
Database Sampling to Support the Development of

Data-Intensive Applications

Jesús Bisbal

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

October 2000

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Jesús Bisbal

Dated: October 8, 2000

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Jesús Bisbal

Dated: October 8, 2000

To the memory of my father

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor, Prof. Jane Grimson, without

whose continuous encouragement and constructive supervision this dissertation would have

never been completed. I am also indebted to my family who has always supported me in all

my decisions, and encouraged me to achieve my goals.

I would like to thank numerous people I have been working with for the last four years

during the development of this research. Special thanks must go to Deirdre Lawless and Dr.

Bing Wu with whom I worked very closely in the Milestone project. Their friendship, advice

and understanding made of a small project a big success. Gaye Stephens was extremely

helpful when I became a member of the SynEx project. All other members of the Dublin

implementation group for the SynEx project contributed immensely to make of this a very

enjoyable and fruitful experience, Damon Berry, Eoghan Felton, Sebastien Pardon, Brid

Brennan, and Benjamin Jung. I must thank particularly to Cliff Redmond who has been a

great support during the last few months of this research.

I would like to thank several people that have been a good influence during these years.

With Glòria Santamaria Pérez I shared the unforgettable experience of living in a country

without speaking the local language. Rob McGrath and Owen Wallace became my teachers

of English language and Irish culture, particularly regarding to pub culture. I would like to

thank Meera Gopaul and Thiri Aung for sharing their madness with me. Sebastià Pérez-

Chuecos Vallés and Ramón Muñoz Campos, despite the years and the distance, always made

sure I would not forget where I come from. I would like to thank Nuria Barceló i Peiró for

sharing her disappointments and successes with me, even across continents.

Finally I would like to express my appreciation to Gaye Stephens and Eoghan Felton who

v

kindly proof-read a draft of this dissertation.

Jesús Bisbal

University of Dublin, Trinity College

October 2000

vi

Abstract

A prototype database is a model of a database which exhibits the desired properties, in terms

of its schema and/or data values, of an operational database. Database prototyping has been

proposed as a technique to support the database design process in particular, and the whole

data-intensive application development process in general (e.g. requirements elicitation, soft-

ware testing, experimentation with design alternatives). Existing work on this area has been

widely ignored in practice mainly on the grounds that its benefits, i.e. an increase in the

quality of the resulting software systems, do not justify the costs of developing and using a

satisfactory prototype of the database under construction.

Increasingly more software development projects consist of extending or enhancing ex-

isting systems, as opposed to developing new ones. Legacy information systems migration

and WEB-enabling existing systems are examples where operational data can be expected

to be available at development time. In these types of projects, using the entire operational

database may not be cost-effective and a carefully selected subset may be more appropriate.

The availability of operational data and a database schema can significantly reduce the effort

required to build an appropriate prototype database to support the project at hand. The

benefits of using such a prototype, with domain-relevant data and semantics, can also be

expected to be higher than in those cases where software is developed from scratch and thus

an operational database may not be available from which to build a prototype database.

This thesis investigates how a prototype database can be constructed from an existing

database. A prototype database which is populated with data from an operational database

is referred to as a Sample Database; when it is populated using synthetic data values, it is

called a Test Database. The context in which prototype databases in general, and Sample

vii

Databases in particular, can be used is analysed. Existing database prototyping approaches

are reviewed and a framework to evaluate them is developed. The thesis studies the process

of extracting a sample from a database, giving special consideration to the semantic content

of the resulting sample. Semantic information commonly used in practice, and how it can

be included in the sampling process, is investigated. A formal framework is also developed

as a more abstract study of database sampling. A prototype of a database sampling tool,

CoDaST, was implemented to test the concepts developed in this thesis.

viii

Publications Related to this Ph.D.

[1] J. Bisbal and J. Grimson. Database prototyping through consistent sampling. In

the International Conference on Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet (SSGRR’2000). Scuola Superiore Guglielmo

Reiss Romoli (SSGRR), August 2000.

[2] J. Bisbal and J. Grimson. Database sampling with functional dependencies. Informa-

tion and Software Technology, June 2000. Submitted.

[3] J. Bisbal and J. Grimson. Generalising the consistent database sampling process.

In B. Sanchez, N. Nada, A. Rashid, T. Arndt, and M. Sanchez, editors, Proceedings

of the Joint meeting of the 4th World Multiconference on Systemics, Cybernetics and

Informatics (SCI’2000) and the 6th International Conference on Information Systems

Analysis and Synthesis (ISAS’2000), volume II - Information Systems Development,

pages 11–16. International Institute of Informatics and Systemics (IIIS), July 2000.

[4] J. Bisbal, D. Lawless, R. Richardson, B. Wu, J. Grimson, V. Wade, and D. O’Sullivan.

An overview of legacy information systems migration. In Bob Werner, editor, Proceed-

ings of the Joint 1997 Asia Pacific Software Engineering Conference and International

Conference in Computer Science (APSEC’97/ICSC’97), pages 529–530. IEEE Com-

puter Society Press, December 1997.

[5] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy information systems: Issues and

directions. IEEE Software, 16(5):103–111, September/October 1999.

[6] J. Bisbal, B. Wu, D. Lawless, and J. Grimson. Building consistent sample databases to

support information system evolution and migration. In G. Quirchmayr, E. Schweighofer,

and T. J.M. Bench-Capon, editors, Proceedings of the 9th International Conference on

Database and Expert Systems Applications (DEXA’98), volume 1460 of Lecture Notes

in Computer Science, pages 196–205. Springer-Verlag, 1998.

[7] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson.

Legacy systems migration – a method and its tool-kit framework. In Bob Werner,

ix

editor, Proceedings of the Joint 1997 Asia Pacific Software Engineering Conference and

International Conference in Computer Science (APSEC’97/ICSC’97), pages 312–320.

IEEE Computer Society Press, December 1997.

[8] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson.

Legacy system migration : A legacy data migration engine. In Petr Cervinka, editor,

Proceedings of the 17th International Database Conference (DATASEM’97), pages 129–

138. Czechoslovak Computer Experts, October 1997.

[9] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and D. O’Sullivan.

The butterfly methodology: A gateway-free approach for migrating legacy information

systems. In B. Werner, editor, Proceedings of the 3rd IEEE Conference on Engineering

of Complex Computer Systems (ICECCS’97), pages 200–205. IEEE Computer Society

Press, September 1997.

x

Contents

Acknowledgements v

Abstract vi

List of Tables xv

List of Figures xvii

Chapter 1 Introduction 1

1.1 Motivations . 1

1.2 Consistent Database Sampling (CoDaS) . 3

1.3 Research Contributions of this Thesis . 3

1.4 Thesis Organisation . 4

Chapter 2 Context: Applications of Database Prototyping 6

2.1 Introduction . 6

2.2 Terminology . 6

2.3 Applications of Test Databases . 8

2.3.1 Information System Development . 10

2.4 Applications of Sample Databases . 11

2.4.1 Information System Development . 11

2.4.2 Legacy Information System Migration 12

2.4.3 Data Mining . 12

xi

2.4.4 Approximate Query Evaluation . 13

2.4.5 Data Mining with Consistent Database Sampling 13

Chapter 3 State of the Art 16

3.1 Introduction . 16

3.2 Software Systems Prototyping . 16

3.3 Database Prototyping . 17

3.4 Database Prototyping Evaluation Framework 21

3.5 Summary . 24

Chapter 4 Database Sampling - The Process 25

4.1 Introduction . 25

4.2 Consistency in Database Sampling . 26

4.3 Consistent Database Sampling Process (CoDaSP) 28

4.4 Dealing with Integrity Constraints . 31

4.5 Summary . 31

Chapter 5 Database Sampling - Applying the Process 33

5.1 Introduction . 33

5.2 School Reference Database . 34

5.3 Definitions and Notation . 36

5.4 Information to Guide the Sampling Process 39

5.5 Insertions Chain Graph (ICG) . 40

5.5.1 Motivations . 40

5.5.2 Definition of Insertions Chain Graph 41

5.5.3 Example of Insertions Chain Graph 43

5.5.4 Consistent Database Sampling using an ICG 46

5.5.5 Expressiveness of ICG . 49

5.5.6 Sampling Example . 50

5.6 Consistent Database Sampling with Functional Dependencies 51

5.6.1 Motivation . 51

xii

5.6.2 Defining the Problem . 52

5.6.3 Agreements Table . 52

5.6.4 Consistent Database Sampling using an Agreements Table 55

5.6.5 Sampling with Subsets or Supersets of Σ 58

5.6.6 Sampling Example . 59

5.7 Random Sampling . 61

5.8 Analysis of Sampling Algorithms . 62

5.8.1 Complexity . 62

5.8.2 Termination and Correctness . 64

5.9 Summary . 66

Chapter 6 Database Sampling - Formal Framework 67

6.1 Introduction . 67

6.2 Background . 67

6.2.1 Denotational Semantics and λ-Calculus 68

6.2.2 Undecidable Problems and Problem Reducibility 70

6.3 Semantics of Consistent Database Sampling 71

6.3.1 Domains . 72

6.3.2 Domains as Complete Lattices . 72

6.3.3 Supporting Functions . 74

6.3.4 Meaning Function . 75

6.4 Sampling-Relevant Integrity Constraints . 76

6.4.1 Characterisation of Sampling-Relevance 78

6.4.2 Non-Decidability of Sampling-Relevance 78

6.5 Summary . 81

Chapter 7 Prototype of a Consistent Database Sampling Tool (CoDaST) 82

7.1 Introduction . 82

7.2 Requirements of CoDaST . 83

7.3 Consistent Database Sampling Protocol . 83

xiii

7.4 Database Sampler Integration Mechanism (DaSIM) 85

7.5 Design of CoDaST . 86

7.5.1 Design of SamplerIntegrator . 93

7.6 Implementation of CoDaST . 97

7.6.1 Defining the Consistency Criteria . 97

7.7 Summary . 99

Chapter 8 Conclusions 100

8.1 Review of this Thesis . 100

8.2 Summary of Thesis Contributions . 103

8.3 Future Work . 104

8.3.1 Integrity Constraints . 104

8.3.2 CoDaST . 105

8.3.3 Theoretical Development . 105

8.3.4 Objective Evaluation . 106

Bibliography 107

Appendix A Trial 115

A.1 Introduction . 115

A.2 A Consistent Instance of the Reference Database 115

A.3 Consistency Criteria Definitions in the School Database 117

A.4 A Consistent Sample of the Reference Database 122

A.5 A Consistent Sample using SamplerIntegrator 125

xiv

List of Tables

5.1 Arrow Types in an Insertions Chain Graph 42

5.2 Conditions Table for the ICG Example of Fig. 5.3 45

5.3 Insertions Function Example . 46

5.4 Sampling Information for ICG of Fig. 5.3 . 50

5.5 Instance of Courses (rep.) . 53

5.6 Agreements Table Example . 54

5.7 Sample with FD of Courses . 60

A.1 Instance of Students . 116

A.2 Instance of Courses . 116

A.3 Instance of Teachers . 116

A.4 Instance of Depts . 117

A.5 Instance of Rooms . 117

A.6 Instance of Exams . 118

A.7 Instance of Pre-requisites . 119

A.8 Instance of Timetable . 119

A.9 Instance of FullTimeStudents . 120

A.10 Instance of Persons . 120

A.11 Sample with ICG of Students . 123

A.12 Sample with ICG of Courses . 123

A.13 Sample with ICG of Teachers . 123

A.14 Sample with ICG of Depts . 124

xv

A.15 Sample with ICG of Rooms . 124

A.16 Sample with ICG of Exams . 124

A.17 Sample with ICG of Pre-requisites . 124

A.18 Sample with ICG of Timetable . 124

A.19 Sample with ICG of FullTimeStudents . 124

A.20 Sample with ICG of Persons . 125

xvi

List of Figures

2.1 Applications of Prototype Databases . 9

2.2 Data Mining with Consistent Database Sampling 14

3.1 Framework for Evaluation of Prototype Database Construction Methods . . . 22

4.1 Database Sampling Context Diagram . 26

4.2 Information Sources Involved in Consistent Database Sampling 27

4.3 Consistent Database Sampling Process (CoDaSP) 29

5.1 School Reference Database EER Diagram . 35

5.2 Normalised Schema for the Reference Database 36

5.3 Insertions Chain Graph (ICG) Example . 44

5.4 Consistent Sampling with ICG . 48

5.5 Consistent Sampling with Functional Dependencies 56

6.1 Non-Decidability of Sampling-Relevant Constraints 80

7.1 Design of Random Samplers . 87

7.2 Design of Database Sampler with Functional Dependencies 88

7.3 Design of Database Sampler with Insertions Chain Graph 90

7.4 Set of Basic Database Samplers . 91

7.5 Design of Interface to a Database . 92

7.6 Design of Sampler Integrator . 93

7.7 Sampler Integrator Execution Example . 96

xvii

7.8 Using LEX/YACC to Generate an ICG Parser 98

A.1 Hierarchy of Database Samplers . 127

xviii

Chapter 1

Introduction

1.1 Motivations

Software prototyping is a risk-reduction technique commonly used in software development

projects when the requirements of the system under development are not well defined. For

the purposes of this thesis, a software prototype is a partial implementation of the system

to be built (see Section 3.2). This software prototype is exposed to user comment and then

refined to meet additional requirements or correct errors. This process is repeated until

an adequate prototype has been developed, thus resulting in a better understanding of the

requirements for this part of the system. Whether software prototyping is to be used as

the main software development paradigm or as part of a wider framework has been widely

discussed elsewhere [57, 55, 31, 34] and is out of the scope of this research. Prototyping is,

nonetheless, a technique applicable to a wide range of software development projects, which

ultimately leads to more usable software.

This thesis is concerned with the process of prototyping data-intensive applications. Thus

in addition to the prototype application, a prototype database is also required. It has been

recognised [66, 31] that, whenever possible, operational data, as opposed to synthetic data,

should be used to populate prototype databases. However, the work presented here is the only

research found in the literature that studies the process of creating or generating a prototype

database from operational data. Existing work populates the resulting prototype databases

1

1.1. Motivations

mainly with synthetic data values (e.g. ’name1’, ’name2’, ... as values for an attribute

representing persons names). This thesis analyses the database prototyping process and,

in particular, Database Sampling, that is, the construction of prototype databases populated

with operational data. At the simplest level, some applications of sampling are only concerned

with the origin of the data, namely that it should be operational data. However, many

applications require the resulting database to contain, in addition, semantic information

similar to that of the operational database (see Chapter 2). Thus in Consistent Database

Sampling the objective is to select data items so that the resulting Sample Database satisfies

predefined criteria, generally a set of integrity constraints.

Software Prototyping, as described above, is a technique closely associated with user re-

quirements analysis. Although this is the main motivation for prototyping, other application

areas have also been identified, including user training and software testing [57]. In addition,

database prototyping, and in particular Database Sampling, is also applied to other areas

outside software development, including data mining and approximate query evaluation (see

Section 2). This research was initially motivated in the context of Legacy Information Sys-

tems Migration [18], where the need to identify a sample of an existing operational database

is essential to the success of any migration project [71], in particular during testing of the

transformation of the data from the legacy to the target schema (see Section 2.4.2).

It has been reported that as much as 60% [28] of total software development costs are

devoted to enhancing existing applications, to add or modify functionality, rather than devel-

oping new applications [33]. Therefore in 60% of projects it is reasonable to expect that an

operational database exists from which the sample data can be extracted. Legacy Migration

and WEB-enabling existing applications are examples of projects in which a database would

be available.

In all the applications outlined above it is likely that it would be too costly to use the

entire database and therefore a sample may be required. This justifies the research work

reported in this thesis.

2

Chapter 1. Introduction

1.2 Consistent Database Sampling (CoDaS)

The purpose of database sampling is to extract a sample that faithfully represents the op-

erational database. How the representativeness of the sample is evaluated depends on the

sampling application at hand. For example, in random sampling the representativeness of the

sample is evaluated in terms of its size so that a sample with at least a predefined number of

instances is considered to represent its operational database faithfully enough. Additionally,

there is the underlying assumption that the relationships between instances are not relevant

to the representativeness of the sample.

This thesis, however, is concerned with evaluating the representativeness of a sample

database in terms of the set of integrity constraints it satisfies. In this context, a sample

is considered representative if it is consistent with a predefined set of integrity constraints,

which is, in general, a subset of those satisfied by its operational database. Therefore, in

Consistent Database Sampling (see Section 2.2), the representativeness criteria are identified

with consistency criteria.

For the purposes of this research work the most significant challenge that must be ad-

dressed when consistency is used to evaluate the representativeness of a sample database is

that the inclusion of one instance in the sample may require the inclusion of other instances

before the resulting sample database reaches a state consistent with the specified set of in-

tegrity constraints. These insertions may, in turn, require additional insertions. How this

chain of insertions is appropriately enforced in a generic and efficient way is the main focus

here.

1.3 Research Contributions of this Thesis

This thesis contributes in a number of ways to the research in the area.

• It presents the state of the art in prototype databases construction methods, with a

focus on supporting data-intensive applications development.

• Database prototyping approaches can be compared according to an evaluation frame-

3

1.4. Thesis Organisation

work introduced in this thesis. Such framework also identifies the context in which each

approach will be better suited.

• It defines the problem of consistently sampling from a database, proposes that database

sampling should be used as a database prototyping technique, and distinguishes this

approach from that of using synthetic data to populate prototype databases.

• It demonstrates that database sampling is a practical approach by developing sam-

pling methods that consider several types of integrity constraints to be satisfied in the

resulting sample.

• It develops a formal framework for database sampling as a benchmark for sampling

tools and to help reasoning about database sampling.

• A prototype of a consistent database sampling tool (CoDaST) which incorporates sev-

eral sampling strategies was designed and implemented. Each strategy is implemented

by a sampling module which samples a database according to particular representa-

tiveness criteria. This prototype also defines a practical framework where sampling

modules can be seamlessly integrated in order to construct a new module that samples

a database according to several criteria simultaneously. The thesis describes CoDaST

and shows that this incremental construction of complex sampling modules is an ap-

propriate way of sampling a database considering all its semantic complexity.

1.4 Thesis Organisation

This thesis is organised as follows. The next Chapter identifies the range of applications

where prototype databases are needed, classifying them based on whether they require the

prototype database to be populated with synthetic or operational data.

Chapter 3 reviews existing methods for building prototype databases and presents an

evaluation framework that can be used to classify these methods and identify to which type

of applications, as in Chapter 2, they are better suited.

4

Chapter 1. Introduction

The process of extracting a sample from a database is studied in Chapter 4. This de-

scription is kept as abstract as possible, without assuming a particular data model (e.g.

relational, hierarchical, semi-structured) in the database being sampled or that a specific

type of consistency criteria is used to evaluate the resulting sample.

Chapter 5 specialises the description of the sampling process given in Chapter 4 for the

case of the relational data model and particular types of integrity constraints. Concrete

examples that illustrate the concepts developed throughout this thesis will be based on the

School Reference Database. This database is described in this Chapter.

A formal framework for database sampling is developed in Chapter 6. It defines precise

semantics for consistent database sampling as specialised in Chapter 5. Chapter 6 also

studies a particular type of integrity constraints, referred to as Sampling-Relevant, which are

of special interest in the context of database sampling.

Chapter 7 details the design and implementation of a prototype of a sampling tool, Co-

DaST, that has been built as a proof of concept for the developments of this thesis, imple-

menting the methods and algorithms analysed in Chapter 5.

The final Chapter summarises the findings of this thesis and identifies a number of possible

future directions for this research.

Appendix A presents a realistic database instance for the School Reference Database of

Chapter 5. A Sample of this instance which could result when using CoDaST is also given

here.

5

Chapter 2

Context: Applications of Database

Prototyping

2.1 Introduction

This Chapter sets the construction of prototype databases in context by identifying the most

relevant applications where prototype databases are required. Section 2.2 introduces the

terminology that will be used in the reminder of this thesis, using different terms to refer to

prototype databases depending on the origin of the data used to populate them, i.e. synthetic

or operational. The applications where each of the resulting prototype database type are best

suited are analysed in Sections 2.3 and 2.4 respectively.

2.2 Terminology

For the purposes of this thesis the term Prototype Database is defined as follows:

Prototype Database: Any database used to model (part of) the data and/or the semantics

of another database.

Note that this definition is not concerned with how a prototype database is built, but rather

is only concerned with what it is used for.

6

Chapter 2. Context: Applications of Database Prototyping

The main contribution of this research is the investigation of the process that builds a

prototype database populated with domain-relevant data from an operational database. The

resulting prototype database is called here Sample Database.

Sample Database: A Prototype Database populated with data from an existing database,

according to predefined data selection criteria. The existing database being sampled

may also be referred to as Source Database, in order to stress the fact that the sampling

process deals with two separate databases, i.e. the Source and the Sample.

Data can be sampled from a database according to many different criteria. For example,

data items to be included in a Sample Database could be randomly selected from the Source

Database. Frequently, however, it is important to include semantic information in the Sample

Database, such as for example satisfying a set of integrity constraints. In these cases the

resulting Sample Database is referred to as Consistent Sample Database.

Consistent Sample Database: A Sample Database where the data selection is performed

following predefined criteria used to evaluate the consistency of the resulting database.

In order to simplify the terminology to be used, a Sample Database may also be referred to

as simply Sample.

Finally, when it is not possible or necessary to use data from an existing database the

resulting prototype database is called a Test Database.

Test Database: A Prototype Database which is populated using synthetic data, i.e. data

values not relevant to the database application domain.

A prototype database can, in fact, have elements of both Test Database and Sample

Database. This would be the case, for example, if a subset of the data of an operational

database (e.g. the set of first names and last names of teachers in a database storing infor-

mation about a School) is used as the domain for the values of the attributes in a prototype

database. The resulting database can be seen as a Sample Database because each individual

data value has been taken from an existing database. It can also be seen as a Test Database,

7

2.3. Applications of Test Databases

since the database as a whole is not a direct result of sampling an existing database (e.g. if

first and last names are combined randomly the resulting full names may not correspond to

any existing name in the Source Database). This may be an appropriate approach in case

of an operational database containing variable quality data, as is commonly the case when

dealing with legacy databases [18]. With this approach, the resulting prototype database

could be of better quality than its Source Database, while at the same time containing data

values with which the users would be familiar. However, if the focus is on achieving high sim-

ilarity with the original database (including its semantics), a common requirement in many

prototyping applications, then this prototype database construction method would not be

appropriate.

Another mixed approach to database prototyping which could not be regarded exactly as

producing either Test Databases or Sample Databases would result if part of the prototype

database is populated with data from an existing database, and another part using synthetic

values. For simplicity, all these mixed approaches to database prototyping are also referred

to as Test Databases in this thesis, because the focus here is on building Consistent Sample

Databases as defined above.

From the discussion given in this Section, terms Test Database and Sample Database can

be seen as two extremes of a spectrum of possible types of prototype databases, depending

on which type of data has been used to populate them. This view is exploited in Section 3.4

when describing a framework for evaluating prototype database construction methods.

The next two Sections analyse the application areas that require the construction of

database prototypes. They are classified in terms of which type of prototype database,

namely Test Database or Sample Database, can be used in each type of application. Fig. 2.1

summarises the different application areas described here.

2.3 Applications of Test Databases

Database prototyping is commonly used to support several stages of the information systems

development process. These applications of database prototyping can, to some extent, be

supported using synthetic data, that is, Test Databases. Other applications of database

8

Chapter 2. Context: Applications of Database Prototyping

Prototype
Database

Applications

Applications of
Test Databases

Information System
Development
− Requirements Analysis
− Database Design
− Testing

Applications of
Sample Databases

Information System
Development
− Requirements Analysis
− Database Design
− User Training
− Testing

Legacy Migration
− Testing (Data Mapping)
− Target System Development

Approximate Query
Evaluation

Data Mining

Fig. 2.1: Applications of Prototype Databases

9

2.3. Applications of Test Databases

prototyping are associated with the availability of operational data, as will be discussed in

Section 2.4.

2.3.1 Information System Development

All prototype database constructions methods available in the literature, with the exception

of [19, 16, 14, 15] which resulted from the research presented here, populate the resulting

database using synthetic values (see Section 3.3). Although Sample Databases support the

information system development process better than Test Databases (refer to Section 2.4.1),

there may not always be an operational database from which to sample. Therefore, a Test

Database may be the only alternative.

When prototyping data-intensive applications, in order for it be realistic, a prototype

should ideally interact with a database with the same schema as the one it will have when in

production. A Test Database may fulfill these requirements, depending on both its semantic

contents and the semantic needs of the prototyping application. A Test Database can support

the following stages of the information system development process.

Requirements Analysis This is regarded as the most common motivation for prototyping

an application [74, 33]. In this context, a prototype is exposed to user comment to gain a

better understanding of user requirements. Providing the user with a realistic prototype, in

terms of behaviour and look-and-feel, may be imperative in this context. When prototyping

data-intensive applications, a prototype database is needed to model functional aspects of

the application.

Database Design Experimenting with different design alternatives facilitates a better un-

derstanding of their completeness and correctness [49, 63, 50]. A design is complete if it

contains all the desired semantics, and it is correct if it does not include any undesired se-

mantics. A partially implemented database, even if solely populated with synthetic values,

could support the evaluation of different design options, by exposing missing and undesirable

relationships between data items.

10

Chapter 2. Context: Applications of Database Prototyping

Testing At the later stages of software testing, applications must be tested in conditions

as similar as possible to those they will encounter during operation [66]. As outlined above,

a Test Database with the appropriate schema could lead to a realistic prototyping environ-

ment. Examples of such stages of software testing include system functional test [12, 13],

performance evaluation [30], and back-to-back testing [57].

2.4 Applications of Sample Databases

An alternative to populating prototype databases with synthetic values is using data sampled

from an existing operational database. The applications where a Sample Database would be

helpful are analysed next.

2.4.1 Information System Development

All stages of the information system development process analysed in Section 2.3.1 can also

be supported using Sample Databases. In fact, it is generally recognised [31, 66] that Test

Databases are not as useful and that Sample Databases, when available, should be used

instead. Section 2.3.1 identified the need for a prototype to interact with a database with

a schema as similar as possible to that of the operational database. If, in addition to the

same schema, a prototype database contains domain-relevant data values, this will make the

prototype more realistic and hence improve its usefulness. In particular, requirements analysis

and testing can be expected to be more effective if operational data is used instead of synthetic

data. Users will be able to identify the data items that the prototype is manipulating,

understanding their semantics, and thereby providing more useful feedback to the developers.

Also, testing will detect those errors that are more likely to occur during operation [66].

Additionally, user training can be particularly well supported by a Sample Database.

User Training Users should only be trained with domain-relevant data; synthetic data

would be of limited use. They need to be familiar with the actual data they will view when

using the production application and therefore operational data should be used to populate

a prototype database in this context.

11

2.4. Applications of Sample Databases

2.4.2 Legacy Information System Migration

The term legacy system is generally used to refer to any software system that significantly

resists modification and evolution. A particular type of information system development

project is that of Legacy Information System Migration. This can be defined as follows

[18, 17]:

Legacy Information System Migration consists in moving an information system to a

more flexible environment which allows information systems to be easily maintained and

adapted to new requirements, retaining original system data and functionality without

having to completely redevelop them.

In this context operational data is certainly available for sampling, as it itself is a part of

the system to be migrated. This process will require a prototype database to support the

development of the target system, as described in Sections 2.3.1 and 2.4.1. Additionally,

in this particular type of project, the data must be migrated from the legacy environment

into the target environment. This is a crucial part of any migration project, and some

methodologies have been proposed to support this process [21, 41, 71, 69, 70, 53]. The

actual mapping from the legacy to the target database schemas must be developed and

tested thoroughly. In this testing process, a prototype database as similar as possible to the

operational database, e.g. a Sample Database, will be invaluable. Using the entire legacy

database for testing purposes only would probably be too costly and unnecessary.

2.4.3 Data Mining

Data mining is the extraction of useful knowledge from large amounts of data. The data anal-

ysis should ideally be performed using as much information as possible as this can potentially

lead to discovering all useful and relevant patterns in the database. However, data mining

algorithms are computationally very expensive. Much research has been undertaken during

the last decade to develop faster data mining methods. One proposal in [38] is to mine the

information using only part of the database, instead of the entire set of data. This approach

achieves a trade-off between the accuracy of the information extracted and the computational

12

Chapter 2. Context: Applications of Database Prototyping

cost of the procedure to mine it.

