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Abstract

This report outlines the design and implementation of the Analogue Dynamics
Engine (ADE). The ADE is a physics engine constructed from a hybrid, ana-
logue and digital, computer. Software physics engines are becoming increas-
ingly common in computer games, and the ADE was designed as a hardware
equivalent to these software engines. Analogue computers, although currently
rare, have useful properties such as their ability to evaluate functions in real-
time. The physics engine exploits this functionality while using digital compo-
nents to provide reconfigurability.

The core hybrid computer was constructed by connecting twenty nine cus-
tom designed reconfigurable analogue cells to thirty two bus lines, using pro-
grammable interconnect. Each cell can perform inversion, integration, addition
and multiplication. At the periphery of this computer lie two ADCs and two
DACs, so that the hybrid computer may provide a digital interface.

In order to make the engine suitable for use with games, it was decided
to make simulations multiplexable, so that multiple simulations could be run
“concurrently”. This requires simulations to be executed faster than real-time.
Additionally, state must be saved and restored, which was achieved through
replicating the capacitors.

Finally, this report analyses the viability of this project for use in computer
games. Ultimately, it was determined that an analogue computer could be-
come a viable replacement for the software physics engines in use today. In
fact, it offers benefits that cannot be obtained using today’s software physics
engines.
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Chapter 1

Introduction

This chapter defines the key idea behind the project. The chapter continues by
describing the project’s fundamental elements, namely physics engines, ded-
icated hardware, analogue computers and hybrid computers, while outlining
the progression of the idea behind the project. After summarising the objective,
the main advantages are highlighted.

1.1 Project Overview

The primary objective of this project was to construct a physics engine, using
innovative technology. The following sections discuss the conception of the
idea and its progression into its final incarnation.

1.1.1 Physics Engine

Today, an increasing number of applications are constructed using physics as
their foundation. Physics allow objects modelled by the software to appear
as they would in the real world. Typically, these physics calculations are per-
formed by a software library termed a physics engine. These engines have re-
sulted in computer games becoming increasingly realistic. As time progresses
and computing power increases, interest in using physics similarly increases.

However, the complex calculations performed by physics engines make
them relatively CPU intensive. Often, this requires game developers to make a
tradeoff between graphics and physics. Physics engines would become much
more useful if this tradeoff were unnecessary. Conceivably, if physics engines
were to be implemented in dedicated hardware, this tradeoff would be over-
come.

A more comprehensive overview of physics engines is provided in Chap-
ter 2.

1.1.2 Dedicated Hardware

If software is implemented in dedicated hardware, then it will usually perform
faster. The CPU is free to perform other tasks while the dedicated hardware
concurrently performs its own. Traditionally, dedicated hardware has been
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created for CPU intensive software, such as Graphics Processing Units (GPUs)
and MPEG decoders. Therefore, implementing a physics engine from dedi-
cated hardware would be beneficial.

Digital hardware would be the accepted choice for implementing such ded-
icated hardware. However, digital hardware operates by successively applying
operations to data. This means that, for example, finding the second derivative
of a function would take twice as long as finding the first derivative, unless
some optimisation was utilised. Since physics is based on complex mathe-
matics, this successive application of operations would become a bottleneck.
Consequently, digital hardware may not be the most suitable approach for con-
structing a physics engine. A more suitable approach could be to implement
the hardware as an analogue computer.

1.1.3 Analogue Computer

An analogue computer is a computer that is constructed from analogue com-
ponents. Therefore, analogue computers process analogue signals.

The main advantage provided by analogue computers is that they process
signals in real-time, effectively eliminating all propagation delays. The deriva-
tive of a function may be obtained by inputting that function to a differentiator.
If the derivative after one second were desired, then the output would be read
after one second. In fact, the output is valid at a potentially infinite range of
times. In contrast, a digital computer can only calculate the derivative at dis-
crete time steps, and would require nonzero time to perform each calculation.
This real-time behaviour is beneficial for computer games, to prevent any in-
terruption arising from the time taken to perform a calculation.

Another advantage ensuing from this real-time behaviour is parallelism.
Analogue parallelism ensures that the second derivative takes the same time
to calculate as the first derivative. In other words, the two differentiators work
in parallel. Such an advantage is typically impossible in digital hardware.

