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Abstract
This state-of-the-art report provides a comprehensive review of the research on client-server architec-

tures for volume visualization. The design of such schemes capable of dealing with static and dynamic
volume datasets has been an important challenge for researchers due to the need for the reduction
of information transmitted. Thus, compression techniques designed to facilitate such systems are a
particular focus of this survey. The ever increasing complexity and widespread use of volume data in
interdisciplinary fields, as well as the opportunities afforded by continuing advances in computational
power of mobile devices are strong motivations for this review. In particular, the client-server paradigm
has particular significance to medical imaging due to the practical advantages and increased likelihood
of use, of portable low-spec clients in lab and clinical settings.

1 Introduction
The term client-server refers to a computer applications paradigm comprising a highly-resourced server
device, providing services typically to one or more lesser-powered clients that receive and request information
over a network [1,2]. Client-server architectures have been popular for many years, since personal computers
(PCs) became viable alternatives to mainframe computers. A large number of client-server techniques have
been published in the scientific visualization literature. The motivations for these include facilitating remote
exploration, distributed environments, collaborative multi-user systems and many others. In visualization,
as in other fields, a high-powered graphical system provides visual computing services to low-performance
clients, which might consist of mobile devices or desktop computers [3] [4]. The server device typically
features more powerful central processors, graphical processing units (GPUs), more memory, or larger disk
drives than the clients.

1.1 Client-server visualisation in medicine
With the continuing advancement of medical imaging techniques, it has become possible for specialists to
obtain highly detailed and accurate information of the anatomical internal structures of the human organism.
By leveraging different visualization techniques, experts can now obtain suitable images of bones, soft tissues,
and the bloodstream, amongst other features. Computer visualization systems have become able to generate
images with increasingly better resolution and information accuracy. Standards such as DICOM (Digital
Imaging and Communication in Medicine) facilitate portability and manipulation of large volume sets, easing
visualization, interaction and interpretation of models.

Recently, several important research areas in three-dimensional techniques for multimodal imaging
have emerged. Applications include neurological imaging for brain surgery [5], tissue characterization,
medical education, plastic surgery, surgical simulators [6] and others. At the same time, scientists are more
familiarized with three-dimensional structures reconstructed from bi-dimensional images, and are able to use
these to important practical benefits. Visualization of damaged tissues and tumors can help, for instance,
in the treatment of patients with oncological pathologies. A key use in chemotherapy is to know whether
a tumor is growing or shrinking. The application of current visualization algorithms can improve the the
ability to highlight such pathologies during medical examination.

1



Furthermore, hospitals are becoming increasingly interested in tele-medicine and tele-diagnostic solutions.
Tele-medicine [7] [8] is defined as the use of medical information exchanged from one site to another via
electronic communications to improve the clinical health status of patients. This concept includes a growing
variety of applications and services using two-way video, email, smart phones, wireless tools and other forms
of telecommunications technology. Clinically oriented specialities can capture and remotely display physical
findings, transmit specialized data from tests and carry out interactive examinations [9]. Tele-medicine,
in turn, facilitates tele-diagnosis, the process whereby a disease diagnosis, or prognosis, is enabled by the
electronic transmission of data between distant medical facilities. Some applications for remote visualization
of medical images and 3D volumetric data, such as MRI or CT scans, could be categorized as forms of
tele-medicine.

Remote visualization has become a topic of significant interest in recent years [10–12], however, for large
volume datasets, interactive visualization techniques require last generation graphics boards, due to the
intensive calculation and memory requirements of 3D rendering. Client-server approaches are a significant
means of allowing such functionalities but the handling of three-dimensional information requires efficient
systems to achieve fast data transmission and interactive visualization of high quality images.

In particular, there is still a scarcity of specific bibliography for volume visualization on mobile devices.
Frequently, the use of mobile devices is necessary and desirable in practice due to their portability and ease
of maintenance. However, transmission time for the volumetric information combined with low performance
hardware properties make it quite challenging to design and implement efficient visualization systems on such
devices. In order to address these issues and generally compensate for the limitations of low performance
devices or to reduce costs, a large number of client-server schemes have been proposed.

1.2 Scope and Objectives
In this paper, we present a detailed survey of the State of the Art in client-server volume visualization
techniques. We begin with an extensive review, in Section 2, of the main categories of client-server
architectures that have been used in volume visualization. The throughput from high-powered server to
remote client invariably requires reduction in the bandwidth of information transmitted, thus it is important
to consider the compression techniques that facilitate most client-server communications. In Section 3 we
present a detailed review of Static Volume Compression Techniques. A study of the specialized case of
Dynamic Volume Compression schemes is presented in Section 4. Finally, we present a survey of recent
Volume Rendering Techniques for Mobile Devices in section 5. We concluding with insights and observations
resulting from our study in Section 6.

