<table>
<thead>
<tr>
<th>Academic Year</th>
<th>2010-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Code</td>
<td>CS7030</td>
</tr>
<tr>
<td>Module Title</td>
<td>Numerical Methods & Advanced Mathematical Modelling 1</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>BA/BSc/BEng (or equivalent) that includes mathematics and statistics</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Chief Examiner</td>
<td>Dr. Micheál Mac an Airchinnigh</td>
</tr>
<tr>
<td>Teaching Staff</td>
<td>Dr. Micheál Mac an Airchinnigh</td>
</tr>
<tr>
<td>Delivery</td>
<td>2 lectures and 1 tutorial per week; attendance is obligatory</td>
</tr>
</tbody>
</table>

Aims
- Encourage and foster the development of independent critical thinking.
- In particular students should be able to:
 - model problems using mathematics and statistics,
 - formulate and propose solutions,
 - infer from observation and interpret results.
- The students should be able to use, critique, and edit (where relevant) Internet resources such as Wikipedia, Wolfram Research,…

Learning Outcomes
- When students have successfully completed this module, they will be able to:
 - model and solve problems using three distinct, yet complementary, approaches: analytical, numerical and observational.
 - construct mathematical programs using computational resources such as Mathematica, MATLAB,…

Syllabus
- Specific themes addressed within the module will be drawn from the list:
 - Linear Algebra
 - Vector spaces, linear maps
 - Matrices
 - Analytics
 - Ordinary Differential Equations, Laplace transforms
 - Recurrence Relations and Difference Equations, z-transforms
 - Random Systems 1, random number generators
 - Numerics
 - Ordinary Differential Equations, Finite Difference Methods
 - Cellular Automata 1, basic theory and applications
 - Observations
 - Function Fitting, Least Squares, Levenberg-Marquardt Method.
 - Architectures: Padé Approximants, Splines, Orthogonal functions, Neural Networks
 - Time Series 1, linear time series

Assessment
- Project / Assignment – 20%
- Examination – 80%

Bibliography
- Main Course Text:
 Each student will choose those texts from the Trinity College Library that address and expand upon her/his own particular Mathematical interests within the analytical, numerical and observational framework. In addition each student will avail of appropriate scholarly Internet resources such as
<table>
<thead>
<tr>
<th>Website</th>
<th>http://www.scss.tcd.ie/postgraduate/mscict/</th>
</tr>
</thead>
</table>

Wolfram’s “*A New Kind of Science*.”

Students are expected to be able to access papers in the research journals appropriate to their own speciality within the degree program.