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Abstract

The Scalable Coherent Interface (SCI) is an ANSI/IEEE standard that defines a

high performance interconnect technology, providing solutions for a wide range of

applications. Among other features, the standard provides optional cache coherence,

using a distributed-directory approach. The highly sophisticated cache coherence

protocols, designed to be implemented in hardware, are renowned for their scalabil-

ity. This report outlines a project which simulates the cache coherence protocols in

a small network, using VHDL.

ix



Chapter 1

Introduction

1.1 Project Overview

The goal of this project was to design and simulate a synthesisable VHDL1 imple-

mentation of the SCI Cache Coherence Protocols. Directory-based cache coherence

protocols are designed for DSM (Distributed Shared Memory) architectures, with

NUMA (Non-Uniform Memory Access) characteristics. SCI networks use a DSM ar-

chitecture, generally interconnecting nodes in a ring-like structure of unidirectional

point-to-point links. This VHDL model simulates a small network (of 4 nodes) us-

ing the SCI unidirectional ring-like topology. Employing a DSM architecture, global

memory is distributed among each node in the network. A local cache is included

in each node, for improved performance. The simulation, using ModelSim2, allows

each node in the interconnect to perform reads and writes to the global memory

address space, using the SCI Cache Coherence Protocol to maintain coherency.

1.2 Organisation Of the Report

The previous section gave a brief description of the project undertaken, mentioning

some of the main topics which will be covered in Chapter 2. Chapter 2 will discuss

the different types of multiprocessor architectures which are used today, including

1VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
2ModelSim is software used to simulate HDL designs.

1



the role of cache coherence protocols within these architectures. Different types of

cache coherence protocols are examined in detail, mainly focusing on the SCI cache

coherence protocol. Some background to the SCI standard will also be given in this

chapter. Chapter 3 clarifies the goal of the project, and discusses the implementation

steps taken. Chapter 4 will outline how testing and synthesis were carried out on

this design. Test examples are also shown in this chapter. Chapter 5 will draw

conclusions and possible future work is also discussed.3

3Please note that the CD attached to the back cover contains the VHDL code for the project
and a copy of this report
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Chapter 2

Background

2.1 Multiprocessor Architectures

Over the years multiprocessors have been designed using one of three major architec-

tural approaches (1). These can be categorised by the way in which the processors

access global memory.

2.1.1 NORMA - NO Remote Memory Access architectures

This architecture does not allow access to memory locations other than those local

to the processor.

2.1.2 UMA - Uniform Memory Access architectures

This architecture allows all processors to access any memory location directly. The

general structure of UMA architectures can be seen in Figure 2.1. This structure

consists of a number of processors linked up to a global memory source through a

common system bus. The memory access times are the same for each processor,

hence the name uniform memory access. These machines are also known as bus-

based multiprocessors or symmetric multiprocessors (SMPs).

3



Figure 2.1: UMA Architectures

Although this architecture supports the traditional programming model, which

views memory as a single, shared address space, it does however have a few major

limitations. First of all, a bus is a centralised resource and therefore, an inherent

serial bottleneck. Second of all, there is a fundamental limit to bus signaling (the

speed of light), which limits bus lengths considerably. Bus-based UMA architectures

therefore suffer from severe scalability problems and generally limit the number of

processors in the network to 16 (5). Over the last few decades, efforts have been

made to overcome this. Futurebus+ (2) was one which aimed to define a very high

performance bus, a superbus, that would support a high degree of multiprocessing.

PowerPath (3) bus system, used in SGI systems, was another. However, the principle

problem of scalability limitation still remained. 1

2.1.3 NUMA - Non Uniform Memory Access architectures

These architectures are similar to UMA, as all processors in the system can access

any memory location directly. They differ in the fact that the memory access time

is not uniform, as the memory is distributed between the processing nodes. Each

processor can access the memory block within its node, performing a local memory

1SCI originated from these efforts in the late 1980’s. More on this later.
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access. The term node is used here to describe each processor and its associated local

memory block. Processors in the interconnect can also access other memory blocks

in other node locations, by performing a remote memory access. As it clearly takes

less time for a processor to perform a local memory access than a remote memory

access (due to the different physical distances), the memory access times are non-

uniform, hence the name NUMA. The general structure of NUMA architectures is

illustrated in Figure 2.2.

Figure 2.2: NUMA Architectures

This architecture is also known as a Distributed Shared Memory (DSM) archi-

tecture. NUMA/DSM architectures, overcome the scaling limitations of UMA/bus-

based architectures. They also retain the traditional shared-memory programming

model. DSM architectures replace the bus with a faster point-to-point interconnect,

connecting pairs of nodes (generally in a ring like formation). Scalability is obviously

their main advantage, but as with bus-based architectures, they have associated dis-

advantages too. The simplicity of the shared memory programming model is slightly

compromised using this architecture, due to the non-uniform memory access times.

So in order to achieve optimal performance, sophisticated software and planning are

needed. The simplicity can therefore become lost with this extra overhead.

Memory access overhead can be greatly reduced (in all architecture types) through

5



the use of caches.

2.2 Caches

2.2.1 What is a Cache?

Caches are fast local memories which hold frequently used data. A cache exploits

the temporal locality and locality of reference inherent in most programs. If memory

references were random then caches would have little or no effect. If for example,

a processor wishes to read an address from memory, it will first check its cache. If

the information is already present in the cache, performance is improved. If the

information is not present in the cache, it is then retrieved from memory and placed

in the cache where it might be accessed again. As suggested above, most programs

do not access memory in a random fashion, which therefore makes caches extremely

useful. A cache improves performance by reducing the processor’s memory access

time and by decreasing bandwidth requirements to memory.

In a uniprocessor environment for example, memory access time is greatly re-

duced through the use of a cache. Adopting the use of caches in a multiprocessor

environment is slightly more complicated, as this introduces the cache coherence

problem.

2.2.2 Cache Coherence

The use of private caches in a shared memory multiprocessor environment, intro-

duces an inherent cache coherence problem. If more than one processor maintains a

locally cached copy of a data block from a unique memory location, any modifica-

tion to the data (e.g. a write by any processor to its cached copy) will lead to data

inconsistency. The cache coherence problem in a UMA/bus-based architecture is

highlighted in Figure 2.3. Initially, Processor0 and Processor1 both read from mem-

ory location X=0 and store the data copy in their respective caches. Processor 0

then modifies its cached copy using a write transaction with a value of 1. Processor1

6



and the memory source now both have stale copies of location X. This is known as

the cache coherence problem.

Figure 2.3: The Cache Coherence Problem in a Multiprocessor Environment

Figure 2.4. illustrates the inclusion of caches in a NUMA/DSM architecture. The

cache coherence problem can either be solved in software or hardware. Solving the

problem in software (i.e. leaving it up to the programmer) was the first approach

used. These machines (6)(7)(8) were obviously quite difficult to program and had a

lot of overhead associated with them. Today, the cache coherence problem is solved

through hardware (5), using a cache coherence protocol.

2.2.3 Cache Coherence Protocols

A system of caches is said to be coherent if all copies of a main memory location in

multiple caches remain consistent when the contents of that memory location are

modified (4). In order to avoid using invalid/stale data in a cache (i.e. for caches to

remain consistent), a cache coherence protocol is used. A cache coherence protocol

performs certain actions when a processor writes to a specific global memory address

location, which exists in other caches. These actions are usually to either invalidate

or update the other copies of the block. Most cache coherence protocols use the

invalidation technique, as it is easier to implement in hardware [PhD].
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Cache coherence protocols fall into two principle categories (5), snoopy(9) and

directory-based(10)(11).

2.2.4 Snoopy Cache Coherence Protocols

Snoopy cache coherence protocols are only suitable for bus-based multiprocessor

systems, as they require the use of a broadcast medium. Since a bus allows all con-

nected processors to observe all bus transactions, each cache can monitor all memory

transactions. Each cache snoops the bus and if it observes a transaction which will

affect the consistency of a block of data in its cache, the cache coherence protocol

intervenes. As mentioned previously, the cached block may be either updated or

invalidated, depending on the protocol employed.

Snoopy cache coherence protocols generally behave in the following manner.

When a cache observes a write transaction on an address contained in its cache, it

invalidates its cached copy. When a cache observes a read transaction on an address

contained in its cache, its cache state is checked. If the cache state indicates that it

has the most up-to-date copy, it intervenes before memory can reply, supplying the

data to the requesting processor.

Some well known snoopy protocols are the Firefly(12) and MESI(13)(14) proto-

cols. Since snoopy cache coherence protocols are only suitable for broadcast-enabled

interconnects (UMA/SMP architectures), a different type of protocol needs to be

used in a NUMA/DSM architecture. The type of protocol used in DSM architectures

is known as a directory-based cache coherence protocol.

2.2.5 Directory-Based Cache Coherence Protocols

A cache coherence protocol that does not use a broadcasting interconnect/medium

must store the locations of all cached copies of every block of shared data, regardless

of whether the locations are centralised or distributed among a number of proces-

sors. A directory is the name of the structure used to store this information. Each

shared block is assigned a directory entry which contains information about the

8



location(s) of the shared data block. A directory-based cache coherence protocol

uses this structure on a cache miss, and takes appropriate action, depending on the

transaction involved and the current state of the directory.

Using a single directory in a DSM architecture would only defeat the purpose of

distributing the memory between the nodes in the network, therefore, the directory

needs to be distributed also. Each node in a CC-NUMA (Cache Coherent Non-

Uniform Memory Access) interconnection network contains a block of local memory,

its associated directory and local cache. This reduces the potential bottleneck and

bandwidth issues that would otherwise occur if the directory was not distributed.

This structure is shown in Figure 2.5. Directory-based cache coherence was first

proposed by Tang(15) and Censier and Feautrier(10). In contrast to snoopy cache

coherence protocols, the cache location(s) of the shared block of data (i.e. the node

location(s)) are known. The advantage of this is that individual messages can be sent

to each node in the shared list and therefore, can be sent over any interconnection

network.

There are two major components to every directory-based cache coherence protocol

(5):

• The directory organisation

• The set of message types and message actions

The directory organization refers to the actual structure used to store the directory

information. Storing directory information requires extra memory, which is not

required in bus-based systems. This additional memory is known as the directory

memory overhead (the ratio of the additional memory needed for the directory to

the total memory).

The directory-based cache coherence protocol needs to be able to send messages

over the interconnect to other nodes, containing coherence actions. Each message

needs to have a message type or instruction associated with it. Each node can then

take appropriate coherence action depending on the message received.

9



Figure 2.4: Cache Coherent Non Uniform Memory Access (CC-NUMA)

Figure 2.5: Distributed Directory Structure

10



Directory-based cache coherence protocols can be classified into three different cat-

egories (16): full map directories, limited directories and chained directories.

2.2.6 Full Map Directories

Full map directories store information in the directory for every node in the network,

indicating whether the data block is present or not in each cache. So each directory

entry contains N (groups of) indicators, where N is the number of nodes in the

system. An example of a protocol that uses a full map directory structure would be

the bit-vector cache coherence protocol (10).

Bit-Vector Cache Coherence Protocol

The bit-vector protocol associates one bit per processor in its directory for each

shared block of local memory data. Each bit in this vector indicates whether or

not the shared block is present in the corresponding nodes cache (the bit is set if

present). There is also a dirty bit associated with each block in the directory. If this

bit is set, it means that only one processor has a copy of the block of data. This

processor therefore has exclusive ownership of the block (i.e. it can perform a write

transaction to it). A cache entity in this protocol, maintains two bits per block as

part of its cache line. One bit indicates whether the block is valid, while the other

indicates if the block can be written to (if set then it has permission). The cache

coherence protocol maintains the coherency of these indicator bits in the directories

and caches of the nodes in the network. The bit-vector protocol is regarded as the

simplest of all the cache coherence protocols (5) due to its speed and efficiency.

An example of three different states in the bit vector cache coherence protocol can

be seen in Figure 2.6. The local memory pictured in the diagrams, represents a local

memory block of an arbitrary node in the network. State (a) illustrates the situation

where no node in the network has a copy of address A in their respective caches.

Note that the dirty bit is not set, as no node has ownership (write permission) of the

block. Three nodes (Node 0, Node 1 and Node N) then request a copy of address A,

in the form of a read transaction. State (b) illustrates the resulting situation. The

11



memory location A updates its directory information by setting the presence bits

corresponding to the node number of the requester. Node N then requests ownership

of the block (write permission). State (c) shows the resulting situation. The only

node that has a copy of the block is Node N, therefore the dirty bit is also set.