Further, analogue computers are ideal for implementing problems that may
be described mathematically. Physics fulfils this criterion.

Therefore, it appears that many advantages would be obtained by using an
analogue computer to implement a physics engine.

However, one major disadvantage remains with analogue computers: they
are not dynamically reconfigurable, unlike their digital counterparts. In fact,
the requirement for manual configuration is one of the primary reasons that
digital computers have superseded analogue computers. Such a problem
would be disastrous for a physics engine. A solution is to couple an analogue
computer with digital components, creating a hybrid computer.

Additional information on analogue computers and their advantages is
presented in Chapter 3.

1.1.4 Hybrid Computer

A hybrid computer is essentially an analogue computer coupled with digital
components. Such a computer can exploit the advantages offered by both ana-
logue and digital.

In a physics engine, a hybrid computer could utilise the parallelism and
real-time behaviour inherent in analogue computation, while using the dy-
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namic reconfigurability afforded by digital computers. A hybrid computer
could also allow other useful digital hardware to be integrated into the so-
lution, allowing for greater flexibility and functionality. Finally, digital hard-
ware is a sine qua non for interfacing with the digital computer that will use the
physics engine.

Supplementary information on hybrid computers is furnished in Chapter 4.

1.1.5 Project Definition

Essentially, this project involves the research, design and implementation of
a hardware physics engine using a combination of analogue and digital com-
puter components. Ultimately, this project will aim to determine whether such
a proposition is viable and whether it offers an improvement over the software
physics engines in use today. If it were viable, such hardware could eventually
be placed on graphics cards or on new physics cards that communicate with
the PC via the PCIe bus.

1.2 Advantages

The primary advantage obtained by the design and implementation of such a
physics engine is that it should operate substantially faster than the software
physics engines in use today. This speed gain is achieved primarily through
the inherent real-time behaviour and parallel nature of analogue computers.
These advantages will be discussed further in Section 3.4.1 and Section 3.4.2
respectively, after analogue computers have been discussed in greater depth.



Chapter 2

Physics Engines

This chapter provides an overview of physics engines, briefly discussing their
underlying physics and mathematics. The chapter continues by providing a
brief history of physics engines before enumerating some available engines.
Finally, the applications of physics engines and the advantages that may be
obtained through their use are outlined.

The primary objective of this chapter is to furnish the reader with an expla-
nation of physics engines, in addition to the capabilities of currently available
engines. The chapter analyses potential applications in order to determine the
primary application of the project’s physics engine. This ultimately allowed
the design of the project’s physics engine to be enhanced for its desired appli-
cation.

2.1 Overview

A physics engine or physics software development kit (SDK) is a middleware
solution that performs physics calculations on behalf of other software, to sim-
ulate realistically the behaviour of objects. Physics engines may be integrated
with software that requires physics calculations to be performed.

Traditionally, physics engines have modelled rigid body dynamics, which
describe the interactions between rigid bodies or solid objects. These are typ-
ically modelled by ordinary differential equations (ODEs), which are capable
of expressing the time-varying behaviour of a system. Recently, physics en-
gines have expanded their abilities beyond rigid body dynamics to include
related fields. For this project, rigid body dynamics is the only field of concern,
but other areas could easily be added at a later stage. Physics engines typi-
cally work with Newtonian physics, since the extra accuracy provided by Ein-
steinian physics is unlikely to be noticed but substantially increases the com-
plexity of the calculations.

2.2 History

Observing the growing use of physics in games, MathEngine released the first
physics engine, the Fast Dynamics Toolkit in 1998. However, the engine of-
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ten created jittering objects in resting contact with a flat surface. According to
Eberly [1, p. 4], this resulted from inaccuracies arising from the application of
numerical methods to differential equations and from underdeveloped colli-
sion detection algorithms.

To resolve this problem, Hugh Reynolds and Dr Steven Collins founded
Telekinesys in 1998. After renaming the company Havok.com, they released
the Havok Game Dynamics SDK. This was the first physics engine to prove
that sophisticated physics simulation could be achieved using consumer level
CPUs.

