This assignment asks you to apply the A* search algorithm to graphs over the set of nodes \(\{1, 2, 3, \ldots \} \), with arcs \(N, M \) and costs \(\text{Cost} \) induced by a positive integer \(\text{Seed} \) as follows:

\[
\text{arc} (N, M, \text{Seed}, \text{Cost}) :\text{N is } N \times \text{Seed}, \text{Cost}=1. \\
\text{arc} (N, M, \text{Seed}, \text{Cost}) :\text{N is } N \times \text{Seed} + 1, \text{Cost}=2.
\]

(E.g. \(\text{Seed} = 3 \) yields arc \(1, 3 \) with cost 1 and \(1, 4 \) with cost 2.) Let us agree also that the goal nodes are given by a positive integer \(\text{Target} \) as those nodes divisible by \(\text{Target} \) — i.e. \(\text{Target}, 2\times \text{Target}, 3\times \text{Target}, \ldots \)

\[
\text{goal} (N, \text{Target}) :\text{0 is } N \mod \text{Target}.
\]

Given \(\text{Target} \), let us set the heuristic function to 0 on goal nodes, and to the reciprocal elsewhere.

\[
\text{h} (N, \text{Hvalue}, \text{Target}) :\text{goal} (N, \text{Target}), !, \text{Hvalue is 0} \\
\text{Hvalue is } 1/N.
\]

Your task is to define a predicate

\[
\text{a-star} (+\text{Start}, +\text{Seed}, +\text{Target}, ?\text{Found})
\]

that given positive integers \(\text{Start}, \text{Seed} \) and \(\text{Target} \) returns the lowest cost goal node \(\text{Found} \) calculated by A*.

The idea is to modify the skeletal search algorithm

\[
\text{search} ([\text{Node}|\text{FRest}]) :\text{goal} (\text{Node}). \\
\text{search} ([\text{Node}|\text{FRest}]) :\text{setof} (X, \text{arc} (\text{Node}, X), \text{FNode}), \\
\text{add-to-frontier} (\text{FNode}, \text{FRest}, \text{FNew}), \\
\text{search} (\text{FNew}).
\]

so that the list \(\text{FNew} \) obtained in \(\text{add-to-frontier} \) is (as prescribed by A*) sorted in order of increasing \(f \)-values, where \(f(\text{node}) = \text{cost}(\text{node}) + \text{h}(\text{node}) \).

Hint. Let the frontier be a list of node-cost pairs (instead of just nodes), being careful to add the cost of the parent to its children, and to bring in the heuristic function in ordering the frontier \(\text{FNew} \).

\[
\text{less-than} ([\text{Node1}, \text{Cost1}], [\text{Node2}, \text{Cost2}], \text{Target}) :\text{h} (\text{Node1}, \text{Hvalue1}, \text{Target}), \text{h} (\text{Node2}, \text{Hvalue2}, \text{Target}), \\
\text{F1 is Cost1+Hvalue1, F2 is Cost2+Hvalue2,} \\
\text{F1 =< F2}.
\]

Test your definitions with queries such as

\(?- \text{a-star}(1, 3, 6, F).\)