(a) (b)

(c)

Figure 2.6: Bit Vector Cache Coherence Protocol

In order for the transition from State (b) to State (c) to occur, the cache coherence

protocol takes the following steps:

1. Processor N wants to write to memory location A so it checks its cache to see

if it contains a copy. It sees that a valid copy of the data is present, but it does

not have write permission of the block (this is denoted by its cache exclusive

bit being 0).

2. Processor N issues a write request to the Node in the network whose local

memory contains address A (lets call it Node X).

12



3. The corresponding remote memory module sends an invalidation messages to

the other members of the shared list (Node 0 and Node 1).

4. Node 0 and Node 1 receive the invalidation messages, update their caches

by wiping the cache line associated with address A. Each node will send an

acknowledgement back to Node X when completed.

5. Node X receives the acknowledgements, sets the dirty bit in its local memory

(dirty bit = 1), clears the pointers to Node 0 and Node 1, and sends write

permission to Node N.

6. Node N updates its cache by setting the exclusive bit and performs its write

transaction.

By waiting for the invalidation acknowledgements from Node 0 and Node 1, the pro-

tocol guarantees that the memory system is sequentially consistent. This protocol

does however have scalability limitations associated with it, as the number of indica-

tor bits in each directory scales linearly as the number of nodes in the interconnect

increases. Limited directories were designed to solve this problem.

2.2.7 Limited Directories

Limited directories are similar to full-map directories except each presence bit rep-

resents a group of nodes in the system. If a bit is set, it means that at least one

of the nodes in the group has a cached copy of the data. An example of a protocol

that uses a limited directory is the coarse-vector cache coherence protocol (17).

Coarse-Vector Cache Coherence Protocol

The bit-vector protocol can be converted to a coarse-vector protocol when the num-

ber of nodes in the network increases beyond a certain level. Lets say for example

that this level is 32. The bit-vector and coarse-vector protocols operate the same

way as long as the number of nodes in the network is less than or equal to 32. Once

the number of nodes exceeds this level the protocol then adjusts its directory struc-

ture. As long as the node count is between 33 and 64, for example, each bit of the
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vector represents 2 nodes. If one or both of the nodes contain a shared copy of the

block then the corresponding bit is set. Similarly, if the network scales to between

65 and 97 nodes, each bit of the vector will represent 4 nodes. As you can see form

this, the conversion is straightforward. The coarseness of the protocol is defined to

be the number of nodes in the interconnect, where each bit of the vector represents

(5). The bit-vector protocol therefore has a coarseness of one.

An example of this transformation from bit-vector to coarse-vector can be seen

in Figure 2.7. State (a) shows the bit-vector being implemented for up to 32 nodes.

When the nodes in the interconnect are extended beyond this (up to 64), the coarse-

vector protocol is used, where each bit of the vector represents two nodes.

(a) (b)

Figure 2.7: Bit Vector Cache Coherence Protocol

An example system which implements this is the SGI Origin 2000 (18), using a bit-

vector protocol for processor counts less than or equal to 128. Once the processor

count exceeds this number, the coarseness jumps to eight.

The advantage of this protocol is that the extra memory overhead remains fixed

as the number of nodes increases (possibly up to thousands). The coarse-vector

protocol adjusts the directory structure as the number of nodes increases. The

protocol transitions for both the bit-vector and coarse-vector are exactly the same.

The only difference is that the coarse-vector directory doesn’t know how many nodes

are currently sharing a given data block. This introduces inefficiency when the

protocol is invalidating a shared list. An invalidation message must be sent to each

node in the group, even if there is only one node in that group that contains a shared
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copy of the data block. Each node also has to send an acknowledgement back to the

home node upon receiving this invalidation message, generating even more traffic

on the interconnect.

2.2.8 Chained Directories

Chained directory cache coherence protocols maintain a linked list (or chain) of

pointers to keep track of the nodes that contain shared copies. A well-known pro-

tocol that implements this concept is the Scalable Coherent Interface (SCI) cache

coherence protocol (19).

SCI Cache Coherence Protocol

Section 2.4 will discuss the general background and main topics of the SCI standard,

but for now the focus will be on the functionality of the cache coherence protocol.

A shared memory block in SCI, will contain a pointer to the head of the shared

list. Each node in the shared list maintains a forward and backward pointer to its

adjacent neighbours in the list. The nodes in the shared list therefore maintain a

doubly-linked shared list, hence the name chained directory structure. Figure 2.8

illustrates how the SCI protocol maintains coherence using this doubly-linked list.

Figure 2.8: SCI’s Sharing List and Coherence Tags

In SCI the memory or cache block size is 64 bytes. This results in only a few

percent directory storage overhead in the memory and cache modules of each node.

This overhead is fixed, regardless of the system size, highlighting the scalability

advantages of this protocol. It is also worth noting that the cache coherence can
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be enabled or disabled on different blocks of memory. As can be seen in Figure

2.8, each coherent memory block contains a state field and a forward pointer. The

forward pointer identifies the node at the head of the shared list (if the block is

shared). Each cache entry also contains a state field but has two pointers, forward

and backward, to maintain the doubly-linked list. The basic functionality of the

SCI cache coherence protocol is as follows.

Read Transaction

There are two cases we need to examine here. The first is when a memory block in

the system is not shared. If a node A for example, wishes to read from this global

memory location, it first checks its cache for the address. A cache miss occurs, and

the node performs a read transaction to the remote location of the address (node

B for example). Node B’s memory controller checks its memory state and sees that

the block is not shared. The memory controller updates its state information to the

shared state, updates its forward pointer to node A’s address, and sends the data

block to node A. Node A writes to its cache with the data and updates its cache

state information, establishing itself as head of the empty list (H.O.E.L). This final

situation is depicted in Figure 2.9 (a).

The second case is when the memory block is shared. Upon receiving a read

request from node A, node B’s memory controller updates its pointer field to node

A, but does not send the data (as it might have a stale copy). The current head of

the shared list (node D for example) is then sent a message ordering it to update its

backward pointer, state information and to return the data to the requesting node,

node A. Node B will process this message, updating its backward pointer field,

degrading itself to a R.L.E and sending the most up-to-date copy of the data block

to node A. Node A can then update its state and pointer fields upon receipt of node

D’s message. Node A will process this message updating its backward pointer to the

memory location and forward pointer to node D. Node A has now established itself

as the new head of list entry (H.O.L). If other nodes were part of this shared list,

there would be no need for them to be involved in these steps, thus highlighting the
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scalability advantages of this protocol. Therefore the update only involves 3 nodes

at most, regardless of the size of the shared list. This final situation is depicted in

Figure 2.9 (b).

(a) (b)

Figure 2.9: SCI Read Transaction

Write Transaction

In order for a node, node B for example, to perform a write transaction on a shared

block of data, it first needs to make itself head of the shared list (if it is not already).

Once it becomes head of the list it needs to delete all other entries to obtain an

exclusive copy of the data block. The SCI cache coherence protocol states that only

a node with an exclusive copy of a data block has write permission to that data

block. When deleted, all nodes of the shared list will have discarded their cache line

entries for that particular data block. Node B will now have an exclusive copy of

the data block, gaining permission to modify the data.2 This write transaction is

more complicated than it sounds however.

Lets look at an example where a node A is part of a shared list containing more

than one element. If node A wants to perform a write transaction to a memory

block, there are 3 possible scenarios that need consideration.

• The first scenario is when the node A is head of the list (H.O.L). In this case,

the node simply deletes the other list entries using a purge transaction, thereby

obtaining write permission to the block.

2It is worth noting here that some SCI implementations allow the node to modify the data
before the shared list has been purged.
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• The second scenario is when the node A is a tail list entry (T.L.E). In this

case, the node A will update the state of the 2nd last node, whose address will

be stored in node A’s backward pointer field. As node A has now popped itself

out of the shared list, it can then make itself head of the list and delete the

other list entries. Now with write permission, node A can perform its write

transaction.

• The third scenario is when the node is a regular list entry (R.L.E). In this

case node A will update the pointers of its neighbouring nodes, popping itself

out of the shared list. The node A will then make itself head of the list

and purge/delete all other entries. An example of this can be seen in Figure

2.10. Node A updates node B’s forward pointer to node C’s address. Node A

updates node C’s backward pointer to node B’s address. Node A has therefore

popped itself out of the list, illustrated in (a). Node A then makes itself head

of the list and deletes all other entries, finally gaining an exclusive copy of the

memory block, illustrated in (b).

(a) (b)

Figure 2.10: SCI Write Transaction

If more than one node sends a read/write request at the same time, the SCI cache

coherence protocol states that their requests get dealt with in the order in which

they arrive at the local nodes memory controller.

2.3 Evaluating Cache Coherence Protocols

A number of studies have been carried out, evaluating different cache coherence

protocols (5)(31)(33)(35). One particular study was carried out in 1998 (5) using the
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Stanford FLASH multiprocessor(30). It examined the performance and scalability

of each of the directory-based cache coherence protocols mentioned in this report.

The results of this study found that the optimal protocol changes as the machine

size scales or sometimes when architectural aspects (like cache size) are changed.

None of the protocols were able to optimize their behavior in terms of:

1. Protocol Memory Efficiency

2. Direct Protocol Overhead

3. Message Efficiency

4. Protocol Scalability

At high processor counts, the bit-vector protocol has a large memory overhead,

as the width of its directory entity becomes unwieldy. The coarse-vector protocol

solves this problem, but due to its imprecision in the manner which information

is shared, it leads to large amounts of message traffic in many applications. At

small processor counts, the SCI protocol performs badly. At large processor counts

however, the SCI protocol is generally the best one to use, due to its scalability

advantages.

2.4 SCI

The Scalable Coherent Interface (SCI) (19)(20) is an ANSI/IEEE standard that

defines a high performance interconnect technology, providing solutions for a wide

range of applications. As mentioned previously, efforts were made in the late 1980’s

to develop Futurebus+(2). This led to the specification of the SCI standard, which

implements a DSM architecture. This was approved in 1992.

The SCI interconnect, the memory system and the associated protocols are fully

distributed and scalable. The main objective of SCI (28) is to deliver high commu-

nication performance to parallel or distributed applications. SCI was designed to be

scalable and it is possible to connect up to 64K nodes. A node can be made up of a
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workstation or server machine, a processor, a memory module, I/O controllers and

devices or bridges to other buses/interconnects. Each node attaches to the network

using a standard interface. The basic transfer unit is a packet, which eliminates the

overhead of bus-cycles.

SCI allows data transfer at nearly 500MHz, achieving a one gigabyte per second

transfer rate. Adding nodes to an SCI network also adds bandwidth, so performance

scales well. In order for SCI to be a success the developers realised that certain goals

needed to be achieved (28). High communication performance, scalability, a coherent

memory system and a simple interface were the key areas focused upon.

2.4.1 SCI Topologies

SCI nodes are interconnected through unidirectional point-to-point links in a ring/

ringlet topology. Certain housekeeping tasks such as maintaining certain timers,

discarding damaged packets (so they don’t circulate the ring indefinitely) and circu-

lating ring maintenance information are assigned to one node within the ring. This is

called the scrubber. Switches are used to connect multiple independent SCI ringlets.

In systems today, there are two common topologies which are used to implement

this. These are shown in Figure 2.11. The first topology is shown in (a). There are 4

ports on the switch (with 2 extra extension ports - not shown). Using the extension

ports, the switch can either be expanded to a stacked switch with possibly 16 ports

or configured to a non-expandable 6-port switch.

The second topology is shown in figure (b). This multidimensional tori uses

small SCI ringlets at each dimension. Each node is connected to each dimension

and uses a small switch integrated into an SCI adapter to provide cross-dimensional

packet transmissions. It is possible to create a 3-dimensional tori with up to 10-12

nodes in each dimension.
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(a) (b)

Figure 2.11: SCI Topologies

2.4.2 SCI Node Interface Structure

The SCI node interface to the network needs to be able to transmit packets, while

concurrently accepting packets from other nodes. To implement this, FIFOs are

used to hold symbols received while a packet is being sent. Node application logic

is not expected to match the SCI link speeds; therefore input and output FIFOs are

needed. So in order to match the higher link transfer rate, nodes need to ensure that

all symbols within one packet are available for transmission at full link speed. In

general, the SCI node maintains two queues, which serve as buffers until transmission

bandwidth becomes available for outbound packets or until inbound packets can be

processed by the nodes application logic. This concept is depicted in Figure 2.12.

