1. Recall that a *definite clause* is an atom (or fact) or a rule of the form

\[h : - \ b_1, b_2, \ldots, b_m \]

where \(h \) and all \(b_i \)'s are atoms. A *propositional clause* is a definite clause in which all predicates in it have arity 0. (That is, there are no terms.) Let us agree to encode propositional clauses as lists, with an atom \(f \) encoded as \([f]\) and a rule \(h : - b_1, \ldots, b_m \) as \([h, b_1, \ldots, b_m]\). A finite list of propositional clauses can then be encoded as a list of lists — e.g.

\[
\begin{align*}
 h &: - c. \\
 h &: - f, g. \\
 f &: - g. \\
 g &:
\end{align*}
\]

as \([[h, c], [h, f, g], [f, g], [g]]\). Recall that the binary Prolog predicate \(\text{lc} (\text{Atom}, \text{KB}) \) defined below is true iff \(\text{Atom} \) is a logical consequence of \(\text{KB} \).

\[
\text{lc}(X, \text{KB}) : - \ \text{cn}(C, \text{KB}), \ \text{member}(X, C).
\]

\[
\text{cn}(C, \text{KB}) : - \ \text{cn}([], C, \text{KB}).
\]

\[
\text{cn}(\text{TempC}, C, \text{KB}) : - \ \text{member}([H|B], \text{KB}), \\
 \text{all}(B, \text{TempC}), \\
 \text{nonmember}(H, \text{TempC}), \\
 \text{cn}([H|\text{TempC}], C, \text{KB}).
\]

\[
\text{cn}(C, C, _).
\]

\[
\text{all}([], _).
\]

\[
\text{all}([H|T], L) : - \ \text{member}(H, L), \ \text{all}(T, L).
\]

\[
\text{nonmember}(_, [_]).
\]

\[
\text{nonmember}(X, [H|T]) : - X=H, \ \text{nonmember}(X, T).
\]

Your task is to define a predicate \(\text{lcRule} (\text{List}, \text{KB}) \) that is true precisely when the rule encoded by \(\text{List} \) is a logical consequence of \(\text{KB} \).

Some runs to cover

\[
| ?- \ \text{lcRule}([\text{a}, \text{b}],[\text{a}],[\text{b}, \text{c}])).
\]

yes

\[
| ?- \ \text{lcRule}([\text{b}, \text{a}],[\text{a}],[\text{b}, \text{c}])).
\]
| no |
| ?- lcRule([a,b],[[a,b,c],[c]]). yes |
| no |
| ?- lcRule([a,d],[[a,b,c],[c]]). yes |

2. Consider the knowledge base

\[
\begin{align*}
\text{false} & : \neg a. \\
\text{false} & : \neg b, c. \\
a & : \neg d. \\
b & : \neg e. \\
c & : \neg d, f. \\
c & : \neg g. \\
c & : \neg h.
\end{align*}
\]

Given that \(\{d, e, f, g, h\}\) is the set of assumables, what is the set of minimal conflicts of the above clauses?