a left brace,
then a special lineup mode is selected in the prettyprinter which does
just this. The final result appears as

:: Rec = {
field :: Int ,
otherfield ::Real ,
lastfield :: String
}

Note that the width of column one is not set by the leading material,
but by the amount of leading whitespace before the first field.

4.8 Further work

There are a number of shortcomings in the design of the current pret-
typrinter which should be addressed.

1. Indentation of continued function right-hand-sides and guards
sometimes requires some intervention from the user, as it relies
on the amount of leading whitespace on the continued line. The
amount of whitespace placed in the source code is not always
correct to produce attractive layout in the typeset code. Some
mechanism to deduce an appropriate amount of extra indentation
in continued lines is required.

2. The current scheme for replacements is simple, but makes it
irritatingly difficult to typeset expressions like sqrt (10+x) as√

10 + x. Some mechanism for specifying more general replace-
ments would be useful. Without writing a full parser for Clean,
this cannot be done in general, however, it is possible that using
regular expressions to locate replacements would provide enough
expressive power for most cases.

3. Automatic line breaking is not currently performed. A scheme
for breaking very long lines at appropriate points (again, without
building a parser for the language) would be useful.

14

4. The ability to convert programs written using Cleans “brace-
notation” form of programming into correctly indented (but brace
free) typeset programs would allow readable documentation of
programs produced in this style.

5. The approach taken to lining up records is very simple, and fails
when more than one field is specified on each line (as may happen
in large records). A more comprehensive approach would scan the
record definition to see how many columns are required.

5 Conclusions

Typesetting languages like Clean which use a layout rule is very dif-
ferent to typesetting free-format languages. A new approach is needed
in which the concept of “indentation” is replaced with the concept of
“lineup” and a tool to prettyprint code using this approach is described[1].
This lineup can be performed using only lexical analysis (the source
code does not need to be parsed), and can be completely decoupled
from other aspects of prettyprinting (such as font and symbol selec-
tion). To perform full prettyprinting, some work is still needed, par-
ticularly in the areas of line breaking and expression recognition.

References

[1] Glenn Strong. pp source code and documentation.
http://www.cs.tcd.ie/Glenn.Strong/Software/.

[2] Donald E. Knuth. Literate Programming. CSLI Lecture Notes
Number 27. Stanford University Center for the Study of Language
and Information, Stanford, CA, USA, 1992.

[3] Carroll Morgan. The refinement calculus, and literate develop-
ment. In Helmut Partsch Bernard Moller and Steve Schuman, ed-
itors, Lecture notes in computer science, no. 755, pages 161–182.
Springer-Verlang, 1993.

[4] Norman Ramsey. Literate-programming tools need not be complex.
Report at ftp.cs.princeton.edu in /reports/1991/351.ps.Z.
Software at ftp.cs.princeton.edu in /pub/noweb.shar.Z and
at bellcore.com in /pub/norman/noweb.shar.Z. CS-TR-351-91,
Department of Computer Science, Princeton University, August
1992. Submitted to IEEE Software.

[5] Derek C. Oppen. Prettyprinting. ACM Transactions on Program-
ming Languages and System, 2(4):465–483, Oct 1980.

[6] Richard Bird and Philip Wadler. Introduction to Functional Pro-
gramming. Prentice Hall, 1988.

[7] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, May 1984.

[8] Rinus Plasmeijer and Marko van Eekelen. Concurrent
Clean 1.1 Language Report. University of Nijmegen. Web

15

page with details at http://www.cs.kun.nl/~clean, and
PostScript version of the language reference available in the file
ftp://ftp.cs.kun.nl/pub/Clean/Clean11/doc/refman11.ps.gz.
This system is undergoing rapid development, and new versions of
the language reference may be available.

16