In this context a prototype database could be extracted from the database to be mined and

the mining process performed on this prototype database. The data items used to populate

the prototype database would be selected randomly. Kivinen [38] investigates how much data

needs to be included in the prototype database as a function of the confidence one expects in

the information extracted from this database. See Section 2.4.5 for an alternative sampling

strategy for data mining.

2.4.4 Approximate Query Evaluation

Improved performance in answering aggregate queries [35, 51] to relational databases can be

achieved by giving approximate answers to them. For example, if the goal is to compute the

average value of a particular attribute, a random Sample of the database can be extracted

and the result computed for this Sample. The result for the entire database can be inferred

form the result for the Sample. It has also been proposed [52] that a sampling operator

could be included in database management systems, so that only a random Sample of the

actual result is returned. This approach can be justified when computing the entire result

is unnecessary or too expensive. Note that this operator could be used to implement the

approximate answers to queries outlined above.

Random sampling, either uniform [51, 56] or biased [54, 3], has mainly been used in this

context. It does not seem likely that Consistent Sampling as defined in Section 2.2 would

provide better results than random sampling in these types of applications.

2.4.5 Data Mining with Consistent Database Sampling

Section 2.4.3 briefly outlined the use of Sample Databases without semantic information in

data mining. In this context, only approaches based on random sampling have been found in

the literature. By randomly sampling a database, some patterns can be lost as related data

items may not always be sampled together. Uniform random sampling has been criticised

in the context of data mining on the grounds that it may completely miss small clusters of

data. Biased sampling has been proposed instead [54]. This Section outlines an alternative

13

2.4. Applications of Sample Databases

Operational
Database

Operational
Database

Sample Database
Extraction Module

Sample
Database
Sample

Database Data Mining
 Module

patterns

Representativeness Criteria
(e.g. integrity constraints)

(1)(6)(1) (6)

(2)

(3)

(4)

(5)

Fig. 2.2: Data Mining with Consistent Database Sampling

approach based on the use of Consistent Database Sampling.

Consistent sampling is expected to lead to Sample Databases which, as a whole, are

more representative of the database being analysed than if random sampling is used, thereby

increasing the possibility of finding interesting patterns. This idea has been initially proposed

by this research work [16].

Consistent Database Sampling in data mining would lead to an iterative data mining

process as follows. It would start by sampling the operational database (arrow (1) in Fig.

2.2) using a given consistency criteria, e.g. a known set of integrity constraints. Then the

resulting Sample Database (2) would be mined (3). Patterns discovered during mining (4)

could suggest (5) additional criteria to be considered when extracting a new sample of the

database (6). This process would be repeated until the Sample Database is considered to

reflect the consistency criteria sufficiently comprehensively and enough patterns have been

extracted from the database.

The process described in this Section would result in a better understanding of the seman-

tics of the database, an important issue in legacy information systems [18], and in a Sample

Database highly similar to the operational database, creating a more realistic prototype (see

Section 2.3.1). The mining process is also expected to be more efficient than if the entire

database was used; the rationale being that it mines several small databases as opposed to

14

Chapter 2. Context: Applications of Database Prototyping

one large database.

The use of Consistent Sampling in Data Mining described above can seem paradoxical.

It relies on initial criteria to extract a Sample Database, which is then mined precisely to

extract these criteria. There is no such paradox due to the fact that it describes an iterative

process. An initial Sample could be extracted according to very basic constraints, like for

example a set of referential integrity constraints only. This Sample would trigger the process

describe above.

15

Chapter 3

State of the Art

3.1 Introduction

This Chapter reviews existing literature related to database prototyping from two different

points of view. Firstly, Section 3.2 presents an overview of existing research in the area of

software systems prototyping, the context in which database prototypes are most commonly

used. Secondly, Section 3.3 reviews existing approaches to database prototyping within the

context of data-intensive applications prototyping, the main motivation for the research work

presented here. Finally, a framework to evaluate existing methods to construct prototype

databases is presented in Section 3.4.

3.2 Software Systems Prototyping

A software prototype is a model of the software to be built which exhibits the desired prop-

erties of the final product [34]. A significant number of software prototyping methodologies

have been proposed over the years. Each of them addresses different needs that arise during

the software development process (e.g. requirements analysis, understanding design alterna-

tives), are based on different techniques (e.g. mock-ups, executable specifications, design and

coding in a target language), and are focused on different domain types (e.g. database design,

user interface), etc. Reviewing relevant system prototyping approaches is out of the scope

16

Chapter 3. State of the Art

of this thesis. Wood [68] provides a very extensive literature review, including a unifying

taxonomy and terminology for the existing prototyping solutions.

The vast majority of software system prototyping approaches available in the literature

are associated with requirements engineering, particularly user-friendliness [74], by expos-

ing a prototype to the user who can then comment on required modifications and missing

functionality. In some particular application domains, such as data and knowledge intensive

systems [31], prototyping is considered an integral part of the whole development process.

This is an example of a very young application domain with high uncertainty throughout

the development process, and (application and database) prototyping is seen as the most

appropriate risk-reduction technique, by allowing design alternatives to be explored. In this

context, Guida [31] describes a prototyping framework, termed Prototyping Hierarchy, to

support the prototyping of data and knowledge intensive applications. This framework con-

sists of several layers, each of which corresponds to a logical paradigm for data representation

(i.e. relational, extended-relational, deductive, object-oriented, and active). Software proto-

types are built on top of one of these layers, depending on which one is more appropriate

to represent the particular application domain. Guidelines are given as to how additional

layers could be added to the Prototyping Hierarchy if required. Guida explicitly recognises

the importance of using operational data to populate prototype databases as ‘[. . .] users

can interactively experiment with data structure, while viewing familiar data being manip-

ulated by the prototype.’ How operational data is to be used for prototyping purposes is,

however, not addressed. The Consistent Sample Database approach being investigated here

could become part of such prototyping framework.

3.3 Database Prototyping

Most of the existing approaches to database prototyping generate Test Databases, that is,

they populate the resulting database with synthetic values. In the context of the data-

intensive applications prototyping, existing approaches can be classified into those for database

performance evaluation, and those for requirements analysis. The main goal of the former

is to generate large amounts of data, without including specific semantics. The objective of

17

3.3. Database Prototyping

the latter is to produce a database which is highly similar to the database it models, and

therefore they focus on the semantic contents of the resulting database.

Jim Gray [30] reports on a database prototyping method for database performance evalua-

tion. His paper describes sequential and parallel algorithms to populate a database with large

amounts of data. The data values are strictly randomly generated using several probability

distributions. The approach presented in [9] is also concerned with database performance

evaluation. It shows that generic database benchmarking tests prove unsatisfactory for high-

performance databases because their underlying schemes are too simplistic and the data

volumes being considered too small1. Bates [9] paper proposes an alternative, more realistic,

benchmark model suitable for large parallel databases. It describes a toolkit used to generate

database prototypes based on more real requirements, in terms of workload, semantic infor-

mation, and data values. The domain values for some attributes are taken from predefined

domains (e.g. files with female names, male names, and family names), thus following one of

the mixed approaches to database prototyping outlined in Section 2.2. As a benchmark, the

database schema and semantic information are static, referring to the finance domain. Al-

though a very flexible approach for database performance evaluation, adapting this approach

to be used in a different context (e.g. requirements analysis) and in a different application

domain (e.g. not for a financial application) does not seem feasible. A similar approach

can be found in most papers describing data mining (see Section 2.4.3) algorithms. In this

context performance evaluation of the algorithm being proposed is imperative and populat-

ing a test database with purely synthetic data is, with few exceptions, the norm. Although

each individual paper reports on its own particular synthetic database, the one described in

[5] is becoming a common reference Test Database. The databases used in this context are

designed for performance evaluation only. Although they do contain semantic information,

as mining this information is precisely the objective of the algorithm under test (i.e. finding

patterns in the data), the way in which these semantics are included in the data is always

1Benchmarks have been updated since this paper was published. The latest version of the benchmark
referred to, TPC-C Version 3.5 at http://www.tpc.org/, is effective since 25 October 1999. This new version
increases the data volumes according to technological advances. However, the business model still enforces a
significantly simpler set of integrity constraints than that used in [9], so the claim of excessive simplicity made
by Bates can still be considered to hold.

18

Chapter 3. State of the Art

domain-specific.

Some approaches have been proposed to build Test Databases with significant semantic

information, always in terms of the set of integrity constraints being satisfied by the resulting

database. The general mechanism for test data generation involves inserting data values

into the database and then testing-and-repairing this data by adding/deleting data items

so that it eventually meets the specified constraints. Most solutions proposed for test data

generation deal with a very reduced set of constraint types. Noble [50], for example, describes

one such method, considering referential integrity constraints and functional dependencies,

and populating the database mainly with synthetic values, although the user can also enter

a list of values to be used as the domain for an attribute.

A notable exception is found in [49] where a subset of First-Order-Logic (FOL) is used to

define the set of constraints that the generated test data must meet, thus allowing complex

constraints to be defined. However, using an approach based on FOL the whole set of

constraints must be explicitly uncovered, a non-trivial task when dealing with large databases.

This set of constraints must then be expressed using a FOL-based language to yield a set of

formulas, which must be consistent. It is well-known, however, that to prove consistency in

FOL is a semi-decidable problem [23]. It is also necessary to perform some kind of logical

inference in order to maintain consistency. Neufeld [49] proved that such an approach does

not scale.

A different database prototyping approach is presented in [73]. This method firstly checks

for the consistency of an Extended Entity-Relationship (EER) diagram [10] defined for the

database being prototyped, considering cardinality constraints only. Once the design has

been proved consistent, a Test Database is generated. To guide the generation process, a so-

called general Dependency Graph is created from the EER diagram. This graph represents

the set of referential integrity constraints that must hold in the database and which is used

to define a partial order between the entities of the EER diagram. The test data generation

process populates the database entities following this partial order. Löhr-Richter [44] further

develops the test data generation step used by this method, and recognises the need for

additional information in order to generate relevant data for the application domain. The

19

3.3. Database Prototyping

most significant drawback of this approach is that it considers cardinality and referential

integrity constraints only.

Tucherman [63] presents a database design tool which prototypes a database also based

on an Entity-Relationship diagram. The tool automatically maps this design into a nor-

malised relational schema. Special attention is paid in this contribution to what are called

restrict/propagate rules, that is, to enforcing referential integrity constraints. When an op-

eration is going to violate one such constraint, the system can be instructed to either block

(restrict) the operation so that such violation does not occur or to propagate it to the as-

sociated tables by deleting or inserting tuples as required. No explicit reference is made as

to how the resulting database would be populated for prototyping, although it identifies the

possibility of interacting with the user when new insertions are required, as the user may be

the only source for appropriate domain-relevant data values.

Mannila [45] described a mechanism for efficiently populating a database relation so that

it satisfies exactly a predefined set of functional dependencies (and thus being an Armstrong

relation as will be defined in Section 5.3). Such a relation can be used to assist the database

designer in identifying the appropriate set of functional dependencies which the database

must satisfy. Since this relation satisfies all the required dependencies and no other depen-

dency, it can be seen as an alternative representation for the dependencies themselves. A

relation generated using this method is expected to expose missing or undesirable functional

dependencies, and the designer can use it to iteratively refine the database design until it

contains only the required dependencies. Special attention is paid in [45] to the size of the

relation being generated. A designer might not be able to identify missing or undesirable

dependencies if s/he was presented with a relation containing a large number of tuples. For

this reason, the goal is to produce a relation that, when satisfying exactly a given set of

functional dependencies, contains the smallest possible number of tuples. Refer to [47] for a

more extended treatment of this approach.

All database prototyping approaches described above populate the database using data

values not related to the application domain. This limits their applicability, as was described

in Section 2.4. It must be noted that the need for a Sample of a database arises in a context

20

Chapter 3. State of the Art

significantly different from that which motivated existing database prototyping approaches.

Methods that produce synthetically generated databases are needed when developing com-

pletely new applications. Currently, there is an increasing need to develop or extend applica-

tions based on existing software and data (maintenance, migration, etc.) which motivates the

need to address the traditional problem but with an additional constraint, the availability of

existing applications and related data. Refer to [18] for a more extended discussion on the

challenges posed by existing (legacy) applications.

The research reported in this thesis addresses the limitations of the approaches outlined

above by building prototype databases that are populated with operational data. Section 5.5

[19] describes a Sample Database construction method which can enforce sets of commonly

used integrity contraint types (including cardinality constraints, generalisation dependencies,

inclusion dependencies and subset dependencies). From the point of view of the semantic

information included in the resulting database this method can be seen as having similar

objectives as [49, 50, 73, 63] described above. Section 5.6 [15] describes a method to construct

a Sample Database with a single database relation which is an Armstrong relation for a given

set of functional dependencies, and thus is comparable to the approach presented in [45]. In

Chapter 4 [16] the database sampling process is analysed from a more abstract point of view,

without focusing on any particular type of integrity constraint or specific data model (e.g.

relational, object-oriented, hierarchical, semi-structured) to be sampled, and thus identifying

the issues that must always be addressed when consistently sampling from a database.

3.4 Database Prototyping Evaluation Framework

When the need for constructing a Prototype Database arises, it is necessary to identify the

appropriate method to use. The requirements of the database prototyping application (e.g.

the application areas described in Section 2) will determine the most suitable method(s).

Existing approaches can be classified according to two orthogonal criteria: (1) the origin of the

data used to populate the Prototype Database; and (2) the amount of semantic information

the resulting Prototype Database contains. Based on these two concepts, it is possible to

select the appropriate method for constructing the prototype database for the application at

21

3.4. Database Prototyping Evaluation Framework

Data
Origin

Semantic
Information

(1)

(3) (4)

(2)
• User Training
• Functional Testing
• Requirements Validation
(final stages)

• Requirements Validation
(initial stages)

• Performance Evaluation • Data Mining
• Query Evaluation

100%
operational100%

synthetic

Po
or

(e.g
. ra

ndo
m)

Ric
h

(e.g
. F

OL)

Fig. 3.1: Framework for Evaluation of Prototype Database Construction Methods

hand.

Synthetic vs. Operational Data This issue has already been discussed in Section 2.2.

Poor vs. Rich Semantics Existing solutions enforce different sets of integrity constraints

in the resulting prototype database, as analysed in Section 3.3. Random values generation

[30] and random sampling [51, 38], for example, would result in databases with poor seman-

tic information as no particular constraints would be enforced. In contrast, an approach

which includes a highly expressive language (e.g. first-order-logic or FOL) used to define

the set of integrity constraints being enforced would produce databases with richer semantic

information.

The kind of support that a prototype database built using a particular method provides to

the information system development process can be assessed by identifying where this method

falls according to the two classifying criteria given above. These criteria can, therefore, be

seen as a framework for the evaluation of prototype database construction methods. Fig. 3.1

shows a graphical representation of such framework, where the two criteria, data origin and

semantic content, have been displayed along each of the axes. Given one concrete prototype

database construction method, the relative semantic richness it can enforce will provide a

22

Chapter 3. State of the Art

value for its X coordinate in Fig. 3.1. Similarly, the percentage2 of operational data used

to populate a prototype database will define a value for its Y coordinate. Fig. 3.1 has been

divided into four quadrants that indicate which methods are more appropriate for the various

stages of the information system development process.

Methods in quadrant (1) (e.g. [16]) lead to databases highly similar to those the informa-

tion system will use in production. For this reason the resulting prototype databases will be

useful for user training, software testing and at late stages of requirements analysis. Meth-

ods that fall in quadrant (3) (e.g. [30]) do not enforce complex integrity constraints and do

not need to query other data sources to populate the constructing prototype database. Such

methods can, therefore, efficiently generate large volumes of data, which makes them particu-

larly appropriate for performance evaluation of information systems. Quadrant (2) represents

a trade-off between efficiency (quadrant (3)) and faithfulness (quadrant (1)). For this reason

methods in this quadrant (e.g. [49]) are appropriate for initial database requirements anal-

ysis where alternative designs must be explored (semantic information would be useful) and

therefore several prototype databases may need to be generated (need for efficiency). Finally,

methods in quadrant (4) (e.g. [51, 38]) would not generally be useful to support information

systems development. This quadrant indicates the use of operational data and the inclusion

of little semantic information in the prototype database being populated. Using operational

data results in prototype databases very similar to the production database; not including

semantic information leads to a databases less similar to the operational database, which

contradicts the use of operational data within information system development. Methods

within this quadrant are, however, the only ones used in applications of sampling such as

data mining3 and approximate query evaluation.

The above discussion places Sample Databases and Test Databases in the context of

information systems development. Sample Databases are those produced by methods that

fall in quadrants (1) and (4), and Test Databases by those in quadrants (2) and (3). This

thesis is concerned with the construction of Consistent Sample Databases, which result when

2A method could combine operational with synthetic data to populate a prototype database, as discussed
in Section 2.2.

3Refer to Section 2.4.5, where Consistent Sampling is applied to data mining.

23

3.5. Summary

using methods in quadrant (1), grayed in Fig. 3.1. It is clear from this Figure that this

type of prototype databases can be used to support more stages of the development process

than those that result from using methods in other quadrants. Therefore Consistent Sample

Databases are the preferred prototype database type to be used when operational data is

available.

3.5 Summary

This Chapter has reviewed existing literature in the area of database prototyping to support

the development of information systems.

Firstly, it has provided an overview of software systems prototyping, identifying one par-

ticular area, data and knowledge intensive systems, where database prototyping and database

sampling are considered an integral part of the development process. Then this Chapter has

focused on existing approaches to build prototype databases, both for performance evaluation

and for requirements analysis. Finally a framework for evaluating existing approaches, and

identifying their applications areas, has been described.

24

Chapter 4

Database Sampling - The Process

4.1 Introduction

This Chapter analyses the process of Consistent Database Sampling and the main issues it

involves. The process is described in abstract terms so that it can be applied in the context

of disparate data models and a wide range of integrity constraints. Concrete examples of

how this process can be specialised to particular data models and constraints are given in

Chapter 5.

For the purposes of this Chapter, abstract terms like entity and instance will be used in

descriptions which do not refer to a concrete data model. An instance is associated with a

data item in a database, and an entity with a collection of instances. In terms of the relational

model [24], for example, these concepts would be identified with a tuple and a relation (table)

respectively.

The next Section identifies the most significant challenges that must be addressed when

consistently sampling from a database. Then Section 4.3 defines the Consistent Database

Sampling process that underlies the work presented in this thesis. Finally Section 4.4 classifies

integrity constraints into two types, namely locally satisfiable and global integrity constraints,

as each of these two types of constraints sets different requirements for the way a database

must be sampled.

25

4.2. Consistency in Database Sampling

Database Sampling
Process

Database Sampling
ProcessOperational

Database
Operational

Database
Sample

Database
Sample

Database

Representativeness
Criteria

Fig. 4.1: Database Sampling Context Diagram

4.2 Consistency in Database Sampling

Considering any of the applications of database prototyping described in Chapter 2, the pur-

pose of database sampling is to extract a Sample that faithfully represents a Source Database,

as illustrated in Fig. 4.1. This Figure describes the sampling process in terms of its inputs

and its outputs, i.e. a Source Database and criteria used to evaluate the representativeness

of the resulting Sample Database. How the representativeness of the Sample is evaluated

depends on the sampling application at hand. For example, in random sampling the repre-

sentativeness of the Sample is evaluated in terms of its size so that a Sample with at least

a predefined number of instances is considered to represent its Source Database faithfully

enough. Additionally, there is the underlying assumption that the relationships between

instances are not relevant to the representativeness of the Sample.

This thesis, however, is concerned with evaluating the representativeness of a Sample in

terms of the set of integrity constraints it satisfies. In this context, a Sample is considered

representative of its Source Database if it is consistent with a predefined set of integrity

constraints, which is, in general, a subset of those satisfied by its Source Database. Therefore,

in Consistent Database Sampling (see Section 2.2), the representativeness criteria shown in

Fig. 4.1 are identified with consistency criteria. Fig. 4.2 illustrates the sources of information

required to consistently sample from a database. The Source Database itself is not sufficient

to produce a consistent Sample Database. A suitable representation of the set of integrity

constraints to be satisfied must be used to guide the sampling process in order to build a

consistent Sample. Refer to Chapter 5 for examples of such representations particularly well

26

Chapter 4. Database Sampling - The Process

Consistent
Sample
Database

Consistent
Sample
Database

Consistent Database Sampling ToolConsistent Database Sampling Tool

Integrity ConstraintsIntegrity Constraints

 Database
Definition Language

 Database
Definition Language

Conceptual ModelConceptual Model

Application(s)Application(s)

Meta-Data / Information

Source
Database
Source

Database

Domain
Knowledge
Domain

Knowledge

Fig. 4.2: Information Sources Involved in Consistent Database Sampling

suited for sampling purposes. As shown in Fig. 4.2, the set of integrity constraints satisfied

by the Source Database is buried within both the Database Definition Language (DDL) and

the applications’ logic. These constraints could also be explicitly identified in a conceptual

model. Finally, domain knowledge is required in this process at different levels. It can be

used, for example, to decide which of all the integrity constraints satisfied by the Source

Database actually need to be considered in the database sampling application at hand. For

example, when maintaining a database schema, database sampling may be used to extract a

prototype database of manageable size which will reveal constraints that no longer should be

satisfied or that should be added as a consequence of a change in the environment in which

the database operates. In this context, a database designer may only require the resulting

Sample to satisfy a set of functional dependencies (see Section 5.6). Also, when the size of

the resulting database is to be considered (i.e. in isolation or combined with consistency

criteria) the required Sample size is likely to be context dependent. In the same context as

above, the smallest possible database satisfying the predefined set of functional dependencies

is likely to be the most appropriate one.

27

4.3. Consistent Database Sampling Process (CoDaSP)

Although these are, conceptually, the sources of information required for sampling, they

may not always be available. For example, in the context of legacy information systems as

referred to in Section 2.4.2, a conceptual model is unlikely to be available, and the data

definition may not be separated from the logic of the applications. Therefore, this raises

the problem of how the set of integrity constraints satisfied by the Source Database can be

identified. There is a large body of research on database reverse-engineering, e.g. [32, 6, 58, 4].

Although it could be claimed that no satisfactory solution to this problem has been found

to date, this issue is out of the scope of this research work. The appropriate set of integrity

constraints to be satisfied by the resulting Sample is considered to be given as one of the

inputs to the sampling process. It must be noted, however, that the process of consistent

sampling itself is likely to increase the understanding of the semantics of the Source Database

(see Section 2.4.5).

For the purposes of this research work, the most significant challenge that must be ad-

dressed when consistency is used to evaluate the representativeness of a Sample Database is

that the inclusion of one instance in the Sample may require the inclusion of other instances

before the resulting Sample Database reaches a state consistent with the specified set of in-

tegrity constraints. These insertions may, in turn, require additional insertions. It is well

known that updates must be propagated to keep any database in a consistent state after any

data manipulation [25]. The same applies to the construction of a Sample Database. How

this chain of insertions is appropriately enforced in a generic and efficient way is the main

focus of this thesis work.

The particular steps required in order to consistently sample from a database can be

described by abstracting the details of a concrete database model or integrity constraints

type. This is done next in Section 4.3.

4.3 Consistent Database Sampling Process (CoDaSP)

A generalised description of the Consistent Database Sampling Process is used here to iden-

tify the key issues that must be addressed during sampling and therefore provides a better

understanding of the process itself. The Consistent Database Sampling Process, or CoDaSP,

28

Chapter 4. Database Sampling - The Process

void DatabaseSampler::ExtractSample(){
InitialiseProcess(); //Needed information.
while(!StopSampling()){

currentInstance = SelectInstance(); //From sourceDB.
SampleDB.insertInstance(currentEntity, currentInstance);
Synchronise(); // Inter-Sampler consistency.
UpdateProcess(); // Intra-Sampler consistency.

}
}

Fig. 4.3: Consistent Database Sampling Process (CoDaSP)

underlying the work reported in this thesis is shown in Fig. 4.3. It is general enough to be

applied to any database model and with any arbitrary collection of integrity constraints for

that model as it does not make any assumptions in this respect. This Figure shows, in fact,

the structure of any iterative algorithm: initialisation, condition, action, and preparation for

next iteration. However, it makes explicit the fact that the process is extracting a (consistent)

Sample from a database. The algorithmic description of the CoDaSP given here (strongly

influenced by the syntax of the C++ programming language [60]) is presented as a method

of a class called DatabaseSampler. This description has been chosen for consistency with

the sampling tool analysed in Chapter 7, which implements the Process presented in this

Chapter and the algorithms described in Chapter 5.

The initialisation step is represented by a call to the InitialiseProcess() method. As

outlined in Section 4.2, a suitable representation of the set of integrity constraints being

considered must be used to guide the sampling process (see Fig. 4.2). Initialising the process

refers to setting up this representation. Examples of such representation include an Insertions

Chain Graph (see Section 5.5) and an Agreements Table (Section 5.6). Initialiation also

involves creating an empty Sample Database with the appropriate schema; in general, the

same as the Source Database.

The next step of the Process involves a condition that determines when to stop sampling,

and it is represented by a call to method StopSampling(). According to the previous Section,

sampling can stop when the current Sample faithfully represents its Source Database. Using

the examples given in Section 4.2, this condition will be satisfied when the Sample Database

29

4.3. Consistent Database Sampling Process (CoDaSP)

satisfies the required set of integrity constraints, or a predefined Sample size has been reached.

These two criteria could, in fact, be combined leading to more realistic representativeness

criteria according to which a Sample is representative of its Source Database only when it is

consistent and also satisfies the specified size requirements. Section 5.5 applies this combined

criterion.

Sampling from a database is about selecting the appropriate set of instances according to

the given criteria. In general, two different types of selections must be performed. The first

one is needed to initiate the process itself. This selection may not be directly related to the

consistency criteria used to evaluate the resulting Sample Database. That is, the chain of

insertions, as referred to in Section 4.2, that occur in consistent sampling must be initiated

by some insertion which is not related to previous insertions. The second type of selections

is needed to keep the Sample Database consistent with the last inserted instance.

These two types of selections are represented in Fig. 4.3. The first one, which does not

depend on previous selections, is represented by a call to SelectInstance(). The criteria

used to make this initial selection would depend on the database sampling application at

hand. Random selection would be one possible strategy to start up the consistent sampling

process. Another one arises from the fact that a common requirement in database sampling

is to extract a small1 Sample satisfying the predefined criteria (refer, for example, to Section

3.3 for a review of the database prototyping method described in [45]). Consequently, the

initial insertion must be peformed in such a way that, when kept consistent, it leads to a

small Sample. In this case, initial selections, although indirectly, can also be related to the

consistency criteria that guides the sampling process. Chapter 5 will provide specific details

on how initial selections can be performed, considering, for example, functional dependencies,

referential integrity constraints and cardinality constraints.

Any selected instance must be inserted into the Sample Database, which is represented

by a call to InsertInstance() in Fig. 4.3. This step has been included only to indicate that

an appropriate interface to the Sample Database is required.

1The definition of smallness is domain dependent. In general, the required minimum size would be known
at the beginning of the sampling process. Achieving consistency may require additional insertions after the
minimum Sample size has been reached.

30

Chapter 4. Database Sampling - The Process

The rest of the required selections, which depend on previous selection and the consistency

criteria, are represented by method UpdateProcess(). As described above, these selections

are performed using the information that, based on the set of integrity constraints, guides the

sampling process. This information must be updated after each insertion as this will deter-

mine which other selections are required. UpdateProcess() is also responsible for updating

this information.

Method Synchronise() is central to the Sampling Protocol underlying the Sampling

Process and is described in detail in Chapter 7. This Protocol allows for different sampling

criteria to be satisfied simultaneously.

4.4 Dealing with Integrity Constraints

The previous sections of this Chapter identified the problems that must be solved when

consistently sampling from a database. The most significant issue regards how the set of

integrity constraints under consideration is used to identify the database instances that, at

any given moment during sampling, are required in order to maintain consistency in the

Sample Database under construction.

Integrity constraints can be classified based on the type of information that is needed to

identify the next instance that must be inserted into the Sample. In that respect, integrity

constraints are either locally satisfiable, if only the last selected instance needs to be consid-

ered, or global, when all previous selections must be considered. This classification is relevant

to sampling due to the fact that enforcing locally satisfiable constraints is expected to have

lower complexity than enforcing global constraints. Section 5.5 investigates the use of locally

satisfiable constraints during sampling and Section 5.6 considers global integrity constraints.

4.5 Summary

This Chapter has investigated the process of consistently sampling from a database.