Figure 2.12: SCI Node Interface Structure
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2.4.3 SCI Transaction

Transactions are split into a request and a response sub-action. Packets carry ad-

dresses, command and status information, and data (depending on the transaction).

Up to 64 transactions can be outstanding per node. Each sub-action consists of a

send packet (generated by the sender) and an echo (acknowledgement) packet re-

turned by the receiver. The echo tells the sender whether the packet was accepted

(stored in the receivers input queue) or rejected (due to a full input queue). In the

former case, the sender can discard the send packet from its output queue. In the

latter case, the sender re-transmits the packet. There are 3 types of transactions in

SCI.

1. Transactions with responses (read, write and lock transactions).

2. Move transactions (for example non coherent writes). These do not have

response sub-actions. They are therefore more efficient than writes.

3. Event transactions. These do not have responses and do not generate an echo.

They can be used to distribute a time stamp for global time synchronisation

within the SCI system.

2.4.4 Distributed Shared Memory In SCI

As mentioned previously, SCI was a solution to the inherent serial bottleneck that

the bus leads to, but the standard still maintains bus-like services. Just like a bus,

DSM architectures, like SCI, have the ability to support remote memory accesses

for both read and writes. SCI uses a 64-bit fixed addressing scheme. The upper 16

bits specify the node on which the addressed physical storage is located 3, while the

lower 48 bits specify the local physical address within the memory of the node being

addressed. As with all DSM architectures, the nodes in the interconnect can access

this global physical address space and hence any physical memory location within

the whole network by mapping parts or segments of this memory space into their

own memory.

3As mentioned previously, SCI can support up to 64K = 21̂6 = 65536 nodes
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2.4.5 Cache Coherency in SCI (Revisited)

Most high performance processors use local caches to reduce effective memory-access

times. Cache-coherence protocols define mechanisms that guarantee consistent data.

In SCI, the cache coherence protocols are provided as options only. Therefore a com-

pliant SCI implementation does not need not implement cache coherence. Simula-

tions of the specification (given by the C code which is provided with the standard)

have greatly helped in designing and debugging the protocols. Despite the well-

devised protocols and the provided C code, it is regarded as extremely difficult to

not only implement the full protocol set, but to interface it to typical processor

coherence schemes (28). As mentioned on page 20, an SCI node can be a bridge to

other buses or interconnects. These buses or interconnects could possibly be employ-

ing snoopy cache coherence protocols, requiring the SCI cache coherence protocol

to integrate with it.

2.4.6 Commercial use of SCI

SCI is currently used in a large variety of scenarios and products(1). Nearly all

applications and products are based on the technology of Dolphin Interconnect

Solutions(21). In all SCI systems, nodes are connected to the SCI network us-

ing the Link Controller (LC) chip. The chip, currently in its fifth generation, allows

processing speeds of up to nearly 1GBps, which was the original goal of the SCI

standard in 1992. Using this component, SCI bridges to other system busses (e.g.

the SUN SBus(22) and the PCI bus(23)) and SCI switches to larger systems are

provided by Dolphin.

SCI chips and adaptors are being used more and more by different companies to

develop their own systems. Practical applications have been developed by a number

of different commercial vendors (20). Here are some examples:

1. Fujitsu Siemens have developed a product, hpcline (24), using SCI technology

to achieve high performance and scalability in communication intensive appli-

cations. This product is being used as complex business solutions for different

23



commercial customers.

2. Philips Medical have developed a state-of-the-art ultrasound system, xSTREAM

(25), using SCI technology.

3. NLX Corporation, a provider of simulation and training systems, have devel-

oped multi-channel image generators, wide field-of-view visual display systems,

high-fidelity sound generation and high payload 6 degree-of-freedom motion

systems, utilising the high performance aspect of the SCI technology (26).

4. Camber LTD provide products for military and commercial use. They have

developed a product, using SCI’s high performance technology, called Battle

Vision (27). This product provides an enhanced real-time flight simulation

with geographic information, meteorological effects and atmospheric effects.

The most common use of SCI however (1), is in commodity PC clusters based on

the PCI-SCI bridge or adapters, developed once again by Dolphin.
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Chapter 3

Implementation

This chapter will discuss the approach to and implementation of this project. The

first section of this chapter will clarify the goal of my project, now that the back-

ground issues have been discussed.

3.1 The Goal Of My Project

The SCI standard (19) specifies three sets of implementations for its cache coherence

protocols, in order to simplify explanation.

1. The Minimal Set

2. The Typical Set

3. The Full Set

The goal of this project was to implement a Synthesisable VHDL Model of

SCI’s Cache Coherence Protocols. Therefore all parts of the SCI standard were

not required to be implemented. In order to implement the distributed directory

structure which the protocols are based on, a DSM architecture was used. It was

not necessary however to use the exact SCI node structure or its split transaction

method of communication between nodes in the interconnect. These features would

have been extremely difficult and time consuming to implement in VHDL, so as

a result they were not used. The full SCI cache coherence protocols use a vast

25



amount of memory and cache states. These states are mostly based on the SCI

split transactions, making the majority unsuitable for this project. In other sources

researched on the protocols (5)(28), a number of key states are used. The design of

the protocols were therefore based on these key states. The following memory states

were used in this design:

1. Shared

2. Not Shared

The cache states for this design are as follows:

1. Head Of Empty list (H.O.E.L)

2. Head Of List (H.O.L)

3. Regular List Entry (R.L.E)

4. Tail List Entry (T.L.E)

3.2 Project Approach and Implementation

This project was implemented in two main stages. The first stage was to design

a simple DSM architecture in VHDL, allowing each node in the interconnect to

perform read and write transactions to global memory. As a DSM architecture was

to be employed, each node was to consist of a local memory module (which was part

of the global memory of the system). The interconnect used was to model SCI’s

simple ring-like structure of unidirectional point-to-point links.

The next stage was to add a cache component to each of the nodes, requiring

the design of the VHDL-based SCI distributed directory cache coherence protocols.

From October to the end of December 2004, the design and coding of the simple

interconnect was carried out. From January to March 2005, the final stage was

implemented,
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3.2.1 VHDL

As suggested by the title of the project, the VHDL programming language was

used to implement the design. Coding was performed using Xilinx Integrated Soft-

ware Environment (ISE) 6.3i software. VHDL is a language used to describe and

simulate complex digital systems. A digital system in VHDL consists of a design

entity/module that can possibly contain other entities, which are then considered

components of the top-level entity (29). An entity in VHDL consists of an entity

declaration and an architecture body. The entity declaration defines the relationship

to the outside world and defines the input and output signals/wires. The architec-

ture body contains the functional description of the entity. The architecture body

of the top level entity consists of all the other entities interconnected, along with its

own possibly additional functionality, all operating concurrently.

A VHDL entity can be instantiated into another higher level entity through the

use of a feature called port-mapping. This report will discuss each of the entities

implemented in the design process, using a high level description. Knowledge of how

a VHDL entity is written is therefore not required.

3.3 Initial Implementation

As mentioned previously, the goal for this part of the design was to simulate a

number of nodes in an interconnect of unidirectional point-to-point links, performing

read and write transactions to a global address space. This global address space

was to be distributed among the nodes in the network - conforming with the DSM

architecture used by SCI. An interconnect of 4 nodes was decided upon for simplicity.

Global memory was to have an address space of 256 elements, allowing each node’s

local memory module to hold 64 addresses. Figure 3.1 (a) illustrates this concept.

3.3.1 Internal Node Structure

Before the coding could begin, a node structure needed to be designed. Each en-

tity that was designed implements a different piece of functionality. The following
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(a) SCI Interconnect (b) Internal Node Structure

Figure 3.1: Initial Implementation

components were decided upon for each of the 4 nodes:

1. A CPU entity, which generates read and write transactions to the global ad-

dress space.

2. A Local Memory module which, as part of the DSM structure, stores addresses

in an array structure.

3. A Decoder entity, which decodes the addresses sent to it by the CPU, deciding

whether a local or remote transaction is to be performed.

The following sections outline the functionality of these entities. Figure 3.1 (b)

depicts the internal structure of each node in the interconnect. The bidirectional

links are actually implemented as two unidirectional wires/signals. Each pair of

connected entities communicate with each other by assigning values to their output

ports (to send data), and by reading data from their input ports (receiving data).

The CPU Entity

The CPU entity is responsible for generating read and write transactions to the

global address space of the interconnect. A pseudo random number generator

(PRNG) was used to generate the 8 bit addresses 1. The algorithm behind the

PRNG used in this project is described in Appendix A. Using this simple concept,

1This was suggested by Michael Manzke
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the code was formulated in VHDL. The extract from the CPU entity which imple-

ments this code is shown below.

1 --generate pseudo random number for address:
2 temp_addr :="000" & nxt_addr (7 downto 3);
3 temp_addr2 := temp_addr xor nxt_addr;
4 temp_addr := temp_addr2 (2 downto 0)&"00000";
5 nxt_addr := temp_addr xor temp_addr2;

The basic functionality of the CPU can be summarised in the following steps:

1. On a reset the CPU will set the initial address or seed for the pseudo random

number generator.

2. The CPU will send a 41-bit transaction to the decoder when an enable signal

is set on its input port. The structure of this packet format can be seen in

Figure 3.2. The most significant bit signifies whether the transaction is a read

or write. This bit is followed by an 8-bit address, selecting one of the 256

global addresses in the interconnect. The address is followed by a 32-bit data

value. Unless a write transaction is being sent, this data field is negligible2.

3. The CPU is informed by the Decoder entity as to which input line it will be

receiving a reply on. The CPU will either receive data directly from memory

(on a local transaction) or from the decoder (on a remote transaction).

4. The CPU will compare the address it sent out to the address it receives on the

correct input line (bits 39 down to 32). When the addresses match, the CPU

has received the correct data (if its a read transaction) or received confirmation

that a write took place (if its a write transaction).

5. The CPU will then use the current address as the seed to generate the next

random number, which represents the next address.

2If certain bits of a signal are negligible in VHDL, they must still be assigned a value
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Figure 3.2: CPU-Decoder Packet Format

The Local Memory Entity

Each local memory module contains 64 addresses of the global address space. In

VHDL an array can be used to represent a memory structure. For node A, the

address lookup is straightforward as it will be passed addresses in the range of 0

to 63, thus satisfying the array bounds. For all other nodes, an offset needs to be

subtracted from each address in order to access the correct location in the array.

Taking node B for example, when an address is sent to the memory module from

the Decoder, it needs to subtract an offset of 64 from it. Likewise, node C needs to

subtract an offset of 128 from the address and node D needs to subtract an offset of

192.

The memory was designed with a 2 bit control signal input, controlled by the De-

coder entity. The memory performs one of the following 4 transactions, which are

explained in greater detail in the Decoder Entity section:

1. A read transaction, returning the data to the CPU (local read).

2. A write transaction, confirming completion to the CPU (local write).

3. A read transaction, sending the data out onto the interconnect (remote read).

4. A write transaction, confirming completion to the remote node that performed

the write (remote write).

This sums up the local memory module functionality of the initial implementation.

More detail on the 4 different functions provided by memory will be discussed in

the next section.
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The Decoder Entity

The decoder acts as an interface to the node. The Decoder entity is also responsible

for deciding whether its CPU is performing a local or remote transaction. The CPU

entity initiates communication with the Decoder by asserting a control signal (not

shown in Figure 3.1 (b)3). It will then assign data to the output port which feeds

into the Decoder entity. This data will specify a transaction for the Decoder to

process. The Decoder will first examine the address field of the packet. A decision

is made based on this address, as to whether a local or remote transaction will take

place.

If the address indicates a local transaction (for Node A the address would need

to be between 0 and 63), the Decoder sets the memory control signal to the local

read state. This asks memory to perform the local read/write and reply to the CPU.

The transaction will also be forwarded to the memory via the correct output port.

The Decoder simultaneously informs the CPU, through the CPU control signal, that

it will be receiving a reply from the memory entity. As discussed earlier, this reply

will either be a data block (if a read transaction took place) or confirmation of write

completion (if a write transaction took place). An example of a read transaction is

illustrated in Figure 3.3. The red lines denote the control signals being used.