2 Client-Server architectures for volume visualization
An extensive survey of the published literature allowed us to identify four principal categories of client-server
architecture for volume visualization. Essentially, we classify them according to the means by which they
reduce volume information for transmission, and discuss each category in the subsections below.

A. Transmission of compressed volumes: In the first category (see Figure 1), the dataset is
compressed on the server and transmitted to the client, where the data is decompressed, the transfer function
applied and the reconstructed data is rendered. We also include, in this category, approaches that transmit
the full volume to the client, without compression.

Callahan et al. [13] presented an isosurface-based method for hardware assisted progressive volume
rendering. Their approach seeks to minimize the size of the data stored in the final client at each step of
data transmission. The approach sends a compressed vertex array to the client during the reconstruction
of the model. Moser and Weiskopf [14] proposed a 2D texture-based method which uses a compressed
texture atlas to reduce interpolation costs. The approach proposes a hybrid high/low resolution rendering,
to combine volume data and additional line geometries in an optimized way. By doing this, they achieve
interactive frame rates. The technique runs on a mobile graphics device natively without remote rendering.
Mobeen et al. [15] proposed a single-pass volume rendering algorithm for the WebGL platform. They built
an application with a transfer function widget which enables feature enhancement of structures during
rendering. To avoid 3D texture limitations of some devices, they mapped the volume into a single 2D
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texture to develop an application able to run in any modern device with a basic graphics processor. A recent
application developed by Rodriguez et al. [16] allows interaction with volume models using mobile device
hardware. Their scheme does not in fact compress the volume data, but they are able to apply different
transfer functions to volumes by selecting the most appropriate 2D, 3D, or ray-casting method best suited
to available hardware capabilities.

Figure 1: Client-Server Architecture, Case A: the dataset is sent to the client in a compressed or uncompressed
way. The client applies the transfer function after decompression and before rendering.

B. Transmission of compressed 2D rendered images: In a number of schemes, where the trans-
mitted data is a compressed image [17] [18] (see Figure 2), the transfer function is applied at the beginning
of the pipeline, following which the volume is rendered to a 2D texture, all on the server side. A compressed
image is then sent to the client, where decompression and image rendering take place. This approach is
frequently referred to as Thin Client [19]. Other techniques included in this category are discussed below.

Engel et al. [20] developed an approach based on the Open Inventor toolkit, which provides a scene graph
programming interface with a wide variety of 3D manipulation capabilities. Their application renders images
off-screen, encodes images on-the-fly and transmits them to the client side. Once on the client, images are
decoded and copied into a framebuffer. The client interface also provides a drawing area with mouse event
handling capabilities to display images.

A new remote visualization framework is proposed in [21], where the dataset is loaded into a slicing tool
on the client side. The tool allows axial, coronal and sagittal direction inspections of medical models. The
application allows the selection of a sub-region by using object-aligned textures. Volume data is transferred
to the server side to increase visualization quality. In a similar way to other techniques, the server first
renders images off-screen, compresses the image and transmits the result to the client. Once on the client
side, the image is decompressed and rendered. Mouse and GUI events are sent to the server for re-rendering
operations. Qi et al. [22] designed a medical application to send images in a progressive way. Their approach
creates a reference image of the entire data by applying transforms. The encoding scheme allows the gradual
transmission of the encoded image, which is reconstructed on-the-fly during the rendering on the client side.

Figure 2: Client-Server Architecture, Case B: the transfer function is applied in the server, which also
renders the volume data. The information sent to the client consists on compressed 2D images.

Constantinescu et al. [23] implemented an application that incorporates Positron Emission Tomogra-
phy/Computer Tomography (PET/CT) data into Personal Health Records for remote use on internet-capable
or handheld devices. Their client-server application is designed to display images in low-end devices such
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as mobile phones. Users can control brightness and contrast, apply a color look-up table and view the
images from different angles. The approach allows the transmission of images with a sufficient refresh rate
to achieve interactive exploration of 2D images. Jeong and Kaufman [24] implemented a virtual colonoscopy
application over a wireless network with a Personal Digital Assistant (PDA) as a client device. In their
scheme, the server performs a GPU-based direct volume rendering to generate an endoscopy image during
the navigation, for every render request from the client.