The discussion has been kept as abstract as possible to make the process presented here

applicable to different circumstances, such as including disparate data models and consistency

31

4.5. Summary

criteria used to evaluate the resulting Sample. Firstly, it has identified the most relevant

problem that must be solved when a consistent Sample is to be extracted from a database,

namely the chain of insertions triggered by the consistency criteria. Then the sampling

process underlying this work has been detailed, identifying the issues that are common to any

sampling activity, independent of which consistency criteria is being used. Finally integrity

constraints have been classified, for sampling purposes, into two categories: those that require

the sampling process to maintain global information in order to enforce them in the Sample

Database and those that can be enforced using local information only.

32

Chapter 5

Database Sampling - Applying the

Process

5.1 Introduction

This Chapter specialises the abstract description of the database sampling process given in

Chapter 4 to concrete types of integrity constraints. The description will focus on the rela-

tional data model [24] and will address the problem of consistent database sampling consid-

ering inclusion dependencies, cardinality constraints, functional dependencies, generalisation

dependencies and subset dependencies to evaluate the consistency of the resulting Sample.

The next Section introduces the School Reference Database, used throughout the thesis

when concrete examples are required. Section 5.3 describes the terminology and notation to

be used in the context of relational databases. They are all based on standard definitions,

e.g. [72, 1]. This same terminology will also be used in Chapter 6. Then Section 5.4

discusses the need for a representation of the set of integrity constraints to be satisfied by the

resulting Sample Database which can be used to guide the sampling process. Sections 5.5 and

5.6 describe two such representations, termed Insertions Chain Graph and Agreements Table

respectively. The first one can be used to guide the sampling according to a range of integrity

constraints types commonly used in practice. The second representation has been designed

to guide the sampling process when the consistency criteria is the satisfaction of a set of

33

5.2. School Reference Database

functional dependencies. Random sampling in the context of consistent database sampling

is analysed in Section 5.7, as this is the only sampling strategy found in the literature and

therefore is used as the reference strategy to which the work reported in this thesis must be

compared. Finally Section 5.8 analyses the different sampling algorithms presented here.

5.2 School Reference Database

The School Reference Database will be used in the reminder of this thesis when concrete ex-

amples are needed to illustrate the concepts being developed. This database was taken from

[31], and extended to include some integrity constraints not present in its initial form. Fig. 5.1

shows the Extended Entity-Relationship Diagram (EER) for the reference database, following

the graphical conventions used in [10]. Boxes denote entities while diamonds represent rela-

tionships between entities. Attributes are denoted with bullets, and may be associated with

both entities and relationships; particularly, black bullets represent primary key attributes

for a given entity. Cardinality constraints are denoted using pairs of integers (min,max),

using the look-across semantics, that is, an instance of the entity associated with this pair

of integers may participate in the relationship in a minimum of min times and a maximum

of max. For example, relationship Teaching in Fig. 5.1 states that a Course can be taught

by one and only one Teacher, while a Teacher must teach at least one course, but no more

than three. The relationship between Student and FullTimeStudent is denoted with an

arrow to represent that full time students are a subset of students. In this case, assume that

a Student is considered a full time student if it has taken at least five exams. Only full time

students are assigned a tutor, but all students take exams. Finally, a generalisation hierarchy

is represented in this Figure using an arrow with several starting entities. In Fig. 5.1 this is

used to describe that Person generalises both Student and Teacher.

Fig. 5.2 shows a possible mapping of the semantic model of Fig. 5.1 into a normalised

relational schema. Refer to [10] for details of such mapping. This Figure shows the set of

tables and the corresponding attributes for each table. The semantics of each attribute should

be clear from Fig. 5.1. Primary key attributes are underlined in Fig. 5.2.

34

Chapter 5. Database Sampling - Applying the Process

Course

Teacher

Room Dept

StudentExam

Teaching

TimeTable

Location

Dependency Management

Prerequisite

grade

name

year

year

name

day

hour

name

floorcode

size

name

tel

(0,N)

(0,M)

(1,N)

(0,M)

(1, 1) (1,N)

(1,N)

(1, 1)

(1, 1)

(1,N)

(1, 1)

(1, 3)

FullTimeStudent

Tutor

(1, 1)

(0,N)

(0,M)

(0,N)

PersonEntity

Relationship

Generalisation
Hierarchy

(x,y) Cardinality
x - minimum
y - maximum
Subset

Attribute
Key Attribute

city

name

status

Fig. 5.1: School Reference Database EER Diagram

35

5.3. Definitions and Notation

Students(name, year)
Courses(course, year, teacher)
Teachers(name, tel, dept)
Depts(name, director)
Rooms(room, size, dept, floor)
Exams(student, course, grade)
Prerequisits(course, previous)
Timetable(course, day, hour, room)
FullTimeStudents(student, tutor)
Persons(name, status, city)

Fig. 5.2: Normalised Relational Database Schema for the Reference Database of Fig. 5.1

5.3 Definitions and Notation

Assume there is a set of attributes U , each with an associated domain. The domain for

attribute A is denoted by DOMA. DOM denotes the union of all domains DOM =⋃
A∈U

DOMA.

A relation schema R over U is a subset of U . A database schema D = {R1, . . . , Rn}

is a set of relation schemas. A relation r over the relation schema R is a set of R-tuples,

where a R-tuple is a mapping from the attributes of R to their domains. R-tuples may also

be referred as simply tuples. A database instance is a set of database relations. Only finite

database instances are considered here.

Attributes in U are denoted with uppercase letters A,B, C, R-tuples are denoted

by lowercase letters, possibly with subscripts, t1, t2, The relation r to which a R-tuple

belongs will always be clear from the context. The value of an attribute, A ∈ U , for a

particular R-tuple, t1, is denoted t1(A). This notation is extended to sets of attributes so

that for Y ⊆ U , t1(Y) denotes a tuple, u1, over Y with u1(A) = t1(A) for all attributes

A ∈ Y .

An integrity constraint is an assertion about a database instance. A database instance

I satisfies an integrity constraint σ, denoted I |= σ, if the assertion is true for this instance

[29]. Here, integrity constraints are assumed to be Relational Calculus expressions [64, 1, 25],

that is, first-order-logic formulae without functions and without free variables. Integrity

constraints may also be referred to as simply constraints.

36

Chapter 5. Database Sampling - Applying the Process

Section 5.6 will focus on a particular type of integrity constraint, referred to as functional

dependency. Several concepts related to that of functional dependency will be required. For

simplicity, they are all given together in this Section.

Definition 5.3.1. If U is a set of attributes, then a Functional Dependency over U is an

expression of the form Y → Z, where Y, Z ⊆ U . A relation r over U satisfies Y → Z, denoted

r |= Y → Z, if for each pair of tuples in r, t1 and t2, t1(Y) = t2(Y) implies t1(Z) = t2(Z).

If Σ is a set of functional dependencies, then r |= Σ means that all dependencies in Σ are

satisfied in r.

Individual functional dependencies are denoted with lowercase Greek letters, possibly

with subscripts, σ, γ1, γ2 Sets of functional dependencies are denoted using uppercase

Greek letters, possibly with subscripts, Σ,Γ1,Γ2,

Definition 5.3.2. Let Σ and Γ be sets of functional dependencies over U . Then Σ implies

Γ, denoted Σ |= Γ, iff for all relations r over U , r |= Σ implies r |= Γ.

Definition 5.3.3. Let Σ be a set of functional dependencies over U . The closure of Σ,

denoted Σ∗, is defined as Σ∗ = {Y → Z|Y Z ⊆ U and Σ |= Y → Z}.

Example 5.3.1. Consider the database relation termed Courses defined over attributes U =

{Course, Year, Teacher}, which stores information about the Courses taught in the School

reference database. Attribute Course is the primary key for this relation, therefore the set of

functional dependencies that must hold in this relation is Σ = {Course → Year, Course →

Teacher}. Assume that no other functional dependency must hold. According to Definition

5.3.3, it can bee seen that

Σ∗ =
{
Course → Year, Course → Teacher, Course → {Year,Teacher},

{Course,Teacher} → Year, {Course, Year} → Teacher
}

Σ∗ represents the set of all functional dependencies that are logical consequences of Σ.

This concept allows for the definition of what are called Armstrong Relations, a concept

initially introduced in [8], although the term itself was coined by Fagin in [26].

37

5.3. Definitions and Notation

Definition 5.3.4. A database relation r is an Armstrong relation for a set of functional

dependencies Σ iff r satisfies all functional dependencies in Σ∗ and no other functional de-

pendency. It is minimal if every Armstrong Relation for Σ has at least as many tuples as

r.

Armstrong relations are useful in the context of database design as a set of functional

dependencies and an Armstrong relation for them represent the same information. Section 5.6

exploits this property of Armstrong relations in the context of database sampling developing

a method for sampling with functional dependencies. This method relies on the closure of

a set of attributes under a set of functional dependencies, called fd-closure, which is defined

next [11, 1].

Definition 5.3.5. Given a set Σ of functional depdencies over U and an attribute set X ⊆ U ,

the fd-closure of X under Σ, denoted (X ,Σ)∗,U or simply X ∗ if Σ and U are understood from

the context, is the set X ∗ = {A ∈ X | Σ |= X → A}.

Example 5.3.2. Consider the same relation and set of functional dependencies as in Exam-

ple 5.3.1. It can be seen how, for example,

{Course}∗ = {Course, Teacher, Year},

{Teacher}∗ = {Teacher}, {Year}∗ = {Year},

{Course, Teacher}∗ = {Course, Teacher, Year}

Intuitively, X ∗ represents the set of all attributes that are determined by X according

to Σ. Some sets of attributes, referred to as saturated [8] (or closed sets in [11]), do not

determine any other attributes but themselves.

Definition 5.3.6. A set of attributes X over U is saturated with respect to a set of functional

dependencies Σ over U iff X ∗ = X .

Example 5.3.3. Consider again the same relation and set of functional dependencies as in

Example 5.3.1. Following from Example 5.3.2, the set of saturated set is

{
{Teacher}, {Year}, {Teacher, Year}, Ø

}
.

38

Chapter 5. Database Sampling - Applying the Process

Following the terminology of [11], it is said that two tuples agree exactly on a set of

attributes as follows.

Definition 5.3.7. Let X be a set of attributes, X ⊂ U . A pair of tuples t1 and t2 over U

agree exactly on X iff ∀A ∈ X , t1(A) = t2(A) and ∀B /∈ X , t1(B) 6= t2(B).

Example 5.3.4. Consider tuples t1 = 〈analysis 1, 1, phillip〉 and t2 = 〈geometry, 1, anca〉,

defined over U = {Course, Year, Teacher} as in Example 5.3.1. According to Definition

5.3.7, t1 and t2 agree exactly on attribute Year. It can be seen how t1(Year) = t2(Year) but

t1(Course) 6= t2(Course) and t1(Teacher) 6= t2(Teacher), as required.

This concept is next extended to entire relations.

Definition 5.3.8. A database relation r over U satisfies X , with X ⊂ U , iff there exist two

different tuples in r that agree exactly on X .

This last definition is central to the purposes of Section 5.6. As will be shown by Theorem

5.6.1, if relation r satisfies precisely all saturated sets then it is an Armstrong relation for the

specified set of functional dependencies. Therefore, the goal in Section 5.6 is to select a set

of tuples from a relation in such a way that the resulting relation satisfies all saturated sets

and no other set of attributes.

5.4 Information to Guide the Sampling Process

As described in Chapter 4, consistent database sampling leads to a chain of insertions re-

quired to construct a Sample Database that satisfies the specified representativeness (i.e.

consistency) criteria. The sampling process described in the previous Chapter relies on a

representation of the set of integrity constraints under consideration suitable for sampling.

This information is used to guide the sampling process in performing the appropriate chain

of insertions. The information needed for such purposes depends on the type of integrity

constraints being considered. The next two Sections describe and apply two examples of

such representations.

39

5.5. Insertions Chain Graph (ICG)

5.5 Insertions Chain Graph (ICG)

This Section describes a graphical representation that has been designed to intuitively repre-

sent the chain of insertions required in database sampling, considering inclusion dependencies,

cardinality constraints, subset dependencies, and generalisation dependencies. This represen-

tation, termed Insertions Chain Graph or ICG, was initially presented in [19] as a result of

this research work. It provides a common mechanism to describe the information needed, for

each type of constraint, in order to identify the set of instances that, at any given moment

during sampling, must be inserted into the Sample in order to maintain consistency.

5.5.1 Motivations

As discussed in Chapter 3, most approaches to database prototyping enforce a very limited

set of constraints in the resulting database. Those approaches that do address a wider set

of constraints generally rely on first-order-logic (or FOL) to define the set of constraints

being enforced [49]. This is indeed a powerful and well-understood formalism to express

the semantics of the data, and therefore FOL-based database prototyping methods can take

advantage of FOL inference mechanism to ensure the consistency of the resulting database.

However, the limitations of FOL-based approaches outlined in Section 3.3 include:

• Formalising a large set of constraints in FOL results in an obscure set of formulae, where

missing and undesired (wrong or redundant) constraints may be difficult to identify.

• This set of formulae must be proved consistent. It is however undecidable to prove that

a set of FOL formulae is consistent [23].

• Inference in FOL has been proved not to scale in the context of prototype database

population.

An Insertions Chain Graph was designed as an alternative representation for integrity con-

straints that overcome these problems:

• Its graphical nature makes the set of constraints being represented explicit and under-

standable.

40

Chapter 5. Database Sampling - Applying the Process

• Its semantics cannot define an inconsistent set of integrity constraints (see Section

5.5.2).

• It is specially designed for database sampling purposes, therefore identifying the in-

stances that must be inserted in order to maintain consistency is expected to be more

efficient than using FOL.

An Insertions Chain Graph describes a common mechanism to represent a set of widely used

integrity constraints that define semantic relationships between entities (e.g. relation or table

in relational terms) in a database, as opposed to instance-level (e.g. tuple) relationships

which will be addressed in Section 5.6. Formal and graphical definitions of an Insertions

Chain Graph are given next. Section 5.5.3 describes an example of how an ICG can be used

to describe a set of integrity constraints.

5.5.2 Definition of Insertions Chain Graph

An Insertions Chain Graph (or ICG) can be formally defined as a quadruple ICG=(Q,I,T,δ),

where:

• Q is the set of entities in the database

• I is the set of arrow identifiers

• T is the set of arrow types that describe the type of consequence of inserting an instance

into the Sample, as described in Table 5.1. It can be seen how the so-called Partial

arrows subsume all other arrow types. However, the other arrow types are kept because

they simplify the resulting ICG when used in its graphical form, which is particularly

useful for sampling purposes.

• δ is called here Insertions Function. For each entity in the database, this function

describes the set of arrows in the ICG that start at this entity. It is formally defined

by Equation 5.1

δ : Q → 2I×2Q×T×C (5.1)

41

5.5. Insertions Chain Graph (ICG)

Table 5.1: Arrow Types in an Insertions Chain Graph
Arrow
Type

Required
Information

Semantics Constraint
Type

Total None One insertion in the target en-
tity is required every time an
instance is inserted into the
source entity

Inclusion
Dependencies

Quantified Number of
additional
instances

The specified number of
referred instances must be
present in the target entity
after inserting the referring
instance into the source entity

Cardinality
Constraints

OR None One instance must be inserted
in (some of) the specified en-
tities, after inserting one in-
stance into the source entity

Generalisation
Constraints

Partial Condition Only when the condition eval-
uates to true will the insertion
be required

General
Constraints

Thus each arrow in an ICG can be described by a quadruple 〈i, P, t, c〉 where:

– i is the arrow’s identifier, i ∈ I

– P is the set of target entities for this arrow, P ∈ 2Q. It is always a singleton,

except for OR arrows, as described in Table 5.1.

– t is the arrow’s type, t ∈ T

– c represents the additional information required for some arrow types, as detailed

in Table 5.1, with c ∈ C = N
⋃

Predicate. It must be interpreted in different

ways depending on which arrow type it is associated with (see Section 5.5.3 for

examples):

1. Quantified arrows: c ∈ N

2. Partial arrows: c ∈ Predicate must express a condition to be satisfied by the

Sample Database before a new insertion into the target entity is required.

Using the School Database, and thus the relational model, the language used

to express this predicate is assumed to be a boolean expression which may

42

Chapter 5. Database Sampling - Applying the Process

contain a well-formed SQL statement. Refer to [22] for a possible syntax of

such a predicate.

3. Total arrows: c has no meaning in this case as no additional information is

required

4. OR arrows: c has no meaning in this case either as no additional information

is required. This arrow type may include several target entities, and this list

of entities is the only information needed to enforce its semantics.

The rationale behind the four arrow types that can be defined in an ICG is that they are

able to express widely used semantics of a Source Database. The constraint type each arrow

type expresses is shown in Table 5.1 in column Constraint Type. The next Section illustrates

all above definitions in the context of a database used in this thesis as the reference database

when concrete examples are required.

It must be noted that, in case of the relational model used in this example, the Insertions

Function (δ) must identify the attributes that are used to link the source and target entities

(i.e. tables). This is not explicitly identified in the above definition of ICG because this

is considered specific to the relational model, and the concept of an ICG has been kept as

abstract as possible. If it was applied to a different data model (e.g. semi-structured, object

oriented), the mechanism used to identify the link between entities is likely to differ from

that used in the relational model. Appendix A provides a more complete example, including

the identification of the attributes used to link between tables, as done in the sampling tool

described in Chapter 7.

5.5.3 Example of Insertions Chain Graph

Fig. 5.3 represents an ICG that includes all semantics of the School Reference Database

described in Section 5.2. Each node of this graph represents one table of the logical design

for this database, shown in Fig. 5.2, and its edges represent database semantics relevant to

the sampling process. It should be noted how some constraints, like for example maximum

cardinality constraints, have not been represented as their absence cannot lead to an incon-

sistent Sample Database. That is, in the School reference database, each Teacher can teach

43

5.5. Insertions Chain Graph (ICG)

Students

TimeTableExams

Prerequisits

FullTimeStudents

Courses

Teachers Dept

Rooms

5

C1

A1

A2A3

A5

A4

A7 A8

A6

A9

A13

A12

A11

Persons

A14

A16

A15

A17

A18

A19

1

1

A20

1

A10

A21

Fig. 5.3: Insertions Chain Graph for the School Reference Database of Fig. 5.1

a maximum of three Courses. If the Source Database satisfies this constraint (i.e. it is a

consistent database instance), it is not possible that a Sample of it will contain information

about a Teacher who is teaching more than three Courses. Therefore, this constraint does

not need to be taken into account during sampling. Section 6.4 will study this property of

integrity constraints, referred to as Sampling-Irrelevant, in more detail.

In Fig. 5.3, arrows that have no associated information besides their name are Total

arrows. Arrow A1 is an example of such type of arrow which, during sampling, will be used

to ensure that whenever a tuple from table Exams is sampled an associated tuple from table

Students will also be sampled. This will keep the Sample Database consistent with one of

the constraints specified in Fig. 5.1 which states that any Exam must be taken by one and

only one Student. Arrow A2 is an example of Quantified arrow, as it has an integer number

(i.e. 5) associated with it. In this case, this arrow represents the fact that, as specified in

Section 5.2, any full time student in the Sample must have sat at least five examinations.

This same constraint requires the addition of Partial arrow A3, so that if table Exams records

more than five exams for the same student then this student must be recorded as being a full

44

Chapter 5. Database Sampling - Applying the Process

Table 5.2: Conditions Table for the ICG Example of Fig. 5.3
Condition

Name
Definition

C1 (Select count(*) From Exams Where name = x) ≥ 5

time student (and so s/he will additionally require a tutor, hence arrow A4 is also included

in the graph). As defined in the previous Section, any Partial arrow requires a condition to

determine when an insertion is required. Condition C1 associated with arrow A3 is given in

Table 5.2. Being ’x ’ the name of the student (primary key of Students) this condition queries

the Sample Database to count how many Exams a given Student has taken. If s/he has sat

more than five examinations s/he is a full time student. As a last example, consider OR

arrow A14, which is needed to enforce a generalisation dependency present in the reference

database, with Persons generalising both Students and Teachers. Total arrows A15 and A16

enforce the same constraint but in the opposite direction, that is, if a Teacher (or Student)

is sampled, then the Sample Database must record that s/he is also a Person.

Following this same line of reasoning, the entire ICG for the reference database could be

developed, resulting in that shown in Fig. 5.3. It should be noted that such a graph can in fact

be automatically created from the corresponding EER diagram. Briefly, 1 to N relationships

are mapped into Total arrows, like for example the relationship between FullTimeStudents

and Teachers in the reference database. Generalisation constraints (e.g. both Students and

Teachers are Persons) become OR arrows. Cardinality constraints (e.g. a Teachers must

teach at least one Course) map into Quantified arrows. Only the transformation of subset

relationships (e.g. FullTimeStudents are a subset of Students) would require additional

information, as its semantics cannot always be fully described in an EER diagram.

Instead of using a graphical representation, an ICG can also be described using its formal

definition, in terms of a quadruple ICG = (Q, I, T, δ) as done in the previous Section. In

the particular ICG example being developed, the formal representation is as follows.

Q = {Courses, Exams, FullTimeStudents, Teachers, Persons, Students, TimeTable, Prereq-

uisits, Dept, Rooms}

45

5.5. Insertions Chain Graph (ICG)

Table 5.3: Insertions Function δ for the Insertions Chain Graph of Fig. 5.3
Source Entity Quadruples 〈i, P, t, c〉

Arrow
Name (i)

Target Entity
Names (P)

Arrow
Type (t)

Additional
Info (c)

Exams A1 {Students} Total
FullTimeStudents A2 {Exams} Quantified 5
Exams A3 {FullTimeStudents} Partial C1 in Table 5.2
FullTimeStudents A4 {Teachers} Total
Exams A5 {Courses} Total
Courses A6 {Teachers} Total
Prerequisits A7 {Courses} Total
Prerequisits A8 {Courses} Total
TimeTable A9 {Courses} Total
Teachers A10 {Depts} Total
Depts A11 {Teachers} Total
Rooms A12 {Depts} Total
TimeTable A13 {Rooms} Total
Persons A14 {Students, Teachers} OR
Teachers A15 {Persons} Total
Students A16 {Persons} Total
Teachers A17 {Courses} Quantified 1
Courses A18 {TimeTable} Quantified 1
FullTimeStudents A19 {Students} Total
Depts A20 {Rooms} Quantified 1
Courses A21 {Prerequisits} OR

I = {A1,A2, . . . , A21}

T = {Total, Quantified, OR, Partial}

δ : the Insertions Function for this example is shown in Table 5.3.

5.5.4 Consistent Database Sampling using an ICG

This Section describes a method for consistently sampling a database based on the use of an

ICG to guide the process. The following information is required as input to the sampling

process:

1. Insertions Chain Graph for the database being sampled.

46

Chapter 5. Database Sampling - Applying the Process

2. Minimum number of instances for each entity that should appear in the Sample Database,

that is, the minimum Sample size. This information provides a condition to stop sam-

pling. An externally specified Sample size is generally considered a plausible assumption

in the random sampling literature [51, 65] since the cost of processing the sample (e.g.

data mining, supporting software development) can be expected to be much higher than

that of extracting the Sample itself.

3. The number of different entities that each entity points to and is pointed to by in the

ICG, referred to as Fan-out and Fan-in values respectively (see SelectEntity() below).

This information can be extracted from the ICG itself.

Fig. 5.4 outlines the algorithm for extracting a Sample Database consistent with the

set of integrity constraints represented in an Insertions Chain Graph introduced as input

parameter. A brief description of the supporting functions used in this algorithm follows.

• SelectEntity(): using the ICG, and restricted to the entities in NotFullEntities,

select the entity with the biggest Fan-out value. If equal, select the entity with smallest

Fan-in. If equal again, choose randomly. This heuristic will lead to a small consistent

Sample Database, as the same instance can be used to force insertions in several entities,

instead of requiring one new instance for each entity.

• SampleInstance(): randomly samples an instance from the input entity. It must be

decided which probability distribution to use. For simplicity, it can be used a uniform

distribution. Another option is to use a so-called Operational Distribution [66], where

instances frequently accessed when the database is in production will be more likely to

become part of the Sample.

• InsertInstance(): inserts the sampled instance into the Sample Database. It also

checks if this entity has already reached the minimum number of instances required in

the Sample Database. If so, its name is removed from NotFullEntities.

• ICG.δ(tEntity)|P : ICG.δ() is the Insertions Function (e.g. see Table 5.3), and |P

denotes the restriction of the resulting quadruple to its second element, P , the set of

47

5.5. Insertions Chain Graph (ICG)

// Main Function to extract a sample from database D according to the input ICG
Function ConsistentSampleICG(input ICG : InsertionsChainGraph,

input D : Database)
input Sample : Database) output bool {

/*
ICG.NotFullEntities represents the set of entity names which still have not reached

the minimum number of instances in the Sample Database.
entity and instance refer to a table and a tuple in this table in the

Source Database.
*/
while (ICG.NotFullEntities 6= ∅) do

entity = SelectEntity(ICG); // Based on Fan-in and Fan-out values
instance = SampleInstance (D, entity); // Randomly
InsertInstance(Sample, entity, instance, ICG.NotFullEntities);

// It also modifies ICG.NotFullEntities
TargetEntities = ICG.δ(entity)|P ;

// Set of entities to be considered as a consequence of the current insertion
for each targetEntity ∈ TargetEntities do

newInstance := SampleInstance local (D, targetEntity, instance);
if (newInstance = 〈〉) then return false; // Inconsistent Source Database
if NOT (KeepConsistentICG (ICG, Sample, targetEntity, newInstance, D))

return false;
endfor

endwhile
return true;
}
// Recursive function used by the main function.
Function KeepConsistentICG(input/output ICG : InsertionsChainGraph,

input/output Sample: Database, input tEntity: DBEntity,
input tInstance: DBInstance, input D: Database)
output bool {

InsertInstance(Sample, tEntity, tInstance, NotFullEntities);
TargetEntities = ICG.δ(tEntity)|P ;

// Set of entities to be considered as a consequence of the current insertion
for each targetEntity ∈ TargetEntities do

newInstance := SampleInstance local (D, targetEntity, tInstance);
if (newInstance = 〈〉) then return false; // Inconsistent Source Database
if NOT (KeepConsistent (ICG, Sample, targetEntity, newInstance, D))

return false;
endfor
return true;
}

Fig. 5.4: Algorithm for Consistent Database Sampling with ICG

48

Chapter 5. Database Sampling - Applying the Process

target entities for this entity.

• SampleInstance_local(): selects from the Source Database an instance of targetEntity

related to tInstance. It must be an instance not yet in the Sample. If several are pos-

sible it will select randomly.

The Consistent Database Sampling Process described in Chapter 4 can be identified in Fig.

5.4. InitialiseProcess() involves the construction of the corresponding ICG, which in

this case is taken as an input to the algorithm. SelectEntity() together with either

SampleInstance_local() or SampleInstance() implement the functionality represented

by SelectInstance() in Chapter 4. StopSamping() is implemented in this case by condi-

tion (ICG.NotFullEntities6= ∅). Finally UpdateProcess() is here represented by function

KeepConsistentICG().

The randomness involved in function SampleInstance() (and SampleInstance_local()

if necessary) should be pointed out. Although the starting entity selected in SelectEntity()

is based on the Fan-in and Fan-out values of the ICG, in SampleInstance() concrete instances

are selected randomly from the Source Database. This procedure will, potentially, include

all the data-diversity found in the operational data, that is, the resulting Sample will not

be restricted to one single consistent part of the database. The requirement of including

data-diversity was not addressed in Chapter 4 because it can be seen as a domain-specific

instantiation of the general concept of representativeness. However, it is reasonable to expect

that in most applications of database sampling a Sample that includes as much data-diversity

as the Source Database is likely to be considered a better representation of it.

5.5.5 Expressiveness of ICG

An ICG can be seen as a language to express integrity constraints. In fact, it expresses the

consequences that constraints have during sampling, rather than the constraints themselves.

As for any language, its expressiveness should be assessed [2]. Since it is based on the query

language used by the Source Database, its expressiveness depends on that of this language.

More precisely, the ICG example given above is based on the relational model and SQL, so

its expressiveness is limited by the expressiveness of SQL.

49

5.5. Insertions Chain Graph (ICG)

Table 5.4: Sampling Information for the Insertions Chain Graph of Fig. 5.3
Entity Name Fan-In Fan-Out Sample Size
Students 3 1 1
Exams 1 3 1
FullTimeStudents 1 3 0
Persons 2 1 1
Prerequisits 1 2 1
Courses 5 3 1
Teachers 4 3 1
TimeTable 1 2 1
Rooms 2 1 1
Dept 2 2 1

In spite of the fact that some constraints cannot be expressed (e.g. functional dependen-

cies), as is the case for any other practical language [2], ICG allows for the definition of a

wide range of commonly used constraints.