If the address indicates a remote transaction (i.e the address is not contained

in the nodes address space), the Decoder sends a packet out onto the interconnect

and waits for a reply (i.e. a return packet). The packet structure for the initial

implementation is depicted in Figure 3.4. When set, the S bit indicates that a

Node has sent a transaction out onto the interconnect, and that the packet is still

trying to find its destination. Each node the packet arrives at, checks whether

the address is located in its address space. The packet is forwarded from node to

node until it finds the correct destination. The Decoder in that node will then

assert a control signal to its memory module. This control signal tells memory to

process the transaction (read or write) and to then forward the response out onto

3It should be clear by now that control signals are used to decide which piece of functionality
the receiver is to implement
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(a) CPU sends read request (b) Decoder sends request to memory

(c) Memory returns data to CPU

Figure 3.3: Local Read Transaction

Figure 3.4: Initial Interconnect Packet Structure.
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the interconnect. Memory processes the transaction. Before forwarding the return

packet out onto the interconnect, the memory entity sets the S bit of the packet

to 0. If a read took place then the data field is updated with the block value.

The address field is not modified. This new packet is the transaction response and

is forwarded out onto the interconnect. The original node eventually receives the

response packet and checks to make sure the S bit is not set. Once this requirement

has been fulfilled, the Decoder then sets the CPU control signal low, indicating

that the response will come from the Decoder. The data is then sent to the CPU,

completing the transaction. This remote transaction is illustrated in Figure 3.5. The

2:1 mux entity has not been mentioned yet however. It has a single bit control signal

from the decoder. The mux either outputs the 42-bit data packets from memory or

from the decoder, depending on the Decoder’s control signal.
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This sums up the overall functionality of the Decoder entity. As suggested by the

CPU entity section on page 28, each node would execute transactions concurrently,

sending packets out onto the interconnect for remote transactions. If this were

allowed, some sort of flow control would be needed. In SCI this is done using input

and output FIFO’s. This however, was not the focus of the project, so another

solution was used.

In order to add control to the top level design (i.e. the four nodes interconnected

in the ring-like structure), another entity was required. This additional functionality

allows only one CPU to perform a transaction at a time. To implement this control

element, a Finite State Machine was used inside a Scheduler entity. This Scheduler

entity is described in the next section.

The Scheduler Entity

This scheduler entity feeds a control signal into each node, enabling one CPU at

a time. Each CPU has a request line output, feeding into the scheduler entity.

On a reset, node A is given the first time slot by default. Once it has completed

its transaction, it de-asserts its request line temporarily, allowing the scheduler to

allocate the next time slot to node B. Node C will receive the next time slot, followed

by node D. This functionality is implemented using a simple Finite State Machine.

The final top-level design for the initial implementation is illustrated in Figure 3.6.
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(a) CPU sends read request (b) Decoder sends packet out onto the in-
terconnect

(c) Packet arrives at destination Node C
and processing begins

(d) Memory sends packet out onto the in-
terconnect

(e) Decoder returns response to CPU

Figure 3.5: Remote Read Transaction
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Figure 3.6: The Scheduler

3.3.2 Evaluation of the Initial Implementation

In VHDL, port-mapping is a function used to connect entities together. This was

done to instantiate each entity into each of the 4 nodes. Each of the four nodes

were then instantiated into the final topology as shown in Figure 3.6. Upon com-

pletion, each entity was thoroughly tested, exploring all corner edges (all possible

combinations of the inputs)4. In order to test this implementation fully, each CPU

randomly performed transactions to each of the 256 memory locations in turn. This

was done by modifying the Scheduler code slightly. Once the test results were all

correct, the Scheduler functionality was returned to normal, selecting each node in

turn to perform a transaction. Each nodes CPU entity was given a different seed to

start off with.

Once the design had passed this test final test, the final stage of project was

addressed. The next section describes the steps taken in implementing the final

design.

3.4 Final Implementation

This section details how the SCI Cache Coherence Protocols were simulated in

VHDL. Figure 3.7 illustrates the final internal node structure. The design of each

of these entities will now be discussed in detail, beginning with the Cache entity.

4Testing is discussed in detail in the next chapter.
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Figure 3.7: Internal Node Structure

3.4.1 The Cache Entity

A cache size of 128 elements and implementation of a least recently used cache

replacement policy were used. Along with the data and corresponding addresses,

additional directory information fields are associated with each cache line. These

include :

1. A cache state field

2. A forward pointer field (to the next node in the list)

3. A backward pointer field (to the previous node in the list)

4. An l.r.u indicator field

The l.r.u indicator field was used as part of the least recently used cache replace-

ment functionality. These bits indicate how old the cache line is. On a read or

write transaction to a cache line X, these bits are cleared (i.e. set to 0). Once a

transaction is performed in the cache, all cache lines not directly involved increment

their indicator bits by 1. Once the cache is full, the line with the oldest indicator

value is chosen to be replaced on the next write.
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The cache block layout is illustrated in Figure 3.8. The state field indicates one of

the previously mentioned cache states:

1. Unused = 000

2. Head Of Empty list (H.O.E.L) = 001

3. Head Of List (H.O.L) = 010

4. Regular List Entry (R.L.E) = 011

5. Tail List Entry (T.L.E) = 100

Two bits are needed for each of the pointer fields, which when used, contain the

address of one of the four nodes in the system. The indicator field (10 bits), the

address field (8 bits) and the data field (32 bits) make up the rest of the cache line

block.

Figure 3.8: Cache Block layout

Cache Line Replacement

After a cache transaction takes place, the indicator field of each block gets incre-

mented. The oldest cache line is also selected. In the case of a tie, the cache line

with the smallest index value in the array is chosen. If the cache is full, this l.r.u
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block will be replaced on the next cache write transaction. The cache coherence

protocol needs to take action before this next “write” takes place, performing one

of the two possible actions:

1. If the cache line is in the H.O.E.L state, the block needs to be flushed to

memory.

2. If the cache line is in any other state, the shared list needs to be updated.

If the cache wishes to replace an existing block, it will assert a flush control signal

to the Decoder. The Decoder will then take action and maintain coherency5.

Cache Functionality

The communication packet structure between the Cache and Decoder entities is

illustrated in Figure 3.9. The only difference between the two packet structures is

in the most significant bit (m.s.b) field of each. When the Decoder sends a packet

to the Cache entity, the m.s.b indicates whether a cache read or cache write is to

be performed. When the Cache sends a packet to the Decoder, the m.s.b indicates

whether a cache hit or cache miss took place.

(a) Decoder to Cache Packet Format

(b) Cache to Decoder packet format

Figure 3.9: Decoder-Cache packet structure

The Decoder controls the Cache entity using a two bit control signal, selecting one

of four possible functions.

1. Read or write

5This action is explained later in the Decoder Entity section
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The decoder selects this function when performing a cache read or write trans-

action. The m.s.b of the packet sent from the Decoder, indicates whether a

read or write is to take place.

• In order to perform a read, the cache indexes through its array searching

for the corresponding address. If successfully found, the indicator bits

within the block are cleared (i.e. set to 0). The data, cache state and

pointers are returned to the Decoder with a cache hit packet (i.e. m.s.b

= 1).

• In order to perform a write transaction, the cache will either write to the

next free index in the array (when the cache is empty or partially full), or

write over the least recently used line (when the cache is full). This least

recently used line is picked by the update loop, discussed in the Cache

Replacement section. Using the packet fields sent by the Decoder, the

cache block fields are set. The 10-bit indicator field value is set to 0.

2. Update an existing cache line

This function updates an existing cache line. The decoder uses this for reasons

which will become apparent in the Decoder Entity section. The cache line is

updated and the indicator bits are cleared.

3. Flush a cache line

This is part of the cache flushing process mentioned earlier. In response to this

control signal, the cache sends the required data fields of the corresponding

cache line to the Decoder.

4. Wipe a cache line

The Decoder will use this function when it is required to wipe/purge a cache

line. The cache sets all bits of this line to 0.

This sums up the functionality of the Cache Entity. The next section will discuss

the Switch entity.
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3.4.2 The Switch Entity

This entity acts as a node interface to the interconnect (like in SCI). This interface

is primarily responsible for two things:

1. Examining the destination field of incoming packets.

If a packet is not destined for the current node, the switch forwards it to the

output link, bypassing all other entities in the node. Otherwise the packet is

sent to the Decoder entity for processing (in SCI the packet will be sent to the

node application layer).

2. Forwarding packets out onto the interconnect from the Decoder.

The Decoder sends packets out onto the interconnect via this Switch interface.

The interconnect packet structure can be seen in Figure 3.10. The transac-

tion# field will be explained in detail in the Decoder entity section.

Figure 3.10: Interconnect Packets

Extra functionality was added to the Switch entity initially, which enabled all or

some nodes in the system to perform transactions simultaneously. In order to do

this, the CPU entity needed to be modified, making it ignore the Schedulers input

and therefore send transactions continuously to the Decoder. In this situation, the

switch would possibly receive a packet from both sources (i.e. the SCI interconnect

and the Decoder entity), therefore requiring it to buffer the Decoder packet(s) until

the incoming SCI link becomes idle. The Switch entity could therefore act as the

combined input and output buffers used in the SCI node model. It was later decided

that this simultaneous transaction processing would not be used. The main reason

for this decision was that during the testing phase, the test-bench waveform was

quite difficult to follow and understand, due to the amount of transactions being

executed. It therefore restricted the amount of control that could be enforced on
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the design. Implementing this was never part of the project goal, so the CPU code

was re-adjusted, allowing the Scheduler to enforce the queue system once more.

In order for the switch to be able to route packets correctly, it requires knowledge

of its node address. One way of implementing this in VHDL is to make a different

switch entity for each node, setting a node id variable to a unique value. This

method was used for the initial implementation entities (Memory, Decoder and

CPU). A more efficient approach was taken for the final implementation, using

VHDL generic functionality 6. In the entity declaration part of the VHDL module,

a generic map can be used to pass in a variable upon instantiation. The CPU, Switch

and Decoder entities 7required the use of this generic mapping. The functionality

of each of these entities requires knowledge of the node in the interconnect of which

it is a part of. The Decoder entity also requires knowledge of which part of the

distributed address space it has access to. The switch entity only requires knowledge

of its node number, in order to forward the packets to the right output port. The

code extract below shows the generic map function being used. A default value is

specified in case a generic instantiation is omitted in the higher level entity. A value

of 0 was chosen, which is Node A’s integer address value. In VHDL, the std logic

type is used for bit values. It was therefore necessary to convert this integer value

to std logic type8. The integer value was converted to std logic type using the

to unsigned function.

1 entity Switch is
2 Generic(n_id : integer := 0);--default = 0;
3 Port( Clk ,Reset:in std_logic;
4 SCI_in ,deco_in : in std_logic_vector (47 downto

0);
5 SCI_out ,to_deco : out std_logic_vector (47 downto

0));
6 end Switch;
7 architecture Behavioral of Switch is
8

9 begin
10

11 process (.....)
12

6Ross Brennan, a PhD student in Trinity College, was responsible for the suggestion of this
approach.

7The CPU and Decoder entities are detailed in the next two sections
8As 4 nodes were used in this design, the integer range is 0-3, requiring two bits
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13 variable our_node:std_logic_vector (1 downto 0):=( others=>’0’);
14 --the node identifier variable
15 .............
16 .............
17 .............
18

19 begin
20

21 if(Reset=’1’)then
22 ...................
23 ...................
24 our_node := std_logic_vector(to_unsigned(n_id ,2));
25 --assign the generic value to the our_node variable
26 ...................
27 ...................

When each Node entity (A, B, C and D) instantiates the generic Switch entity, it

passes in an integer value as the node identifier. The following code is used to pass

in the node id value for node A:

GENERIC MAP(n id=>0)

This sums up the switch entity functionality. In this final implementation the Local

Memory module was updated for reasons which will now be discussed.

3.4.3 The Local Memory Entity

In the initial implementation, the Decoder entity passed a global address to the

memory module, which then subtracted an offset before accessing the memory ar-

ray. A more optimal way of implementing this is giving the Decoder entity the

responsibility to perform the subtraction of this offset. With this approach, the

same entity can be instantiated into each node. Along with the data block, the

associated directory information is also stored in memory. According to the SCI

Cache Coherence Protocol, memory state and forward pointer fields make up this

fixed overhead, maintaining the distributed directory structure. Figure 3.11 illus-

trates the block layout for each memory module. The State field indicates whether

the block is shared or not, requiring a single bit. An extra bit is needed to implement

idle signal functionality. This will be discussed in a later section.

The memory entity performs one of three different actions upon request from the

Decoder: a read, a write or a flush. A 2-bit control input from the Decoder entity
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Figure 3.11: Memory Block Layout

is used. The memory and Decoder communicate using the packet structures shown

in Figure 3.12. In (a), the Node ID field is used to identify the node performing the

read transaction (i.e. which CPU is reading the data).