An explorable images technique was proposed by Tikhonova et al. [25]. The approach converts a small
number of single-view volume rendered images of the same 3D data set into a compact representation. The
mechanism of exploring data, consists of interacting with the compact representation in transfer function
space without accessing the original data. The compact representation is built by automatically extracting
layers depicted in composite images. Different opacity and color mappings are achieved by the different
combination of layers.

C. Partitioning the volume data: Some approaches achieve a reduction of transmitted information
by partitioning the rendered volume (see Figure 3). Partitions are transmitted to the client, where the
composition of the entire volume takes place and the volume is rendered. For instance, Bethel. [26] proposed
to subdivide and render volumes in parallel. The resulting set of 2D textures is sent to a viewer which uses
2D texture mapping to render the stack of textures, and provides the facility for interactive transformations.

Distributed volume rendering approaches are considered by scientists to be an important means of dealing
with memory constraints and other hardware limitations of a standalone display system. Some authors have
been able to exploit the advantages of distributed processing to improve interactive volume visualization
by implementing complex client-server mechanisms. For instance, Frank and Kaufman [?], developed a
technique to render massive volumes in a volume visualization cluster. By partitioning the volume to be
rendered into synchronized clusters, they are able to reduce the memory requirements allowing them to deal
with large datasets such as the full Visible Human dataset. Bethel et al. [?] proposed a distributed memory
parallel visualization application that uses a sort-first rendering architecture. By combining an OpenRM
Scene Graph and Chromium they achieve an efficient memory sorting algorithm that competently performs
view-dependent parallel rendering in a first-order architecture.

Figure 3: Client-Server Architecture, Case C: the server partitions the volume into a set of 2D slices,
represented as 2D textures. The information sent to the client consists on a stack of 2D textures.

D. Sending compressed multiresolution volume information: In some approaches, data pre-
processing ensures the reduction of the information, combined with different techniques for quantization,
encoding and multiresolution representation.

In this category of approaches, a networking application is proposed by Lippert et al. [27]. Here, a local
client with low computational power browses volume data through a remote database. The approach allows
the treatment of intensity and RGB volumes. A Wavelet based encoding scheme produces a binary output
stream to be stored locally or transmitted directly to the network. During rendering, the decoded Wavelet
coefficients are copied into the accumulation buffer on the GPU. The bandwidth of the network and the
frame rate control the transmission of the Wavelet coefficients in significance order to guarantee rendering
quality.

Boada et al. [28] proposed an exploration technique where volume data is maintained in the server in a
hierarchical data structure composed of nodes. The server receives the user parameters to select the correct
list of nodes to be rendered in the client side according to its hardware capabilities. As a second rendering
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Figure 4: Client-Server Architecture, Case D: the server enriches the volume dataset by computing a
multiresolution volume hierarchy, which is then compressed and sent to the client.

possibility, the user can select a region of interest (ROI) of the entire volume. To achieve this, the server
transmits data in an incremental fashion. Recently Gobbetti et al. [29], proposed a progressive transmission
scheme to send compact multiresolution data from the server to the client stage. The technique allows fast
decompression and local access to data according to the user interaction in the client side.

Summary
Table 1 shows a comparison of several client-server oriented proposals for volume rendering. The columns
show, for each approach, the category of solution (as discussed above), the rendering technique employed,
and the form of data transmitted between server and client. We also indicate where a mobile device is used
as client, and provide an estimation (Low, Medium or High) of latency and interactivity of each approach,
based on its reported fps (frame per second).

A simple analysis of this table, shows that few techniques were designed to run on mobile client. Although
some techniques successfully achieve visualization on mobile devices, the limited size of the models and the
lack of advanced lighting and shading implementation leaves a gap for further research in this area.

Latency and interactivity are strongly associated concepts in client-server architectures for volume
visualization. The ability of achieving interactive frame rates depends on the transmission procedure and the
rendering algorithm implemented in both servers and clients. Some techniques achieve a good combination of
these properties by applying progressive transmission schemes [13] and adaptive rendering algorithms [14,29].
But unfortunately these techniques are still quite complex to run on low-end devices.

3 Compression Techniques for Static Volume Models
Dataset transmission from server to clients is considered a very important stage in client-server architectures
for volume visualization. Efficient schemes require optimized algorithms to reduce the data and to send
them through the network. The algorithms must achieve the maximum compression possible while allowing
efficient decompression in the client side, where sometimes hardware and memory constraints decrease
performance.

Compression algorithms can be classified into lossless and lossy [32, 33] techniques. With lossless
compression, information that was originally in the file is fully recovered after the data has been uncompressed.
On the other hand, lossy compression schemes reduce data by permanently eliminating certain information,
especially redundant information.