5.5.6 Sampling Example

As an example of how an Insertions Chain Graph is used to sample a database, consider that

the School Reference Database introduced in Section 5.2 is to be sampled. Figure 5.3 shows

the corresponding ICG, and Table 5.4 the associated information required for sampling as

specified above, including the fan-in and fan-out values for each entity (extracted from the

ICG itself) and the minimum Sample size for each entity.

With this information the algorithm of Fig. 5.4 can be applied to extract a Sample of

this database. A complete description of a sampling example would require a full definition

of a consistent database instance, resulting Sample and intermediate steps. Only an overview

of how the execution would proceed is given here. Appendix A provides a more detailed

description of this same example.

At least on instance is required in each entity, except for FullTimeStudents which may

have none. According to the selection criteria of SelectEntity(), sampling could start from

either entity Exams or entity FullTimeStudens as these entities have the highest fan-out

and lowest fan-in values in Table 5.4. Since no tuple is required in FullTimeStudens, entity

Exams will be the starting point for this sampling example. From the Insertions Chain Graph

50

Chapter 5. Database Sampling - Applying the Process

of Fig. 5.3, each instance sampled from entity Exams will require the Student who took

this examination. Once such an student is sampled, a related tuple from Persons will be

required. The initial insertion into Exams will also trigger the related instance of Courses

to be included in the Sample, and this will, in turn, require the Teacher who teaches this

course. The Insertions Chain Graph of Fig. 5.3 will identify all other required insertions.

This chain of insertions will eventually terminate because one of the required instances will

already be in the Sample.

Appendix A will provide further details on this sampling example.

5.6 Consistent Database Sampling with Functional Depen-

dencies

An Insertions Chain Graph allows a set of widely used types of integrity constraints to be

considered during Sampling. However, there is a type of integrity constraint, extensively

investigated in the context of relational databases, which cannot be expressed using an In-

sertions Chain Graph: Functional Dependencies (see Section 5.3). The reason is that an ICG

describes entity-level constraints, as opposed to instance-level constraints.

This section describes how functional dependencies can be included in the sampling pro-

cess. For this purposes, as done in the previous Section, firstly an appropriate representation

of the set of functional dependencies used to guide the sampling process will be described.

Then, an algorithm will be presented which, using this representation, samples a database

relation according to a set of functional dependencies.

All concepts and terminology used in this Section were defined in Section 5.3.

5.6.1 Motivation

The motivation to include functional dependencies in database sampling arise from the iden-

tification of the so-called Armstrong relations. Recall from Section 5.3 that an Armstrong

relation for a set of functional dependencies Σ is a database relation that satisfies all functional

dependencies that are logical consequences of Σ and no other functional dependency. From

51

5.6. Consistent Database Sampling with Functional Dependencies

this definition follows that a set of functional dependencies and an Armstrong relation for it

are dual representations of the same information [8]. During the design and maintenance of a

database, incorrect constraints are more easily identified from a list of dependencies, whereas

missing dependencies are better revealed from an example of the relation. This justifies the

use of Armstrong relations for database design and maintenance purposes.

5.6.2 Defining the Problem

This Section defines the objective when sampling a relation according to a given set of func-

tional dependencies.

Given a database relation r over U , and a set of functional dependencies Σ satisfied by r,

the goal is to extract a sample of this relation which is a small1 Armstrong relation for Σ.

Relation r will firstly be assumed to be an Armstrong relation for Σ. Then, the same

problem will be addressed in Section 5.6.5 considering a subset Γ1 and a superset Γ2 of Σ,

Γ1 Σ Γ2.

5.6.3 Agreements Table

In order to guarantee the minimal possible size for the resulting sample, the algorithm pre-

sented here relies on constructing what is called in this thesis an Agreements Table [15]. This

table represents the interactions between tuples in the input relation r regarding the set of

functional dependencies each pair of tuples, if included in the sample, invalidates (see below

for an example). This information is used to guide the sampling process. The construction of

the Agreements Table is based on the concept of a set of attributes being saturated (Definition

5.3.6). An Agreements Table gathers, for each tuple in the input database relation, which

other tuples can be used with that one to agree exactly (Definition 5.3.7) on each saturated

set. As an example, using the School Reference Database described in Section 5.2, consider a

possible instance of table Courses shown in Table 5.5 and the set of functional dependencies

Σ = {Course → Year, Course → Teacher} .

1The sense in which it is small will be addressed in Section 5.6.4.

52

Chapter 5. Database Sampling - Applying the Process

Table 5.5: Instance of Courses (rep.)
course year teacher

t1 analysis 1 1 phillip
t2 geometry 1 anca
t3 algebra 1 robert
t4 analysis 2 2 philip
t5 programming 2 diana
t6 analysis 3 3 phillip
t7 data mining 3 mary
t8 calculus 4 sofia
t9 logic 4 tom
t10 languages 5 diana
t11 automata 5 mark
t12 cybernetics 5 diana

In this case, as discussed in Example 5.3.3, the set of saturated sets of attributes is2

{
{Year}, {Teacher}, {Year Teacher},Ø

}
.

An Agreements Table has a column for each such set. Table 5.6 shows the Agreements

Table for this example. It can be seen how, for example, tuple t1 can use tuple t4 (and

also t6) to agree exactly on saturated set {Teacher}. This follows from the fact that in the

database relation shown in Table 5.5, t1(Teacher) = t4(Teacher), but t1(Year) 6= t4(Year) and

t1(Course) 6= t4(Course), as required by Definition 5.3.7. The meaning of this relationship

between t1 and t4 is that if both tuples are included in the Sample, no functional dependency

with only attribute Teacher in the left-hand side will be satisfied. The algorithm described

below exploits this fact in order to build a Sample of the input relation that violates (i.e.

does not satisfy) all functional dependencies not in Σ∗ (Definition 5.3.3).

The rationale behind an Agreements Table is that if a sample is selected in such a way

that it satisfies all saturated attributes sets then all functional dependencies in Σ∗, and only

those, hold in the resulting sample. This is formalised next.

2All saturated sets are considered here. However, it has been shown [8, 11] that it suffices to consider only
the set of so-called intersection generators of this set. The algorithm presented below is valid in either case.
By convention, U is the intersection of the empty collection of sets, thus it is not a generator (although it
is saturated). For this reason it has not been included here. In the example used in this Section, the set of
generators and the set of all saturated sets are the same except for U .

53

5.6. Consistent Database Sampling with Functional Dependencies

Table 5.6: Agreements Table for the instance of Courses shown in Table 5.5
{Year Teacher}∗ Teacher∗ Year∗ Ø∗ No. X ∗

t1 {t4, t6} {t2, t3} {t5, t7 − t12} 3
t2 {t1, t3} {t4 − t12} 2
t3 {t1, t2} {t4 − t12} 2
t4 {t1, t6} {t5} {t2, t3, t7 − t12} 3
t5 {t10, t12} {t4} {t1 − t3, t6 − t9, t11} 3
t6 {t1, t4} {t7} {t1 − t3, t5, t8 − t12} 3
t7 {t6} {t1 − t5, t8 − t12} 2
t8 {t9} {t1 − t7, t10 − t12} 2
t9 {t8} {t1 − t7, t10 − t12} 2
t10 t12 {t5} {t11} {t1 − t4, t6 − t9} 4
t11 {t10, t12} {t1 − t9} 2
t12 t10 {t5} {t11} {t1 − t4, t6 − t9} 4

Theorem 5.6.1. Let r be a database relation and Σ a set of functional dependencies, both

over U . If relation r satisfies precisely all sets of attributes X with X ∗ = X , then r is an

Armstrong relation for Σ.

Proof. 3 Firstly, to prove that all functional dependencies in Σ∗ hold in r, let σ be a functional

dependency σ ∈ Σ∗. Without loss of generality, assume that σ is of the form X → A, with

X ⊂ U and A ∈ U . Note that X∗ is saturated. By hypothesis any two distinct tuples must

agree exactly on a saturated set. If t1 and t2 agree exactly on X, they must agree exactly on

X∗. Since A ∈ X∗, t1 and t2 agree also on A. It follows that r |= σ, as required.

To prove that only the dependencies in Σ∗ hold in r, take a functional dependency X →

A /∈ Σ∗. This implies A /∈ X∗. By hypothesis there is a pair of tuples, t1 and t2, that agree

exactly on X∗, therefore t1(X) = t2(X) and t1(A) 6= t2(A). So, by definition r 2 X → A.

This proves that r is an Armstrong relation for Σ.

In addition to one column for each saturated set, another column, termed ’No. X ∗’ (Num-

ber X ∗), is shown in the Agreements Table of Table 5.6. It represents the number of different

saturated sets X that could be satisfied by selecting this tuple (i.e. number of non-empty

columns in each row). This column is used to select between several possible tuples that
3This proof has been included here for completeness only. Refer to [11, p. 37] or [8, p. 582] for alternative

proofs.

54

Chapter 5. Database Sampling - Applying the Process

could be inserted into the sample, in order for it to be of minimal size. Selecting tuples with

the highest value for ‘No. X ∗’ leads to the minimum possible additional tuples required to

satisfy all saturated sets. This heuristic has the same rationale as that in Section 5.5 where

entities with higher fan-out values in an ICG were chosen first.

5.6.4 Consistent Database Sampling using an Agreements Table

The above discussion has shown how, using an Agreements Table, the resulting sample: (1) is

an Armstrong relation, and (2) is expected to be small. This solves the problem as stated in

Section 5.6.2. The algorithm presented in this Section extracts a Sample of minimal size. It

is only minimal according to the information available in the Agreements Table. Tuples are

selected according to their values for column ‘No. X ∗’ in this table. These values represent

the number of saturated sets to which each particular tuple is directly related (in the sense

of being able to satisfy them), as opposed to considering all saturated sets to which each

tuple is transitively related. For example, in Table 5.6, the value of ‘No. X ∗’ for tuple t1 is

3 because this tuple can be used to satisfy 3 different saturated sets: t1 can be combined

with either t4 or t6 to satisfy {Teacher}∗, with t2 or t3 to satisfy {Year}∗, and with t5 or any

tuple from t7 to t12 to satisfy Ø∗. However, if t12 is selected, it can also be used to satisfy

{Year, Teacher}∗ by selecting t10. Therefore, from t1 all 4 saturated sets could actually be

satisfied if one considers the sets that can be satisfied using t1 and any of the tuples related

to it (e.g. in the above example t4 or t6, t2 or t3, and t5 or any tuple from t7 to t12).

These two alternatives, namely considering only tuples directly related or considering also

those transitively related to each tuple, can be identified with selecting tuples using either

local information or global information, respectively. The algorithm that follows would not

change if the second alternative was followed; however, the (time) complexity of building an

Agreements Table would be significantly higher.

Fig 5.5 shows an algorithm that implements the sampling process described above. The

initial call for this recursive algorithm should be

MinimalSizeSample(r, Σ, Sample)

where r is the relation being sampled, Σ is the set of functional dependencies being considered,

55

5.6. Consistent Database Sampling with Functional Dependencies

/* Main function to extract an Armstrong relation for Σ from relation r */
Function MinimalSizeSample(input r : relation, Σ : Set of fd,

output Sample : relation) output bool
/*
AgrT.SetofX is the family of sets X with X ∗ = X still to be satisfied.
tj is a single tuple from the input relation.
*/

ConstructAgreementsTable(r, Σ, AgrT);
while (AgrT.SetOfX 6= Ø) // Satisfy all saturated sets X

tj := SelectTuple(AgrT); // Global selection criterion
if (tj = 〈〉) then /* Consistent Sampling not possible:

no Armstrong relation */
return false;

InsertTuple(Sample, tj); // Add to the Sample
UpdateAgreementsTable(AgrT, Sample, tj);

// tj is not to be considered again
// Some new sets X are now satisfied

MinimalSizeSamplerec(AgrT, Sample, tj);
end while
return true;

end Function

/* Recursive procedure used by the main function. */
Procedure MinimalSizeSamplerec(input/output AgrT : AgreementsTable,

input/output Sample : relation,
input LastTuple : tuple)

/*
LastTuple is the last tuple inserted in the sample before making this

recursive call.
ti is a single tuple from the input relation.
*/
while (AgrT.SetofX 6= Ø) do // Satisfy all saturated sets X

ti:= SelectTuple local(AgrT, LastTuple); // Local selection criterion
if(ti=〈〉) then return; // No tuple selected
InsertTuple(Sample, ti); // Add to the Sample
UpdateAgreementsTable(AgrT, Sample, ti);

// ti is not to be considered again
// Some new sets X are now satisfied

MinimalSizeSamplerec(AgrT, Sample, ti); // Keep consistency
end while

end Procedure

Fig. 5.5: Algorithm for Consistent Database Sampling with Functional Dependencies

56

Chapter 5. Database Sampling - Applying the Process

and Sample contains the resulting Sample relation. In addition to a Sample of relation r,

this algorithm also returns whether sampling was successfully performed. The situation in

which it may not be possible to extract an Armstrong relation for Σ from the input relation

r is analysed in Section 5.6.5.

The algorithm of Fig. 5.5 initially selects a tuple, tj , with the highest value for column

‘No. X ’ according to the Agreements Table (if several tuples have the same value, it can select

randomly between them). This tuple is then included in the sample. After that a recursive

procedure, MinimalSizeSamplerec, is used to select tuples which, taken together with the

tuple inserted last, agree exactly on as many saturated sets as possible. Using this last inserted

tuple, referred to as LastTuple, function SelectTuple_local returns another tuple, ti, that

agrees exactly with LastTuple on one (or more) saturated set, X . The information stored in

the Agreements Table is used to select such a tuple. This information is updated after each

insertion in order to record that tuple ti and the newly satisfied set (or sets) X are not to be

considered in future selections. Then MinimalSizeSamplerec is called again using the newly

inserted tuple.

The chain of recursive calls terminates when either all saturated sets have been satisfied,

or no more sets can be satisfied using tuple tj . In the former case the algorithm will terminate

and the current sample is an Armstrong relation. In the latter, a new tuple tj will be selected

and the process described above will be repeated. If no such tuple can be found, it means that

there are some saturated sets that cannot be satisfied, and therefore an Armstrong relation

cannot be extracted (see Section 5.6.5).

As in Section 5.5, the Consistent Database Sampling Process defined in Chapter 4 can

also be identified in the algorithm of Fig. 5.5. ConstructAgreementsTable() is equivalent

to InitialiseProces(). The semantics described by StopSamping() are implemented by

condition (AgrT.SetOfX 6= Ø). SelectTuple() and SelectTuple_Local() implement what

in Chapter 4 was referred to as SelectInstance(). Finally, MinimalSamplerec() can be

identified with UpdateProcess().

57

5.6. Consistent Database Sampling with Functional Dependencies

5.6.5 Sampling with Subsets or Supersets of Σ

The previous Section assumed that the input relation r was an Armstrong relation for Σ, and

the goal was to extract a minimal Armstrong relation. This Section relaxes this assumption

in both directions. First considering a subset of the whole set of functional dependencies

satisfied by r, Σ, and then considering a superset.

If a subset Γ1 of Σ, Γ∗1 Σ∗, is considered then sampling is not possible. That is, no

Sample of a relation, which satisfies exactly Σ∗, will satisfy exactly Γ∗1.

Theorem 5.6.2. Let r be an Armstrong relation for a set of functional dependencies Σ.

There cannot be a Sample s of relation r which is an Armstrong relation for a proper subset

Γ1 of Σ, Γ∗1 Σ∗.

Proof. Let σ be a functional dependency such that σ ∈ Σ∗ but σ /∈ Γ∗1. Since r is an

Armstrong relation for Σ there cannot be any pair of tuples in r that do not satisfy σ.

Therefore, a Sample s of r cannot violate σ either. Since s |= σ for some σ /∈ Γ∗1, s cannot be

an Armstrong relation for Γ1, as required.

Consider now sampling with supersets of Σ. If the aim is also to extract an Armstrong

relation for a given superset of Σ, then this may not always be possible. Refer to Section

5.6.6 for a concrete example of this situation.

Therefore, in order to sample with a superset of Σ, it is necessary to weaken the objective

of sampling. Instead of requiring the resulting Sample to be an Armstrong relation, the goal

is now only to ensure it satisfies all specified functional dependencies (even if it may also

satisfy others).

Theorem 5.6.3. Let r be an Armstrong relation for a set of functional dependencies Σ over

U . There exists a Sample s of r which satisfies a superset Γ2 of Σ, Σ∗ Γ∗2.

Proof. Let γ1 be a functional dependency such that γ1 ∈ Γ2 and γ1 /∈ Σ∗. Without loss of

generality assume γ1 is of the form Y → A, with Y ⊂ U and A ∈ U . Initially, let Sample

s be the entire relation r. For any pair of tuples t1 and t2 in s with t1(Y) = t2(Y) and

t1(A) 6= t2(A), remove t2 from s. No functional dependency in Σ can become unsatisfied

58

Chapter 5. Database Sampling - Applying the Process

by removing a tuple from s (Theorem 5.6.2), therefore now s |= Σ∗ ∪ {γ1}. (Note that by

removing a tuple, however, a new functional dependency not in Γ∗2 may become satisfied.)

This process can be repeated for any additional γ2 ∈ Γ2 \ {γ1} and γ2 /∈ Σ∗ ∪ {γ1} until

s |= Γ2, as required.

The algorithm given in Fig. 5.5 can easily be modified to sample with supersets of

Σ, or to detect when this is not possible. All that is required is to ensure that functions

SelectTuple() and SelectTuple_local() do not select tuples that satisfy non-saturated

sets of attributes.

The two theorems presented in this Section identify what can be expected when sampling

with functional dependencies, and the minimum knowledge required about the database

relation being sampled in order to do so (i.e. a set of functional dependencies for which the

input relation is an Armstrong relation). If the set of functional dependencies is not the

minimum required, the algorithm given in Section 5.6.4 can detect this situation, notifying

the database designer and increasing the understanding of this relation.

5.6.6 Sampling Example

As an example to illustrate the concepts and algorithm presented here to sample with func-

tional dependencies, consider, as in the previous subsection, the set of functional dependencies

Σ = {Course → Year, Course → Teacher}

and the database relation shown in Table 5.5. Applying the algorithm of Fig. 5.5 to this

relation and the Agreements Table shown in Table 5.6 leads to the following scenario.

1. According to the global selection criteria (function SelectTuple), two tuples can ini-

tially be selected since they have the highest value for ‘No. X ∗’: t10 and t12. As-

sume that tuple t10 is (randomly) chosen. Now, the recursive procedure is called using

MinialSizeSamplerec(AgrT, Sample, t10).

(a) Using the Agreements Table it can be seen how t12 must be selected in order to

satisfy {Year Teacher∗} (function SelectTuple_local).

59

5.6. Consistent Database Sampling with Functional Dependencies

Table 5.7: Sample with FD of Courses
course year teacher

t4 analysis 2 2 philip
t5 programming 2 diana
t10 languages 5 diana
t12 cybernetics 5 diana

Now MinialSizeSamplerec(AgrT, Sample, t12) is called.

i. Tuple t5 is selected so that {Teacher}∗ is satisfied.

MinialSizeSamplerec(AgrT, Sample, t5) is called.

A. In order to satisfy Year∗, t4 will be selected. Additionally, due to the

interactions between t10 or t12 (already in the sample) and t4, set Ø∗ is

also satisfied.

MinialSizeSamplerec(AgrT, Sample, t4) is called.

• All X ∗ are satisfied, so this recursive call terminates.

B. All X ∗ are satisfied, so this recursive call terminates.

ii. All X ∗ are satisfied, so this recursive call terminates.

(b) All X ∗ are satisfied, so this recursive call terminates.

2. All X ∗ are satisfied, function MinialSizeSample terminates.

The resulting Sample relation, shown in Table 5.7, is a minimal Armstrong relation for the

input relation.

Section 5.6.5 referred to the fact that it is not always possible to obtain an Armstrong

relation by sampling a database relation according to a proper superset of Σ. To see this,

assume that the database relation shown in Table 5.7 is to be sampled exactly according to

Γ2 = Σ ∪ {Teacher → Year}

with Σ as above. It can be seen how tuple t5 or tuples {t10, t12} must be left out of any

Sample, in order to satisfy the new functional dependency {Teacher → Year}. However, the

resulting Sample (e.g. {t4, t10, t12} or {t4, t5}) would satisfy more functional dependencies

60

Chapter 5. Database Sampling - Applying the Process

than only those in Γ∗2 (e.g. {Year → Teacher}), thus it cannot be an Armstrong relation for

Γ2.

As an example of successfully sampling with a superset of Σ, consider the relation shown

in Table 5.7 and the set of functional dependencies

Γ3 = Σ ∪ {Teacher Year → Course}

with Σ as above. Note that the relation represented by Table 5.7 is not an Armstrong Rela-

tion for Γ3. The corresponding set of saturated sets is
{
{Year}, {Teacher}, {Ø}

}
, therefore,

according to Section 5.6.5, the set that must not be satisfied is {Teacher Year} (see Table

5.6). Applying the algorithm of Fig. 5.5 with the modification suggested in Section 5.6.5,

the Sample containing tuples {t4, t5, t10} would be extracted. This Sample is indeed an Arm-

strong relation for Γ3. The same procedure will demonstrate why, in the previous example,

no Sample of Table 5.7 can be an Armstrong relation for Γ2.

5.7 Random Sampling

An alternative method for sampling a database is to select the set of tuples randomly. If such

an approach is followed, the Sample size cannot be assured to be minimal, but the efficiency

improvement (both in performance and memory usage) will be significant, as discussed later

in Section 5.8. An approach based on random sampling is only considered here for the case of

sampling with functional dependencies. There can be several different Samples of a relation

that satisfy an specified set of functional dependencies (even though only a few may be of

minimal size). Therefore it can be expected that random sampling will, eventually, found one.

If, for example, inclusion dependencies are considered there may very well be only one tuple

in one table that can be used to satisfy a particular constraint. In case of large databases,

if tuples are selected randomly this may require an unacceptable amount of sampling before

the right tuple is chosen. Such an approach is clearly not feasible and is not investigated any

further.

Consider that tuples in a relation are to be selected randomly until a specified set of

functional dependencies is satisfied by the resulting Sample. Using the same concepts as in

61

5.8. Analysis of Sampling Algorithms

the previous Section, a list of saturated sets of attributes still to be satisfied by the current

Sample is maintained. Whenever a new tuple is randomly selected, the algorithm checks

whether any new saturated set is satisfied. If so, this tuple becomes part of the Sample and

the saturated set now satisfied is deleted from the list. If not, a new tuple is sampled. This

process continues until the list of saturated sets of attributes to be satisfied is empty.

These two approaches, MinimalSizeSample with functional dependencies and Random

Sample Selection, must be compared. It is expected that in those cases where the minimal

size Sample is much smaller than the initial table random sampling will not, on average,

perform better than the minimal size sampling algorithm as the resulting Sample will be

significantly larger than necessary.

5.8 Analysis of Sampling Algorithms

This Section analyses the sampling algorithms given in Sections 5.5.4, 5.6.4, and 5.7. The

study will focus on its complexity, and termination and correctness. The complexity anal-

ysis will investigate the worst-case time complexity4 of these algorithms. The standard O-

Notation [39] will be used for such purposes.

5.8.1 Complexity

The worst-case scenario when sampling with an ICG is when the entire database instance

is inter-related according to the set of constraints being considered. In this case the only

consistent Sample would be the Source Database itself. This can be considered an extreme

case and, for sampling purposes, a Source Database can be seen as being composed of several

independent consistent Samples (Section 5.5.4 already referred to this view and termed it

data-diversity). Each iteration of the outmost loop in the algorithm of Fig. 5.4 can be

seen as extracting one such Sample, and minimal Sample size requirements may force several

iterations. For the complexity analysis of this algorithm, let n be the number of entities in the

ICG, p the number of instances each entity must contain in the resulting Sample Database as

described in Section 5.5.4, and q the number of directly related instances that each instance
4Set operations are ignored for simplicity.

62

Chapter 5. Database Sampling - Applying the Process

has in the database according to the set of constraints used for sampling. Note that q can be

different for each instance in the database, but in each case it must be less than the maximum

fan-out value of all entities in the ICG, q ≤ MAX(Fan-Out).

The complexity of this algorithm depends on the depth of the recursive calls represented

by KeepConsistentICG(). This, in turn, depends on the database instance being sampled,

particularly on the different number of instances of the same entity that are needed to keep

consistent one instance of that entity. For example, in the School Reference Database, if one

Teacher is sampled, this will require its corresponding Dept, which in turn will sample back

on the same entity, Teacher, for the head of this department. In this case, two insertions were

needed in the same entity. As another example, take the instance of entity Courses shown in

Fig. 5.5. Assume that, due to the semantics of Pre-requisites (see Section 5.2), any student

that follows course cybernetics must have already passed courses calculus, analysis 3,

analysis 2, and analysis 1 (this scenario is consistent with the complete instance of the

reference database that will be shown in Appendix A). The maximum number of required

insertions in that sense will here be denoted by α. In the previous two examples its value

would be α = 2 and α = 5 respectively. In the worst case each of these insertions would

require new insertions in all related entities. Therefore this algorithm’s worst-case complexity

is

O (npqα) .

The algorithm to extract a minimal size Sample according to a set of functional dependen-

cies consists in three phases: (1) Computing all saturated5 sets of attributes; (2) Constructing

the Agreements Table; (3) Extracting a minimal size Sample using the algorithm shown in

Figure 5.5.

Let n be the number of attributes in U , p the number of tuples in the databases, and q

the number of functional dependencies in Σ; that is n = |U|, p = |r|, and q = |Σ|.

1. Computing X ∗ can be done in linear time with the size of Σ and X [1], and thus checking

whether X is saturated has complexity O (q + n).
5Recall from Section 5.6.4 that it suffices to consider only the intersection generators.

63

5.8. Analysis of Sampling Algorithms

Beeri [11] showed that some functional dependency sets exist for which any Armstrong

relation will have exponential size with Σ. Therefore any algorithm must face this worst-

case complexity. However, this is only the case for highly unnormalised relations, which

should be rare. In case of relations in Boyce-Codd Normal Form [47], the number of

saturated sets is bounded by a polynomial in n and q [45]. The degree of this polynomial

depends on the number of keys in the relation. Refer to this polynomial as pol(n, q).

Therefore this first phase has complexity O (pol(n, q) (q + n)).

2. For each tuple t1 and each saturated set X compute which tuples t2 agree with t1

exactly on X . Since |X | ≤ n this phase’s complexity is O
(
pol(n, q)p2n

)
. It can be

improved, however, if the relation is sorted on X before each test [46]. Which results

in complexity O (pol(n, q)np log p).

3. Algorithm of Fig. 5.5 has complexity O (pol(n, q)p), if one ignores the construction of

the Agreements Table which was analysed in Step (2).

Therefore the entire algorithm to extract a Minimal Size Sample with functional depen-

dencies, if the relation is normalised, has complexity (note that it can be expected p >> q)

O (pol(n, q)np log p) .

This result is comparable to the complexity of known algorithms to generate a minimal set

(cover) of functional dependencies that hold in a relation [46].

Similarly, the algorithm for Random Sampling with functional dependencies has complex-

ity

O (pol(n, q)pn) .

5.8.2 Termination and Correctness

The termination of the algorithm shown in Fig. 5.4 can be guaranteed: (1) The outer

loop terminates because the number of entities in the set NotFullEntities will decrease

(function SampleInstance()) as new instances are inserted into the Sample. Eventually, it

64

Chapter 5. Database Sampling - Applying the Process

becomes the empty set and the algorithm terminates; (2) the chain of recursive calls repre-

sented by function KeepConsistentICG() also terminates due to the workings of function

SampleInstance_local(). It ensures that infinite loops cannot be created because it only

selects instances not yet in the Sample.

This algorithm is correct with regard to the set of constraints represented in the ICG

given as input parameter, that is, the Sample Database satisfies those constraints if the

Source Database also satisfies them. The size of the resulting Sample is predefined by the

user. Additional insertions may be required in order to satisfy the entire set of constraints.

If an inconsistency in the Source Database is detected the algorithm terminates, and the

current Sample cannot be expected to be consistent.

The correctness of the algorithm for sampling with functional dependencies shown in Fig.

