
1

University of Dublin
Trinity College

Index Structures for Files
Multi-Level Indexes

Owen.Conlan@cs.tcd.ie

Multi-Level Indexes 2

Because a single-level index is an ordered file, we can
create a primary index to the index itself

• the original index file is called the first-level index
• the index to the index is called the second-level index

We can repeat the process, creating a 3rd, 4th,.... top
level until all entries in the top level fit in one disk block

Multi-Level Indexes

Multi-Level Indexes 3

Multi-Level Indexes
Indexing schemes so far have looked at an ordered
index file
Binary search performed on this index to locate pointer
to disk block or record
Requires approximately log2n accesses for index with n
blocks
Base 2 chosen because binary search reduces part of
index to search by factor of 2
The idea behind multi-level indexes is to reduce the part
of the index to search by bfr , the blocking factor of the
index (which is bigger than 2!)

Multi-Level Indexes 4

Fan-Out
The value of bfr for the index is called the fan-out
We will refer to it using the symbol fo

Searching a multi-level index requires approximately

logfon

block accesses

This is smaller than binary search for fo > 2

Multi-Level Indexes 5

A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as
the first-level index consists of more than one disk
blocks
Such a multi-level index is a form of search tree ;
however, insertion and deletion of new index entries is a
severe problem because every level of the index is an
ordered file
Hence most multi-level indexes use B-tree or B+ tree
data structures, which leave space in each tree node
disk block) to allow for new index entries

Multi Level Indexes

Multi-Level Indexes 6

A multi-level index considers the index file as an
ordered file with a distinct entry for each K(i)

• First level

We can create a primary index for the first level
• Second level
• Because the second level uses block anchors we only need an

entry for each block in the first level

We can repeat this process for the second level
• Third level would be a primary level for the second level

And so on … until all the entries of a level fit in a single
block

Multi Level Indexes

2

Multi-Level Indexes 7

Example
Imagine we have a single level index with entries across 442
blocks and a blocking factor of 68
Blocks in first level,

n1 = 442
Blocks in second level,

n2 = ceil(n1/fo) = ceil(442/68) = 7
Blocks in third level,

n3 = ceil(n2/fo) = ceil(7/68) = 1
t = 3
t+1 access to search multi-level index.
Binary search of a single level index of 442 blocks takes 9 +1
accesses

Multi-Level Indexes 8

How many levels?
The top level index (where all the entries fit in one block)
is the tth level
Each level reduces the number of entries at the previous
level by a factor of fo, the index fan-out

Therefore,
1 ≤ (n/(fot))

We want t,
t = round(logfon)

Multi-Level Indexes 9

Two-Level Index

2
35
55
85

2
8
15
24

35
39
44
51

55
63
71
80

2
5

24
29

.

.

35
36

51
53

.

.

55
61

80
82

.

.

.

.

Second (Top)
Level

First (Base)
Level Data File

.

.

Multi-Level Indexes 10

Search Algorithm
For searching a multi-level primary index with t levels

p ← address of top level block of index;
for j ← t step -1 to 1 do

begin

read the index block (at jth index level) whose address is p;

search block p for entry I such that Kj(i) ≤ K < Kj(i+1) (if
Kj(i) the last entry in the block it is sufficient to
satisfy Kj(i) ≤ K);

p ← Pj(i) (* picks appropriate pointer at jth index level *);

end;
read the data file block whose address is p;

search block p for record with key = K;

Multi-Level Indexes 11

The Invention of the B-Tree
It is hard to think of a major general-purpose file system
that is not built around B-tree design

They were invented by two researchers at Boeing, R.
Bayer and E. McCreight in 1972

By 1979 B-trees were the "de facto, the standard
organization for indexes in a database system“

B-trees address the problem of speeding up indexing
schemes that are too large to copy into memory

Multi-Level Indexes 12

The Problem
The fundamental problem with keeping an index on
secondary storage is that accessing secondary storage
is slow. Why?

Binary searching requires too many seeks:

Searching for a key on a disk often involves seeking to
different disk tracks. If we are using binary search, on
average about 9.5 seeks is required to find a key in an
index of 1000 items using a binary search

3

Multi-Level Indexes 13

The Problem
It can be very expensive to keep the index in sorted
order

If inserting a key involves moving a large number of
other keys in the index, index maintenance is very
nearly impractical on secondary storage for indexes
with large numbers of keys

We need to find a way to make insertions and deletions
to indexes that will not require massive reorganization

Multi-Level Indexes 14

These data structures are variations of search trees that
allow efficient insertion and deletion i.e. are good in
dynamic situations

Specifically designed for disk

• each node corresponds to a disk block
• each node is kept between half full and completely full

Using B-trees and B+ trees as
dynamic multi-level indexes

Multi-Level Indexes 15

An insertion into a node that is not full is very efficient; if
a node is full then insertion causes the node to split into
two nodes