Wavelets and Vector Quantization are popular techniques for approaches in which decompression takes
place on the CPU. Wavelet transforms offer considerable compression ratios in homogeneous regions of
an image while conserving the detail in non-uniform ones. The idea of using 3D Wavelets for volume
compression was introduced by Muraki [34]. One of the limitations of this approach is the cost of accessing
individual voxels. In [35] a lossy implementation of the 3D wavelet transform was applied to a real volume
data generated from a series of 115 slices of magnetic resonance images (MRI). By applying a filtering
operation three times, the approach obtains a multiresolution representation of a volume of 1283 voxels.
Using the coefficients from the Wavelet functions, they reconstructed a continuous approximation of the
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Table 1: Comparison of published client-Server architectures. Columns show the category of client-
server architectures (as in Figures 1...4), the rendering algorithm, the form of data transmitted clients, the
compression scheme (Table 2) and whether the approach has been applied to mobile clients. The final
columns provide an estimation of latency and interactivity for each technique.

Latency Interactivity

Ref. Arch. Rendering Algorithm Data sent Mobile L M H L M H
[26] C 2D Texturing Images 5 3 3

[28] D 3D Texturing Vertices, Indexes 5 3 3

[13] A Iso-Surface Vertices 5 3 3

[23] B 2D Texturing Images 3 3 3

[21] B 2D Texturing Images 5 3 3

[20] B 3D Texturing Images 5 3 3

[29] D RC Octree Nodes 5 3 3

[24] B 2D-Texturing Images,Points 3 3 3

[27] D 2D Texturing Wavelet Coeff. 5 3 3

[14] A 2D Texturing Intensities 3 3 3

[15] A 2D Texturing, RC 2D Texture Atlas 3 3 3

[30] B 2D Texturing Images 3 3 3

[16] A 2D,3D , RC Intensities 3 3 3

[25] B 2D Texturing Images 3 3 3

[22] B 2D Texturing Images 3 3 3

[31] B 2D Texturing Images 5 3 3

original volume at maximum resolution. The rendering technique prevents an interactive scheme, due to the
cost of finding the intersection point of the ray with a complex 3D function, and consumes a considerable
amount of time. Ihm and Park [36] proposed an effective 3D 163-block-based compression/decompression
wavelet scheme for improving the access to random data values without decompressing the whole dataset.

Guthe et al. [37] proposed a novel algorithm that uses a hierarchical wavelet representation in an
approach where decompression takes place on the GPU. The wavelet filter is locally applied and the resulting
coefficients are used as the basic parameters for a threshold quantization based scheme. During rendering,
the required level of the wavelet representation is decompressed on-the-fly and rendered using graphics
hardware. The scheme allows the reconstruction of images without noticeable artifacts.

Current bottlenecks of wavelet based volume compression schemes are the lack of locality and the
complexity of the decompression in low-end devices. Moreover, almost all present approaches are compress
the whole volume, even in cases where the transfer function forces most of the medical structures to become
invisible.

In the first group of approaches (see Decomp. Stage: In CPU, in Table 2) most of the implementations
are lossy due to the application of quantization/encoding schemes (see also Table 3). Nguyen et al. [38]
proposed a block based technique to compress very large volume data sets with scalar data on a rectilinear
grid. By, working in the wavelet domain and using different quantization step sizes, the technique encodes
data at several compression ratios. Although they ensure that compared to similar proposals their approach
achieves better reconstruction quality, the resulting images show the existence of small blocking artifacts
due to the block based coder. Furthermore, they can only perform two compression steps with limited
multiresolution capabilities.

Many methods try to maintain genuine volumetric data during the quantization stage. In contrast
Rodler [39] proposes, instead, to treat two dimensional slices in position or time and draw on results developed
in the area of video coding. The first step of their encoder removes the correlation along the z-direction,
assuming that two-dimensional slices are divided along this direction. A 3D Wavelet decomposition should
be ideal to further remove correlation in the spacial and temporal directions. But in order to decrease
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computational costs, they adopt, as a second step, a 2D Wavelet transform to handle the spacial redundancy.
Finally, the quantization continues by removing insignificant coefficients to make the representation even
sparser. The method is capable of providing high compression rates with fairly fast decoding of random
voxels. They achieve high compression rates with notable cost in the decompression speed. The approach
in [22] works on 3D medical image sets, but it is ultimately a 2D visualization scheme performed on the
CPU. The approach has also been restricted to MRI datasets with relative large distance between slices.
Although the authors describe the approach as a lossless compression scheme, the averaging and thresholding
operations applied on the images result in a reduction in accuracy of the information. Although working
with slices has the advantage that the memory format is identical to that of the final 3D texture used for
rendering, this comes at the cost of losing spatial coherence.