5.5 has been proved by Theorem 5.6.1. Its termination can also be guaranteed. The set of

saturated sets of attributes still to be satisfied, denoted by AgrT.SetOfX in this algorithm,

is reduced at each iteration because SelectTuple_local() will force new saturated sets to

be satisfied. It will eventually become the empty set and the algorithm will terminate. The

chain of recursive calls must terminate for the same reason. If an Armstrong relation cannot

be extracted for the specified set of functional dependencies this algorithm, as the previous

one, can detect this situation and will terminate. The Sample will not be consistent according

to the specified criteria.

Finally, the algorithm for random sampling outlined in Section 5.7 will terminate if the

input relation is an Armstrong relation. It can be expected that, eventually, any of the

tuples in the database will be randomly selected, therefore all required saturated sets can be

satisfied. If, in contrast, the input relation is not an Armstrong relation for the specified set

of functional dependencies then this algorithm, as has been described, will not detect this

situation and will not terminate. It will simply continue sampling trying to satisfy additional

saturated sets. Even though it is possible to modify this algorithm to ensure its termination,

this will increase its time and space complexity. Since the rationale of using random sampling

is its expected increased performance, this does not seem a suitable alternative. Instead, the

algorithm could sample until a predefined maximum of tentative selections has been reached.

65

5.9. Summary

If a consistent Sample has not been reached, then it should terminate. The correctness of

this algorithm can also be guaranted by Theorem 5.6.1 assuming the input relation is an

Armstrong relation.

5.9 Summary

This Chapter has analysed the construction of Sample Databases considering concrete rep-

resentativeness criteria, namely the satisfaction of sets of integrity constraints. Firstly a

common representation of widely used sets of integrity constraints has been developed, con-

sidering inclusion depedencies, cardinality constraints, generalisation dependencies, and sub-

set dependencies. This representation, referred to as Insertions Chain Graph (ICG), has been

specifically designed for sampling purposes and can be derived automatically from an Entity-

Relationship diagram for the database to be sampled. An ICG has been formally defined and

an algorithm that, using such representation, extracts a consistent Sample from a database

has been developed.

Then a similar problem has been addressed considering a different type of integrity con-

straint: Functional Dependencies. A representation suitable for sampling a database accord-

ing to a set of functional dependencies has been developed. Using this representation, referred

to as Agreements Table, an algorithm has been developed which samples a database relation

so that the resulting Sample satisfies the specified set of functional dependencies and no other

functional dependency, thus being an Armstrong relation. It has been firstly assumed that

the relation being sampled was an Armstrong relation for the set of functional dependencies.

Then this assumption has been relaxed, considering subsets and supersets of the initial set

of functional dependencies.

For comparision purposes, the problem of sampling according to functional dependencies

has also been solved using random sampling.

Finally, the complexity and correctness of the algorithms presented here have been anal-

ysed.

66

Chapter 6

Database Sampling - Formal

Framework

6.1 Introduction

This Chapter provides a formal framework where Consistent Database Sampling, as devel-

oped in the previous Chapters, can be precisely defined. The next Section introduces some

background concepts that, although are not part of the work developed during this research,

are required in latter Sections. Section 6.3 gives a semantic description of the Consistent

Database Sampling Process given in Chapter 4. This description uses the Denotational

Semantics formalism. Section 6.4 defines and characterises a particular type of integrity con-

straints, referred to as Sampling-Irrelevant, which can be ignored during sampling as this

cannot lead to an inconsistent Sample Database. The property of being Sampling-Irrelevant

is shown to be, in general, undecidable.

6.2 Background

A brief introduction to Denotational Semantics is given in the next Section. The objective is

to outline and justify the steps involved when providing a Denotational Semantic description,

as will be done in Section 6.3. Refer to [59, 7, 62] for a more extended treatment of this topic.

67

6.2. Background

Then Section 6.2.2 briefly describes some concepts related to Decidability Theory in order

to justify the problem that will be addressed in Section 6.4, regarding the undecidability of

Sampling-Relevant integrity constraints. All concepts presented in that Section can be found

in any standard study of Decidability Theory such as [43].

6.2.1 Denotational Semantics and λ-Calculus

Denotational Semantics is a formal method initially introduced to unambiguously define the

semantics of programming languages. It describes how a syntactic object (i.e. a program

written according to a specified syntax) can be mapped into some abstract value. The

semantics of the space of abstract values is considered defined and, from it, the semantics of

a program is also defined. As programs are considered to represent (or denote) a function, a

denotational semantics of a programming language maps programs written in that language

into the functions they denote.

The formalism used to define these mappings is the λ-Calculus. This is a formal system

for the study of functions, their definition, application and manipulation. An expression in

this formalism, a λ-expression, such as λx1, . . . , xn.E denotes a function that takes argument

values v1, . . . , vn and returns the result of evaluating expression E with all xi’s replaced

by the corresponding vi’s, 1 ≤ i ≤ n. In this formalism functions are treated as first-class

objects and can, themselves, be arguments to other functions or the result of a function. In

the example above, expression E may itself be another λ-expression. As a simple example

consider λx.x2 which denotes the function which is commonly written as f(x) = x2. As

a more complex example with a function that returns another function consider λx.λy.xy,

which represents f(x) = g(y) with g(y) = xy; this is equivalent to f(x, y) = xy.

The λ-expressions used in denotational semantics are usually recursive, that is, the func-

tion being defined is used in its own definition. As an example, the factorial function written

in λ-notation could be

Fact = λn. if n = 0 then 1 else n× Fact(n− 1)

Recursive definitions describe an equation which must be solved in order to understand what

they represent. In the previous example the equation must be solved for Fact.

68

Chapter 6. Database Sampling - Formal Framework

Like any other equation, recursive definitions can have one, none, or many solutions. A

definition with more than one solution is ambiguous as it is not clear what it stands for.

In contrast, if it has no solution it cannot be said to stand for anything at all. A theory

[59] has been developed to ensure that such definitions have exactly one natural solution.

According to the theory underlying Denotational Semantics, these equations must be defined

over domains that have the structure of a Complete Lattice. A domain D is a Complete

Lattice if:

1. A partial order, v, can be defined between its elements. v defines a partial order if it

is:

(a) Transitive: if x v y and y v z then x v z .

(b) Antisymmetric: if x v y and y v x then x = y .

(c) Reflexive: ∀x ∈ D, x v x .

2. There is a least element, ⊥ (bottom), according to this partial order: ∀x ∈ D,⊥ v x.

3. Each ascending chain x1 v x2 v x3 · · · has a least upper bound, denoted by t{xi}. An

element is a least upper bound of the chain if it satisfies t{xi} v xi for each element

xi in the chain.

It can be shown [7] that given two complete lattices D1,vD1 and D2,vD2 , their direct

product D1 ×D2,vD1×D2 can also be defined as having a complete lattice structure. Similar

results can be obtained (with some restrictions) for D1 → D2,vD1→D2 . All these results will

be used later in Section 6.3. The natural solution that is shown to always exist if complete

lattices are used as domains in λ-expressions is defined as the least fixed point of the equation

defined by a λ-expression. A fixed point of function f(x) is a value y such that f(y) = y.

It is a least fixed point if it is the smallest of all fixed points according to the partial order

defined in the domain of x.

Denotational semantics has also been applied in contexts not related to programming

languages. For example, Widom [67] defined with this formalism a semantics for the Starburst

rule system. In this case the semantics denote a mapping from the set of database instances,

69

6.2. Background

together with a set of rules and operations on the database, into the set of database instances.

This semantics indicate how the initial instance is changed due to the operations and the set

of rules. The result of this denotational semantics is a database instance, which implies

that it is understood what a database instance is, and the objective is to define what the

combination of database instance, rules and operations means.

A similar idea will be investigated in Section 6.3. The objective is to give a formal semantic

description of Consistent Database Sampling. In order to do so, the domains involved in this

description must be shown to be Complete Lattices. Only then is it possible to ensure that

the λ-expressions that will be defined are consistent and not ambiguous, that is, they will have

one natural solution. This solution will be the intended meaning for Consistent Database

Sampling. The semantics will map sets of database instances and integrity constraints into

sets of database instances. This semantics will indicate how a Sample from the initial instance

can be extracted according to a set of constraints. As before, the semantics of a database

instance is understood, and the objective is to define what it means, for sampling, to have a

database instance with a set of constraints.

6.2.2 Undecidable Problems and Problem Reducibility

The description of the concepts presented here are traditionally described by the means of

concepts like Turing Machine and the language accepted by a Turing Machine. This Section

will use a terminology based on algorithm and the problem solved by an algorithm. This

is in line with the Church-Turing Thesis [43] which identifies the formal concept of Turing

Machine with the informal concept of algorithm.

There are some problems for which there is no algorithm that will always solve any

instance of that problem. These problems are called Undecidable. Examples of such problems,

used later in this thesis, include the consistency of a set of first-order-logic formulas [23], and

the domain independence of relational calculus queries [1, p. 125].

Several techniques can be used to prove that a particular problem is undecidable. One of

them is based on the concept of Reduction.

Definition 6.2.1. Let P1 and P2 be problems. A reduction from P1 to P2 is an algorithm τ

70

Chapter 6. Database Sampling - Formal Framework

that transforms instances of problems, so that x is an instance of P1 if and only if τ(x) is an

instance of P2.

Using reduction, a problem can be shown to be undecidable as indicated in the following

Theorem.

Theorem 6.2.1. If problem P1 is undecidable, and there is a reduction from P1 to P2, then

P2 is also undecidable.

Intuitively, if problem P2 was decidable, it could be used to decide P1 using this reduction.

But P1 is already known to be undecidable, a contradiction. Therefore P2 cannot be decidable.

6.3 Semantics of Consistent Database Sampling

The formal semantics for Consistent Database Sampling presented here complements the

informal description provided in Chapter 4, and it is believed can be very useful in the con-

text of understanding and reasoning about database sampling in general, and the interaction

between consistency criteria when sampling is performed according to several criteria simul-

taneously. The framework this semantic description provides can also be used as a benchmark

reference for sampling tools, such as the one described in Chapter 7.

Denotational Semantics was initially developed as a formalism to precisely and unambigu-

ously define the semantics of programing languages [59, 62, 7]. In this context, a denotational

semantics for a conventional programming language is defined as a Meaning Function that

takes any program in the language and produces the input-output function computed by

that program [59]. Similarly, a denotational semantics for Consistent Database Sampling is

defined here as a Meaning Function that takes any set of integrity constraints and produces

a function that maps a database instance into a new database instance which is a Sample of

the first one, consistent with the input set of constraints.

In order to develop this formal description, the next Section defines the domains that are

used by the Meaning Function of Section 6.3.4. The definition of this Meaning Function is

simplified using a set of supporting functions defined in Section 6.3.3.

71

6.3. Semantics of Consistent Database Sampling

6.3.1 Domains

The following are the domains used by the functions defined in the next Sections. They are

based on some standard definitions given in Section 5.3.

• Let DB be the domain of database instances.

If I is a database instance, then I = {t1, . . . , tn} where each ti is a tuple. Values in a

database instance are taken from domain DOM.

• Let T be the domain of tuples in a database.

If a database schema is composed by attributes {A1, . . . , An} then T = DOMA1×· · ·×

DOMAn . The domain of database instances can be identified with the powerset of the

domain of tuples, DB = P{T }. However, to simplify the notation, both domains will

be denoted differently. The concept of database relation, as defined in Section 5.3, is

not used here. Without loss of generality, it can be assumed that each tuple ti includes

a unique identifier which also identifies ti’s relation [25].

• Let IC be the domain of integrity constraints.

As done in Section 5.3, integrity constraints are assumed to be Relational Calculus

expressions, that is, first-order-logic formulas without functions and without free vari-

ables.

6.3.2 Domains as Complete Lattices

The domains defined in the previous Section will be used in the Denotational Semantics

description of Consistent Database Sampling. According to the theory of Denotational Se-

mantics, these domains must be proven to have a structure of Complete Lattices in order to

ensure that the semantics defined below are consistent, see Section 6.2.1.

For each of the domains defined above, its partial order, least element and least upper

bound will be given. The proof that the specified relation between elements of each particular

domain defines, in fact, a partial order will be omitted.

Theorem 6.3.1. The domain T of tuples is a complete lattice [7].

72

Chapter 6. Database Sampling - Formal Framework

Proof. A partial order, vDOMAi
, and a least element, ⊥DOMAi

, can be assumed for each

basic domain Ai [7] (e.g. integer, real, character).

Given two tuples t1 = 〈a1, b1, c1, . . . 〉 and t2 = 〈a2, b2, c2, . . . 〉, a partial order vT in the

domain of tuples can be defined as

t1 vT t2 iff a1 v a2 and b1 v b2 and c1 v c2 · · ·

where the appropriate partial order vDOMAi
is used for each attribute Ai.

The least element of this domain can be defined as ⊥T = 〈⊥DOMAi
,⊥DOMAj

, . . . 〉 . It

can be proved that ∀t ∈ T , ⊥T vT t .

Any chain of tuples 〈a1, b1, c1, . . . 〉 v 〈a2, b2, c2, . . . 〉 v 〈a3, b3, c3, . . . 〉 v · · · defines a

chain in each attribute: a1 v a2 v · · · , b1 v b2 v · · · , c1 v c2 v · · · , etc. An element

defined as t{〈ai, bi, ci, . . . 〉} = 〈t{ai},t{bi},t{ci}, . . . 〉 is a least upper bound for this chain.

With these definitions, T ,vT is a complete lattice [7].

Theorem 6.3.2. The domain DB of database instances is a complete lattice.

Proof. In the previous Section a database instance was identified with a set of tuples, DB =

P{T }.

Its least element can be defined as ⊥DB = Ø.

Given two database instances I1, I2 ∈ DB, define a partial order as

I1 vDB I2 iff I1 ⊆ I2 .

Any chain of database instances I1 vDB I2 vDB I3 vDB · · · has a least upper bound

defined by t{Ii} =
⋃
i>1

Ii .

With the above definitions, DB,vDB can be shown to be a complete lattice.

Theorem 6.3.3. The domain IC of integrity constraints is a complete lattice.

Proof. Its least element is ⊥IC = false.

A partial order between integrity constraints can be defined as in logical implication since

a constraint is an assertion (relational calculus formula) about a database instance. Let

73

6.3. Semantics of Consistent Database Sampling

σ1, σ2 ∈ IC:

σ1 vIC σ2 iff ∀I ∈ DB, I |= σ1 → I |= σ2 .

A least upper bound for a chain of constraints can also be defined based on their logic nature.

Take the least upper bound of σ1 vIC σ2 vIC σ3 vIC · · · as being t{σi} = σ1∨σ2∨σ3∨· · · .

With the above definitions, IC,vIC can be shown to be a complete lattice.

6.3.3 Supporting Functions

The following functions have been used to simplify the denotation of Consistent Database

Sampling. Function definitions are given using the λ-Calculus [36, 59]. Refer to Section 6.2.1

for a brief introduction.

Function ToBeSatisfied takes a database instance and a set of integrity constraints.

It considers the database instance to be the current state of the Sample Database being

extracted, denoted by s. This function returns the set of integrity constraints yet to be

satisfied by the Sample Database.

ToBeSatisfied : DB × P(IC) → P(IC)

ToBeSatisfied = λ s, {ic1, ic2, . . . , icn}. {ici|s 2 ici}
(6.1)

Function Satisfy adds a set of tuple(s) needed in the Sample to satisfy one particular

integrity constraint. It takes a database instance that represents the operational database

being sampled, denoted by d, another database instance that represents the current Sample,

denoted by s, and finally the integrity constraint to be satisfied, denoted by c. It returns the

Sample enlarged with additional tuples required to satisfy the specified constraint. Note that

there could be several ways of consistently enlarging the current Sample.

Satisfy : DB ×DB × IC → DB

Satisfy = λ d, s, c. s ∪

Select
({

s′|s′ ⊂ d \ s ∧ s ∪ s′ |= c ∧ {s′′|s′′ ⊂ s′ ∧ s ∪ s′′ |= c} = {Ø}
}) (6.2)

This definition considers all sets of tuples not yet in the Sample (s′ ⊂ d \ s) that can be used

to satisfy constraint c (s′ |= c). No subset of this set of tuples should also be eligible, since a

small Sample is sought. Then one of these sets is selected to be part of the Sample.

74

Chapter 6. Database Sampling - Formal Framework

The following functions are left undefined and their semantics are taken as given. They

determine different parameters of the Sampling Process, like for example how to perform

initial insertions which trigger a chain of insertions to maintain consistency, or how the

Process chooses between tuples when several are possible.

SelectTuple selects one tuple from a database based on the set of integrity constraints,

i.e. initial selection, or SelectInstance(), as referred to in Section 4.3.

SelectTuple : DB × P(IC) → T (6.3)

Choose selects one integrity constraint out of a set.

Choose : P(IC) → IC (6.4)

Finally, function Select selects one out of all the ways of consistently completing a Sample

(e.g. the smallest one).

Select : P(DB) → DB (6.5)

6.3.4 Meaning Function

The semantics of database sampling is denoted by meaning function M. This function

takes a set of integrity constraints and returns another function which takes an operational

database and returns either a Consistent Sample of it or it does not terminate, denoted by ⊥

(bottom). The case in which it may not terminate stems from the fact that the operational

database itself may not be consistent. In this case, it may not always be possible the extract

a consistent Sample. The algorithms analysed in Chapter 5 detect this possibility. However,

the semantics of the Process when sampling from an inconsistent Source Database are left

undefined. From a more practical point of view, interaction with the user, to repair or discard

the inconsistencies found in the Source Database, is likely to be the only advisable option.

This points out that a likely consequence of Consistent Sampling is a better understanding

75

6.4. Sampling-Relevant Integrity Constraints

of the Source Database, as was already outlined in Section 4.2.

M : P(IC) → DB → DB ∪ {⊥}

M[[{ic1, ic2, . . . , icn}]] = λ d.

Let t = SelectTuple
(
d, {ic1, ic2, . . . , icn}

)
in

M′({ic1, ic2, . . . , icn})(d, {t})

(6.6)

This definition indicates how, in Consistent Database Sampling, an initial tuple, t, is selected

and inserted into the Sample. Then this single-tuple Sample is consistently completed, that is,

function M′ is called. M′ adds the necessary tuples into the Sample in order to satisfy a set

of constraints. This function takes a set of integrity constraints and returns the Least Fixed

Point of a function that takes an operational database and the current Sample Database

(which may not be consistent) and returns either a consistent Sample Database or it does

not terminate.

M′ : P(IC) → DB ×DB → DB ∪ {⊥}

M′ = λ{ic1, ic2, . . . , icn}. Least-Fixed-Point
(

λ F.

λ d, s. Let R = ToBeSatisfied
(
s, {ic1, ic2, . . . , icn}

)
in

if R = Ø then s else F
(
d, Satisfy

(
d, s, Choose(R)

)))
(6.7)

If all constraints are satisfied, then the Sample is already consistent and the process termi-

nates. Otherwise, it firstly selects one constraint out of all those which are not yet satisfied in

the Sample, consistently completes the current Sample according to this individual constraint

and then repeats the process, that is, its semantics are defined as its fixed point.

6.4 Sampling-Relevant Integrity Constraints

When consistently sampling from a database not all integrity constraints need to be consid-

ered. For some types of constraints, even if they are excluded from the sampling process,

the resulting Sample Database will still satisfy them, assuming that the operational database

being sampled is consistent according to these same constraints. Example of such integrity

76

Chapter 6. Database Sampling - Formal Framework

constraints include maximal cardinality constraints (e.g. in the School reference database, a

teacher cannot be teaching more than three courses). These type of constraints have been

termed here Sampling-Irrelevant. If only those constraints that are actually relevant to the

consistency of the resulting Sample Database are considered the sampling process can be

expected to be more efficient. The representation of the set of constraints to be considered

should also be simpler as it needs to express a smaller number of constraints (refer to Section

5.5.3 where this issue was already addressed).

Integrity constraints which are not Sampling-Irrelevant are referred to as Sampling-Relevant.

The objective in this Section is to characterise these kind of integrity constraints.

From the above discussion, Sampling-Irrelevant Integrity Constraint can be defined as

follows.

Definition 6.4.1. σ is a Sampling-Irrelevant Integrity Constraint iff

∀I ∈ DB,∀t ∈ T , I |= σ → I \ {t} |= σ

Being I a database instance and t a tuple in this database. This definition states that

if operational database I is consistent with constraint σ, then it will still be consistent after

deleting a tuple from it. This definition views a Sample Database as the result of deleting,

from the Source Database, all the tuples which are not in the Sample. Although this view is

useful for the developments of this Chapter, it is likely to be impractical due to the size of a

Source Database compared to that of a Sample Database.

Negating the expression in the previous definition provides a definition for Sampling-

Relevant Integrity Constraints.

Definition 6.4.2. σq is a Sampling-Relevant Integrity Constraint iff

∃I ∈ DB,∃t ∈ T , I |= σ ∧ I \ {t} 2 σ

In this definition, I is a database instance and t a tuple in this instance. I \ {t} denotes

a database instance that results from removing tuple t from I. According to this definition,

if σ is Sampling-Relevant there must be a database instance I and a tuple t in this database

that witness the relevance of σ when sampling, that is, deleting t from I results in a database

which does not satisfy constraint σ.

77

6.4. Sampling-Relevant Integrity Constraints

6.4.1 Characterisation of Sampling-Relevance

From Definition 6.4.2 it is possible to deduce the following sufficient, but not necessary,

condition for an integrity constraint to be Sampling-Relevant.

Theorem 6.4.1. Given any integrity constraint σ,

Ø 2 σ → σ is Sampling-Relevant

Proof. As stated in Section 5.3, only finite database are considered here. Theorem 6.4.1

follows directly from this fact.

Consider a Sampling-Irrelevant integrity constraint σ. Let I0 = I be the initial database

instance. Since σ is Sampling-Irrelevant, according to Definition 6.4.1, any tuple t0 can be

removed from it and the resulting database instance, I1 = I0\{t0}, will still satisfy σ, I1 |= σ.

Repeat this process for any other tuple, ti, leading to increasingly smaller database instances,

Ii+1 = Ii \ {ti}, all of them satisfying σ, Ii+1 |= σ. Since I is finite, eventually some database

instance Ii+1 will be empty, Ii+1 = Ø. This proves that

σ is Sampling-Irrelevant → Ø |= σ

which is equivalent to what was to be proved.

This theorem states that if a constraint is not satisfied by an empty database, then it must

be Sampling-Relevant. It is possible, however, for a Sampling-Relevant integrity constraint

to be satisfied by an empty database (see Section 8.3.3).

6.4.2 Non-Decidability of Sampling-Relevance

This Section gives a proof of undecidability for Sampling-Relevance of integrity constraints.

As described in Section 6.2, one standard technique for proving that a problem is undecidable

is by reducing a well-known undecidable problem to it [43]. The well-known undecidable

problem used here is the Domain-independence of Relational Calculus Queries [1, 64].

A Relational Calculus Query q is an expression of the form q = {x1, . . . , xn|ϕ}, where all

variables xi are free in ϕ, being ϕ a first-order-logic formula without functions. The result of

78

Chapter 6. Database Sampling - Formal Framework

a query q over database instance I, denoted q(I), is the set of tuples 〈x1, . . . , xn〉 for which

ϕ is true. When interpreting a Relational Calculus Query it must be specified over which

domain variables xi range. Different answers may be obtained depending on the domains

being considered [1]. For this reason a query is interpreted relative to a particular domain.

Thus qdi
(I) denotes the result of query q for instance I if the domain of interpretation is di. In

practice only those queries that always produce the same result, independently of the domain

of interpretation, are allowed. This set of queries are referred to as domain-independent.

Therefore, a domain-independent query can be defined as follows.

Definition 6.4.3. q is a Domain-Independent Relational Calculus Query iff

∀d1, d2 ∈ DOM,∀I ∈ DB, qd1(I) = qd2(I)

It is known that if the entire expressiveness power of Relational Calculus is allowed to

define a query, domain-independence it not decidable ([1], p. 125). Since only domain-

independent queries are of interest, several syntactic restrictions have been developed to

ensure the domain-independence of queries. Refer to [1, 64] for a more extended treatment

of Relational Calculus Queries, justification for the need of domain-independent queries, and

some syntactic restrictions (e.g. range-restricted) used to deal with their undecidability. For

the purposes of this Section only its definition and its undecidability result are needed.

Negating Definition 6.4.3 results the definition of Domain-Dependent queries, which will

be used in the proof presented here. It must be noted that if a problem is undecidable its

complement must also be undecidable [43].

Definition 6.4.4. q is a Domain-Dependent Relational Calculus Query iff

∃d1, d2 ∈ DOM,∃I ∈ DB, qd1(I) 6= qd2(I)

In order to simplify the notation, in the following development formulas will be given with-

out explicitly stating the domain of variables. This should not cause confusion as variables

with the same names as above will range over the same domains.

Figure 6.1 states the purpose of the proof to be developed in this Section. It is the

specialisation of Theorem 6.2.1 to this particular problem.

79

6.4. Sampling-Relevant Integrity Constraints

Let q be a relational calculus query.
From q, construct an integrity constraint σq such that
σq is Sampling-Relevant if and only if q is Domain-Dependent

Fig. 6.1: Non-Decidability of Sampling-Relevant Integrity Constraints Problem Statement

Theorem 6.4.2. Sampling-Relevance is an undecidable property of integrity constraints.

Proof. Let q = {x1, . . . , xn|ϕ} be a Relational Calculus Query. An integrity constraint σq

can be constructed from q as in Equation 6.8.

σq = ∃d1, d2∃t′
(
t′ ∈ qd1(I) ∧ t′ /∈ qd2(I)

)
(6.8)

The objective is to prove that σq is Sampling-Relevant if and only if q is Domain-Dependent.

This proof is divided into two parts.

1. σq is Sampling-Relevant → q is Domain-Dependent

Since σq is Sampling-Relevant there must be some database instance I and tuple t

that witness this fact, I |= σq ∧ I \ {t} 2 σq. It suffices to consider only I |= σq.

By construction of σq such database instance I witnesses the domain-dependence of q:

there is a tuple t′ which is in qd1(I) but not in qd2(I), an so qd1(I) 6= qd2(I) as required.

2. q is Domain-Dependent → σq is Sampling-Relevant

There is an instance I which witnesses the domain-dependence of q, ∃t′
(
t′ ∈ qd1(I)∧t′ /∈

qd2(I)
)
. Note that t′ is a tuple which results from values of tuples in I. Let Iw be a

database instance that results from I by deleting any one of such tuples for each tuple

t′, but one1. For example, assume that tuples t′1 and t′2 are the only tuples that witness

the domain-dependence of q. Further, assume that they take values from tuples t1, t2, t3

and t3, t4 respectively. If, for example, t1 is deleted from I, there will remain only one

tuple, t′2, which will witness the domain-dependence of q. This tuple takes its values

from t3 and t4. Denote by tw any of these two tuples.

It can be seen how Iw and tw, as constructed above, witness the Sampling-Relevance

of σq:
1As in Theorem 6.4.1, only finite databases are considered.

80

Chapter 6. Database Sampling - Formal Framework

(a) Iw |= σq

There is at least one tuple in Iw that witnesses the domain-dependence of q,

∃t′
(
t′ ∈ qd1(Iw) ∧ t′ /∈ qd2(Iw)

)
. This makes σq true, as required.

(b) Iw \ {tw} 2 σq

There is one and only one t′ such that t′ ∈ qd1(Iw) ∧ t′ /∈ qd2(Iw), and this tuple

takes its values from tw. Therefore Iw \ {tw} 2 σq, as required.

The motivation given in Section 6.4 to investigate the Sampling-Relevance of integrity

constraints was to simplify the set of constraints being considered during sampling. Theorem

6.4.2 has shown that this goal is, in general, not achievable. Since it cannot be decided when

a constraint is Sampling-relevant, all constraints must be considered. Section 8.3.3 will briefly

describe how this problem could be addressed.

6.5 Summary

This Chapter has presented a formal analysis of Consistent Database Sampling.

Some standard definitions and techniques have first been given. Then a formal descrip-

tion for the Consistent Database Sampling Process has been analysed, using the formalism

of Denotational Semantics. This formalisation has been originated from the developments

presented in Chapter 5, but without making any assumptions with regard to which integrity

constraints are being enforced. After that a particular type of integrity constraints, particu-

larly relevant to database sampling, has been investigated. A characterisation of this type of

constraint, referred to as Sampling-Relevant, has been developed. Finally, given any integrity

constraint (expressed as a relational calculus expression) it has been proved that, in general,

it cannot be decided whether it is Sampling-Relevant or not.

