Concurrent Programs

• reasoning about their execution

• proving correctness

• start by considering *execution sequences*
Execution Sequences

- consider the following instruction sequences executed by threads T0 and T1

- n is a shared global variable with initial value 0

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = n + 1</td>
<td>n = n + 1</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = n + 1</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = n + 1</td>
</tr>
</tbody>
</table>

- assume that each statement \([n = n + 1]\) is executed atomically

- n can only be accessed by one thread at a time

- statement execution can be interleaved 20 different ways

- as statements are atomic, n will always end up with the value 6 irrespective of how statements are interleaved
Execution Sequences...

- one possible interleave

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = n + 1</td>
<td>n = 1</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 2</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 3</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 4</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 5</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = 6</td>
</tr>
</tbody>
</table>

- \(n = n + 1 \) is not normally executed atomically by a CPU
- CPU will read [load] \(n \) from memory into CPU, increment value inside CPU and then write [store] the result \([n + 1]\) to memory [location \(n \)]
- non atomic read-modify-write
Execution Sequences...

- \(n = n + 1 \) is split into two steps \([t = n \text{ and } n = t + 1]\)
- simulates a non atomic read-modify-write sequence
- each thread now has its own local variable \(t_0 \) and \(t_1 \)

- statements can be interleaved 924 ways
- what is the maximum and minimum resulting value for \(n \)?
 - \(\max n = 6 \) \(\min n = 2 \)
Execution Sequences...

- execution sequence resulting in $n = 6$

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0 = n</td>
<td>$t0 = 0$</td>
<td></td>
</tr>
<tr>
<td>n = t0 + 1</td>
<td>$n = 1$</td>
<td></td>
</tr>
<tr>
<td>t0 = n</td>
<td>$t0 = 1$</td>
<td></td>
</tr>
<tr>
<td>n = t0 + 1</td>
<td>$n = 2$</td>
<td></td>
</tr>
<tr>
<td>t0 = n</td>
<td>$t0 = 2$</td>
<td></td>
</tr>
<tr>
<td>n = t0 + 1</td>
<td>$n = 3$</td>
<td></td>
</tr>
<tr>
<td>t1 = n</td>
<td>$t1 = 3$</td>
<td></td>
</tr>
<tr>
<td>n = t1 + 1</td>
<td>$n = 4$</td>
<td></td>
</tr>
<tr>
<td>t1 = n</td>
<td>$t1 = 4$</td>
<td></td>
</tr>
<tr>
<td>n = t1 + 1</td>
<td>$n = 5$</td>
<td></td>
</tr>
<tr>
<td>t1 = n</td>
<td>$t1 = 5$</td>
<td></td>
</tr>
<tr>
<td>n = t1 + 1</td>
<td>$n = 6$</td>
<td></td>
</tr>
</tbody>
</table>
Execution Sequences...

- execution sequence resulting in \(n = 2 \)

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 0)</td>
</tr>
<tr>
<td>(t_1 = n)</td>
<td>(t_1 = 0)</td>
</tr>
<tr>
<td>(n = t_1 + 1)</td>
<td>(n = 1)</td>
</tr>
<tr>
<td>(t_1 = n)</td>
<td>(t_1 = 1)</td>
</tr>
<tr>
<td>(n = t_1 + 1)</td>
<td>(n = 2)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 1)</td>
</tr>
<tr>
<td>(t_1 = n)</td>
<td>(t_1 = 1)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 1)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 2)</td>
</tr>
<tr>
<td>(t_0 = n)</td>
<td>(t_0 = 2)</td>
</tr>
<tr>
<td>(n = t_0 + 1)</td>
<td>(n = 3)</td>
</tr>
<tr>
<td>(n = t_1 + 1)</td>
<td>(n = 2)</td>
</tr>
</tbody>
</table>
Execution Sequences...