Vector Quantization [40] is one of the most explored techniques for volume compression. Essentially,
this involves decreasing the size of volumetric data by applying a specific encoding algorithm. The premise
of this lossy compression method is to code values from a multidimensional vector space into values of a
discrete subspace of lower dimension. Ning and Hesselink [41] were the first to apply vector quantification
to volume models. In their scheme, the volume dataset is represented as indexes into a small codebook of
representative blocks. The approach is suitable for a CPU-based ray-cast render. The proposed system
compresses volumetric data and renders images directly from the new data format. A more efficient solution
was proposed in [42], the scheme contains an structure that allows volume shading computations to be
performed on the codebook, and image generation is accelerated by reusing precomputed block projections.
Schneider and Westermann [43] implemented a Laplacian pyramid vector quantification approach that allows
relatively fast volume decompression and rendering on the GPU. However this method does not allow using
the linear filtering capabilities of the GPU and the render cost increases when using high zoom factors. Eric
B. Lum et al. [44] propose a palette-based decoding technique and an adaptive bit allocation scheme. This
technique fully utilizes the texturing capability of 3D a graphics card.

Bricking techniques subdivide large volumes into several blocks, referred to as bricks, in such a way that
ensures each block fits into GPU memory. Bricks are stored in main memory, then they are sorted either
in front-to-back or back-to-front order with respect to the camera position, depending on the rendering
algorithm [45,46].

The objective in multiresolution modeling schemes [47–49] is to render only a region of interest at high
resolution and to use progressively low resolution when moving away from that region. Both bricking
and multiresolution approaches need a high memory capacity on the CPU for storing the original volume
dataset. Moreover, bricking requires a high amount of texture transfers as each brick is sent once per
frame; multiresolution techniques have been built for CPU purposes and the translation to GPUs is not
straightforward due to the required amount of texture fetching. As Table 2 shows, different techniques allow
multiresolution. An old technique proposed by Ghavamnia et al. [50], involves the use of the Laplacian
Pyramid compression technique, which is a simple hierarchical computational structure. By using this
representation, a compressed volume dataset can be efficiently transmitted across the network and stored
externally on disk.

Progressive transmission has become an important solution for client-server architectures, allowing
transmission of large volume datasets to clients according to rendering capabilities as well as hardware and
network constraints of both server and client [51]. Qi et al. [22] proposed an approach capable of progressive
transmission. The approach essentially compresses data by reducing noise outside the diagnostic region in
each image of the 3D data set. They also reduce the inter-image and intra-image redundancy adjusting
pixel correlations between adjacent images and within a single image. By applying a wavelet decomposition
feature vector, they select a representative image from the representative subset of the entire 3D medical
image set. With this reference image, they achieve good representation of all data with good contrast and
anatomical feature details. The encoding technique ensures the progressive transmission scheme. Codified
versions, from coarse to fine, of the reference image are transmitted gradually. In medical applications,
radiologists could determine during transmission whether the desired image should be fully reconstructed or
stop the process before transmission of the entire image set. Menmann et al. [52] present a hybrid CPU/GPU
scheme for lossless compression and data streaming. By exploiting CUDA they allow the visualization of big
out-of-core data with near-interactive performance.

More recently, Suter et al. [53] have proposed a multiscale volume representation based on a Tensor
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Approximation within a GPU-accelerated rendering framework. The approach can be better than wavelets
at capturing non-axis aligned features at different scales. Gobbetti et al. [29] have proposed a different
multi-resolution compression approach using a sparse representation of voxel blocks based on a learned
dictionary. Both approaches allow progressive transmission and obtain good compression ratios, but they
are lossy and require huge data structures and a heavy pre-process.

Summary
Some recent and relevant compression techniques for volume visualization have been discussed in the
literature, and a number of them have been included in client-server solutions. In Table 2, we present a
comparison of these techniques. The columns show the stage of the pipeline where decompression takes place,
whether the compression is lossless or lossy, and the applied compression technique. We also indicate which
of these techniques are designed for medical image applications [54] and whether progressive transmission is
allowed. The final columns show an estimation of the compression ratio as well as a qualitative measure of
the reconstruction quality.

Table 3 summarizes the compression pipelines of the techniques presented in Table 2. The approaches
reviewed have not been designed to use in mobile devices as clients, and none of them are transfer-function
aware. Some of these techniques are not even designed for client-server architectures, but for compressing
data from disk or to decrease bandwidth limitations.