(a) Decoder to Memory Packet Format

(b) Memory to Decoder packet format

Figure 3.12: Incoming and Outgoing Packet Formats for the Local Memory Entity

1. A Memory Read Transaction

On a read, the Memory entity will retrieve a data block, using the address field

of the received packet as the index to the memory array. The state and pointer

information, along with the 32-bit data value are returned to the Decoder. The

Decoder, discussed in the next section, implements the SCI cache coherence

protocol, maintaining coherency. The Node ID field indicates which node is

performing the read transaction. The Forw ID field of the block is updated
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with this address value, and the memory state is set to the shared state (if not

already). This completes the updating of the directory information.

2. A Memory Write Transaction

On a write, Memory will return a packet to the Decoder, giving it the current

directory information. It then updates its directory information.

3. A Flush Transaction

The flush transaction is used when the H.O.E.L needs to overwrite a cache

line. When the memory module receives the incoming packet, the 32-bit data

is flushed to its location, returning the (possibly updated) data. Memory then

sets the state field to not shared and clears the forward pointer. This clearing

of the forward pointer is not essential, as the Decoder will only ever look at

the forward pointer field if the memory state is shared.

This sums up the functionality of the Local Memory Entity. The initial imple-

mentation of the Decoder entity was quite straightforward as there was no cache

involved, and therefore no cache coherence protocol.

3.4.4 The Decoder Entity

As the Decoder entity implements the SCI Cache Coherence Protocol, it proved the

most difficult to design, code and test. Introducing the caches and the SCI cache

coherence protocol required the design of the Decoder to go back to the drawing

board! Upon receipt of a CPU request transaction, the Decoder must process the

transaction, abiding by the SCI Cache Coherence Protocol rules. As mentioned in

the Switch Entity section, the Decoder makes use of the generic map functionality.

So once instantiated with a node address, each Decoder can identify which node it

belongs to. As specified in the previous section, the Decoder entity must subtract

an offset from the address it sends to Memory. As each node has a unique integer

address which gets assigned upon instantiation, this value can be used to calculate

the address offset within the node. This is achieved using the following line of code:
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1 offset := std_logic_vector(to_unsigned ((n_id *64) ,8));

When carried out, this assigns an offset of 0 to node A, an offset of 64 to node B, an

offset of 128 to node C and an offset of 192 to node D. In the initial implementation,

if node A sends a packet over the interconnect to node B, it was performing one of

the following two transactions:

1. Sending a read or write request to node B’s address space.

2. Returning data from its address space / confirming a write took place to its

address space.

As mentioned in Chapter 2, the two major components of a directory-based cache

coherence protocol are:

1. The directory organisation.

2. The set of message types and message actions.

In the SCI standard, the transactions used are based on the split-transaction method

of message passing and the different cache and memory states. In order to apply the

SCI cache coherence protocol to this design, 16 transactions were designed. These

transactions are based on different coherence actions used in the SCI protocol. Each

of these transactions are listed in Table 3.1. and will be discussed in a later section.

The steps the decoder takes when processing a read or write transaction will first

be outlined. Until the CPU asserts a control signal to the Decoder (indicating a

transaction is waiting to be processed), the Decoder remains in idle mode, dealing

with request packets from other nodes in the interconnect.

Read transaction

Once the CPU asserts a control signal to the Decoder entity, the Decoder reads

the incoming transaction 9. As in the initial implementation, a read transaction is

9The packet structure for the communication between the CPU and decoder did not change for
the final implementation. The packet structure was illustrated on page 35.
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Transaction# Description

0 Head Update
1 Remote Read to Memory
2 Remote Write to Memory
3 Return of Data to Source/Confirmation of Write
4 Read Request to H.O.L
5 Write Request to H.O.L
6 Return of Data from Old Head to New Head
7 Purge of List Complete: Permission to Write Cache Line
8 Purge R.O.L
9 Update Backward Pointer
10 Update Forward Pointer
11 Update Memory Pointer &

(Optionally) Send Purge Transaction To Rest of List
12 Pointer Update Confirmation
13 Purge Completion
14 Tale Update
15 Flush to Memory

Table 3.1: Internodal Transactions

denoted by the most significant bit being 0. The Decoder will first perform a cache

read using this address 10. This is done by setting the cache control signal to indicate

that a read or write transaction is taking place 11. The cache replies indicating a

cache hit or miss. If a cache hit occurs, the Decoder will send the retrieved data to

its CPU. If however a cache miss occurs, the Decoder then calculates the location

of the address in global memory, and performs one of the following actions:

• If the address is located in the current nodes address space 12, a read from

local memory is performed13. The returning packet from memory indicates

whether the block is shared or not. If not shared, the cache can be updated

and the data can be returned to the CPU, completing the read transaction.

If shared however, the forw id field will point to the node at the head of the

list. A packet is then sent out onto the interconnect using transaction#4. This

10The Decoder and Cache communication packet structure was illustrated on page 39.
11This was discussed in the Cache Entity section. There are four possible functions. A read/write

is one of these.
12The current node is the node whose CPU is performing a transaction.
13The Decoder and Memory communication packet structure was illustrated on page 44.
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packet will be addressed to the current head, node X for example. Node X will

then process this transaction (processing steps are explained later), eventually

resulting in the return of the data block to the current node. The current node

will then update its cache (becoming H.O.L) and return the data to the CPU,

completing the transaction.

• If the address is located in another nodes address space, node X for example,

a packet is sent out to node X using transaction#1. Node X will process this

transaction, eventually resulting in the return of the data block to the current

node. The current node can then update its cache and return the data to the

CPU, completing the transaction.

Write Transaction

Conversely, a write transaction is denoted by the most significant bit of the packet

sent from the CPU being set. The Decoder proceeds the same way as the read

transaction, checking its cache for the address (cache read). The cache replies with

the return packet.

Write Transaction : Cache Hit

If a cache hit occurs (i.e. m.s.b = 1), the cache state field is examined. Depending

on which state the cache line is in, different steps are taken.

• H.O.E.L

If the current node is head of an empty list, it already has exclusive ownership

of the block, and the Decoder can therefore update its cached copy (setting the

cache control line to update), using the data sent from the CPU. The Decoder

can then return confirmation to the CPU, signifying that the transaction is

complete.

• H.O.L
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If the current node is head of a shared list, it needs to obtain an exclusive copy

of the block before it can be given write permission. The only way to do this

is to delete the rest of the list. Using transaction#8 (purge rest of list), the

Decoder sends a packet to the next node in the list. Each member of the list

will wipe its cache line entry for the address and forward the purge transaction

to the next node in line. When the tail list entry receives the purge packet, it

will send a confirmation packet back to the head of the list indicating that the

purge has been completed (transaction#7). Once the current node receives

this confirmation, it can then update its cache line and send confirmation to

the CPU, indicating that the transaction is complete.

• R.L.E

If the current node is a regular list entry, it will need to:

1. pop itself out of the list

2. make itself the new head of the list

3. send a purge transaction to the rest of the list

In order to pop itself out of the list, it will need to update the backward pointer

of the node in front of it (using transaction#9), and update the backward

pointer of the node in front of it (using transaction#10). Each of these nodes

will send back a pointer update confirmation packet (transaction#12). Once

these updates have been confirmed, the current node can make itself head of

the list and delete all other entries. This is done by sending transaction#11 to

the local memory or source of the address (unless of course the current node is

the source of the address. In which case a memory write transaction is used,

followed by a purge transaction to the head of the list). As in the previous

case, the T.L.E will eventually send a confirmation packet to the current node,

indicating that the purge has been completed. The current node’s Decoder

can then update its cache line and send confirmation to the CPU.

• T.L.E
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Similarly, if the current node is a tail list entry, it will need to:

1. pop itself out of the list

2. make itself head of the list

3. send a purge transaction to the rest of the list

In order to pop itself out of the list, the tail list entry need only send a

tail update transaction (transaction#14) to the node before it. This tells

the receiving node that it needs to update its cache state to T.L.E (if its

current state is R.L.E), or H.O.E.L (if its current state is a H.O.L). Once

confirmation of this update has been received by the current node, it can

update memory and purge the shared list (explained previously). The current

node will eventually receive confirmation from the T.L.E that the list has

been successfully purged, giving it permission to update its cache and send

confirmation to the CPU.

Write Transaction : Cache Miss

If a cache miss occurs, the Decoder first calculates the location/source of the address.

• If the address is a located locally, the Decoder will perform a read transaction

to its memory module. Once memory returns the necessary information, the

state field is first checked.

1. If the memory state is not shared, the Decoder performs a cache write,

initialising itself as H.O.E.L. Confirmation is then sent to the CPU.

2. If the memory state is shared however, the forward pointer field is ex-

amined. Using this forward pointer, the current node will purge the list.

Once this has been confirmed (by the T.L.E), the current node can write

to its cache and send confirmation to its CPU.

• If the address is a remotely located, the current node will send a write request

(transaction#2) to the remote location. Confirmation will eventually be sent
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back to the current node, giving it exclusive ownership of the block. Once this

occurs the decoder writes to its cache and sends confirmation to the CPU.

Cache Flush Transaction

As mentioned in the Cache Entity section, the cache asserts a flush signal to the

Decoder entity when it needs to flush a cache line. When idle, the Decoder deals

with this request by setting the cache control signal to flush 14. The next steps are

carried out according to the cache state of the line.

• H.O.E.L

If the current node is head of an empty list, it will need to flush the possibly

dirty data to memory. If the memory location is local, the Decoder performs

a flush transaction to its Local Memory module. Otherwise the Decoder will

perform a remote flush, using the flush transaction (transaction#15).

• H.O.L

If the current node is head of a shared list it needs to send a head update

transaction (transaction#0) to the next node in the shared list. This node

will update its cache state to either

– H.O.L (if it is a R.L.E)

– H.O.E.L (if it is a T.L.E)

Once this is completed (i.e. when a pointer update confirmation packet is sent

back to the current node using transaction#12), the current node will need to

update memory. If the address is located locally, the Decoder will perform a

write to memory. Otherwise transaction#11 is sent to the remote node with a

slight variation. If a node receives a packet with transaction#11, it examines

the data field. If the data field has all bits set, then it is treated as a memory

update transaction only (the purge command is not sent to the list). So the

14This was discussed in the cache entity section
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current node sets all bits to 1 in the data field of the packet, sending it to the

remote location, completing the update.

• R.L.E

If the current node is a regular list entry it will need to pop itself out of the

list. It does so by updating its surrounding neighbours pointer values, which

was explained in the previous Cache Write section.

• T.L.E

Finally, if the current node is a tail list entry, it will need to send a tail exchange

transaction to the previous list entry. This previous list entry has two ways of

dealing with this, depending on its current cache state (once again, this was

explained in the previous Cache Write section).

This outlines the Decoder’s processing steps for a cache flush transaction.

Interconnect Transactions

The Decoder entities use 16 different transactions to maintain coherency in the

distributed global address space. A detailed description of each will now be given.

15

Transaction#0: Head Update

When a H.O.L entry is processing a flush transaction, the Decoder will update the

cache state of the next node in line, node X for example. This is done using a Head

Update transaction. Upon receipt of this transaction, node X will perform a cache

read using the address from the received packet. A cache hit will take place (as

expected), and the Decoder will examine the cache state field, acting accordingly.16

1. If the cache state indicates that the node is a R.L.E, the Decoder will update

the cache to the H.O.L state.
15Chapter 4 will more clearly outline the use of each transaction, as simulation examples are

given.
16There are only two possible states the cache could be in.
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2. If the cache state indicates that the node is a T.L.E, the Decoder will update

the cache to the H.O.E.L state.

Node X will then send a packet confirming this update to the original node

(transaction#12).

Transaction#1: Remote Read to Memory

When a node wishes to read from a remote memory address not contained in its

cache, it will send a Remote Read to the node which owns this address space, node

X for example. Node X will first perform a memory read transaction. Memory will

return a packet in the format discussed in the Local Memory Entity section. If the

memory state is not shared, node X’s Decoder will return the data to the requesting

node using transaction#3. If the memory state is shared however, further processing

is required:

The address of the forward pointer is examined. If node X is head of the (possibly

empty) list, a local cache read is performed resulting in a cache hit (as expected).

The state field is examined for two different possibilities.

1. H.O.E.L

If node X is head of an empty list, it will update its state to the T.L.E state.

2. H.O.L

If the node X is head of a list containing more than one node, it will update

its state to the R.L.E state.

