Challenges to reasoning

Assaults against

- truth
 Liar’s Paradox: ‘I am lying’

- sets/membership ∈
 Russell set \(R = \{ x \mid \text{not } x \in x \} \)

- countability
 Cantor: \(\text{Power}(\{0, 1, 2, \ldots\}) \)

- change
 Sorites: heap (minus one grain)

- computability
 Turing: Halting Problem

The Halting Problem

Given a program \(P \) and data \(D \), return either 0 or 1 (as output), with 1 indicating that \(P \) halts on input \(D \)

\[
\text{HP}(P, D) := \begin{cases}
1 & \text{if } P \text{ halts on } D \\
0 & \text{otherwise}
\end{cases}
\]

Theorem (Turing) No TM computes \(\text{HP} \).

The proof is similar to the Liar’s Paradox distributed as follows

\(H: \) ‘L speaks the truth’
\(L: \) ‘H lies’

with a spoiler L (exposing H as a fraud).
Proof of uncomputability

Given a TM P that takes two arguments, we show P does not compute HP by defining a TM \overline{P} such that

$$P(\overline{P}, \overline{P}) \neq HP(\overline{P}, \overline{P}).$$

Let

$$\overline{P}(D) :\equiv \begin{cases} 1 & \text{if } P(D, D) = 0 \\ \text{loop} & \text{otherwise.} \end{cases}$$

and notice

$$HP(\overline{P}, \overline{P}) = \begin{cases} 1 & \text{if } \overline{P} \text{ halts on } \overline{P} \\ 0 & \text{otherwise} \end{cases} \quad \text{(def of HP)}$$

$$= \begin{cases} 1 & \text{if } P(\overline{P}, \overline{P}) = 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{(def of } \overline{P})$$

\[\square\]

Semi-solvability of HP and reasoning

There is a TM that meets the positive part of HP (looping exactly when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

$$U(P, D) \sim P(D)$$

for any given TM P and data D.

Negative results balanced by positive ways forward

- deduction: Gödel incompleteness/completeness theorems
- truth: Tarski undefinability/definability