Compression quality is usually measured by computing rate distortion curves for representative datasets.
A common measure in image compression is the Peak Signal-to-Noise Ratio (PSNR) [55]. Fout et al. [56]
designed a hardware-accelerated volume rendering technique using the GPU. The approach consists of
a block-based transform coding scheme designed specifically for real-time volume rendering applications.
An efficient decompression is achieved using a data structure that contains a 3D index to the codes and
codebook textures. Guitián et al. [57] implemented a complex and flexible multiresolution volume rendering
system capable of interactively driving large-scale multiprojectors. The approach exploits view-dependent
characteristics of the display to provide different contextual information in different viewing areas like field
displays. The proposal achieves high quality rendered images in acceptable frame rates.

Table 2: Compression Schemes. Columns show the stage of the pipeline where decompression takes
place, whether the compression is lossless or lossy, and the applied compression technique. The table also
indicates which techniques are designed for medical image applications and whether progressive transmission
is allowed. The last columns show an estimation of the compression ratio as well as a qualitative measure of
the reconstruction quality.

Compression Comp. Ratio Reconst. Quality
Decomp. Stage Ref. Lossless Lossy Comp. Technique Medical Images Multiresolution Prog. Trans Mobile L M H L M H

[35] 3 Wavelets 3 3 3 5 - 3
[58] 3 Wavelets - 3 3 5 3 3
[38] 3 Wavelets - 3 - 5 3 3
[39] 3 Wavelets - 3 - 5 3 3
[37] 3 Wavelets 3 3 3 5 3 3
[59] 3 Wavelets - 3 - 5 3 3
[27] 3 Wavelets 3 3 3 5 - 3
[60] 3 Wavelets 3 3 - 5 3 3
[41] 3 VQ 3 3 - 5 3 3
[42] - VQ 3 - - 5 - 3
[61] 3 Huffman 3 - - 5 - 3
[22] 3 Wavelets 3 - - 5 3 3
[62] 3 Fourier Transf. 3 3 - 5 3 3
[63] 3 Fourier Transf. 3 3 - 5 3 3
[64] 3 Fourier Transf. - - - 5 3 3

In
C

P
U

[44] 3 VQ - 3 - 5 3 3
[65] 3 Wavelets - 3 3 5 - 3
[53] 3 Tensor Approx. - 3 3 5 3 3
[43] 3 VQ 3 3 3 5 3 3
[52] 3 LZO - 3 3 5 3 3
[66] 3 Block-Based Codf. 3 - 3 5 - 3
[67] 3 VTC-LZO - - - 5 3 3
[57] 3 Frame Encod. - 3 - 5 3 3
[68] 3 DCT 3 3 - 5 3 3
[50] 3 Laplacian Pyramid 3 3 - 5 3 -
[29] 3 Linear Comb. 3 3 3 5 3 3

In
G

P
U

D
ur

in
g

R
en

de
ri

ng

[56] 3 texture Comp. - - - 5 3 3
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Table 3: Compression Scheme Pipelines. Columns show the kind of Input data used in each approach,
the preprocessing and encoding techniques applied. The table also shows the data structure or function to
represent data, and finally, the decoding and rendering algorithms implemented.