81

Chapter 7

Prototype of a Consistent Database

Sampling Tool (CoDaST)

7.1 Introduction

The Sampling Process presented in Chapter 4 and the algorithms that specialise it for particu-

lar integrity constraints types investigated in Chapter 5 have been implemented and compiled

into a prototype that is referred to as a Consistent Database Sampling Tool, or CoDaST. This

Chapter describes the design and implementation of this tool. Some basic Object-Oriented

design [20] and UML [48] (Unified Modeling Language) terminology is used.

The next Section identifies the most significant requirement for the design of CoDaST,

namely the capability of incrementally constructing sampling modules that can sample a

database according to increasingly more complex criteria. The mechanism that allows for

such an incremental process is analysed in Section 7.4. This mechanism, however, requires

that all integrated sampling modules adhere to a particular Sampling Protocol, as referred

to here, in order to ensure that independently developed sampling modules can inter-operate

with each other. Section 7.3 describes this Protocol. The design of CoDaST is detailed in

Section 7.5, while Section 7.6 addresses more implementation-related issues.

82

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

7.2 Requirements of CoDaST

The Consistent Database Sampling Process (CoDaSP) described in Chapter 4 was developed

as a general description of the set of activities and their relationships common to any database

sampling application, independent of the criteria used to evaluate the representativeness of

the resulting Sample Database. Since these activities are common to any type of sampling,

they can be seen as the functionality that a Consistent Database Sampling Tool (CoDaST),

see Fig. 4.2, should support. A CoDaST should be composed of several sampling modules

which implement this funtionality. Hereafter, such sampling modules will be referred to as

(Database) Samplers. Each Sampler extracts a Sample from a database according to some

criteria (e.g. concrete integrity constraint type, random1). The design principle behind the

general description of CoDaSP is that existing Samplers can be integrated to create more

sophisticated Samplers which Sample a database according to several criteria simultaneously.

This allows a CoDaST to be constructed incrementally, developing different Samplers inde-

pendently and then integrating their behaviour in a new Sampler.

The mechanism to integrating existing Samplers is described in Section 7.4. It relies on

the fact that all Samplers adhere to a well-defined Sampling Protocol which underlies the

CoDaSP.

7.3 Consistent Database Sampling Protocol

The motivation for this Protocol arises from the need to allow independently developed

Samplers to inter-operate. That is, database instances inserted into the Database Sample

by one Sampler may need to be maintained consistent with the respresentativeness criteria

of other Samplers. Each particular Sampler may also be used in isolation, without inter-

operating with other Samplers. By defining a Sampling Protocol the workings of any Sampler

that adheres to it will be the same, independently of whether it is integrated with other

1References to random sampling are included here for completeness only. As justified in Chapter 4, the
preferred representativeness evaluation criteria is the satisfaction of sets of integrity constraints. Including
random sampling does, however, extend the range of applications for which a Database Sampling Tool can be
used.

83

7.3. Consistent Database Sampling Protocol

Samplers or not.

A Database Sampler adheres to the Sampling Protocol used in CoDaST if it implements

the following interface and semantics:

Interface All complying Samplers must implement the five methods described in Section 4.3,

namely InitialiseProcess(), StopSampling(), SelectInstance(), Synchronise(),

and UpdateProcess(). This allows Samplers to be integrated with each other without

knowledge of the specific representativeness criteria they enforce.

Semantics in Isolation The semantics of these methods must be as explained in Section

4.3. That is, each individual Sampler may be used in isolation to implement the Sam-

pling Process and extract a Sample Database according to its particular criteria.

Semantics for Integration After each insertion into the Sample Database a Sampler must

always call methods Synchronise() and UpdateProcess(), in that order. See Section

7.4 for a description of the semantics of these two methods. The order in which they

must be called is used to implement what can be seen as a depth-first traversal of all

instances that must be inserted into the Sample Database. Even though a breadth-

first traversal would also be possible, it is necessary to agree on a common strategy

for all Samplers, as this needs to be exploited by the integration mechanism described

in Section 7.4. Depth-first simplifies the implementation and, more importantly, has

less memory requirements than a breadth-first traversal. In terms of the workings of

CoDaST, a breadth-first traversal implementation would perform all insertions required

by one Sampler alone. After that, for each of these insertions, each of the others related

Samplers would be used to select the appropriate instances, leading to new chains of

insertions, which would then require the process to be repeated. It can seen how

the memory requirements of this approach are significant. A depth-first traversal, in

contrast, uses one Sampler to select one instance, then another one to maintain the last

instance consistent with its own criteria, and so on. Only when the first insertion is

consistent with the representativeness criteria of all Samplers will, the initial Sampler,

be used to keep its initial insertion consistent with its own cirteria. Therefore, using a

84

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

depth-first strategy, each Sampler only needs to store the last insertion it performed.

7.4 Database Sampler Integration Mechanism (DaSIM)

Given a set of Database Samplers the objective is to define a general Database Sampler

Integration Mechanism, or DaSIM, to build a new Sampler which implements the represen-

tativeness criteria of all integrated Samplers simultaneously. This mechanism assumes that

the set of Samplers to be integrated adhere to the Sampling Protocol defined in the previous

Section. DaSIM is defined by this Protocol and by the semantics of method Synchronise()

as follows (a description of UpdateProcess() is included for completeness only; although it

was already described in Section 4.3, it complements the semantics of Synchronise() and

therefore its inclusion clarifies the workings of DaSIM):

• Synchronise() A Sampler must always call method Synchronise() after performing

an insertion into the Sample Database. This will, in case this Sampler is integrated with

other Samplers, ensure that this insertion is kept consistent with the representativeness

criteria of these other Samplers. For this reason Synchronise() can be seen as the

enforcement of Inter-Sampler Consistency (as referred to in Fig. 4.3), as opposed to

Intra-Sampler Consistency which is achieved by UpdateProcess().

Synchronise() will require information about the (instance of) Samplers to be inte-

grated. When called, it will iterate through each of these Samplers (except for the one

which performed the last insertion) and call method UpdateProcess() for it, just as

it should be done if this insertion had actually been performed by that Sampler. This

will keep the very last insertion consistent according to each of these Samplers. It must

be pointed out that, according to the Sampler Protocol defined above, Synchonise()

must also be called again after each of these insertions.

• UpdateProcess() ensures that the last insertion into the Sample Database is kept

consistent with respect to the representativeness criteria enforced by the Sampler that

performed this insertion.

85

7.5. Design of CoDaST

DaSIM has been implemented and included in CoDaST as a specialised Sampler termed

SamplerIntegrator. The design of CoDaST, including this specialised Sampler, is described

next.

7.5 Design of CoDaST

The initial step when building a Consistent Database Sampling Tool (CoDaST) is the con-

struction of a set of Basic Database Samplers, that is, Database Samplers which are not the

result of integrating the behaviour of existing Samplers. The appropriate set of Basic Sam-

plers to be used depends on the particular application of database sampling at hand. Each

of them should sample a database according to one single criterion only. By having a set of

Samplers which implement simple sampling criteria and then integrating them, as opposed

to creating one single Sample that implements all criteria, Basic Samplers can be re-used and

integrated in different ways for different database sampling applications. This design makes

CoDaST more flexible and extensible. The current implementation of CoDaST supports the

following Basic Samplers:

Random Sampler Randomly selects the specified number of tuples from a table. Several

instances of this type of Sampler could be used, each of them sampling different tables.

Fig. 7.1 shows the design of this Sampler as a UML class diagram [48]. It can be seen

how in this design a RandomSampler includes (agregates in UML terminology) a random

number generator (class CRngCongr in this Figure) used to generate the tuple identifiers

that will be inserted into the Sample Database. Particularly, the current implemen-

tation of CoDaST uses the mixed-congruential random number generator described in

[40], which has been tested for numerous empirical tests of randomness. This Sampler

adapts the algorithm for efficient sequential random sampling from a file presented in

[65] to the Sampling Process of Chapter 4, implementing the interface specified by the

Sampling Protocol of Section 7.3. This algorithm requires the size (i.e. number of

tuples) of the table being sampled and the number of tuples that have already been

inserted into the Sample at any given time, in order to randomly select the next tuple.

86

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

Random number
generator

CRngCongr
(from Database Sampler)

zrng : long [TOTALSEEDS+1]
IndexSeed : int

Uniform01()
CRngCongr()
ChangeSeed()
ChangeIndexSeed()
GetSeed()

RandomSampler
(from Database Sampler)

initialiseProcess()
stopSampling()
selectInstance()
updateProcess()
advance()
toString()

1+RandomGenerator 1

closedSet
(from Database Sampler)

setclosedsetstype
(from Database Sampler)

SetFD
(from Database Sampler)

setstringtype
(from Database Sampler)

RandomSamplerFD
(from Database Sampler)

initialiseProcess()
stopSampling()
selectInstance()
updateProcess()
newClosedSetsSatisfied()
toString()

1
+closedSets

1 1
+newClosedSets

1

11

1#Universe 1

Fig. 7.1: UML Class Diagram for the Design of Random Samplers

Sampler with Functional Dependencies Selects a minimal size Sample of a specified

table that satisfies the specified set of functional dependencies, as described in Section

5.6. The design for this Sampler is shown in Fig. 7.2. The most relevant elements

of this design should be clear from the description given in that Section. What was

there referred to as Agreements Table is represented in this design by class InfoTable.

Classes setP, std::set, and setfdtype are needed in order to define sets of objects (e.g.

strings, functional dependencies, closed sets of attributes) with the required operations

and should be ignored for a general understanding of this design.

87

7.5. Design of CoDaST

setfdtype
(from Database Sampler)

_K, _Pr,
_A

setP
(from Database Sampler)

power()
show()
showPowerSet()
power2()
setP()

closedSet
(from Database Sampler)

closedSet()
agreeExactly()

_K, _Pr,
_A

std::set
(from Database Sampler)

FunctionalDependency
(from Database Sampler)

A : String

FunctionalDependency()
InsertAntecedent()
InsertAntecedent()
satisfyFD()
determines()
show()
operator <()
toString()

setstringtype
(from Database Sampler)

1+X1

setclosedsetstype
(from Database Sampler)

InfoTable
(from Database Sampler)

Agree : setinttype *
DifferentX : int *
NoTuples : int *
Consider : bool *
tableSize : unsigned long
numberClosedSets : unsigned int
relationName : String

buildTable()
SelectionCriteria()
SelectionCriteria()
registerSelection()
show()
UpdateInfo()
setDimensions()

1
+Universe

1

1

+closedX

1

SetFD
(from Database Sampler)

insertFD()
closedSets()
closedSets()
computeUniverse()
FDClosure()

SamplerFD
(from Database Sampler)

toSatisfyClosed : setinttype

initialiseProcess()
stopSampling()
selectInstance()
updateProcess()
toString()

11

11

setinttype
(from Database Sampler)

1#setTuples 1

Fig. 7.2: UML Class Diagram for the Design of Database Sampler with Functional Depen-
dencies

88

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

Random Sampler with Functional Dependencies Randomly samples a table until the

resulting Sample satisfies the specified set of functional dependencies. Refer to Section

5.7 for a detailed description of the algorithm implemented by this Sampler and to Fig.

7.1 for its design as used in CoDaST. This Sampler inherits [20] from RandomSampler,

as tuples are still selected randomly. Therefore, part of RandomSampler’s behaviour

can be re-used. Other part, however, must ensure the satisfaction of a set of integrity

constraints, overwriting [20] the definition of the interface all Samplers implement (i.e.

StopSampling(), UpdateProcess(), etc).

Sampler with ICG Using an Insertions Chain Graph to represent the set of integrity con-

straints that must hold in the resulting Sample Database, it extracts a Sample that

contains at least the specified number of instances in each entity and that satisfies this

set of constraints. This Sampler implements the algorithm given in Section 5.5. The

design for this Sampler together with that of an Insertions Chain Graph is given in Fig.

7.3.

Fig. 7.4 shows the general design for this set of basic Samplers. This Figure shows how all

Samplers in CoDaST must inherit, directly or indirectly, from class DatabaseSampler. Recall

from Chapter 4 that the Sampling Process was described as method ExtractSample() of a

class named DatabaseSampler, which represents the abstract concept of Database Sampler

(i.e. it is an abstract class [20]), without referring to any particular representativeness criteria.

This class, in addition to implementing ExtractSample(), defines the interface presented in

Section 7.3. All Samplers that inherit from it must implement this interface for their specific

criteria, otherwise they will not be correct specialisations of DatabaseSampler. Finally, all

Samplers can be seamlessly integrated with other Samplers using the DaSIM analysed in the

previous Section. This requires both, an instance of class SamplerItegrator which integrates

a set of Samplers (see Section 7.5.1), and the implementation of method Synchronise() for

each of the integrated Samplers. Thanks to the use of a well-defined interface and Sampling

Protocol, the implementation of this method is exactly the same for each of these Samplers (it

delegates [20] its execution to the appropriate instance of SamplerItegrator) and therefore

is implemented in class DatabaseSampler.

89

7.5. Design of CoDaST

QuantifyingInfo
(from Database Sampler)

quantity : unsigned long = 0
quantityMore : unsigned long

dependencyHolds()
toString()

PartialInfo
(from Database Sampler)
condition : String = ""

dependencyHolds()
toString()

ORInfo
(from Database Sampler)

dependencyHolds()
toString()

TotalInfo
(from Database Sampler)

dependencyHolds()
toString()

SamplerICG
(from Database Sampler)

initialiseProcess()
stopSampling()
selectInstance()
updateProcess()
keepConsistent()
toString()

InsertionsChainGraph
(from Database Sampler)

FanValuesUpToDate : bool = false

addEntity()
selectEntity()
computeFanValues()
registerInsertion()
resetStatus()
entityDefined()
toString()

11

ICGEntity
(from Database Sampler)

entityName : String = ""
fan_in : unsigned int = 0
fan_out : unsigned int = 0
minimumInstances : unsigned long = 0
actualInstances : unsigned long = 0

computeFanValues()
addDependency()
addDependencies()
enoughInstances()
ICGEntity()
toString()

1..*1..*

ICGDependencyType
(from Database Sampler)

<<enum>>

ICGDependency
(from Database Sampler)
fieldSource : String = ""
fieldTarget : String = ""

dependencyHolds()
setTarget()
getTargetTableName()
toString()
setupQuery()

0..*

+SourceEntity

+Arrows 0..*
1..*
+TargetEntity

1..*

11

Fig. 7.3: UML Class Diagram for the Database Sampler with Insertions Chain Graph

90

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

SamplerFDRandomSampler

RandomSamplerFD

SamplerIntegrator

DatabaseSampler
extractSample()
initialiseProcess()
stopSampling()
synchronise()
updateProcess()
insertInstance()
setSampleDBName()
setSampleSize()
selectInstance()
SaveState()
RestoreState()
toString()

SamplerICG

Fig. 7.4: UML Class Diagram for the Design of a Set of Basic Database Samplers

91

7.5. Design of CoDaST

EntityClass
(from Database Sampler)

numberInstances : unsigned long = 0
predicateEq : String = ""

insertInstance()
getInstance()
compareAttribute()
deleteInstance()
initialise()
show()
showInstance()
operator==()
operator!=()
operator-()
getOrdinalPosition()
toString()

DatabaseClass
(from Database Sampler)

copyTableDef()
openEntity()
insertInstance()
getInstance()
executeQuery()
getCount()
getEntity()

DatabaseSampler
(from Database Sampler)

currentEntity : String = ""
currentInstanceNo : unsigned long = -1
currentInstance : EntityClass * = 0
TraceProcess : bool = false
SamplerName : String = "UNDEFINEDSAMPLER"

extractSample()
initialiseProcess()
stopSampling()
synchronise()
updateProcess()
insertInstance()
setSampleDBName()
setSampleSize()
selectInstance()
SaveState()
RestoreState()
toString()

0..*0..*

+sampleDB

1

+sourceDB1

1

1

Fig. 7.5: UML Class Diagram for the Database Interface

As a final element of the design of CoDaST, recall that the description of the Sampling

Process given in Section 4.3 identified the need for an appropriate interface to the database

model being sampled. The design of the interface to the relational model used in CoDaST

is shown in Fig. 7.5. This interface does not include terminology or concepts specific to the

relational model, but only those used in CoDaSP. In case CoDaST was extended to be able

to sample from other data models in addition to the relation model, this design could be

seen as an interface to a generic data source. The most important element in this design

regards the references (i.e. associations in UML terminology [48]) that DatabaseSampler

contains to both the Sample Database (association termed sampleDB in Fig. 7.5) and the

Source Database (termed sourceDB in this Figure).

Once the set of Basic Samplers has been developed, they can be integrated to create more

sophisticated Samplers that Sample a database according to several criteria simultaneously.

In order to achieve this integration, the Database Sampler Integration Mechanism described

in the previous Section (i.e. the semantics of method Syncrhonise()) is implemented in

CoDaST by one specific type of Sampler, called SamplerIntegrator, the purpose of which is

not to sample a database according to any specific criteria but only to integrate the behaviour

of existing Samplers. This design of this Sampler is described next.

92

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

SamplerIntegrator
(from Database Sampler)

initialiseProcess()
stopSampling()
selectInstance()
synchronise()
updateProcess()
addSampler()
toString()

DatabaseSampler
(from Database Sampler)

currentEntity : String = ""
currentInstanceNo : unsigned long = -1
currentInstance : EntityClass * = 0
TraceProcess : bool = false
SamplerName : String = "UNDEFINEDSAMPLER"

extractSample()
initialiseProcess()
stopSampling()
synchronise()
updateProcess()
insertInstance()
setSampleDBName()
setSampleSize()
selectInstance()
SaveState()
RestoreState()
toString()

1..*
+integrated

1..* 1
+currentSampler

1

+integrator 11

Fig. 7.6: UML Class Diagram for the Design of SamplerIntegrator

7.5.1 Design of SamplerIntegrator

The Database Sampler Integration Mechanism, or DaSIM, for aggregating the behaviour of

Database Samplers which adhere to the Sampling Protocol analysed in Section 7.3 relies

on a specific Database Sampler type called SamplerIntegrator. Fig. 7.6 shows a UML

[48] Class Diagram for the design of SamplerIntegrator. This Sampler contains the list of

all (instances of) Database Samplers to be integrated, and uses the fact that each of them

adheres to the Sampling Protocol to reach a database which satisfies the sampling criteria of

all those Samplers simultaneously. The set of Samplers being integrated could all be of the

same type (e.g. several different instances of SamplerICG), as will be illustrated in Appendix

A.

As shown in Fig. 7.6, SamplerIntegrator inherits from class DatabaseSampler, as does

any other Sampler that forms part of a CoDaST. Since all Samplers, basic and integrated, im-

plement the same interface several levels of integration are possible. That is, when an instance

93

7.5. Design of CoDaST

of SamplerIntegrator integrates a set of Samplers, it does not need to know whether they

are Basic Database Samplers or other instances of SamplerIntegrator. This design leads

to a very flexible, transparent and incremental process of building comprehensive Database

Samplers that reflect all the complexity of the Source Database.

In Fig. 7.6, association termed Integrated represents the list of Samplers to be inte-

grated by a particular instance of SamplerIntegrator, using what is known as Delegation

[61] in object-oriented systems design. In particular, it applies a design pattern known as

Command [27]. CurrentSampler refers to the concrete Sampler, of association Integrated,

that performed the very last insertion into the Sample Database, that is, the one to be kept

consistent by other Samplers. Finally, association named Integrator represents the associ-

ation with an instance of SamplerIntegrator that is integrating each particular instance of

DatabaseSampler with other Samplers, if any. This association is used by DatabaseSampler

to implement Synchronise(), as discussed in the previous Section.

In summary, assume a set of Samplers Samp1, . . . , Sampn are to be integrated. Using

the design of SamplerIntegrator of Fig. 7.6, the resulting Sampler would iteratively con-

struct a Sample Database as follows. Starting with an empty database, SDB0, it would

use Samp1 to perform the initial insertion(s) (refer to Section 4.3), leading to a new Sample

Database SDB1. Then it would iterate through all other Samplers, Samp2, . . . , Sampn, from

association Integrated to maintain this insertion consistent, resulting in a set of databases

SDB2, . . . , SDBn. Each SDBi would result from keeping the very last insertion of Sampi−1

consistent with the criteria of Sampi. This would be a recursive process, as database SDBi

would also need to be kept consistent with the very last insertion of Sampi−2, then with

Sampi−3, and so on, each step resulting in a new database. This process leads to a set of

increasingly larger databases SDB0 ⊂ SDB1 ⊂ . . . ⊂ SDBm with the last one, SDBm,

consistent according to the criteria of all Samplers Samp1, . . . , Sampn.

The design of SamplerIntegrator explained in this Section has been tested integrating

two Samplers which extract a Sample of a database according to two orthogonal criteria:

Sampler with ICG and FD Samples a multi-table database so that the resulting Sample

satisfies sets of functional dependencies and referential integrity constraints simultane-

94

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

ously.

Figure 7.7 shows a UML Sequence Diagram [48] with a possible execution of the Sam-

pling Process being performed by a Database Sampler resulting from this integration, that

is, integrating SamplerICG and SamplerFD. Assume, for the sake of simplicity, that the In-

sertions Chain Graph used by this instance of SamplerICG represents a set of referential

integrity constraints. Each arrow in a Sequence Diagram represents a call (or return of

a call) that occurs during execution. How SamplerIntegrator aggregates the behaviour

of both samplers is shown in this diagram in arrow numbers 8 through 30. Assume that

SamplerFD performs the initial selection (arrows 8 and 9), which is to be kept consistent

by, according to the Sampling Protocol, calling method Synchronise() (arrow 11). This

method is implemented in DatabaseSampler, and it results in method UpdateProcess()

being called for the appropriate instance of SamplerIntegrator. Since SamplerIntegrator

knows that the initial insertion was performed by SamplerFD, its UpdateProcess() method

(arrow 12) calls UpdateProcess() in SamplerICG (arrow 13). This will maintain the last

insertion consistent with regard to a referential integrity constraint, just as if it had been

inserted by SamplerICG itself. After each of the insertions performed by SamplerICG it

must also call Synchronise() (arrows 15 and 25). This will lead SamplerIntegrator to

call UpdateProcess() in SamplerFD (arrow 18), in order to maintain SamplerICG’s inser-

tions consistent with SamplerFD’s criteria. Now the process is repeated, since whenever

SamplerFD inserts a tuple (e.g. arrow 19) it will also call Synchronise() (arrow 20). This

will lead SamplerIntegrator to call UpdateProcess() of SamplerICG (arrow 23) which takes

the process back to the same state it was in arrow 13. This process will, eventually, terminate

because one of the required insertions will already be in the Sample Database. Since this

insertion does not have to be performed Synchronise() is not called (arrows 28 and 29) and,

therefore, the chain of calls terminates (arrow 30). If the minimum Sample size has been

reached, the process terminates, otherwise a new initial insertion (arrow 8) will be required.

Note that, in order to determine whether sampling can terminate, the implementation of

method StopSampling() in SamplerIntegrator (arrow 31) must delegate this decision to

both samplers, SamplerFD (arrow 32) and SamplerCIG (arrow 34), and only if both of them

95

7.5. Design of CoDaST

 : SamplerFD : DatabaseSampler : SamplerIntegrator : SamplerICG : DatabaseClass

 : client

8: selectInstance()

12: updateProcess()

31: stopSampling()

4: false

9: selectInstance()

18: updateProcess()

20: synchronise()

28: updateProcess()

29: 30:

32: stopSampling()
33: true

5: stopSampling()

6: false7: false

13: updateProcess()

15: synchronise()

23: updateProcess()

25: synchronise()

34: stopSampling()

35: true36: true

10: insertInstance(String &, EntityClass &)

14: insertInstance(String &, EntityClass &)

19: insertInstance(String &, EntityClass &)

24: insertInstance(String &, EntityClass &)

1: extractSample() 2: stopSampling() 3: stopSampling()

37:

16:

17: updateProcess()

11: synchronise()

21:
22: updateProcess()

26:
27: updateProcess()

Fig. 7.7: Sampler Integrator Execution Example

96

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

are finished according to their stopping criteria (arrows 33 and 35) will sampling stop (arrow

36). In order to simplify the resulting diagram, only calls to Syncrhonise() (and its conse-

quences) have been shown as these are the most relevant to Sampler integration. According

to the Sampling Protocol, however, for each call to Syncrhonise() a Sampler would also call

its own implementation of UpdateProcess().

7.6 Implementation of CoDaST

CoDaST has been implemented using the C++ programming language [60] and tested on

a Windows NT platform. The previous Section, together with the description of the algo-

rithms of Chapter 5, detailed the most relevant workings of CoDaST. Only one element of its

implementation is left to be analysed. It regards how the consistency criteria to be used for

sampling is defined and given as input to this Sampling Tool. The next Subsection describes

how this problem has been solved in this particular implementation.

7.6.1 Defining the Consistency Criteria

Parsing technology has been used to easily define the consistency criteria that the resulting

Sample Database must satisfy. A language for defining an Insertions Chain Graph (ICG) has

been derived from its formal definition as studied in Section 5.5.2. A complete example of

the use of this language, used to sample the School Reference Database, is shown in Section

A.3.

A file containing the definition of an ICG, according to this language, is an input to

CoDaST. This file is parsed and the corresponding ICG is returned and used for sampling,

as described in Section 5.5. The use of a parser, as opposed to hard-coding the definition for

a particular ICG, makes the tool more usable since the consistency criteria definition can be

easily changed. As mentioned in Chapters 4 and 6 a likely consequence of consistent sampling

is a better understanding of the semantics of the Source Database, and may require some

iterations in order to define the appropriate consistency criteria to be used (see also Section

2.4.5). Therefore, an easy and flexible definition of the consistency criteria is imperative.

97

7.6. Implementation of CoDaST

Concrete
ICG Definition

ICG SyntaxICG Tokens

LEX :
LexicalAnalyser

Generator

YACC :
SyntacticalAnalyser

Generator

ICG Syntactical
AnlyserICG LexicalAnalyser

Concrete
ICG Definition

Tokenised

Valid Concrete
Definition

Invalid Concrete
Definition

ICG
Representation

ICG PARSER

Fig. 7.8: Using LEX/YACC to Generate an ICG Parser

The parser required to implement this functionality has been generated using lexical and

syntactical analyser generators, in this particular case LEX and YACC respectively [42]. Fig.

7.8 illustrates how LEX and YACC are used for this purpose. Briefly, the lexical analyser is

generated by providing LEX with a definition of the tokens of the language, in the case of an

ICG this refers to the tokens needed to define an ICG, e.g. the arrow types, the entity names

involved in each arrow. The output of LEX is the ICG lexical analyser. In this case this

analyser is implemented as a C++ class [60] that takes a file with a definition of an ICG and

returns the list of tokens found in this definition (or reports an error if an unknown token is

found). Similarly, the syntactical analyser is generated by providing YACC with a grammar

[37] for the syntax that defines what is a well-formed (or valid) ICG definition. This syntax

must be based on the tokens defined in the lexical analyser. The output of YACC is, as above,

a C++ class that takes the list of tokens found by the lexical analyser in the input file that

contains the definition of an ICG and returns whether this definition is valid according to the

given syntax. Additionally, parsing can also have some other consequences, in this case the

construction of the appropriate Insertions Chain Graph. This representation of the ICG in

main memory is the one used for sampling in the implementation of the algorithm described

98

Chapter 7. Prototype of a Consistent Database Sampling Tool (CoDaST)

in Section 5.5. CoDaST includes the two C++ classes generated by LEX and YACC (not

the ICG syntax itself).

An Insertions Chain Graph can define many different constraints, therefore developing

a parser manually, without tools like LEX and YACC, would have required a very signifi-

cant and error-prone effort. Additionally, the syntax for defining an ICG can now be easily

changed and the analysers re-generated. Simple changes could require much effort in a parser

implemented manually.

The parser described in this Section has been extended in the current implementation of

CoDaST to allow the definition of several Insertions Chain Graphs simultaneously, as well as

any one of the other Sampler types available in CoDaST, i.e. SamplerFD, RandomSampler,

etc. This extension follows naturally from the description given here. Refer to Appendix A

for concrete examples.

7.7 Summary

This Chapter has presented the design of a prototype of a Consistent Database Sampling

Tool (CoDaST) which implements the concepts developed in previous Chapters.

The requirements for CoDaST has been identified. The main requirement regards the

construction of sampling modules, referred to as Database Samplers, which sample a database

according to particular criteria, and that can inter-operate with each other. The result of this

integration is expected to be a new sampling module that samples the database according

to several criteria simultaneously. The integration mechanism, DaSIM, has been described,

as well as a Sampling Protocol which is followed by all Samplers, in order to allow for their

integration. In the tool reported here, DaSIM has been implemented in one particular type

of Sampler. The design of this Sampler, referred to as Sampler Integrator, has been detailed.