Once this is complete, node X’s Decoder will return the data to the requesting

node using transaction#6. If node X’s local memory pointer points to a different

node in the interconnect however, a read request is sent to the head node using

transaction#4.
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Transaction#2: Remote Write to Memory

When a node wishes to write to a remote memory address not contained in its cache,

it will send a Remote Write to the node which owns this address space, node X for

example. Node X will first perform a write to memory and will receive the old state

and pointer information in return. The Decoder will examine the state field. If

the memory state is not shared, node X’s Decoder will return confirmation to the

requesting node using transaction#3. Alternatively, if the memory state is shared,

further processing is required.

The address of the forward pointer is examined next. If it is node Xs address

that is head of the (possibly empty) list, a local cache read is performed resulting in

a cache hit (as expected). The state field is examined for two different possibilities.

1. H.O.E.L

If node X is head of an empty list, it will wipe its cache line and send confir-

mation back to the requesting node using transaction#7.

2. H.O.L

If the node X is head of a list of nodes, it will wipe its cache line and purge

the rest of the list (using transaction#8). In order for the T.L.E to be able

to send a confirmation packet to the requesting node, node X will insert the

requesting nodes ID in the source field.

On the other hand, if the node X’s local memory pointer points to a different node

in the interconnect, a write request is sent to the head node using transaction#5.

Transaction#3: Return of Data to Source/Confirmation of Write

The situation where this transaction is used has been outlined previously. Upon

receipt of this type of packet, the cache is updated and the CPU is either sent

confirmation that the write has taken place (if it was a write transaction originally),

or the requested data is returned (if it was a read transaction originally).
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Transaction#4: Read Request to H.O.L

A packet, using this transaction type, is sent to the head list entry. The receiving

node will first perform a cache read, checking which one of two possible states its

cache line is in.

1. H.O.E.L

If the cache line is head of an empty list, the Decoder will update the cache

state to the T.L.E state.

2. H.O.L

If the cache line is head of a list, the Decoder will update the cache state to

the R.L.E state.

Once the cache update is complete, the Decoder in the receiving node will send

the corresponding cached data to the requesting node using transaction#6. The

requesting node will then make itself head of the list.

Transaction#5: Write Request to H.O.L

A packet, using this transaction type, is sent to the head list entry. Like in trans-

action#4, the cache state of the receiving node will need to be checked for two

possibilities.

1. H.O.E.L

If the cache line is head of an empty list, the Decoder will wipe its cached

copy and then return confirmation to the requesting node using transaction#7,

indicating that the list has been purged.

2. H.O.L

If the cache line is head of a list, the Decoder will wipe its cached copy and

purge the rest of the list using transaction#8. The address of the requesting

node will be inserted into the source field of the outgoing purge packet, en-

abling the T.L.E to send confirmation to it, once the deletion of the list has

been completed.
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Transaction#6: Return of Data from Old Head to New Head

Upon receipt of a packet with this transaction type, the receiving Decoder will write

to its cache with the data received, establishing itself as head of the list. The source

field of the received packet is used to identify the node next in line (i.e. used in the

forward pointer field of the cache block). The Decoder will then return the data to

the waiting CPU, thus completing the transaction.

Transaction#7: Purge of List Complete: Permission to Write Cache Line

Once the Decoder receives this transaction, it will either:

1. Update its cache line (if a cached copy of the address already exists).

2. Perform a cache write, creating a new entry for that particular address.

Once this update has been completed, the Decoder then sends confirmation to

the CPU, completing the transaction.

Transaction#8: Purge R.O.L

For this transaction, the Decoder will need to first perform a cache read. As ex-

pected, a cache hit will occur, and the cache state field will be examined. Depending

on the cache state, the Decoder will act in one of two ways.

1. R.L.E or H.O.L

If the receiving node is a regular list entry or a head of list entry, it will wipe

its corresponding cache line and forward the purge transaction to the next

node in the list.

2. T.L.E

If the receiving node happens to be a tail list entry, it will wipe its cache line

and send confirmation to the requesting node, indicating that the deletion of

the shared list is complete. 17 The requesting nodes address is contained in

the source field of the packet.

17The requesting node in this case is the node which is waiting for permission to write to the
cache line.
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The above are the only possible cache states that the receiving node could be in.

The reason for this is that if a node is head of an empty list, it already has write

permission, as it contains an exclusive copy of the data.

Transaction#9: Update Backward Pointer

The receiving node of this transaction, will update its cache backward pointer using

the node address encapsulated in the source field of the packet. Once this update

has been completed, the receiving node will send confirmation back to the requesting

node. In order to allow the receiving node send this confirmation, the requesting

node saves its node address in the first two bits of the data field, as the data field is

not being used to store any useful data for this transaction. Using these two bits,

the receiving node will send a pointer update transaction back to the requesting

node (transaction#12).

Transaction#10:Update Forward Pointer

This transaction is similar to #9, differing only in the fact that the forward pointer

is updated. All other functionality is identical.

Transaction#11:Update Memory Pointer & (Optionally) Send Purge Trans-

action To Rest of List

The receiving node will update its memory state (if its not already shared) and

pointer field (using the node address from the source field of the incoming packet).

The next step depends on the contents of the data field of the packet. If the 32

bits of the data field are all set to zero, the shared list pointed to by the memory

pointer is purged. If the data field bits are all set to 1 however, no purge transaction

is needed. This is used when processing a flush transaction. Here, the head list

entry is updated, requiring a memory update only. Transaction#12 outlines the

case when a purge is needed after a memory update.
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Transaction#12:Pointer Update Confirmation

When a regular or tail entry node is performing a write transaction, it will need to

send 1 or 2 pointer updates to its neighboring members in order to pop itself out

of the shared list, depending on its position in the shared list (R.L.E or T.L.E).

Once the update(s) has been completed, a pointer update confirmation packet will

be received from the updated node(s).

As mentioned in the above paragraph, the processing of this transaction depends

on the cache state of the current node. The only two possible states are R.L.E and

T.L.E. 18

1. R.L.E

If the current node is a R.L.E, it will check which node has sent the pointer up-

date confirmation (either the node at its forward pointer or backward pointer).

If the source field indicates the node at its forward pointer, the Decoder will

then send a pointer update transaction to the node at its backward pointer.

If source field indicates the node at its backward pointer however, the cur-

rent node is now popped out of the shared list. Once this has happened, the

Decoder will check the source location of the global address.

If the address is located locally, memory is updated, and a purge transaction

is sent to the list pointed to by memory. If the address is located remotely

however, a memory update and purge list transaction (#11) is sent to the

remote node. 19

2. T.L.E

If the current node is a T.L.E, a pointer update transaction could only have

come from its only neighbour in the list. Once confirmed, the Decoder checks

18If the cache had been in the H.O.L state, a purge transaction would have been sent to delete
the rest of the list, giving the current node exclusive write permission. A H.O.E.L entry already
has exclusive ownership of the block.

19Please note that the data field bits will need to all be set to 0, indicating that the receiving
node is to purge the list after updating memory.
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the source location of the global address. If the address is located locally,

memory is updated and a purge transaction is sent to the list. Otherwise a

transaction#11 packet is sent to the remote node which contains the address.

Transaction#13:Purge Completion

This transaction is sent from the tail list entry to indicate that the list has been

purged. Once received, a node will have exclusive ownership of the address block.

It can then perform a cache update or write and send confirmation back to its CPU,

completing the transaction.

Transaction#14:Tale Update

The receiving node will first check its cache state for the corresponding address, as

the update depends on the current cache state. If the current cache state is H.O.L,

then an update to the H.O.E.L state will be performed. The only other possible

cache state in this case is a R.L.E, resulting in an update to the T.L.E state. Once

the cache update is complete, a pointer update transaction is sent in reply.

Transaction#15:Flush to Memory

Upon receipt of this transaction, the Decoder simply flushes the data to its local

memory entity, asserting the flush control signal.

This sums up the functionality of the Decoder entity. The initial implementation of

the CPU entity needed slight modification for control and demonstration purposes.

These modifications are discussed in the following section.

3.5 CPU Entity

In the initial implementation, a pseudo random number generator was used to gen-

erate random addresses within the global memory address space. It was realised

however, that in order to clearly demonstrate the SCI Cache Coherence Protocols

in action, a number of carefully selected transactions would need to be executed by
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each of the CPU’s. The generic function outlined previously was used to assign dif-

ferent transactions to each CPU. The transactions are stored in an array structure.

With this slight modification, it is possible to use specific transactions which high-

light the interesting actions of the SCI cache coherence protocol. The interaction

with the Scheduler entity remained the same, and is summarised as follows. Once

a node has completed a transaction, it de-asserts its request line to the Scheduler.

If the CPU still has transactions left to process (i.e. the index of the array has not

come to the last element), it re-asserts the request line.

3.6 Instantiation / Port Mapping Stage

Once all the individual entities were coded and tested (testing is discussed in the

next chapter), the next step was to instantiate each of the them into 4 different

nodes (A, B, C and D). The internal node structure can be seen in Figure 3.13. The

red lines are the control signals used by the different entities.

Figure 3.13: Internal Node Structure

For the generic entities, the node ID is passed in as an integer value (0-3), as

explained earlier. Test outputs were assigned to all wires within the node. This

allowed observation of every internal signal within the node, for testing purposes.

Each node was then fully tested and then instantiated into the top-level design,
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along with the Scheduler entity. This final topology was illustrated on page 36.

The next chapter will discuss how the design was synthesised and tested.
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Chapter 4

Synthesis and Testing

This chapter discusses how synthesis and testing were performed. Test examples

are also provided, demonstrating the protocol in action through the use of diagrams

and simulation screen-shots.

4.1 Synthesis

Synthesis is the translation of a high-level design description into specified hardware.

Logic synthesis translates and optimises the behavioural or RTL code into gate level

code, producing what is known as a net list. A logic synthesis software tool in VHDL

can be thought of as a compiler tool in C. It is then possible to map this net list to

hardware. It was a requirement of this project that the design be synthesisable. This

meant that the design could potentially be downloaded to hardware. Synthesis was

performed using the Xilinx Synthesis Technology (XST) suite of HDL compilation

tools. Each entity in this design was compiled and synthesised using this tool,

targeting the FPGA1 device XSA-3S1000FT256-4 2. The command used to compile

and synthesise each entity targeting this device was:

xst -ifn sci cache.xst

The sci cache.xst file listed each of the entities in hierarchial order. This command

1Field Programmable Gate Array
2This was the FPGA board available to final year students.
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generates a .srp file, which displays the synthesis results. The synthesis results of

this design made it impossible to download onto the FPGA device targeted. An

FPGA consists of an array of 3 kinds of programmable elements:

1. Configurable Logic Blocks (CLB’s)

2. Interconnect Resources

3. Input/Output Blocks

The CLB’s consist of LUT’s (Look-Up Tables), muxes and flip-flops. According

to the device utilization summary in the .srp file, this design uses 468% of the

available logic within the device. 434% of the available 4-input LUT’s were being

used. LUT’s are used to store combinational logic. The Decoder entity, due to its

complexity, would use most of these L.U.T resources to implement the SCI Cache

Coherence Protocols. Each of the 4 nodes instantiates a Decoder, CPU, Cache,

Memory and Switch entity. Each of these nodes are instantiated into the overall

top-level design. The code written for each of the entities gets replicated 4 times

therefore, which explains why the top-level design uses up too many board resources.

Downloading the design to the FPGA however, was not considered one of the project

goals.

4.2 Testing

All testing was performed using ModelSim-XE II v5.8c3, which was used through

the Xilinx project navigator tool. Testing using ModelSim is carried out using a

test-bench. Test-benches allow one to manipulate all possible inputs at different

intervals in the test-bench. For a synchronous design, the rising edge of a clock

denotes the beginning of a new interval. Once set up, a test-bench can be simulated

using ModelSim. This simulation displays a waveform, which allows one to observe

the output value of each signal at every interval. If the design is functionally correct,

these values will be expected. In the next chapter, different examples of the SCI

3Available from http://model.com
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Cache Coherence Protocol in action will be demonstrated. These examples are illus-

trated through the use of diagrams and test-bench screen-shots. The next section

will briefly discuss some of the problems encountered during the testing phase.

4.2.1 Issues

Most of the difficult problems which were encountered, presented themselves during

the top-level testing phase. It proved difficult to test the individual entities for more

than basic functionality 4. Errors and problems were relatively easy to debug at

this level. Once the top-level model was created however, more complex problems

arose which were quite difficult to debug. As most of the complex functionality was

implemented by the Decoder entity, this proved the most problematic.