- use Promela/Spin to check results

- \(_\text{nr} _\text{pr} == 1\) waits until the two instances of \(p0\) are \textit{terminated} and then checks \texttt{assert}(n > 2)

- in verification mode, Spin will execute all possible interleaves and stop if \texttt{assert}(n > 2) is false

- this sequence can then be replayed for analysis

- change to \texttt{assert}(n > 1) and use verification mode to confirm that the resulting value of \(n\) is always greater than 1

- \texttt{ispin.tcl} demo [\textit{relatively easy to install on Windows and Ubuntu}]

```promela
int n = 0;

proctype p0()
{
    int t;
t = n;
n = t + 1; // n = n + 1
t = n;
n = t + 1; // n = n + 1
t = n;
n = t + 1; // n = n + 1
}

init
{
    run p0();
    run p0();
    (_nr_pr == 1);
    assert(n > 2)
}
```

Promela source code
Execution Sequences...

- modify to use a for loop [constructed from a do statement] to increment n from 0 to N

- each process executes the read-modify-sequence N times

- confirm (n >= 2) && (n <= 2*N)

- if N large, verification may not complete [typically runs out of memory]

- need to increase memory allocated to Spin or use an alternative mode which uses less memory [eg. compresses state data], but is more compute intensive

- NB: minimum result value for n is the number of processes

```c
#define N 10
int n = 0;

proctype p()
{
    int t;
    int i = 0;
    do
    :: (i > N) ->
        break;
    :: else ->
        t = n;
        n = t + 1;
        i++
    od
}

init {
    run p();
    run p();
    (_nr_pr == 1);
    assert (n > 1)
}
```

Promela source code
Spin states stored and states matched

- consider a simple example with two processes each with two statements
- number of interleaves 6
- state transition diagram where each state represented by a triple \((PC_0, PC_1, n)\)
- arcs represent executed statements

 eg. \((n = n + 1)_p\) step executed by process \(p\)

```c
int n = 0;

active[2] proctype p0()
{
    n = n + 1;  // pc = 0
    n = n + 1;  // pc = 1
}
```
Spin states stored and states matched...

- assume a depth first search
- new states coloured green
- matched states coloured red [have already visited state]
- remaining states coloured grey
- 9 states stored [green], 4 states matched [red]
- NOT the same as Spin counts which are
 - 13, 4 with partial order reduction
 - 13, 6 without partial order reduction

\[
\begin{array}{ccc}
0, 0, 0 & (n=n+1)_0 & (n=n+1)_1 \\
1, 0, 1 & (n=n+1)_0 & (n=n+1)_1 \\
2, 0, 2 & (n=n+1)_0 & (n=n+1)_1 \\
1, 1, 2 & (n=n+1)_0 & (n=n+1)_1 \\
2, 1, 3 & (n=n+1)_0 & (n=n+1)_1 \\
1, 2, 3 & (n=n+1)_0 & (n=n+1)_1 \\
2, 2, 4 & (n=n+1)_0 & (n=n+1)_1 \\
1, 2, 3 & (n=n+1)_0 & (n=n+1)_1 \\
2, 2, 4 & (n=n+1)_0 & (n=n+1)_1 \\
1, 2, 3 & (n=n+1)_0 & (n=n+1)_1 \\
\end{array}
\]
Spin states stored and states matched...

• Spin uses an extra state/step to terminate a process [after last statement has been executed]

• Why?

• processes are created in source code order [apart from init, if present, which is always process 0]

• terminated in reverse order [process 1 must be terminated before process 0]

• use T for the PC of instruction used to terminate process

• processes numbered 0 and 1 in example

• modified state transition diagram
Spin states stored and states matched

- 13 stored states
- 6 matched states without partial order reduction
- 4 matched states with partial order reduction
- Red dotted states can be skipped [partial order reduction]
- \((n = n + 1)_0\); \(T_1\) results in the same state change as \(T_1; (n = n + 1)_0\) as statements are independent of each other
Synchronisation

- **spin lock**: ensures that only one thread can access a particular shared data structure at a time [serialise access]

- **barrier**: ensures that no thread advances beyond a particular point in a computation until ALL have arrived at the barrier - used typically to separate program phases

- synchronization constructs divided into two classes
 - **blocking**: de-schedule waiting thread and schedule another thread to run
 - **busy-wait**: threads repeatedly test a shared variable to determine when they can proceed

- busy-wait preferred when scheduling overhead exceeds expected wait time
Spin Lock Implementations without Atomic Instructions