Splitting may propagate upwards to other tree levels

Deletion is also efficient as long as a node does not
become less than half full; if it does then it must be
merged with neighbouring nodes

Using B-trees and B+ trees as
dynamic multi-level indexes

Multi-Level Indexes 16

A B-Tree, of order m, is a multi-way search
lexicographic search tree where:

• every node has

CEIL[m/2]- 1 ≤ k ≤ m-1 keys

appearing in increasing order from left to right; an exception is the
root which may only have one key

• a node with k keys either has k +1 pointers to children, which
correspond to the partition induced on the key-space by those k
keys, or it has all its pointers null, in which case it is terminal

• all terminal nodes are at the same level

Definition of a B-Tree

Multi-Level Indexes 17

20 40

10 15 25 30 45 50

35

Total search time
= 2*1 + 6*2 + 1*3
= 17

30
20

15

10

45
5040

35

25

Total search time
= 1 + 2*2 + 4*3 + 2*4
= 25

3-way tree 2-way (binary) tree

Comparison

Multi-Level Indexes 18

The terminal node where the key should be placed is
found and the addition (in appropriate place
lexicographically) is made

If overflow occurs (i.e. >m-1 keys), the node splits in
two and middle key (along with pointers to its newly
created children) is passed up to the next level for
insertion and so on

At worst splitting will propagate along a path to the
root, resulting in the creation of a new root

Insertion into a B-Tree

4

Multi-Level Indexes 19

220 40

10 15 25 30 45 50

35

20 40

10 15 25 30 35 45 50

too many keys
(>m-1)

20 30 40

10 15 25 45 5035

too many keys

40

10 15 25 45 5035

30

20

final B-tree

Example of insertion of key 35 into
B-tree of order 3

1

3 4

Multi-Level Indexes 20

Delete key

If node still has at least CEIL[m/2]-1 keys then OK

If not -

• If there is a lexicographic successor (i.e. node with deleted key is not a leaf
node) – promote it.

• If any node is left with less than CEIL[m/2]-1 keys merge that node with left
or right hand sibling and common parent

This may leave parent node with too few keys so continue merging
which may result in leaving the root empty in which case it is deleted,
thereby reducing the number of levels in the tree by 1

Deletion from a B-Tree

Multi-Level Indexes 21

For B tree of order 5:
Maximum number of keys per node = m -1 = 5 -1 = 4
Minimum number of keys per node = CEIL [m/2] -1 = CEIL [5/2] -1 =2
Replace ‘zem’ in node A by its lexicographic succesor ‘zil’ in node B

xum yel yin

xim yun

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon zam zel zil zon zum zun

zem zulA

B

1

Deletion from B-Tree (Case 1)

Multi-Level Indexes 22

xum yel yin

xim yun

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon zam zel zon zum zun

zil zulF

DE

Node D has too few keys and is therefore merged with left-hand
sibling, node E, and their common parent ‘zil’ in node F

2

Multi-Level Indexes 23

xum yel yin

xim yun

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon zam zel zil zon zum zun

zulG

I

H

Node G now contains too few nodes and is therefore merged with
left-hand sibling, node H, and their common parent ‘yun’ in node I

3

Multi-Level Indexes 24

xim

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon

K

xum yel yin yun zul

Node J now contains too many keys and is therefore split and the
middle key ‘yin’ passed up to the root, node K, for insertion.

J

4

zam zel zil zon zum zun

5

Multi-Level Indexes 25

xum yel

xim yin

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon zum zun

yun zul

zam zel zil zon

The deletion of ‘zem’ has now been completed.

5

Multi-Level Indexes 26

xum yel

xim yin

xal xen

xac xag xan xat xet xig xot xul xut yal yep yes yol yon zam zel zil zon zum zun

yun zul

Deletion of key from terminal node where resulting
node has less than minimum number of keys

Delete ‘zum’ from previous tree

1

Deletion from B-Tree (Case 2)

Multi-Level Indexes 27

xum yel

xim yin

xal xen

xac xag xan xat xet xig xot xul xat yal yep yes yol yon zam zel zil zon zun

yun zul C

B A

Node A now contains too few keys and is merged with left-hand
sibling, node B, and their common parent ‘zul’ in node C.

