State of the Art

Peerhosting
- is a Web hosting infrastructure providing global, self-balancing cluster of Web Hosting Providers (WHP) web servers
- integrates hosting capacity of individual web hosts and delivers a broker service that allows trade in hosting capacity among WHP’s

Research Goal
- Design an appropriate name resolution solution for Peerhosting that
 • is highly scalable and tolerates high churn;
 • minimises load at both DNS system and Hosting Provider servers.
 • Ascertain feasibility of a peer based DNS solution in view of the extremely low latency requirements

State of the Art

There are only a few systems which propose DNS based on peer to peer routing protocols:

- DDNS (Distributed DNS)
 - DNS solution based on DHash (A Chord based DHT)
 - Routing performed by finger table algorithm, thus memorizes location of other nodes
 - No Caching layer implemented

- CoDONS
 - A peer based name service based pastry routing protocol
 - Pastry uses Prefix based routing
 - Low query latency due to the Beehive caching layer

Design

Architecture based on pastry routing protocol.
- RR-set Insert
- Performance Insert
- DNS lookup

Distinct Features:
- The resource records are replicated across multiple nodes
- Nodes make decisions independently based on performance statistics from the HP Servers to server the most appropriate HP Server

Research Challenges

- DNS considered a solved problem. Therefore very little work on peer to peer DNS systems.
- Efficiency a key concern as the query delay increases with the number of hops traversed by the query before being answered.
- Simple caching mechanisms not feasible as each node responsible for making independent decisions based on current performance statistics.
- Automatic load balancing in both DNS peer network and Peerhosting peer network.
- Enforcing Fair sharing to reduce load imbalance

Conclusion

- Demonstrated solution delivers a reasonable architecture with scope for further improvements, effectively minimising hops traversed using replication and proactive caching strategies.
- Evaluation results show that the computational cost at each node is reasonable and it does hinder the node performance significantly.
- Extensive PlanetLabs testing for highly accurate results is required as the performance depends on too many variable factors and network conditions of the day.

M.Sc. in Computer Science
(Networks and Distributed Systems)