Canonical Example: Graph Coloring

- Consider N nodes in a graph
- Assign values $V_1, ..., V_N$ to each of the N nodes
- The values are taken in $\{R, G, B\}$
- Constraints: If there is an edge between i and j, then V_i must be different from V_j
Canonical Example: Graph Coloring

CSP Definition

- **CSP** = \{V, D, C\}
- **Variables**: V = \{V_1, ..., V_n\}
 - Example: The values of the nodes in the graph
- **Domain**: The set of d values that each variable can take
 - Example: \(D = \{R, G, B\}\)
- **Constraints**: C = \{C_1, ..., C_p\}
 - Each constraint consists of a tuple of variables and a list of values that the tuple is allowed to take for this problem
 - Example: \([\{V_2, V_3\}, \{(R, B), (R, G), (B, R), (B, G), (G, R), (G, B)\}]\)
 - Constraints are usually defined implicitly → A function is defined to test if a tuple of variables satisfies the constraint
 - Example: \(V_i \neq V_j\) for every edge \((i, j)\)
Binary CSP

- Variable V and V' are connected if they appear in a constraint.
- Neighbors of $V = \{v \in V \mid (v, v') \in E\}$ are variables that are connected to V.
- The domain of V, $D(V)$, is the set of candidate values for variable V.
- $D_i = D(V_i)$

- Constraint graph for binary CSP problem:
 - Nodes are variables
 - Links represent the constraints
 - Same as our canonical graph-coloring problem

N-Queens

![N-Queens Diagram]

$Q_1 = 1 \quad Q_2 = 3$
Example: N-Queens

- Variables: Q_i
- Domains: $D_i = \{1, 2, 3, 4\}$
- Constraints
 - $Q_i \neq Q_j$ (cannot be in same row)
 - $|Q_i - Q_j| \neq |i - j|$ (or same diagonal)

- Valid values for (Q_1, Q_2) are
 - $(1, 3)$
 - $(1, 4)$
 - $(2, 4)$
 - $(3, 1)$
 - $(4, 1)$
 - $(4, 2)$

Cryptarithmetic

```
SEND
+MORE
-----
MONEY
```
Search Space

Example state:

$$(V_1=G, V_2=B, V_3=\?, V_4=\?, V_5=\?, V_6=\?)$$

- **State**: assignment to k variables with $k+1,...,N$ unassigned
- **Successor**: The successor of a state is obtained by assigning a value to variable $k+1$, keeping the others unchanged
- **Start state**: $(V_1=\?, V_2=\?, V_3=\?, V_4=\?, V_5=\?, V_6=\?)$
- **Goal state**: All variables assigned with constraints satisfied
- No concept of cost on transition → We just want to find a solution, we don’t worry how we get there

```
<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
```

Really dumb assignment

9d
Depth First Search

- Recursively:
 - For every possible value in \(D \):
 - Set the next unassigned variable in the successor to that value
 - Evaluate the successor of the current state with this variable assignment
 - Stop as soon as a solution is found

DFS

- Improvements:
 - Evaluate only value assignments that do not violate any constraints with the current assignments
 - Don’t search branches that obviously cannot lead to a solution
 - Predict valid assignments ahead
 - Control order of variables and values
Outline

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

<table>
<thead>
<tr>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order of values:
(B,R,G)

<table>
<thead>
<tr>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>R</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>R</td>
<td>R</td>
<td>B</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>R</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>?</td>
</tr>
</tbody>
</table>
Backtracking DFS

- For every possible value x in D:
 - If assigning x to the next unassigned variable V_{k+1} does not violate any constraint with the k already assigned variables:
 - Set the variable V_{k+1} to x
 - Evaluate the successors of the current state with this variable assignment
 - If no valid assignment is found: Backtrack to previous state
 - Stop as soon as a solution is found

Order of values: \((B,R,G)\)

Backtrack to the previous state because no valid assignment can be found for V_6
Backtracking DFS Comments

- Additional computation: At each step, we need to evaluate the constraints associated with the current candidate assignment (variable, value).

- Uninformed search, we can improve by predicting:
 - What is the effect of assigning a variable on all of the other variables?
 - Which variable should be assigned next and in which order should the values be evaluated?
 - When a branch fails, how can we avoid repeating the same mistake?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

<table>
<thead>
<tr>
<th></th>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
</tr>
<tr>
<td>B</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
</tr>
<tr>
<td>G</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
<td>❓</td>
</tr>
</tbody>
</table>

Warning: Different example with order (R,B,G)
Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

<table>
<thead>
<tr>
<th></th>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>X</td>
<td>?</td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
</tbody>
</table>
Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when no variable has a legal value

<table>
<thead>
<tr>
<th></th>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>?</td>
<td>X</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

![Diagram of Forward Checking](image)

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

<table>
<thead>
<tr>
<th></th>
<th>V₁</th>
<th>V₂</th>
<th>V₃</th>
<th>V₄</th>
<th>V₅</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

![Diagram of Forward Checking](image)
Forward Checking
- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>O</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are no valid assignments left for V_6, we need to backtrack.

Constraint Propagation
- Forward checking does not detect all the inconsistencies, only those that can be detected by looking at the constraints which contain the current variable.
- Can we look ahead further?

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>O</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At this point, it is already obvious that this branch will not lead to a solution because there are no consistent values in the remaining domain for V_5 and V_6.
Constraint Propagation

- \(V \) = variable being assigned at the current level of the search
- Set variable \(V \) to a value in \(D(V) \)
- For every variable \(V' \) connected to \(V \):
 - Remove the values in \(D(V) \) that are inconsistent with the assigned variables
 - For every variable \(V'' \) connected to \(V' \):
 - Remove the values in \(D(V') \) that are no longer possible candidates
 - And do this again with the variables connected to \(V'' \)
 -until no more values can be discarded

New: Constraint Propagation

Forward Checking as before

- Remove the values in \(D(V) \) that are inconsistent with the assigned variables
- For every variable \(V'' \) connected to \(V' \):
 - Remove the values in \(D(V') \) that are no longer possible candidates
 - And do this again with the variables connected to \(V'' \)
 -until no more values can be discarded