2

Multi-Level Indexes 28

xum yel

xim yin

xal xen

xac xag xan xat xet xig xot xul xat yal yep yes yol yon

yun E

D
zam zel zil zon zul zun

Node D is now too full, it therefore splits in two and the middle
key, say ‘zon’, is passed up to E for insertion

3

Multi-Level Indexes 29

xum yel

xim yin

xal xen

xac xag xan xat xet xig xot xul xat yal yep yes yol yon

yun zon

zam zel zil zul zon

The deletion of ‘zum’ has now been completed

4

Multi-Level Indexes 30

B-trees as Primary file organisation
technique

entry in B-tree used as a dynamic multi-level index consists of:

<search key, record pointer, tree pointer>
i.e. data records are stored separately

B-tree can also be used as a primary file organisation technique;
each entry consists of:
<search key, data record, tree pointer>

works well for small files with small records;
otherwise fan-out and number of levels becomes too great for
efficient access

6

Multi-Level Indexes 31

B-Trees: Bottom up
Key insight of B-trees:

• We can build tree upwards from the bottom instead of
downwards from the top

• Bayer and McCreight recognised that the decision to work
down from the root was, of itself, the problem

• B-trees allow the root to emerge rather than set it up and
then find ways to change it

Multi-Level Indexes 32

Splitting and Promoting
In a B-tree a page node consists of an ordered

sequence of keys and corresponding pointers

There is no explicit tree within a page as there is in
paged trees

The number of pointers always exceeds the number of
keys by one

Many different definitions of the order of a B-tree. We
will go with the following:

Multi-Level Indexes 33

Splitting and Promoting
A B-tree of capacity order d has:

• d <= number of keys <= 2d in each node except the root
• 1 <= number of keys <= 2d in the root

All leaf nodes are on the same level

• This means that the tree is always balanced.
• There are no deeper levels on one branch of the tree than another

Multi-Level Indexes 34

Splitting and Promoting
Building the first page is easy enough:

• As we insert new keys, we use a single disk access to read the
page into memory and, working in memory, insert the key into its
place in the page

• Since we are working in memory, this insertion is cheap

Suppose we want to add the key J to the B-tree:

*B C D E GFA *******

Multi-Level Indexes 35

Splitting and Promoting
The single leaf we have is full, so we split the leaf into

two leaves, distributing the keys as evenly as possible
between the old leaf node and the new one, using one
key to split the keys

*B C DA *******

*G JF *******

E

Multi-Level Indexes 36

Splitting and Promoting
Since we now have two leaves, we need to create a

higher level in the tree to enable us to choose
between the leaves when searching. We need to
create a new root

*B C DA *******

*G JF *******

*E *******

7

Multi-Level Indexes 37

Algorithms for B-trees
We have seen how B-trees work on paper, but how do

they work on computer?

Page Structure:
• Here we show how the nodes of a B-tree should be represented in

memory:

class BTNode {
int KeyCount; /* no of keys stored in page */
char Key [d * 2]; /* the actual keys */
int Children [d * 2 + 1]; /* record nos of children */

}

Multi-Level Indexes 38

Algorithms for B-Trees
Searching

• Searching illustrates the charactistic aspects of most B-tree
algorithms

– They are recursive
– They work in two stages, working alternatively on entire pages and then within

pages.

• The searching procedure calls itself recursively, seeking to a page,
and then searching through that page

• It looks for a key at successively lower levels of the tree until it finds
the key, or it has reached the bottom of the tree

Multi-Level Indexes 39

Algorithms for B-trees
Function: search(NodePtr, Key)

if (NodePtr == NULL)
return NOT FOUND

else
Node = load tree node pointed to by NodePtr
Pos = binary search node for key
if (found)

return FOUND
else

return search(Node.pointers[Pos], Key)
endif

endif
end function

Multi-Level Indexes 40

Algorithms for B-trees

Let's work through the function by hand searching for the
key K in the above tree

• We begin with NodePtr equal to the record number of the root of
the B-tree (2)

N SD **** N SD **** N SD ****

N SD ****

N SD ****

N SD ****

N SD ****

2

0

3

4

1

Multi-Level Indexes 41

Algorithms for B-trees
• NodePtr is not NULL, so the function reads the root into the

variable Node.
• The binary search does not find K, so Pos is set to the index of

the pointer between D and N, that is Node.pointers[0].
• The value of Node.pointers[0] is 3, which is the record

number of the top of the sub-tree which contains keys between D
and N.

• The function search is called again with parameters of NodePtr =
3 and Key = K.

• Again, NodePtr is not NULL, so the function reads node 3 into
the variable Node.

Multi-Level Indexes 42

Algorithms for B-trees
• The binary search does not find K, so Pos is set to the index of the

pointer between I and M, that is Node.pointers[0].
• The value of Node.pointers[0] is NULL. There is no sub-tree

which contains keys between D and N.
• The function search is called again with parameters of NodePtr =

NULL and Key = K.
• NodePtr is NULL, so the function returns not found.
• The value not found is passed back through the levels of return

statements until the code that originally calls search receives this
information.

8

Multi-Level Indexes 43

Review

Multi-Level Indexes are more efficient than a single
level index for searching

• Better than Binary Search

Definition of a B-Tree
B-Trees are quire efficient at inserting and deleting new
keys
Algorithms for B-Trees

Next Lecture – B+ Trees