- Peterson algorithm for **TWO** threads [there is also Dekker’s algorithm]

  ```c
  int flag[2]; // initially 0
  int last;
  
  void acquire(int id) // id is the thread ID [0 or 1]
  {
    int j = 1 - id; // 0 -> 1 and 1 ->0
    flag[id] = 1; // want lock
    last = id; // other thread has priority
    while (flag[j] && last == id);
  }

  void release(int id)
  {
    flag[id] = 0; // release lock
  }
  
  what happens if the variable last removed?
  what happens if the statement flag[id] = 1 removed?
  check using Spin
  
  - thread sets its **flag** indicating it wants lock and then sets **last** to indicate other thread can have lock if there is a conflict
  
  - wait while other thread has lock and other thread has priority
Peterson Lock

• Promela code for Peterson lock

• two active processes

• _pid is the process number [0 or 1 in this case]

• although processes never end, state will eventually be repeated

Promela code

```c
//
// Peterson lock
//

bool flag[2];
byte last;

active[2] proctype P()
{
 byte i = _pid;
 byte j = 1 - i;

again:
 flag[i] = 1;
 last = i;

 (flag[j] == 0 || last == j); // wait until true

 flag[i] = 0; // release lock

 goto again
}
```

Promela code
Peterson Lock...

- desirable properties
  - safety  "nothing bad ever happens"
    eg mutual exclusion not violated
  - deadlock free  "in every state of every computation, if processes are trying to enter the critical section one will eventually succeed"
  - liveness  "something good eventually happens"
    eg processes continually enter critical section
  - starvation free  "if in every state of every computation, if a process tries to enter its critical section it will eventually succeed"

- use Spin to test for these properties
Peterson Lock...

- base line
- verify using safety mode
- NO errors found
- max depth reached 13
Peterson Lock...

- max depth = 13
- a possible infinite run with depth 13 [there are many others]
- eventually reaches a previously visited state
- there are shorter infinite runs eg selecting statements from one process only
Peterson Lock...

- safety check for mutual exclusion
- first approach
- declare global variable $ncs$ and add following code to critical section

```c
ncs++;
assert(ncs == 1);
ncs--;
```
- run model and verify assertion NOT violated
- comment out line containing `flag[i] = 1;` to force a mutual exclusion error
- verify `assert(ncs == 1)` violated
- replay trail to find cause of error
Peterson Lock...

- extra code
- NO errors
Peterson Lock...

- // flag[i] = 1;
- assertion violated
Peterson Lock...

- replay trail to find error
- critical section entered by \textit{process} 0 in step 20 and ALSO by \textit{process} 1 in step 24
- error results from \textit{ncs++} in step 20 and 24
Peterson Lock...

- second approach for mutual exclusion checking
- check against an LTL claim [linear temporal logic]
  
  \[ \text{ltl claim} \{ \text{always (ncs} \leq 1) \} \]

- think of LTL checking as a game played between the model and Spin
- Promela claim \textit{process} generated from the inverse of the LTL claim
- claim \textit{process} executed before each step of model to check claim is true in every model state
- Spin wins if assertion error in claim OR acceptance cycle in claim OR claim \textit{process} terminates [meaning claim is FALSE]
Peterson Lock...

- claim
- NO errors
- NB: acceptance cycles and use claim buttons selected
Peterson Lock...

- // flag[i] = 1;
- claim
- claim assertion violated
- replay trail to find error
Peterson Lock...

- steps 34 and 42 show how `ncs` gets a value of 2
Peterson Lock...

- click on a never claim step to view Promela code for claim
Peterson Lock...

- third approach for mutual exclusion checking
- LTL claim using statement labels
- separate into two processes P and Q
- add labels $csp$ and $cpq$ to mark critical section in P and Q respectively

$$\text{ltl claim } \{ \text{always } ! (P@csp \land Q@csq) \}$$

- $P@csp$ - statement with label $csp$ in P
Peterson Lock...

- two separate processes
- labels

- NB: acceptance cycles and use claim buttons selected
- claim assertion violated
Peterson Lock...

- check for deadlock
- force deadlock by removing variable \textit{last}
- verify in safety mode
- reports \textit{pan:1: invalid end state (at depth 8)}
- replay trail to find error
Peterson Lock...

- variable last removed
- safety mode
- invalid end state [at depth 4]
Peterson Lock...

- replay trail to find error
- confirms both processes deadlocked at (flag[j] == 0)
Peterson Lock...

- check for liveness
- show that csp is true infinitely often

\[ \text{ltl claim \{always eventually csp\}} \]

- claim also true with following infinite run

\[ \text{ltl claim \{always (eventually csp && eventually !csp) \}} \]
Peterson Lock...

- claim
- fails due to an acceptance cycle being found
Peterson Lock...

- replay trail to find error
- verifier is ONLY selecting statements from process 1
- strong fairness
Peterson Lock...

- need to verify with the “enforce weak fairness constraint”

- a computation is weakly fair if and only if the following conditions holds:

  if a statement is always executable, then it is eventually executed as part of the computation

- alternatively could try following claim for liveness

  \( \text{ltl claim} \{ \text{always (eventually csp && eventually !csp) || (eventually csq && eventually !csq)} \} \)

- check for starvation freedom

  \( \text{ltl claim} \{ \text{always (eventually csp && eventually !csp) && (eventually csq && eventually !csq)} \} \)

[needs the “enforce weak fairness constraint” selected]
Peterson Lock

- claim
- **enforce weak fairness constraint** SELECTED
- NO errors
Peterson Lock...

- an interesting property of the Peterson lock is that if a process sets its flag, it will eventually obtain the lock

- LTL claim

\[ \text{ltl claim} \{ \text{always ((flag[0] -> eventually P@csp) && (flag[1] -> eventually Q@csq)) } \} \]

- implication

- need to add labels csp and csq to mark critical sections

- no need to enforce weak fairness constraint
Peterson Lock...

- labels
- claim
- NO need to enforce weak fairness constraint
- NO errors
Bakery Lock

- Leslie Lamport CACM Aug 1974 [2013 A. M. Turing Award Winner]

- algorithm works with N threads

- think of a baker’s shop

- customers enter door and obtain a unique ticket number from a ticket dispenser [tickets issued in ascending order]

- customers then served in ticket order

- the problem is how to obtain a unique ticket without using any atomic instructions [straightforward with a modern CPU if the right atomic instruction is available]

- often called a ticket lock

- let’s examine a C/C++ version of the code from the original paper
Bakery Lock