Ref. Input Data Preprocessing/Encoding Data Representation Decoding Rendering

[35] MRI - 3D Orthonormal Wavelets - Ray Casting
[58] RM Instability RLE+Huffman Coding 3D Haar Wavelets RLE+Huffman Decoding Ray Casting
[38] CT Quantization of Wavelet Coefficients 3D Haar Wavelets Dequant. Wavelet Coefficients -
[39] CT Quantization of Wavelet Coefficients 3D Haar Wavelets Dequant. Wavelet Coefficients Ray Casting
[37] - Block Subdivision/Encoding Wavelet Coefficients Wavelets Decoding W. Coefficients 3D texturing
[59] Scanning Model Encoding Wavelet Coefficients 3D Orthogonal Wavelets Decoding W. Coefficients Ray casting
[27] MRI,CT Encoding Wavelet Coefficients Wavelets(Haar/B-Splines) Decoding W. Coefficients 3D texturing
[60] MRI,CT Encoding Wavelet Coefficients 3D Haar Wavelets Decoding W. Coefficients Ray Casting
[41] - VQ. Encoding Code Books VQ. Decoding 2D Texturing
[42] CT VQ. Encoding Code Books VQ. Decoding 2D Texturing
[61] MRI,CT DPCM+Huffman Coding Encoding Stream Decoding DCPM + Huffman 2D Texturing
[22] MRI,CT DPCM+Huffman Coding Encoding Stream Decoding DCPM + Huffman 2D Texturing
[62] - - Packing Textures Decod. of Compressed Blocks 2D Texturing
[63] MRI - 3D Fourier Transform - Ray Casting
[64] - Quantization + Entropy Encoding Fourier Transform Dequant. + Entropy Decoding Ray Casting
[44] MRI Filtred and threshold/RLE+Arithmetic Coding IWT RLE+Arithmetic Decoding. 2D Texturing
[65] Time Varying Models DCT Quant. DCT Coefficients RLE+DCT Decod. 2D Texturing
[53] MRI,CT Sorting, normalization/RLE+Huffman Coding Wavelets RLE+Huffman Decoding 2D Texturing
[43] CT BLE Based on Tensor Quantization Wavelets Tensor Recost. and Decoding Ray Casting
[52] CT VQ Encoding Code Books VQ Decoding 3D Texturing
[66] Hydrodynamical Simulation Brick Decomp./Variable Lenght Encoding LZO Compression of Blocks Variable Lenght Decod. Ray Casting
[67] CT Block Subdivision/VQ Encoding Code Books VQ Decoding 3D Texturing
[57] CT - PVTC-LZO PVTC-LZO Decoding Ray Casting
[68] CT Frame Ecoding - - Ray Casting
[50] - - DCT - 2D-Textures
[29] CT - Laplacian Pyramid - Ray Casting
[56] CT Rectilinear to Compact Multiresolution Volume Octree Decod. of Compressed Blocks Ray Casting

4 Compression Techniques for Dynamic Volume Models
This section includes a study and comparison client-server visualization techniques for animated volumes,
which present a specialized form of data with an added dimension of complexity. In the context of medical
imaging, the main motivation for visualizing such data is the ability to study the dynamic process of the
human organism. In particular, a lot of scientists are involved in the analysis of the time-varying behavior
of the heart, lungs, blood flow, eye and others. However, dealing with real-time applications for dynamic
medical image visualization is still a challenging problem and client-server based schemes play an important
role in this area.

Several commercial applications have already been widely used in the remote visualization of dynamic
volume data, [69], [70]. Silicon Graphics developed Vizserver [69], a system that allows OpenGL programs
to run without any modification in a client-server environment. There are almost no restrictions on the
visualization, however the number of users that are allowed to visualize and interact independently with
the same dataset simultaneously under the same graphic pipeline is limited. Remote collaborative sessions
involve a remote client starting a session on a newly created X server, and multiple clients subsequently
joining the session. The system includes a lossless compression scheme that works by transmitting only
differences from the previous frame. GLX is an OpenGL extension for the X server system [70]. It allows
3D graphics rendering applications to display on a remote X server. This scheme implements command
streaming for rendering 3D data on the client side. All geometry models, texture maps, and operation
commands are streamed to the client before rendering. Thus, for applications that perform complex graphics
rendering, excessive network bandwidth may be required.

Temporal coherence based approaches are becoming useful tools for the visualization of animated
volumes, [71], [72], [73], [74], [75]. Younesy et al. [71], exploit the temporal coherence concept by introducing
a novel data structure called the Differential Time-Histogram table (DTHT) that stores voxels which are
changing between time-steps or during transfer function updates. Fang et al. [72] developed a time activity
curve (TAC) to identify temporal patterns while in [73], the detection of important regions is achieved
by studying the local statistical complexity. Wang et al. [74], compute an importance curve for each data
block after applying conditional entropy. Curves are then used to evaluate the temporal behaviour of
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blocks. A more recent approach, [75], uses functional representation of time-varying datasets to develop
an efficient encoding technique, taking into account the temporal similarity between timesteps. Akiba et
al. [76] proposed a technique that uses time histograms for simultaneous classification of time-varying data
by partitioning time histograms into temporally coherent equivalence classes.

Park et al. [77] presented a technique to effectively visualize time-varying oceanography data. The
approach uses an offline parallel rendering algorithm to create high quality images. They also proposed a
real-time rendering scheme with a hybrid technique that merges volume rendering and isocountorning. The
proposal is a client/server oriented technique that allows generating high resolution videos of datasets of up
to 78.6GB and dimensions of 2160 × 960 × 30 with 121 timesteps.

Summary
Although there have been interesting practical solutions to time-varying volume data visualization, a lot
of open problems still merit further investigation. Transmitting the whole spatiotemporal volume model
ensures full interaction capabilities in the client without further communication, but limitations in the
bandwidth and network latency during real-time visualization pose challenges for real-time visualization.
Compressed volume rendering methods present a good option for rendering models whose size exceeds current
hardware capabilities, which is easily the case with time-variant data that may consist of several frames
of 3D volumetric information. However, performance during decompression poses alternative challenges.
Thin-client solutions are popular means of simplifying the problem by transmitting only rendered images
through the network, but the disadvantage is that there is no volume information on the client side, leading
to decreased performance when new data is demanded.