During top-level functional testing, each CPU was programmed with various

transactions, testing each piece of functionality in the Decoder entity. To begin

with, some small problems were highlighted, which were relatively easy to fix. For

example, a minor error encountered was that some of the packets sent out on the in-

terconnect had incorrect fields (data, source, destination, address or transaction#).

The biggest problem faced proved initially quite difficult to identify. The Decoder

bases all decisions on the state of its input signals. The Decoder appeared to be

performing illegal transactions at different intervals, when in idle mode. The input

signals (from the Switch, Cache, Memory), seemed to be affecting decisions made

later on in the test-bench. Introducing additional control signals only solved the

problem for some cases. The introduction of idle signals on the wires feeding into the

Decoder after a certain time-period solved the problem 5. This required additional

functionality in the Switch, Cache and Memory entities. All output bits of the

signal sent to the Decoder entity are set high after a certain time period (leaving

enough time for the Decoder to retrieve all information needed from the packet).

4It was not feasible to cover all combinations of inputs as this would have been too time
consuming. It would also be quite difficult to interpret what the correct result should be in each
case.

5In SCI, message passing protocols use idle symbols on the interconnect lines.
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This explains why the extra bit was not removed from the Memory entity, as if all

bits are set, the Decoder knows it is an idle signal. The Decoder can identify an idle

signal from the Switch entity, as the destination and source fields will never both

be set to 11 (i.e. Node D). Finally, the Decoder can identify an idle signal from the

Cache entity as the cache state 1111 does not exist.

In order to test all corner-edges, each node randomly performed read and writes

to all global addresses, using the pseudo random number generator from the initial

implementation. Once successful, specific examples of the protocol in action were set

up for demonstration purposes. These examples are discussed in the next section.

4.3 Test Examples

This section demonstrates, using examples, the VHDL-based SCI Cache Coherence

Protocol in action. The examples here were used during project demonstration on

the 5th of April 2005. These examples were carefully selected in order to demonstrate

the overall functionality of the cache coherence protocol.

The test-bench waveform contains two (single-bit) input signals: clock and reset.

Every other signal in the test-bench is a test output. As mentioned earlier, these

test outputs are not only used to display the communication between the 4 nodes in

the interconnect, but also to display the internal entity communication within each

node. Different signal colours have been chosen to differentiate some of the signals

and to aid in the explanation of each step. Please note that this project implements

a synchronous design, as each entity performs an action on the rising edge of the

clock only. The design was implemented this way for demonstration and testing

purposes only. An asynchronous design would have proven extremely difficult to

test and almost impossible to demonstrate effectively. Constructing realistic CPU,

cache and memory processing times was not one of the goals for this project. The

CPU in this design, acts as a simple transaction generator. Associated with the

following test-bench screen-shots is a timing bar situated below the test signals.

This was included to allow accurate reference to each part of the screen-shot.
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To begin with, each CPU is given 7 transactions to complete. Once a node has

completed its assigned transactions, it does not re-assert its request line, indicating

that it does not require another time slot from the Scheduler. This is illustrated in

Figure 4.1(a). Each time a node completes a transaction, it de-asserts its request

line. If there are still transactions for it left to process however, it will re-assert the

request line once the scheduler has given the next inline node the time slot. The

light blue lines represent the scheduler allocating a time-slot to each node. These

signals are named goA, goB, goC, goD. The request signals are coloured dark blue

(rqA, rqB, rqC, rqD). As can be seen from the screen-shot, once a node completes

all 7 transactions, the request line for that node is not re-asserted.

The next set of signals are the interconnect lines (48 bits). Each node has an

input wire (nodeAin, nodeBin...) and an output wire (nodeAout, nodeBout...).

These input and output wires are coloured orange and green respectively. Shown

in Figure 4.1(b), are the internal test output signals of node A. Highlighted in

blue, are the 41-bit communication signals between the Decoder and CPU enti-

ties, cpu toDecoA and deco toCPUA. The next two green coloured signals represent

the 42-bit Decoder and Memory entity communication signals, deco toMemA and

mem toDecoA. These are followed by two yellow signals representing the 48-bit De-

coder and Cache entity communication signals, deco toCacheA and cache toDecoA.

The next two signals represent the 48-bit communication signals between the De-

coder and Switch entities, deco toSwitchA and switch toDecoA. The last four

represent control signals within the node (i.e. CPU to Decoder control, Decoder

to Cache control...). Excluding the first transaction example by node A, different

stages in each transaction will be illustrated in a step-by-step manner.

Each of the 7 transactions processed by each node will now be outlined. In order

for the reader to easily follow each step of a transaction, the entity communication

packet structures can be found together in Appendix B. The reset signal is asserted

at the beginning of the test-bench, initialising all variables, instantiating the node

identification integer values and displaying idle signals on the communication links.

On a reset, the scheduler will give the first time slot to node A by default. So node
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A will get to process its first transaction6 once the reset is de-asserted.

4.3.1 Node A: Transaction#1: Read $11

Node A’s first transaction is a read from memory location $11, illustrated by Figure

4.2. This first transaction will be discussed in greater detail than others, in order to

explain all signals changes and general behavior of the test-bench screen-shot. At

100ns the reset signal is set low, allowing node A to process its first transaction. On

the next rising clock edge, node A’s CPU asserts the control signal to the Decoder

and sends the first transaction for processing. As detailed by the CPU-Decoder

packet structure, the m.s.b set to 0 indicates a read transaction, while the next 8

bits encapsulate the address.7. The first action the Decoder takes is a cache read,

performed on the next rising edge of the clock. As detailed by the Decoder-Cache

packet structure, the m.s.b being set to 0 indicates a read. As part of the reset, the

Decoder sets the cache control line to 01 by default, which is the cache read/write

state. This does not need to be adjusted therefore. The only other field the Decoder

requires is the address field (set to $11). On the next clock cycle, the cache replies

with a cache miss packet, denoted by the m.s.b being 0. All other data in the packet

is negligible.8

The next step the Decoder takes is to calculate the node location of address $11.

Address $11 is located in node A’s address space, requiring the Decoder to perform

a local memory access on the next clock cycle. The memory control signal is set

to 00, indicating a read transaction. Memory will return the data along with the

associated directory information on the next clock cycle (this can be seen at ∼500ns

on the mem toDecoA test output signal). As illustrated by the Memory-Decoder

packet structure, the first 8 bits represent the address. This is followed by a two

bit state field indicating whether the block is shared or not. In this case, the block

is not shared (state field = 00), indicating that the data field contains the most

up-to-date copy of the block.

6a reset will set the CPU’s index variable in the transaction array to point to the first transaction.
7The data field is negligible here as a read transaction being performed.
8All caches are cleared on a reset, hence the cache miss.
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(a) Scheduler and Interconnect Signals (b) Internal Node Signals

Figure 4.1: High-Level Signals Overview
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Figure 4.2: Node A: Read $11
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The data is written to the cache at ∼600ns by the Decoder, signifying the write

with the m.s.b set to 1. The cache state field is set to H.O.E.L (0001) and the

data field contains the 32-bit value received from memory. The data is also returned

to the CPU at this time interval. The CPU will then de-assert its request line

temporarily, thus ending the transaction. The current shared list for address $11 is

illustrated in Figure 4.3.

Figure 4.3: $11 Shared List

4.3.2 Node B: Transaction#1: Read $11

Node B is given the next time slot from the Scheduler. This handover at the

scheduler is illustrated by the screen-shot in Figure 4.4 (a). Node B’s CPU will

then send its first transaction to its Decoder for processing. A cache read will take

place first. Node B’s cache (like the others after a reset) is empty, resulting in a

cache miss. The Decoder will then calculate the location of address $11, identifying

node A as the remote source. A packet is then formulated and sent to the Switch

at roughly 1300ns, using the following fields9:

1. The destination field is set to node A’s address (00)

2. The address field is set to $11

3. The transaction# field is set to trans#1 (0001)

9Interconnect packet structure is illustrated along with the others in Appendix B
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4. The source field is set to node B’s address (01)

5. The data field is negligible but needs a value, and is therefore set to $00000000.

The communication in node B just discussed is shown in the screen-shot of Figure

4.4(b). The Switch then sends the packet out onto the interconnect at ∼1300ns,

which eventually finds node A. This packet forwarding is illustrated in Figure 4.5(a).

Each node’s switch examines the destination address field. Node A will receive

the packet, matching its node address with the packet destination address, and

forwarding the packet to its Decoder for processing.

Node A Processes Read Request

The processing steps within node A are illustrated in Figure 4.5(b). The Decoder

will receive this packet and perform a memory read transaction to address $11

(∼1900ns). Memory will update its forward pointer to node B’s address, returning

the old directory information and data (which is negligible in this case, as the data

is possibly stale). The state bits indicate that the block is shared. The next two bits

identify the node at the head of the shared list (00 = node A). Node A’s Decoder

therefore performs a cache read. The cache returns with a hit 10, providing the

corresponding state and pointer information, along with the data block. Node A’s

Decoder updates the cache state to the T.L.E state, as there is now 2 entries in the

shared list and the backward pointer field is set to node B’s address (01). Decoder

A will then send a packet to node B returning the data to the new head, using

transaction#6, at ∼2200ns.

Node B Receives Data From Old Head

Node B’s final processing steps can be seen in Figure 4.6. This packet is delivered

to node B and forwarded to its decoder (∼2400ns). Node B writes to its cache,

initialising itself as H.O.L., and setting its forward pointer field to node A’s address

(00). The Decoder then returns the data to its CPU, completing the transaction.

10This is expected as we now know that node A is head of the shared list.
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The current shared list for address $11 is illustrated in Figure 4.7. The Scheduler

will give the next time slot to node C, allowing it to process its first transaction.

4.3.3 Node C: Transaction#1: Read $11

Node C performs the same initial steps as node B. These steps are summarised as

follows:

1. Decoder performs a cache read for address $11.

2. A cache miss occurs so the decoder calculates location of address $11.

3. A packet is sent to node A (i.e. the remote location of $11) using transac-

tion#1.

Node A Processes Read Request

The screen-shot showing node A’s processing steps is illustrated in Figure 4.8(a).

Decoder A performs a memory read transaction (∼3600ns) upon receipt of the

packet. This time the memory’s forward pointer indicates node B as the head list

entry. Node A will then send a packet to node B using transaction#4 (∼3800ns).

Node B (H.O.L) Processes Read Request

The screen-shot showing node B’s processing steps is illustrated in Figure 4.8(b).

Decoder B performs a cache read transaction, resulting in a cache hit (as expected).

Decoder B will update its cache to the R.L.E state, and will update its backward

pointer to node C’s address (10). Once the cache line has been updated, the cached

data can be forwarded to the new head, node C. The updating of the cache and the

packet forwarding to the switch by node B occurs at ∼4300ns.

Node C Receives Data From Old Head

This packet is delivered to node C and is forwarded to its decoder at ∼4500ns. Node

C performs a cache write, initialising itself to H.O.L. and setting its forward pointer

field to node B’s address (01). The decoder then returns the data to its CPU,
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(a) Scheduler Allocation (b) Node B: Send read request to Node A

Figure 4.4: Node B’s first steps
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(a) Packet Forwarding to NodeA (b) Node A: Update cache & return data
from cache to Node B

Figure 4.5: Test-Bench Signals Overview
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Figure 4.6: Node B updates cache and sends confirmation to CPU
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Figure 4.7: $11 Shared List

completing the transaction. This final processing step by node C is illustrated in

Figure 4.9. The current shared list for address $11 is illustrated in Figure 4.10(a).

The Scheduler will give the next time slot to node D which will process its first

transaction.

4.3.4 Node D: Transaction#1: Read $11

This transaction will be processed in similar stages to the previous example, the

main difference being that the data will be returned from the current head, node

C. Node C will degrade itself to a R.L.E, update its backward pointer to point to

node D and return the 32-bit data block. Node D will write to its cache, initialising

its state to H.O.L and its forward pointer to node C. The current shared list for

address $11 is illustrated in Figure 4.10(b).