99

Chapter 8

Conclusions

8.1 Review of this Thesis

This thesis has investigated how prototype databases can be constructed using domain-

relevant data values in order to support the development of data-intensive applications.

A prototype database populated with domain-relevant data values has been referred to in

this thesis as Sample Database. When using synthetic data values the resulting prototype

database has been called Test Database.

This thesis has started by analysing the different applications where prototype databases

in general, and Sample Databases in particular, could be used. Although the focus of this work

has been on how prototype databases can be developed to support the software development

process (e.g. requirements analysis, testing, training), other applications have also been

identified (e.g. data mining, approximate query evaluation) where a Sample Database is

used during production as opposed to during development. Justifying the need for prototype

databases and setting a clear distinction between Sample and Test Databases have been the

main goals of Chapter 2.

A literature review of existing work on prototype database constructions methods has been

the focus of Chapter 3. A brief overview of the area of software prototyping has been provided,

since this is the main motivation for prototyping a database. In this context a particular type

of software project has been identified, the so-called data and knowledge intensive systems

100

Chapter 8. Conclusions

[31]. The proposed development process for such systems considers database prototyping

as central to the process, and it particularly identifies the need for Sample Databases, as

opposed to Test Databases.

All database prototyping approaches found during this research result in databases popu-

lated with synthetic values, that is, Test Databases. The use of domain-relevant data values

has been generally ignored by existing researchers, with rare exceptions [50] which allow for

limited use of predefined sets of data values to be used as domains for some attributes. Of

particular concern in this thesis has been the enforcement of complex semantics in a prototype

database, in terms of the satisfaction of sets of integrity constraints. Inclusion and functional

dependencies are the most commonly used sets of integrity constraints in existing approaches.

More complex sets of constraints are usually not supported by existing methods, with the

exception of [49] which is based on using a subset of first-order-logic (i.e. range-restricted

formulas) to define the set of integrity constraints to be enforced. A framework has been

developed to compare existing database prototype approaches based on these two criteria,

namely the origin of the data and the semantic content enforced in the resulting prototype.

This framework classifies existing approaches according to these criteria and identifies to

which application areas (as in Chapter 2) each of them is better suited.

Identifying the limitations of existing approaches (i.e. synthetic values and simple se-

mantics) and describing a framework where they can be evaluated has been the outcome of

Chapter 3.

Populating a prototype database with domain-relevant data values and enforcing com-

plex integrity constraints has been termed in this thesis Consistent Database Sampling. The

problems involved in Consistent Database Sampling have been identified in Chapter 4. These

include how to identify the chain of insertions that are required in order to maintain con-

sistency according to each particular type of integrity constraints. An abstract Process for

consistently sampling from a database has also been defined, in order to identify the issues

to be addressed independently of which particular types of integrity constraints are being

enforced.

The Consistent Database Sampling Process analysed in Chapter 4 underlies the study

101

8.1. Review of this Thesis

presented in Chapter 5, which describes how to sample a database according to concrete

types of integrity constraints. It has been shown that when a new integrity constraint type

is to be considered for sampling: (1) a representation for this type of integrity constraint

must be developed so that it can be used to sample a database, identifying the appropriate

insertions to be performed; and (2) an algorithm that, using such representation, extracts a

Sample consistent according to this type of integrity constraints must be developed. Firstly,

a group of integrity constraint types have been represented using a common mechanism,

termed Insertions Chain Graph (ICG). This is a suitable representation for sampling pur-

poses of inclusion dependencies, cardinality constraints, generalisation constraints, and subset

dependencies. Functional dependencies have been treated separately because an ICG could

not describe them, and a so-called Agreements Table has been used to include functional

dependencies in database sampling. Algorithms based on both representations have been de-

scribed. Finally, random sampling has also been considered as a possible sampling strategy

when no particular integrity constraint needs to be enforced.

A formal semantics for the consistent database sampling process has been presented in

Chapter 6. The formalism used for these purposes has been that of Denotational Semantics.

This Chapter has also characterised a type of integrity constraint, referred to as Sampling-

Irrelevant, that can be ignored for sampling purposes as this cannot lead to an inconsistent

Sample Database. This type of constraints has been shown to be undecidable.

Finally Chapter 7 has described a prototype of a sampling tool implementing the algo-

rithms and concepts discussed in Chapter 5 and the Sampling Process of Chapter 4. This

Consistent Database Sampling Tool, or CoDaST, is built up from a number of sampling mod-

ules, termed Database Samplers, each one extracting a Sample from a database according to

different criteria, including the satisfaction of functional dependencies, inclusion dependen-

cies, etc. Using what has been referred to as Database Sampler Integration Mechanism, or

DaSIM, several Database Samplers can be integrated in order to extract a Sample satisfying

all their criteria simultaneously. Several levels of integration are possible, that is, a Database

Sampler resulting from integrating two Database Samplers can be integrated with a third

one. This incremental construction of a Database Sampler that contains all semantic com-

102

Chapter 8. Conclusions

plexity of the Source Database leads to a flexible and extensible design. The description of

this incremental approach to build a complex Database Sampler is the main contribution of

Chapter 7.

When CoDaST is used to extract a Sample from a database, the appropriate set of

integrity constraints to be considered must be identified. This may require reverse-engineering

the database and, as stated in Chapter 4, this step is out of the scope of the work presented

here. However, it has also been noted that a likely consequence of consistently database

sampling is a better understanding of the semantics of the database since a (small) Sample

may expose missing or undesirable dependencies if required constraints are left out of the

Process. Once the appropriate set of constraints has been identified, it must be given as

input to CoDaST. A flexible mechanism has been developed to allow the user to specify the

particular constraints to be used. CoDaST will then create a new database with the same

schema as the Source Database and will populate it with data values from that database,

enforcing the specified set of constraints. After that the resulting Sample Database can be

used for prototyping, data mining, etc. as analysed in Chapter 2.

8.2 Summary of Thesis Contributions

The research contributions of this thesis can be summarised as follows:

• A discussion of the state of the art in database prototyping for data-intensive appli-

cations development, and the identification of a need for approaches which enforce

complex constraints and populate the resulting database with domain-relevant data.

• The development of a framework for evaluating database prototyping approaches, and

the identification of their application areas.

• The study of the process of sampling a database in order to enforce complex integrity

constraints in the resulting database.

• The analysis of concrete integrity constraints types, widely used in practice, and how

they can be enforced during sampling.

103

8.3. Future Work

• A formal study of the process of consistently sampling from a database, and the char-

acterisation of a type of constraint particularly relevant for sampling purposes.

• An implementation of a tool to demonstrate that the concepts developed in this thesis

can be applied in practice. Additionally, this tool allows for the incremental construc-

tion of complex sampling modules by seamlessly integrating multiple sampling modules.

8.3 Future Work

The work developed in this thesis could be extended in different directions. This Section

outlines some of them. First it analyses possible extensions to the work presented in Chapter

5 regarding how integrity constraints can be included in the sampling process, and also which

constraint types can be considered. An alternative area for future development could focus on

CoDaST, the prototype of a sampling tool that implements the work presented here and that

was reported in Chapter 7. A significant amount of future work can be identified in relation

to the theoretical framework described in Chapter 6. Finally, some practical consideration

about the validation of this work will also be discussed.

8.3.1 Integrity Constraints

Future work could focus on adding new constructs to the language used to define an Insertions

Chain Graph (ICG) so that it gains in expressiveness, particularly regarding to the limitations

outlined in Section 5.5.5. Another direction for future research is concerned with the existence

of a Minimal Insertions Chain Graph. That is, whether given an ICG an equivalent ICG may

be constructed such that it has the minimum possible number of arrows, without omitting

any constraint. A minimal ICG will provide a more compact representation of the semantics

of the Source Database relevant for sampling. It will also allow for a more efficient sampling

process, because only those arrows that actually lead to additional insertions in the Sample

Database would be part of the graph.

As outlined in Section 5.6.4, the algorithm to extract a minimal size Sample that satisfies

a set of functional dependencies (Σ) is suboptimal, in the sense that a Sample of smaller size

104

Chapter 8. Conclusions

than the one generated by the algorithm could exist in some circumstances. This is due to

the fact that the algorithm considers only local information to decide which tuples must be

inserted into the Sample. How global information could be used to ensure minimal Sample

size, without excessively increasing its complexity, is still to be investigated.

Theorem 5.6.3 proved that sampling with a superset of Σ is not always possible. A future

line of work could investigate in which cases it is actually possible to extract an Armstrong

relation for a superset of Σ.

Finally, it should be noted that the concept of Armstrong relation is not exclusively related

to functional dependencies, but it has been extended to a more general type of dependencies

[26]. Database sampling with this type of dependencies, in order to extract Armstrong

relations for them, would be an interesting area for future work.

8.3.2 CoDaST

As more integrity constraints types are included in the sampling process (see Section 8.3.1)

more sampling modules, Database Samplers, should also be added to CoDaST.

A more sophisticated user interface could be developed for CoDaST. A graphical interface

for defining an Insertions Chain Graph is more appropriate than using a text file, as in the

current implementation.

8.3.3 Theoretical Development

Theorem 6.4.1 stated that if a constraint is not satisfied by an empty database, then it must

be Sampling-Relevant. As outlined in Section 6.4 it is possible, however, for a Sampling-

Relevant integrity constraint to be satisfied by an empty database. This rises the question of

how interesting this property is in practice, that is, how many Sampling-Relevant integrity

constraints are actually not satisfied by an empty database. Finding a more practical char-

acterisation of Sampling-Relevant integrity constraints is also an area for future research.

A similar problem as minimalising an ICG could be proposed in case of this type of con-

straints. That is, if an appropriate characterisation of integrity cosntraints was found, it may

be possible to minimalise a set of Sampling-Relevant integrity constraints.

105

8.3. Future Work

Regarding to the undecidability of Sampling-Relevance. A common approach to deal with

undecidability would be to search for syntactic restrictions that ensure Sampling-Relevance.

For example, the domain-relevance of relational calculus queries described in Section 6.4 is

also undecidable, and some syntactic restrictions of first-order-logic (e.g. range-restricted,

safe) have been proposed to ensure that a query which satisfies these syntactic (therefore,

decidable) restrictions is domain-independent. A similar approach could be investigated for

Sampling-Relevant integrity constraints.

8.3.4 Objective Evaluation

This thesis has argued that domain-relevant data is more appropriate to populate a prototype

database than synthetic data. This is essentially a qualitative argument and, although it is

highly intuitive, applying the developments of this thesis to real development projects may

be the only proof of whether the resulting software is of better quality.

106

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Expressive power of query languages. In J.D. Ullman, editor,

Theoretical Studies in Computer Science, pages 207–251. Academic Press, 1992.

[3] S. Acharya, P.B. Gibbons, and V. Poosala. Congressional samples for approximate

answering of group-by queries. In Proceedings of the International Conference on Man-

agement of Data (SIGMOD 2000), pages 487–498. ACM Press, 2000.

[4] D. Aebi. Data re-engineering: A case study. In R. Manthey and V. Wolfengagen,

editors, Proceedings of the First East-European Symposium on Advances in Databases

and Information Systems (ADBIS’97), Electronic workshops in computing, pages 305–

310. Springer-Verlag, 1997.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings

of the International Conference on Management of Data (SIGMOD 1994), pages 487–

499. ACM Press, 1994.

[6] P.H. Aiken. Data Reverse Engineering : Slaying the Legacy Dragon. McGraw-Hill, 1996.

[7] L. Allison. A Practical Introduction to Denotational Semantics. Cambridge University

Press, 1986.

[8] W.W. Armstrong. Dependency structures of data base relationships. In J.L. Rosenfeld,

editor, Information Processing 74 (Proceedings of IFIP Congress 74), pages 580–583.

IFIP, North-Holland, August 1974.

107

Bibliography

[9] C. Bates, I. Jelly, and J. Kerridge. Modelling test data for performace evaluation of large

parallel database machines. Distributed and Parallel Databases, pages 5–23, January

1996.

[10] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design: an Entity-

Relationship Approach. The Benjamin/Cummings Publishing Company, 1992.

[11] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of armstrong relations

for functional dependencies. Journal of the ACM, 31(1):30–46, January 1984.

[12] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, second edition, 1990.

[13] B. Beizer. Black-Box Testing : Techniques for Functional Testing of Software and Sys-

tems. Wiley, 1995.

[14] J. Bisbal and J. Grimson. Database prototyping through consistent sampling. In the

International Conference on Advances in Infrastructure for Electronic Business, Science,

and Education on the Internet (SSGRR’2000). Scuola Superiore Guglielmo Reiss Romoli

(SSGRR), August 2000.

[15] J. Bisbal and J. Grimson. Database sampling with functional dependencies. Information

and Software Technology, June 2000. Submitted.

[16] J. Bisbal and J. Grimson. Generalising the consistent database sampling process. In

B. Sanchez, N. Nada, A. Rashid, T. Arndt, and M. Sanchez, editors, Proceedings of the

Joint meeting of the 4th World Multiconference on Systemics, Cybernetics and Informat-

ics (SCI’2000) and the 6th International Conference on Information Systems Analysis

and Synthesis (ISAS’2000), volume II - Information Systems Development, pages 11–16.

International Institute of Informatics and Systemics (IIIS), July 2000.

[17] J. Bisbal, D. Lawless, R. Richardson, B. Wu, J. Grimson, V. Wade, and D. O’Sullivan.

An overview of legacy information systems migration. In Bob Werner, editor, Proceed-

ings of the Joint 1997 Asia Pacific Software Engineering Conference and International

108

Bibliography

Conference in Computer Science (APSEC’97/ICSC’97), pages 529–530. IEEE Computer

Society Press, December 1997.

[18] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy information systems: Issues and

directions. IEEE Software, 16(5):103–111, September/October 1999.

[19] J. Bisbal, B. Wu, D. Lawless, and J. Grimson. Building consistent sample databases to

support information system evolution and migration. In G. Quirchmayr, E. Schweighofer,

and T. J.M. Bench-Capon, editors, Proceedings of the 9th International Conference on

Database and Expert Systems Applications (DEXA’98), volume 1460 of Lecture Notes in

Computer Science, pages 196–205. Springer-Verlag, 1998.

[20] G. Booch. Object-Oriented Design with Applications. Benjamin/Cummings, 1991.

[21] M. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces, and

the Incremental Approach. Morgan Kaufann, 1995.

[22] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Pro-

ceedings of the 16th Very Large Databases Conference, pages 566–577, 1990.

[23] A. Church. An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58:345–363, 1936.

[24] E.T. Codd. A relational model of data for large shared data banks. Communications of

the ACM, 13(6):377–387, June 1970.

[25] C. J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Company,

seventh edition, 1999.

[26] R. Fagin. Horn clauses and database dependencies. Journal of the ACM, 29(4):952–985,

October 1982.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,

1995.

109

Bibliography

[28] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice-Hall, 1991.

[29] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Semantics and

applications. In J. Chomicki and G. Saake, editors, Logics for Databases and Information

Systems, chapter 9, pages 265–306. Kluwer Academic Publishers, 1998.

[30] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly gener-

ating billion-record synthetic databases. In Proceedings of the International Conference

on Management of Data (SIGMOD 1994), pages 243–252. ACM Press, 1994.

[31] G. Guida, G. Lamperti, and M. Zanella. Software Prototyping in Data and Knowledge

Engineering. Kluwer Academic Publishers, November 1999.

[32] J-L. Hainaut, J. Henrard, J-M. Hick, D. Roland, and V. Englebert. Database design

recovery. In Proceedings of the 8th Conference on Advanced Information Systems Engi-

neering (CAiSE’96), volume 1250 of Lecture Notes in Computer Science, pages 272–300.

Springer-Verlag, May 1996.

[33] P. Haumer, K. Pohl, and K. Weidenhaupt. Requirements elicitation and validation

with real world scenes. IEEE Transactions on Software Engineering, 24(12):1036–1054,

December 1998. Special Issue on Scenario Management.

[34] S. Hekmatpour and D. Ince. Software Prototyping, Formal Methods and VDM. Addison-

Wesley, 1987.

[35] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online aggregation. In Proceedings of

the International Conference on Management of Data (SIGMOD 1997), pages 171–182.

ACM Press, 1997.

[36] R. J. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Cambridge

University Press, 1986.

[37] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

110

Bibliography

[38] J. Kivinen and H. Mannila. The power of sampling in knowledge discovery. In Proceed-

ings of the 1994 ACM SIGMOD-SIGACT Symposium on Principles of Database Theory

(PODS’94), pages 77–85, 1994.

[39] D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.

Addison-Wesley, third edition, 1997.

[40] A.M. Law and W.D. Kelton. Simulation Modeling & Analysis. McGraw-Hill, second

edition, 1991.

[41] D. Lawless. Legacy information systems migration: A methodology and its trial imple-

mentation. Msc. thesis, Computer Science Department, Trinity College Dublin, June

1999.

[42] J.R. Levine, T. Mason, and D. Brown. lex & yacc. O’Reilly & Associates, second edition,

1995.

[43] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-

Hall, second edition, 1998.

[44] P. Lohr-Richter and A. Zamperoni. Validating database components of software systems.

Technical Report 94–24, Leiden University, Department of Computer Science, 1994.

[45] H. Mannila and K.-J. Räihä. Small armstrong relations for database design. In Pro-

ceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems (PODS’85), pages 245–250, 1985.

[46] H. Mannila and K.-J. Räihä. Dependency inference. In P.M. Stocker, W. Kent, and

P. Hammersley, editors, Proceedings of 13th International Conference on Very Large

Data Bases (VLDB’87), pages 155–158. Morgan Kaufmann, 1987.

[47] H. Mannila and K.-J. Räihä. The Design of Relational Databases. Addison-Wesley, 1992.

[48] F. Martin and S. Kendall. UML Distilled: Applying the Standard Object Modeling Lan-

guage. Addison-Wesley, 1997.

111

Bibliography

[49] A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating consistent test data:

Restricting the search space by a generator formula. VLDB Journal, 2(2):173–213, April

1993.

[50] H. Noble. The automatic generation of test data for a relational database. Information

Systems, 8(2):79–86, 1983.

[51] F. Olken. Random Sampling from Databases. PhD thesis, University of California, April

1993.

[52] F. Olken and D. Rotem. Random sampling from database files: A survey. In

Z. Michalewicz, editor, Proceedings of the Fifth International Conference on Statisti-

cal and Scientific Database Management (SSDBM’90), volume 420 of Lecture Notes in

Computer Science, pages 92–111. Springer-Verlag, 1990.

[53] D. O’Sullivan, R. Richardson, J. Grimson, B. Wu, J. Bisbal, and D. Lawless. Appli-

cation of case based reasoning to legacy system migration. In Proceedings of the 5th

German Workshop on Case-Based Reasoning - Foundations, Systems, and Applications,

pages 225–234. Centre for Learning Systems and Applications, Department of Computer

Science, University of Kaiserslautern, March 1997.

[54] C.R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data

mining and clustering. In Proceedings of International Conference on Management of

Data (SIGMOD 2000), pages 82–92. ACM Press, 2000.

[55] R.S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, fourth

edition, 1997.

[56] S. Seshadri and J. F. Naughton. Sampling issues in parallel database systems. In

A. Pirotte, C. Delobel, and G. Gottlob, editors, Advances in Database Technology

- Proceedings of the 3rd International Conference on Extending Database Technology

(EDBT’92), volume 580 of Lecture Notes in Computer Science, pages 328–343. Springer-

Verlag, 1992.

112

Bibliography

[57] I. Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1995.

[58] P. Stevens and R. Pooley. Systems reengineering patterns. In Proceedings of the 6th In-

ternational Symposium on the Foundations of Software Engineering (ACM-SIGSOFT),

volume 23 of Software Engineering Notes, pages 17–23. ACM Press, 1998.

[59] J. Stoy. Denotational Semantics : the Scott-Strachey Approach to Programming Lan-

guage Theory. M.I.T Press, 1977.

[60] B. Stroustrup. The C++ Programming Language. Addison-Wesley, special (third) edi-

tion, 2000.

[61] C. Szyperski. Component Software. Addison-Wesley, 1998.

[62] R.D. Tennent. Denotational semantics. In S. Abramsky, D. Gabbay, and T.S.E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 3: Semantic Struc-

tures, pages 169–322. Oxford University Press, 1994.

[63] L. Tucherman, M.A. Casanova, and A.L. Furtado. The chris consultant - a tool for

database design and rapid prototyping. Information Systems, 15(2):187–195, 1990.

[64] J.D. Ullman. Principles of Database System. Computer Science Press, 1980.

[65] J.S. Vitter. An efficient algorithm for sequential random sampling. ACM Transactions

on Mathematical Software, 13(1):58–67, March 1987.

[66] E. J. Weyuker and B. Jeng. Analyzing partition testing techniques. IEEE Transactions

on Software Engineering, 17(7):703–711, July 1991.

[67] J. Widom. A denotational semantics for the starburst production rule language. SIG-

MOD Record, 21(3):4–9, September 1992.

[68] D.P. Wood and K.C. Kang. A classification and bibliography of software prototyping.

Technical Report CMU/SEI-92-TR-13, Carnegie Mellon University, Software Engineer-

ing Institute, October 1992.

113

Bibliography

[69] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson.

Legacy systems migration – a method and its tool-kit framework. In Bob Werner,

editor, Proceedings of the Joint 1997 Asia Pacific Software Engineering Conference and

International Conference in Computer Science (APSEC’97/ICSC’97), pages 312–320.

IEEE Computer Society Press, December 1997.

[70] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson.

Legacy system migration : A legacy data migration engine. In Petr Cervinka, editor,

Proceedings of the 17th International Database Conference (DATASEM’97), pages 129–

138. Czechoslovak Computer Experts, October 1997.

[71] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and D. O’Sullivan.

The butterfly methodology: A gateway-free approach for migrating legacy information

systems. In B. Werner, editor, Proceedings of the 3rd IEEE Conference on Engineering

of Complex Computer Systems (ICECCS’97), pages 200–205. IEEE Computer Society

Press, September 1997.

[72] M. Yannakakis. Perspectives on database theory. In Proceedings of the 36th Annual Sym-

posium on Foundations of Computer Science, pages 224–246. IEEE Computer Society

Press, 1995.

[73] A. Zamperoni and P. Lohr-Richter. Enhancing the quality of conceptual database spec-

ifications through validation. In Proceedings of the 12th International Conference on

Entity-Relationship Approach (ER’93), volume 823 of Lecture Notes in Computer Sci-

ence, pages 85–98. Springer-Verlag, 1993.

[74] P. Zave. Classification of research efforts in requirements engineering. ACM Computing

Surveys, 29(4):315–321, December 1997.

114

Appendix A

Trial

A.1 Introduction

This Appendix describes how sampling can be applied to one concrete instance of the School

Reference Database analysed in Section 5.2.

Section A.2 presents an example of a consistent instance of the reference database. Section

A.3 illustrates how the set of constraints the database must satisfy can be defined for sampling

purposes, using one of the mechanisms investigated in this thesis, an Insertions Chain Graph.

Section A.4 shows a possible result of sampling this instance according to the specified set of

constraints. The final Section provides a concrete example of how SamplerIntegrator can

be used to integrate multiple Database Samplers, as described in Chapter 7.

A.2 A Consistent Instance of the Reference Database

Fig. 5.2 showed the logic relational design for the School Reference Database that could

be obtained from the Extended Entity-Relationship schema of Fig. 5.1. An example of an

instance of this database satisfying all the required constraints is given in Tables A.1 to A.10.

115

A.2. A Consistent Instance of the Reference Database

Table A.1: Instance of Students
student year
albert 4
alice 4

angelique 2
ann 1

benjamin 1
david 3
frank 1
jim 2

annete 5
peter 3
rosy 3

stephan 2
willow 5

Table A.2: Instance of Courses
course year teacher

analysis 1 1 phillip
geometry 1 anca
algebra 1 robert

analysis 2 2 phillip
programming 2 diana

analysis 3 3 phillip
data mining 3 mary

calculus 4 sofia
logic 4 tom

languages 5 diana
automata 5 mark

cybernetics 5 diana

Table A.3: Instance of Teachers
teacher tel dept

anca 452 mathematics
diana 551 computer science
mark 552 computer science
mary 644 statistics
phillip 453 mathematics
robert 454 mathematics
sofia 645 statistics
tom 455 mathematics

116

Appendix A. Trial

Table A.4: Instance of Depts
name director

computer science diana
mathematics phillip

statistics mary

Table A.5: Instance of Rooms
room size dept floor

c1 35 computer science 1
c2 12 computer science 2
m1 20 mathematics 2
m2 15 mathematics 3
s1 30 statistics 3
s2 18 statistics 4

A.3 Consistency Criteria Definitions in the School Database

In order to define the consistency criteria needed to Sample the reference database the Inser-

tions Chain Graph shown in Fig. 5.3 had to be given as input to CoDaST, as explained in

Section 7.6. The definition used in this case was the following:

1

2 -- Instructions to extract a Sample from database "school.mdb"

3 -- It defines an Insertions Chain Graph (ICG) with all the constraints

4 -- in this database.

5

6 SAMPLE "c:\my documents\school.mdb" WITH SHOW

7 (

8 SAMPLERICG AS aSamplerICG: -- Sampler with an Insertions Chain Graph

9

10 EXAMS(1): [TOTAL, STUDENTS, student, name]; -- Each Exam is associated to a Student

11 FULLTIMESTUDENTS(0): [QUANTIFIED, EXAMS, student, student, 5];

12 -- A FullTimeStudent must have taken at least five exams

13 EXAMS: [PARTIAL, FULLTIMESTUDENTS, student, student,

14 (SELECT COUNT(*) FROM EXAMS WHERE student=%s)>=5];

15 -- If an student has followed more than five exams

16 -- s/he must be recorded as being fulltime

17 FULLTIMESTUDENTS: [TOTAL, TEACHERS, tutor, name]; -- All FullTimeStudents have a Teacher as tutor

18 EXAMS: [TOTAL, COURSES, course, course]; -- All Exams are associated with a Course

19 COURSES (1): [TOTAL, TEACHERS, teacher, name]; -- All Courses have one and only one Teacher

20 PREREQUISITS(1): [TOTAL, COURSES, course, course] -- Prerequisits relate a Course with an

21 [TOTAL, COURSES, previous, course];-- the Courses that must have been passed

22 TIMETABLE(1): [TOTAL, COURSES, course, course];-- TimeTable entries are associated with Courses

23 TEACHERS(1): [TOTAL, DEPTS, dept, name]; -- All Teachers belong to only one Department

24 DEPTS(1): [TOTAL, TEACHERS, director, name]; -- Each Department has one director

25 ROOMS(1): [TOTAL, DEPTS, dept, name]; -- Each Room belongs to one Department

26 TIMETABLE: [TOTAL, ROOMS, room, room]; -- TimeTable entries are associated with Rooms

117

A.3. Consistency Criteria Definitions in the School Database

Table A.6: Instance of Exams
student course grade
albert analysis 1 28
albert geometry 27
albert algebra 26
albert analysis 2 28
albert programming 30
albert analysis 3 27
albert data mining 30
alice analysis 1 24
alice geometry 28
alice algebra 30
alice analysis 2 26
alice analysis 3 30

angelique analysis 1 28
angelique geometry 30
angelique algebra 30

david analysis 1 23
david algebra 24
david programming 30
jim algebra 25

annette analysis 1 27
annette geometry 26
annette analysis 2 30
annette analysis 3 30
annette data mining 28
peter analysis 1 28
peter analysis 2 30
peter programming 27
rosy analysis 1 26
rosy geometry 27
rosy algebra 30
rosy analysis 2 28

stephan geometry 27
stephan algebra 24
willow analysis 1 28
willow analysis 2 30
willow analysis 3 27
willow calculus 30
willow cybernetics 27

118

Appendix A. Trial

Table A.7: Instance of Pre-requisites
courses previous
analysis 2 analysis 1
analysis 3 analysis 2
automata programming
calculus analysis 3

cybernetics calculus
languages programming

logic algebra
programming algebra

Table A.8: Instance of Timetable
course day hour room
algebra monday 9 m1
algebra friday 11 m1

analysis 1 monday 9 m1
analysis 1 wednesday 11 m1
analysis 2 wednesday 10 m1
analysis 2 thursday 14 c1
analysis 3 wednesday 10 s1
analysis 3 thursday 15 s1
automata wednesday 11 c1
automata thursday 14 c1
calculus monday 9 s1
calculus tuesday 11 s1

cybernetics thursday 11 s1
cybernetics friday 9 s1
data mining tuesday 14 s1
data mining friday 11 s1
geometry tuesday 10 m1
geometry thursday 16 m1
languages monday 14 c1
languages wednesday 15 c1

logic wednesday 15 c1
logic thursday 11 c1

programming tuesday 10 c2
programming friday 9 c1

119

A.3. Consistency Criteria Definitions in the School Database

Table A.9: Instance of FullTimeStudents
student lecturer
albert anca
alice mary

annette robert
rosy sofia

willow anca

Table A.10: Instance of Persons
name status city
anca teacher sicily
diana teacher bary
mark teacher miland
mary teacher venice
phillip teacher bologna
robert teacher verona
sofia teacher bary
tom teacher rome

albert student rome
alice student naples

angelique student miland
ann student rome

benjamin student turin
david student turin
frank student florence
jim student venice

annette student florence
peter student miland
rosy student venice

stephan student miland
willow student turin

120

Appendix A. Trial

27 PERSONS(1): [OR, (TEACHERS, STUDENTS), name, name]; -- A Person can be a Student or a Teacher

28 -- or both

29 TEACHERS: [TOTAL, PERSONS, name, name]; -- A Teacher is a Person

30 STUDENTS: [TOTAL, PERSONS, name, name]; -- A Student is also a Person

31 TEACHERS: [QUANTIFIED, COURSES, name, teacher, 1];-- Any Teacher must be Teaching at least

32 -- one Course

33 COURSES: [QUANTIFIED, TIMETABLE, course, course, 1]; -- Any Course must have been scheduled

34 FULLTIMESTUDENTS: [TOTAL, STUDENTS, student, name]; -- A FullTimeStudent is an Student

35 DEPTS(1): [QUANTIFIED, ROOMS, name, dept, 1]; -- A Department must own at least one Room

36 COURSES: [OR,(PREREQUISITS),course,course]; -- Sample all Pre-requisits for each Course

37);

First the database to be sampled is identified, and then the Sampling modules to be used

during sampling must be defined. In this particular example only one Database Sampler is

used. This Sampler is of type SAMPLERICG, as referred to in Chapter 7. Each Sampler can

also have a name, which follows the keyword AS, in this case aSamplerICG. The usefulness

of this name will be addressed in the next Section. The definition of the Insertions Chain

Graph required by this Sampler follows after its name. In this example the ICG has been

defined following the same order as in the definition of its Insertions Function in Table 5.3.