```c
int number[MAXTHREAD]; // thread IDs 0 to MAXTHREAD-1
int choosing[MAXTHREAD];

void acquire(int pid) // pid is thread ID
{
 choosing[pid] = 1;
 int max = 0;
 for (int i = 0; i < MAXTHREAD; i++) { // find maximum ticket
 if (number[i] > max)
 max = number[i];
 }
 number[pid] = max + 1; // our ticket number is maximum ticket found + 1
 choosing[pid] = 0;
 for (int j = 0; j < MAXTHREAD; j++) { // wait until our turn i.e. have lowest ticket
 while (choosing[j]);
 while ((number[j] != 0) && ((number[j] < number[pid]) || ((number[j] == number[pid]) && (j < pid))));
 }
}

void release(int pid)
{
 number[pid] = 0; // release lock
}
```
Bakery Lock

- how does the algorithm work?
- consider 3 threads numbered 0, 1 and 2
- imagine thread2 holds lock and number[] = [0, 0, 2]
- if thread0 and thread1 *concurrently* execute the code to get a ticket what, ticket values can be returned?
- NB: number[] can be changed by other threads while a thread is obtaining its ticket
- 3, 4 or 4, 3 or 3, 3 or 1, 2 or 2, 1 or 1, 1 ??
- since threads can be issued with the same ticket number, threadID is used as a differentiator [thread with lower threadID given priority]
- when thread releases lock it sets number[threadID] = 0
- what is the maximum ticket value? can algorithm handle ticket value wrap around?
- why is the *while (choosing[jj])* loop needed?
- what happens if a thread goes to sleep holding lock?
Learning Outcomes

• you are now able to:

  ▪ show how the different execution interleaves of a concurrent algorithm can lead to different results
  ▪ explain the desirable properties of a concurrent algorithms (safety, deadlock free, liveness and starvation free)
  ▪ write simple Spin programs to test the properties of concurrent algorithms
  ▪ use LTL expressions to test for properties of concurrent algorithms
  ▪ analyse the operation and properties of the Peterson lock
  ▪ analyse the operation and properties of the Bakery lock
  ▪ use Spin to test the properties of the Black-White Bakery Algorithm