4.3.5 Transactions 2-6

The first 4 transactions of this test-bench set up a shared list of 4 nodes for the

address $11, as depicted in Figure 4.10(b). The steps taken in each case show the

protocol functioning correctly. The each CPU then performs further reads from

addresses $22, $44, $88 and $AA. This sets up shared lists of the same order for

each address. The only difference in these transactions is the source location of

the addresses. $22 is located in node A’s address space, $44 is located in node B’s
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(a) Node A: Send read request to Node
B(Head)

(b) Node B: Update cache & send data to
Node C(New Head)

Figure 4.8: Node C sends read request to Node B
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Figure 4.9: Node C updates its cache and returns data to CPU
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(a) Shared List after Node C’s Read (b) Shared List after Node D’s Read

Figure 4.10: Shared List for address $11

address space, $88 is located in node C’s address space and $AA is located in node

D’s address space.

The sixth transaction performed by each node simulates a cache read from one

of the cached addresses, $11, $22, $44, $88 or $AA. This results in a cache hit.

Node A: Cache Hit $11

Figure 4.11(a) shows the screen-shot where node A performs a read of address $11.

As can be seen from the test-bench, the Decoder will first check its cache for the

address at ∼37us. A cache hit occurs and the Decoder can return the data to the

CPU immediately, improving performance. Examining the return packet from the

cache at 37,100ns, we notice that the cache is (correctly) in the T.L.E state (cache

state field = 100), and the backward pointer field contains node B’s address (01).

The forward pointer field here is negligible as we are dealing with a tail list entry.

Node B & C: Cache Hit $11

Figure 4.11(b) shows the screen-shot where node B performs a read of address $11.

Examining the return packet from the cache at ∼37,800ns, we can see that the cache

is (correctly) in the R.L.E state (cache state field = 011), the forward pointer field

contains node A’s address (00) and the backward pointer field contains node C’s

address (10). Node C will have the same cache state as node B, R.L.E, but will have

a forward pointer value set to node B’s address and a backward pointer value set to

node D’s address.
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Node D: Cache Hit $22

Figure 4.12 shows the screen-shot of the test-bench where node D performs its second

read of address $22. Examining the return packet from the cache at ∼39,200ns, we

can see that the cache is (correctly) in the H.O.L state (cache state field = 010)

and the forward pointer field contains node C’s address (10). The backward pointer

field is negligible here, as node D is the H.O.L entry, which means that its backward

pointer field is to memory.

The final transaction each node performs is a write. Each node will now perform

a write transaction to one of the addresses previously mentioned. This will require

the protocol to act differently in each case, depending on the current nodes cache

state. The following transactions will illustrate the efficient use of nearly all of the

16 transaction types.
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(a) Node A: Cache Hit : T.L.E (b) Node B: Cache Hit : R.L.E

Figure 4.11: Cache Hits on $11
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Figure 4.12: Node D: Cache Hit on $22 : H.O.L
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4.3.6 Node A: Write $44 with $00000004

Node A performs this transaction, specifying the write by setting the m.s.b. of the

packet. The Decoder will perform a cache read, resulting in a cache hit. Node A is

a T.L.E and will therefore send a Tail Update transaction (transaction#14) to node

B (its backward pointer field = 01). This is illustrated in Figure 4.13(a). When

the packet reaches node B, its Decoder will perform a cache read. It is currently a

R.L.E, and therefore updates its cache state to the T.L.E state.11 A pointer update

confirmation packet is then returned to node A (transaction#12). This is illustrated

in Figure 4.13(b).

Upon receipt of this confirmation packet, node A will now have popped itself out

of the shared list for address $44. The next step is to update memory and purge

the shared list, giving node A an exclusive copy of the shared data. Address $44 is

located in node B’s address space, so a packet is sent to node B using transaction#11.

This is illustrated in Figure 4.14(a). Node B updates its memory, receiving the

current head of the list, node D, in the return packet. Node B then sends a purge

rest of list transaction (transaction#8) to node D. This is illustrated in Figure

4.14(b). As node D is the H.O.L (a cache read is performed before the cache wipe),

it will wipe its cache line entry for address $44 (the Decoder sets cache control

signal to wipe, i.e. 10) and forward the purge rest of list transaction to the next

in line node, node C (found using its forward pointer field). This is illustrated in

Figure 4.15(a). Node C performs the same action as node D, forwarding the purge

transaction to the T.L.E, node B.

As node B is the T.L.E (once again a cache read is always performed before the

cache wipe), it is responsible for returning confirmation of the purge to the new head.

This is done using transaction#7, purge of list complete, permission to write cache

line. This is illustrated in Figure 4.15(b). Node A will receive this packet, write to

its cache and send confirmation to the CPU. This indicates that the write has taken

place, thus completing node A’s final transaction (its request line to the Scheduler

11If this node had been a H.O.L entry, its state would be update to the H.O.E.L. This has been
discussed previously in the Implementation chapter.
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will not be re-asserted). This final step is illustrated in Figure 4.16, resulting in

node A becoming H.O.E.L for address $44, with modified data in its cache.

4.3.7 Node B: Write $88 with $00000008

Node B’s cache performs a hit when queried with the address $88. As node B is a

R.L.E, both of its neighbouring nodes in the list need a pointer update transaction

sent to them. Node A is sent an update backward pointer packet (transaction#9),

giving it node C’s address as the new pointer value. Node B’s address is stored in

the 2 m.s.b’s of the data field, so that node A can reply with confirmation of this

update. This first step is illustrated in Figure 4.17(a)’s screen-shot. Node A will

update its pointer accordingly and send confirmation back to node B. This can be

seen in Figure 4.17(b). Upon receipt of this confirmation packet, node C is then

sent an update forward pointer packet (transaction#10), giving it node A’s address

as the new pointer value. This second step carried out by Node B is illustrated in

Figure 4.18(a). Node C will return a confirmation packet upon completion. Node

C’s processing steps are illustrated in Figure 4.18(b).

The next step for node B is to update memory and purge the shared list of

address $88. $88 is located in node C’s address space. The screen-shot for this step

is shown in Figure 4.19(a). Node C will update its memory and send a purge r.o.l

transaction to the head entry, node D. This processing step is illustrated in Figure

4.19(b). Node B will eventually receive confirmation of the shared list deletion

from the T.L.E node A, giving it exclusive ownership of the address $88 block and

allowing it to write over its cached copy. Node B then sends its CPU confirmation

that the write has taken place, completing its final transaction. This final step is

shown in Figure 4.20.

4.3.8 Node C: Write $22 with $00000002

Node C is a R.L.E for this address block. The steps involved in the execution of

this transaction are almost identical to node B’s write to $88. A R.L.E needs to pop

itself out of the shared list by sending pointer update transactions to its neighbouring
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(a) Node A sends Tail Update to Node B (b) Node B sends Pointer Update Confir-
mation to Node A

Figure 4.13: Node A: Write $44 with $00000004
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(a) Node A sends Memory Update and
Purge Command

(b) Memory updates and sends purge to
head

Figure 4.14: Node A: Write $44 with $00000004
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(a) Head wipes and forwards to next node
in list

(b) T.L.E sends confirmation to new head

Figure 4.15: Node A obtains exclusive write permission of address $44
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Figure 4.16: New Head writes to cache
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(a) Node B sends Back ID Pointer Update
to Node A

(b) Node A Sends Update Confirmation to
Node B

Figure 4.17: Node B: Backward Pointer Update
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(a) Node B sends Forward ID Pointer Up-
date to Node C

(b) Node C Sends Update Confirmation to
Node B

Figure 4.18: Node B: Forward Pointer Update
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(a) Node B sends Memory Update and
Purge command

(b) Node C updates memory location and
deletes list

Figure 4.19: Node B: Memory Update And Purge List
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Figure 4.20: New Head writes to cache
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nodes. Once completed, the node needs to update the memory source of the address

($22 = node A) and purge the shared list, obtaining an exclusive copy of the data.

Once exclusive ownership exists, the node can update its cache line with the write.

4.3.9 Node D: Write $11 with $00000001

The final transaction in the test-bench is performed by node D. As node D is the head

list entry for address $11, it will only need to delete the other list entries. After the

cache hit has taken place, node D’s decoder simply sends a purge rest of list packet

(transaction#8) to the next list entry, node C (indicated by the forward pointer

field). This can be seen in Figure 4.21(a). The other list entries wipe their cached

copies of address $11 and the T.L.E, node A, eventually sends confirmation that the

list has been purged successfully, using transaction#7. Node D, now H.O.E.L, will

receive this confirmation and update its cache line entry for address $11. This final

step is illustrated in Figure 4.21(b).

4.4 Evaluation

This chapter discussed how the deign was synthesised and tested. From the exam-

ple transactions shown in the previous sections, it can be seen that the SCI cache

coherence protocol was implemented correctly. The scalability advantages of the

protocol were not highlighted, as the design was restricted to 4 nodes for demon-

stration purposes. The design allows each CPU to be programmed with different

transaction, and to execute them under the control of the Scheduler entity. In SCI,

each node in the network is responsible for the update of the list. This synchronous

design allows the clear observation of the individual responsibilities of each node.

For students with a knowledge of VHDL, this design is of value and could be used

as a teaching tool, allowing them to interactively learn about the SCI distributed

directory cache coherence protocol.
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(a) Node D purges list (b) Node D is given write permission

Figure 4.21: Node D: Write $11 with $1
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Chapter 5

Conclusions

This final chapter will draw conclusions based on the results outlined in the previous

chapter. Future work, which would add to the goals achieved in this project, will

also be suggested.

5.1 Conclusions

This project successfully implemented a VHDL simulation model of the SCI directory-

based cache coherence protocols. The design simulates 4 nodes interconnected in

a DSM architecture of unidirectional point-to-point links. Each CPU can be pro-

grammed with different transactions, performing reads and writes to the global

address space, while the SCI cache coherence protocols maintains coherency. The

results from the previous chapter are conclusive. The selected transactions showed

the SCI Cache Coherence Protocol functioning correctly. The design was fully syn-

thesised using the XST tool, thus making the project a success.

5.2 Future Work

Additional functionality could be added to this project in a number of different

ways. The exact SCI node model could be designed and implemented in VHDL. The

entities designed in this project could be included in the node application layer of

the model, providing a layer of abstraction. The SCI split-transaction feature could
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also be implemented, using the request and response sub-actions outlined in Chapter

2. Further work could be done in designing different SCI topologies to interconnect

the nodes in the network. One final suggestion would be to interconnect a network

of FPGA’s, using the SCI link controller chip. Each FPGA could implement the

functionality of a node in the network, applying the protocol designed in this project

to maintain cache coherency.
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Appendix A

Pseudo Random Number

Generator

1 Random number generators can be extremely useful in a variety of computer

programs. The code however, may be difficult to debug because results are not

always easy to repeat. Most programmers use “pseudo-random” number generators

instead instead of truly random values, since these algorithms produce a sequence

of numbers that appear to be random, but the pattern can be repeated if started

with the same initialization conditions. There are many interesting algorithms for

pseudo-random numbers.

Pseudo-random number generators usually have several potential difficulties in-

cluding:

1. The algorithm may become cyclic, repeating the same sequence that that was

given before.

2. The sequence can decay eventually into a pattern that does not appear random

at all.

3. The numbers are not uniformly distributed.

1Information and Figures for Appendix A come from http://www.tjhsst.edu/ dhyatt/arch/ran-
dom.html
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A.1 A Pseudo-Random Number Generator Using

the XOR Operation and Bit Shifting

The following algorithm uses the ”exclusive OR” (XOR) operation to take a bit

pattern of some seed number, and generate a pseudo-random number that can be

used as the next seed. This bit manipulation process modeled after the Tausworth

Algorithm, is known to have a a relatively good distribution and a long cycle before

repeating. The example illustrated here uses an eight bit entity to demonstrate how

the algorithm works, but ideally would be based on a datatype that contains a very

long string of binary digits.

The general concept is that the bits from the high order position in the original

seed are shifted into the low order positions. The XOR operation between those

two values ”flips” some of the bits. Then the low order bits are shifted into the

high order position to do the same thing. Once both shifts and flips are done, the

resulting number becomes the new seed.

Notice that the sum of bits used in the two shifts adds up to be the total length

of the data type, in this case 8 bits. If a 32-bit integer were used as the data type,

the sum of the left and right shift operations should equal 32. Another important

detail is that shifts are ”open” or ”unsigned”, where zeros fill from the left and the

right.
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Figure A.1: Pseudo Random Number Generator
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Appendix B

Packet Structures

(a) Decoder to Cache Packet Format

(b) Cache to Decoder packet format

Figure B.1: Decoder-Cache packet structure

(a) Decoder to Memory Packet Format

(b) Memory to Decoder packet format

Figure B.2: Decoder-Memory packet structure

Figure B.3: Interconnect Packets
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Figure B.4: Decoder-CPU packet structure
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