The language used in this example should be clear from the formal definition of an ICG given

in Section 5.5. For each edge (arrow) in the graph, its source entity is given first, followed by

the minimum number of instances of this entity that should be present in the final Sample

Database (see Table 5.4). If this number is not given it is assumed that it is either zero

or it was given in a previous arrow definition for the same entity. Then the arrow type is

identified (TOTAL, QUANTIFIED, etc). The name of the target entity is followed by the name

of the attributes that link the source and the target entities respectively. For example, the

first arrow definition in the above example indicates that at least one instance is required in

entity EXAMS, and that there is a TOTAL arrow from EXAMS to STUDENTS. These two entities

are related by attributes named student and name respectively, as it can be seen from the

schema shown in Fig. 5.2. Additional information needed in some types of arrows is also

specified, like for example an integer in case of QUANTIFIED arrows, or a condition in case of

PARTIAL arrows.

121

A.4. A Consistent Sample of the Reference Database

A.4 A Consistent Sample of the Reference Database

A possible example of a consistent Sample of the database instance of Section A.2 is shown

from Table A.11 to Table A.20. This Sample was extracted according to the integrity con-

straints defined for the reference database, as described in the previous Section using an

Insertions Chain Graph. The Sample Database shown here is the result of the sampling

example discussed in Section 5.5.6.

The concrete Sample being extracted depends on the random selections involved in func-

tions SampleInstance() and SampleInstance_local(). The sequence of selections, either

random or to maintain consistency, that CoDaST performed in this particular example are

shown next. This will illustrate how the chain of insertions that an ICG describes has been

followed in this case. For each instance inserted into the Sample Database, the name of its

entity and the values for each of its attributes, in the same order as given in Fig. 5.2, are

shown.

1

2 [EXAMS]: <annette , analysis 1 , 27.000000>

3 [STUDENTS]: <annette , 5>

4 [PERSONS]: <annette , student , florence>

5 [COURSES]: <analysis 1 , 1 , phillip>

6 [TEACHERS]: <phillip , 453 , mathematics>

7 [DEPTS]: <mathematics , phillip>

8 [ROOMS]: <m1 , 20 , mathematics , 2>

9 [PERSONS]: <phillip , teacher , bologna>

10 [TIMETABLE]: <analysis 1 , wednesday , 11 , m1>

11

12

13 [PREREQUISITS]: <calculus , analysis 3>

14 [COURSES]: <calculus , 4 , sofia>

15 [TEACHERS]: <sofia , 645 , statistics>

16 [DEPTS]: <statistics , mary>

17 [TEACHERS]: <mary , 644 , statistics>

18 [PERSONS]: <mary , teacher , venice>

19 [COURSES]: <data mining , 3 , mary>

20 [TIMETABLE]: <data mining , tuesday , 14 , s1>

21 [ROOMS]: <s1 , 30 , statistics , 3>

22 [PERSONS]: <sofia , teacher , bary>

23 [TIMETABLE]: <calculus , tuesday , 11 , s1>

24 [COURSES]: <analysis 3 , 3 , phillip>

25 [TIMETABLE]: <analysis 3 , thursday , 15 , s1>

26 [PREREQUISITS]: <analysis 3 , analysis 2>

27 [COURSES]: <analysis 2 , 2 , phillip>

28 [TIMETABLE]: <analysis 2 , thursday , 14 , c1>

29 [ROOMS]: <c1 , 35 , computer science , 1>

122

Appendix A. Trial

Table A.11: Sample with ICG of Students
student year
annette 5

Table A.12: Sample with ICG of Courses
course year teacher

analysis 1 1 phillip
calculus 4 sofia

data mining 3 mary
analysis 3 3 phillip
analysis 2 2 phillip
cybernetics 5 diana

30 [DEPTS]: <computer science , diana>

31 [TEACHERS]: <diana , 551 , computer science>

32 [PERSONS]: <diana , teacher , bary>

33 [COURSES]: <cybernetics , 5 , diana>

34 [TIMETABLE]: <cybernetics , friday , 9 , s1>

35 [PREREQUISITS]: <cybernetics , calculus>

36 [PREREQUISITS]: <analysis 2 , analysis 1>

It can be seen how sampling must start from entity Exams because this is the entity

with the highest fan-out and lowest fan-in values in the ICG, as dicussed in Section 5.5.6.

Then this initial insertion must be maintained consistent, which will trigger the first block

of insertions (lines 1 to 10) shown above. After that, the Sample Database is consistent

with the specified set of constraints. However, it does not satisfy the minimum Sample size

requirements as defined in Section 5.5.6, according to which at least one instance of entity

Pre-Requisits must also be present in the Sample. Therefore, one instance of this entity is

randomly selected (e.g. 〈calculus , analysis 3〉). Then this instance must be maintained

consistent, which will trigger the last group of insertions (lines 13 to 36).

Table A.13: Sample with ICG of Teachers
teacher tel dept
phillip 453 mathematics
sofia 645 statistics
mary 644 statistics
diana 551 computer science

123

A.4. A Consistent Sample of the Reference Database

Table A.14: Sample with ICG of Depts
name director

mathematics phillip
computer science diana

statistics mary

Table A.15: Sample with ICG of Rooms
room size dept floor
m1 20 mathematics 2
s1 30 statistics 3
c1 35 computer science 1

Table A.16: Sample with ICG of Exams
student course grade
annette analysis 1 27.0

Table A.17: Sample with ICG of Pre-requisites
courses previous
calculus analysis 3

analysis 3 analysis 2
cybernetics calculus
analysis 2 analysis 1

Table A.18: Sample with ICG of Timetable
course day hour room

analysis 1 wednesday 11 m1
analysis 2 thursday 14 c1
analysis 3 thursday 15 s1
calculus tuesday 11 s1

cybernetics friday 9 s1
data mining tuesday 14 s1

Table A.19: Sample with ICG of FullTimeStudents
student lecturer

124

Appendix A. Trial

Table A.20: Sample with ICG of Persons
name status city
annette student florence
phillip teacher bologna
mary teacher venice
sofia teacher bary
diana teacher bary

A.5 A Consistent Sample using SamplerIntegrator

This Section shows an execution example of CoDaST when several Database Samplers are

used to extract a Sample from the reference database, and the specialised sampler called

SamplerIntegrator is used to enforce all their integrity constraints simultaneously. This

illustrates how the Database Sampler Integration Mechanism (DaSIM) analysed in Section

7.4 works in practice.

Assume that three different Samplers are to be integrated. For the purposes of this

Section, the Database Sampler called aSamplerICG which was defined in the previous Section

is divided into two Samplers. Refer to these Samplers as SamplerICG_1 and SamplerICG_2.

These two Samplers together enforce the same integrity constraints as aSamplerICG. Then

an additional Sampler is also defined, referred to as Sampler_Functional_Dependencies,

which samples according to a set of functional dependencies, as described in Section 5.6. The

definition of these three Samplers is given next.

1

2 -- Instructions to extract a Sample from database "school.mdb"

3 -- It defines an Insertions Chain Graph (ICG) with HALF the constraints

4 -- in this database. Then another ICG defines the other half of the set

5 -- of constraints.

6 -- These two Samplers are integrated to achieve consistency according to

7 -- both sets of constraints.

8 -- Another Sampler is also defined, which samples according to a set of

9 -- functional dependencies. This Sampler is also integrated with the

10 -- two Samplers defined before.

11

12 SAMPLE "c:\my documents\school.mdb" WITH

13 --

14 -- Definition of the first Sampler with half the Insertions Chain Graph

15 --

16 (

17 SAMPLERICG AS SamplerICG_1: -- Sampler with an Insertions Chain Graph

18

125

A.5. A Consistent Sample using SamplerIntegrator

19 TEACHERS(1): [TOTAL, DEPTS, dept, name]; -- All Teachers belong to only one Department

20 DEPTS(1): [TOTAL, TEACHERS, director, name]; -- Each Department has one director

21 ROOMS(1): [TOTAL, DEPTS, dept, name]; -- Each Room belongs to one Department

22 TIMETABLE: [TOTAL, ROOMS, room, room]; -- TimeTable entries are associated with Rooms

23 PERSONS(1): [OR, (TEACHERS, STUDENTS), name, name]; -- A Person can be a Student or a Teacher

24 -- or both

25 TEACHERS: [TOTAL, PERSONS, name, name]; -- A Teacher is a Person

26 STUDENTS: [TOTAL, PERSONS, name, name]; -- A Student is also a Person

27 TEACHERS: [QUANTIFIED, COURSES, name, teacher, 1];-- Any Teacher must be Teaching at least

28 -- one Course

29 COURSES: [QUANTIFIED, TIMETABLE, course, course, 1]; -- Any Course must have been scheduled

30 FULLTIMESTUDENTS: [TOTAL, STUDENTS, student, name]; -- A FullTimeStudent is an Student

31 DEPTS(1): [QUANTIFIED, ROOMS, name, dept, 1]; -- A Department must own at least one Room

32 COURSES: [OR,(PREREQUISITS),course,course]; -- Sample all Pre-requisits for each Course

33

34 EXAMS:; -- Ignore these two entities

35 PREREQUISITS:;

36)

37 --

38 -- Definition of the second Sampler with the other half of the Insertions Chain Graph

39 --

40 (

41 SAMPLERICG AS SamplerICG_2:

42

43 EXAMS(1): [TOTAL, STUDENTS, student, name]; -- Each Exam is associated to a Student

44 FULLTIMESTUDENTS(0): [QUANTIFIED, EXAMS, student, student, 5];

45 -- A FullTimeStudent must have taken at least five exams

46 EXAMS: [PARTIAL, FULLTIMESTUDENTS, student, student,

47 (SELECT COUNT(*) FROM EXAMS WHERE student=%s)>=5];

48 -- If an student has followed more than five exams

49 -- s/he must be recorded as being fulltime

50 FULLTIMESTUDENTS: [TOTAL, TEACHERS, tutor, name]; -- All FullTimeStudents have a Teacher as tutor

51 EXAMS: [TOTAL, COURSES, course, course]; -- All Exams are associated with a Course

52 COURSES (1): [TOTAL, TEACHERS, teacher, name]; -- All Courses have one and only one Teacher

53 PREREQUISITS(1): [TOTAL, COURSES, course, course] -- Prerequisits relate a Course with an

54 [TOTAL, COURSES, previous, course];-- the Courses that must have been passed

55 TIMETABLE(1): [TOTAL, COURSES, course, course];-- TimeTable entries are associated with Courses

56

57 PERSONS:; -- Ignore these entities

58 TEACHERS:;

59 STUDENTS:;

60 TEACHERS:;

61 DEPTS:;

62 ROOMS:;

63)

64 --

65 -- Definition of the Sampler with functional dependencies to be satisfied in table Courses

66 --

67 (SAMPLERFD AS Sampler_Functional_Dependencies COURSES: -- Sampler with Functional Dependencies for

68 -- table COURSES

69 course:year, -- The ’course’ determines the ’year’

70 course:teacher -- The ’course’ determines the ’teacher’

71);

The language used in this case is the same as the one explained in the previous Section.

126

Appendix A. Trial

SamplerICG _1SamplerICG _2
Sampler_

Functional_
Dependencies

Sampler
Integrator_1

Sampler
Integrator_2

Fig. A.1: Using SamplerIntegrator to Create a Hierarchy of Database Samplers

One additional keyword has been used here (line 12), SHOW, which will instruct CoDaST to re-

port on which Database Sampler is being used in each step during sampling. Also a new Sam-

pler type has been defined (lines 67 to 71), SAMPLERFD, which specifies a set of functional de-

pendencies to be enforced in the Sample as well as the table to which they refer. When parsing

all these definitions, CoDaST will create the appropriate instances of SamplerIntegrator re-

quired to integrate these three Samplers. Section 7.5.1 stated that several levels of integration

are possible. In order to illustrate this fact, assume that two instances of SamplerIntegrator

will be used here. The first one, referred to as SamplerIntegrator_1, integrates samplers

SamplerICG_2 and Sampler_Functional_Dependencies. The second instance, referred to

as SamplerIntegrator_2, will integrate SamplerICG_2 and SamplerIntegrator_1. This

leads to the hierarchy of Database Samplers shown in Fig. A.1. It must be noted that

SamplerIntegrator_2 will integrate SamplerIntegrator_1 without knowledge of which

Samplers it integrates, or whether it is also an instance of SamplerIntegrator.

With these definitions, the sequence of calls between the different Database Samplers that

occur in CoDaST, as well as the insertions each of them performs into the Sample Database,

are shown next. Lines which start with the star symbol (*) indicate that the Sampling Process

(see Chapter 4) is on the Synchronise() step, and a plus symbol (+) indicates the execution

of UpdateProcess() for the specified Sampler. Lines without starting symbol are associated

with step SelectInstance() in the appropriate Sampler. In each of these calls, the entity

127

A.5. A Consistent Sample using SamplerIntegrator

name of the instance being maintained consistent is also identified. As in the previous Section,

for each instance inserted into the Sample Database, its entity name and attribute values are

given. This example shows the interactions between all Samplers involved. This sequence of

calls illustrates with one concrete example the Sequence Diagram of Fig. 7.7. In this case,

however, two instances of SamplerIntegrator are involved, and not only one.

It can be seen how the Sampling Proces must be started by SamplerIntegrator_2 as

this is the one integrating all other Samplers (see Fig. A.1). When SelectInstance()

is called in this Sampler, it must delegate this step to one of the Samplers it integrates,

in this case SamplerICG_1. According to this Sampler an instance from entity Teachers

is selected. Then Synchronise() is called in SamplerIntegrator_2, which delegates its

execution to a Sampler different to the one that performed the initial insertion. There-

fore UpdateProcess() in SamplerIntegrator_1 is called. This in turn delegates this step

to SamplerICG_2. This Sampler, according to the set of constraints it enforces, does not

require any insertion as a consequence of the initial insertion. The same situation arises

when Sampler_Functional_Dependencies is called. After that, UpdateProcess() method

in SamplerICG_1 itself is called in order to maintain consistency with the insertion it per-

formed at the beginning of the Process. For each new insertion, all these steps will be

repeated.

1

2 SamplerIntegrator_2

3 SamplerICG_1

4 [TEACHERS]: <mary , 644 , statistics>

5 *SamplerIntegrator_2 (TEACHERS)

6 +SamplerIntegrator_1 (TEACHERS)

7 +SamplerICG_2 (TEACHERS)

8 +Sampler_Functional_Dependencies (TEACHERS)

9 +SamplerIntegrator_2 (TEACHERS)

10 +SamplerICG_1 (TEACHERS)

11 [DEPTS]: <statistics , mary>

12 *SamplerIntegrator_2 (DEPTS)

13 +SamplerIntegrator_1 (DEPTS)

14 +SamplerICG_2 (DEPTS)

15 +Sampler_Functional_Dependencies (DEPTS)

16 +SamplerICG_1 (DEPTS)

17 [ROOMS]: <s1 , 30 , statistics , 3>

18 *SamplerIntegrator_2 (ROOMS)

19 +SamplerIntegrator_1 (ROOMS)

20 +SamplerICG_2 (ROOMS)

21 +Sampler_Functional_Dependencies (ROOMS)

128

Appendix A. Trial

22 +SamplerICG_1 (ROOMS)

23 [PERSONS]: <mary , teacher , venice>

24 *SamplerIntegrator_2 (PERSONS)

25 +SamplerIntegrator_1 (PERSONS)

26 +SamplerICG_2 (PERSONS)

27 +Sampler_Functional_Dependencies (PERSONS)

28 +SamplerICG_1 (PERSONS)

29 [COURSES]: <data mining , 3 , mary>

30 *SamplerIntegrator_2 (COURSES)

31 +SamplerIntegrator_1 (COURSES)

32 +SamplerICG_2 (COURSES)

33 +Sampler_Functional_Dependencies (COURSES)

34 Sampler_Functional_Dependencies

35 [COURSES]: <cybernetics , 5 , diana>

36 *SamplerIntegrator_1 (COURSES)

37 *SamplerIntegrator_2 (COURSES)

38 +SamplerICG_1 (COURSES)

39 [TIMETABLE]: <cybernetics , thursday , 11 , s1>

40 *SamplerIntegrator_2 (TIMETABLE)

41 +SamplerIntegrator_1 (TIMETABLE)

42 +SamplerICG_2 (TIMETABLE)

43 +Sampler_Functional_Dependencies (COURSES)

44 Sampler_Functional_Dependencies

45 [COURSES]: <programming , 2 , diana>

46 *SamplerIntegrator_1 (COURSES)

47 *SamplerIntegrator_2 (COURSES)

48 +SamplerICG_1 (COURSES)

49 [TIMETABLE]: <programming , friday , 9 , c1>

50 *SamplerIntegrator_2 (TIMETABLE)

51 +SamplerIntegrator_1 (TIMETABLE)

52 +SamplerICG_2 (TIMETABLE)

53 +Sampler_Functional_Dependencies (COURSES)

54 Sampler_Functional_Dependencies

55 [COURSES]: <analysis 2 , 2 , phillip>

56 *SamplerIntegrator_1 (COURSES)

57 *SamplerIntegrator_2 (COURSES)

58 +SamplerICG_1 (COURSES)

59 [TIMETABLE]: <analysis 2 , wednesday , 10 , m1>

60 *SamplerIntegrator_2 (TIMETABLE)

61 +SamplerIntegrator_1 (TIMETABLE)

62 +SamplerICG_2 (TIMETABLE)

63 +Sampler_Functional_Dependencies (COURSES)

64 +SamplerICG_1 (TIMETABLE)

65 [ROOMS]: <m1 , 20 , mathematics , 2>

66 *SamplerIntegrator_2 (ROOMS)

67 +SamplerIntegrator_1 (ROOMS)

68 +SamplerICG_2 (ROOMS)

69 +Sampler_Functional_Dependencies (COURSES)

70 +SamplerICG_1 (ROOMS)

71 [DEPTS]: <mathematics , phillip>

72 *SamplerIntegrator_2 (DEPTS)

73 +SamplerIntegrator_1 (DEPTS)

74 +SamplerICG_2 (DEPTS)

75 +Sampler_Functional_Dependencies (COURSES)

76 +SamplerICG_1 (DEPTS)

77 [TEACHERS]: <phillip , 453 , mathematics>

129

A.5. A Consistent Sample using SamplerIntegrator

78 *SamplerIntegrator_2 (TEACHERS)

79 +SamplerIntegrator_1 (TEACHERS)

80 +SamplerICG_2 (TEACHERS)

81 +Sampler_Functional_Dependencies (COURSES)

82 +SamplerICG_1 (TEACHERS)

83 [PERSONS]: <phillip , teacher , bologna>

84 *SamplerIntegrator_2 (PERSONS)

85 +SamplerIntegrator_1 (PERSONS)

86 +SamplerICG_2 (PERSONS)

87 +Sampler_Functional_Dependencies (COURSES)

88 +SamplerICG_1 (PERSONS)

89 [PREREQUISITS]: <analysis 2 , analysis 1>

90 *SamplerIntegrator_2 (PREREQUISITS)

91 +SamplerIntegrator_1 (PREREQUISITS)

92 +SamplerICG_2 (PREREQUISITS)

93 [COURSES]: <analysis 1 , 1 , phillip>

94 *SamplerIntegrator_1 (COURSES)

95 *SamplerIntegrator_2 (COURSES)

96 +SamplerICG_1 (COURSES)

97 [TIMETABLE]: <analysis 1 , wednesday , 11 , m1>

98 *SamplerIntegrator_2 (TIMETABLE)

99 +SamplerIntegrator_1 (TIMETABLE)

100 +Sampler_Functional_Dependencies (TIMETABLE)

101 +SamplerICG_2 (COURSES)

102 +SamplerICG_1 (TIMETABLE)

103 +Sampler_Functional_Dependencies (COURSES)

104 +SamplerICG_2 (COURSES)

105 +Sampler_Functional_Dependencies (COURSES)

106 +SamplerICG_1 (PREREQUISITS)

107 +SamplerICG_2 (COURSES)

108 +Sampler_Functional_Dependencies (COURSES)

109 +SamplerICG_1 (TIMETABLE)

110 [ROOMS]: <c1 , 35 , computer science , 1>

111 *SamplerIntegrator_2 (ROOMS)

112 +SamplerIntegrator_1 (ROOMS)

113 +SamplerICG_2 (ROOMS)

114 +Sampler_Functional_Dependencies (COURSES)

115 +SamplerICG_1 (ROOMS)

116 [DEPTS]: <computer science , diana>

117 *SamplerIntegrator_2 (DEPTS)

118 +SamplerIntegrator_1 (DEPTS)

119 +SamplerICG_2 (DEPTS)

120 +Sampler_Functional_Dependencies (COURSES)

121 +SamplerICG_1 (DEPTS)

122 [TEACHERS]: <diana , 551 , computer science>

123 *SamplerIntegrator_2 (TEACHERS)

124 +SamplerIntegrator_1 (TEACHERS)

125 +SamplerICG_2 (TEACHERS)

126 +Sampler_Functional_Dependencies (COURSES)

127 +SamplerICG_1 (TEACHERS)

128 [PERSONS]: <diana , teacher , bary>

129 *SamplerIntegrator_2 (PERSONS)

130 +SamplerIntegrator_1 (PERSONS)

131 +SamplerICG_2 (PERSONS)

132 +Sampler_Functional_Dependencies (COURSES)

133 +SamplerICG_1 (PERSONS)

130

Appendix A. Trial

134 +SamplerICG_2 (COURSES)

135 +Sampler_Functional_Dependencies (COURSES)

136 Sampler_Functional_Dependencies

137 [COURSES]: <languages , 5 , diana>

138 *SamplerIntegrator_1 (COURSES)

139 *SamplerIntegrator_2 (COURSES)

140 +SamplerICG_1 (COURSES)

141 [TIMETABLE]: <languages , wednesday , 15 , c1>

142 *SamplerIntegrator_2 (TIMETABLE)

143 +SamplerIntegrator_1 (TIMETABLE)

144 +SamplerICG_2 (TIMETABLE)

145 +Sampler_Functional_Dependencies (COURSES)

146 +SamplerICG_1 (TIMETABLE)

147 [PREREQUISITS]: <languages , programming>

148 *SamplerIntegrator_2 (PREREQUISITS)

149 +SamplerIntegrator_1 (PREREQUISITS)

150 +SamplerICG_2 (PREREQUISITS)

151 +Sampler_Functional_Dependencies (COURSES)

152 +SamplerICG_1 (PREREQUISITS)

153 +SamplerICG_2 (COURSES)

154 +Sampler_Functional_Dependencies (COURSES)

155 +SamplerICG_1 (TIMETABLE)

156 +SamplerICG_2 (COURSES)

157 +Sampler_Functional_Dependencies (COURSES)

158 +SamplerICG_1 (COURSES)

159 [TIMETABLE]: <data mining , friday , 11 , s1>

160 *SamplerIntegrator_2 (TIMETABLE)

161 +SamplerIntegrator_1 (TIMETABLE)

162 +SamplerICG_2 (TIMETABLE)

163 +Sampler_Functional_Dependencies (TIMETABLE)

164 +SamplerICG_1 (TIMETABLE)

165

166

167 SamplerIntegrator_2

168 SamplerIntegrator_1

169 SamplerICG_2

170 [EXAMS]: <jim , algebra , 25.000000>

171 *SamplerIntegrator_2 (EXAMS)

172 +SamplerICG_1 (EXAMS)

173 +SamplerIntegrator_2 (EXAMS)

174 +SamplerIntegrator_1 (EXAMS)

175 +Sampler_Functional_Dependencies (EXAMS)

176 +SamplerICG_2 (EXAMS)

177 [STUDENTS]: <jim , 2>

178 *SamplerIntegrator_1 (STUDENTS)

179 *SamplerIntegrator_2 (STUDENTS)

180 +SamplerICG_1 (STUDENTS)

181 [PERSONS]: <jim , student , venice>

182 *SamplerIntegrator_2 (PERSONS)

183 +SamplerIntegrator_1 (PERSONS)

184 +Sampler_Functional_Dependencies (PERSONS)

185 +SamplerICG_2 (STUDENTS)

186 +SamplerICG_1 (PERSONS)

187 +Sampler_Functional_Dependencies (STUDENTS)

188 +SamplerICG_2 (STUDENTS)

189 [COURSES]: <algebra , 1 , robert>

131

A.5. A Consistent Sample using SamplerIntegrator

190 *SamplerIntegrator_1 (COURSES)

191 *SamplerIntegrator_2 (COURSES)

192 +SamplerICG_1 (COURSES)

193 [TIMETABLE]: <algebra , monday , 9 , m1>

194 *SamplerIntegrator_2 (TIMETABLE)

195 +SamplerIntegrator_1 (TIMETABLE)

196 +Sampler_Functional_Dependencies (TIMETABLE)

197 +SamplerICG_2 (COURSES)

198 [TEACHERS]: <robert , 454 , mathematics>

199 *SamplerIntegrator_1 (TEACHERS)

200 *SamplerIntegrator_2 (TEACHERS)

201 +SamplerICG_1 (TEACHERS)

202 [PERSONS]: <robert , teacher , verona>

203 *SamplerIntegrator_2 (PERSONS)

204 +SamplerIntegrator_1 (PERSONS)

205 +Sampler_Functional_Dependencies (PERSONS)

206 +SamplerICG_2 (TEACHERS)

207 +SamplerICG_1 (PERSONS)

208 +Sampler_Functional_Dependencies (TEACHERS)

209 +SamplerICG_2 (TEACHERS)

210 +SamplerICG_1 (TIMETABLE)

211 +Sampler_Functional_Dependencies (COURSES)

212 +SamplerICG_2 (COURSES)

As in the execution example of Section A.4, two independent blocks of insertions are

performed here in order to satisfy the minimum Sample size requirements. The first one

(lines 1 to 164), as analysed above, was triggered by an insertion into entity Teachers. Once

this insertion has been maintained consistent according to all Samplers, the Sample size

requirements of SamplerICG_1 are satisfied. For this reason the second block of insertions

(lines 167 to 212) is triggered by an insertion into entity Exams, according to the Sample size

requirements of SamplerICG_2.

132