5 Visualization on Low-End Devices
The objective of this brief section is to discuss the concerns of designing volume rendering algorithms for mobile
devices specifically, including approaches related to both, static and dynamic dataset described in previous
sections. The display resolution, the lack of power capacity, as well as memory and storage limitations,
mean that mobile devices must be considered low-end devices in the context of client-server architecture
implementations [78]. Also included in this category are computers that would be considered low-performance
compared to sophisticated computers specifically equipped to run complex graphics applications.

As mentioned in the introduction, tele-medicine and tele-diagnostic are techniques widely demanded by
modern hospitals. Several medical image applications require high performance computing and well designed
network infrastructures. The advance of mobile telephony and mobile devices in general, have motivated
novel development in addition to the refinement of existing visualization algorithms, many of which were
originally designed for video games. In addition to libraries being updated, new software and platforms
for embedded systems have also emerged. These factors as well as the relative ease of maintenance and
portability make mobile devices the preferred alternative for scientists and developers. Because of this, their
limitations are becoming a strong field of discussion for computer graphics researchers [78].

In parallel, volume models have grown significantly in complexity in recent years. The amount of memory
of modern GPUs is also growing, but unfortunately this is surpassed by the rate of increase in the size
of volumetric data sets. Most of the recent approaches for volume visualization in mobile devices have
been implemented using OpenGL ES [14–16], which is an application programming interface for advanced
3D graphics targeted at handheld and embedded devices. This library addresses some device constraints,
such as preprocessing capability and memory availability, low memory bandwidth, sensitivity to power
consumption, and the lack of floating-point hardware. However, the limited amount of published work and
effective solutions in the area, as well as the user interaction requirements for this application paradigm
mean that volume visualization on mobile devices is a highly challenging and open area of research.
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6 Conclusions and Discussion
Despite continual advances in computing power, the use of high performance graphic workstations is still
considerably restricted due to the cost of the most modern hardware. Widespread deployment of high-speed
wireless networks have increased the interest in remote rendering, which has some evident advantages. It
provides rich rendering experiences to thin clients such as mobile devices with limited computing resources,
shared by multiple clients and is a simple but effective cross-platform solution. However the minimization of
interaction latency still remains a challenge.

The study of client-server architectures for volume visualization is at present a wide area of research for
computer graphics scientists. We have made a comparative analysis of some relevant approaches in the area,
but of course it is impossible to fully cover all published works in this paper. Although there have been
interesting practical solutions in recent years, a number of open problems remain for further investigation.

Sending the whole volume model in a compressed way to the client device is still a challenging problem.
This ensures full interaction facilities in the client without further server-client communication. Many
proposals achieve good results, but the small allowed size of models and network latency during real time
visualization, decrease interaction capabilities. As an alternative most techniques transmit images through
the network, but such approaches are limited by the lack of volume information in the client side, decreasing
performance when new data is demanded and affecting image quality when reconstruction takes place in
clients.

Compressed volume rendering methods are a good alternative for rendering models whose size exceeds
current hardware capabilities. However, performance during decompression is still an area much in need of
improvements. Although some proposed techniques decompress data using the CPU, the current trend is to
move all the decompression to the last part of the graphic pipeline. In this way, the data gets compressed to
the GPU, which results in less memory consumption and better exploitation of available bandwidth.

Data transformation, quantization, encoding and progressive transmission, are strongly related concepts.
Some approaches convert volume data into compact data structures ready to be gradually sent from servers
to clients. In cases where no client-server architectures are implemented, compact data structures are used
to transfer data between CPU and GPU or to efficiently perform out-of-core methods.

Medical visualization requires special treatment. Current solutions propose novel improvements without
fully exploiting the fact that doctors usually adopt standard transfer functions. This factor can be leveraged
to achieve even higher levels of data compression. Moreover, low-end devices such as mobiles are being
preferred due to it easy maintenance and portability but their limitations demand further refinement of
client-server algorithms to optimally increase interactivity while inspecting large volume models.

In many scientific simulations, exploiting spatial and temporal coherence is a means of avoiding increasing
computational cost and reducing display time. Decreasing the time required to transfer a sequence of volumes
to the rendering engine is still a considerable challenge. Any such improvements must be achieved without
removing fine features from the handled dataset, which could be relevant to the task being supported by the
visualisation.
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