Following the trend already established by GPUs, AGEIA announced
PhysX [2], the first physics processing unit (PPU), on 7 March 2005. The PPU
is capable of 32,000 rigid bodies, compared to the 200 typical for a CPU. It can
handle 40,000 to 50,000 particles when simulating particle dynamics. If the PPU
were unavailable, the physics calculations would be performed in software by
the NovodeX engine, in the same way that software would be used to render
graphics if no GPU were available. AGEIA intends to sell its PPU integrated
circuits (ICs) to companies who will design and manufacture suitable boards,
similar to what NVIDIA does with its GPUs.

2.3 Available Engines

A large number of commercial software physics engines are currently avail-
able.

The best known physics engine is Havok Physics [3]. The engine has been
used for films, in addition to over one hundred games. To simplify devel-
opment with Havok, plugins are available for Discreet’s 3D Studio Max and
Alias’s Maya 3D. The software supports rigid body dynamics, vehicle dynam-
ics, fluid dynamics, cloth simulation and ragdoll physics.

Recently, Meqon released the Meqon Game Dynamics SDK [4] physics en-
gine. It supports the simulation of rigid bodies, vehicle dynamics, liquid sur-
faces, particle systems and characters. In addition, Meqon supplies the Meqon
Simulator SDK, which provides greater realism for non-game simulations. This
supports similar simulations to the Game Dynamics SDK.

RenderWare Physics [5], from Criterion Software, is based on the previ-
ously available MathEngine physics engine. It supports character simulation
including ragdoll physics, in addition to rigid body dynamics. The software
is available as part of a larger package, the RenderWare Platform, which also
supports graphics, audio and artificial intelligence (AI).

The NovodeX Physics SDK [6] from AGEIA supports simulation of vehicle
dynamics, ragdoll physics and characters, but highlights its collision detection
algorithms as the most outstanding feature of the engine. Unlike its competi-
tors, it supports multiprocessor systems and Intel and AMD’s upcoming mul-
ticore processors.

SD/FAST [7] from PTC takes a radically different approach, even though
it simulates rigid body dynamics. A description of the system is constructed
and supplied to the software. The physics equations describing the system are
then outputted in either C or Fortran, so that they may be integrated into the
existing code base.
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In addition to the commercial engines outlined above, there also exist some
free, open source engines. However, these are typically less sophisticated.

The primary open source engine is the Open Dynamics Engine (ODE) [8].
This supports only rigid body dynamics, but its realistic simulations have led
to its use in a relatively large number of games.

DynaMechs (Dynamics of Mechanisms) [9] allows for rigid body simula-
tion, with a particular emphasis on articulated moving objects. However, it
appears to be defunct as no updates have been made since July 2001.

AERO (Animation Editor for Realistic Object movements) [10] also offers
rigid body dynamics, but it too appears to be defunct. No updates have been
made since February 2001, but the last note from the developers had promised
a complete rewrite of the engine.

In addition to the general purpose physics engines outlined above, there
exist commercial and free physics engines designed for niche markets such as
the simulation of only vehicles or robots.

Finally, due to the current demand for physics, some companies have
started working on hardware physics engines or PPUs. The first of these,
PhysX, will be available shortly. PhysX is capable of simulating rigid body
dynamics, universal collision detection, finite element analysis, soft body dy-
namics, fluid dynamics, hair and clothing. More details are outlined in Sec-
tion 2.2.

As can be seen from this discussion, a large number of physics engines are
currently available. This highlights the growing demand for these engines.

2.4 Applications

There are two primary applications of physics engines: engineering analysis
simulations and computer games. Both of these are discussed below.

2.4.1 Engineering Analyses

Engineering analysis simulations must use physics if they are to predict cor-
rectly the behaviour of a system. Examples of such applications would be
those used to test if a designed bridge is sufficiently sturdy, or if a building
is earthquake-proof.

Physics engines for these applications must be extremely accurate. If they
were not, lives could be endangered. However, they do not need to perform
their calculations rapidly. If lives depend on a simulation, it is deemed satis-
factory if that simulation takes an entire day or longer to execute.

Since the project’s physics engine is not particularly accurate, engineering
analysis simulations are not its target market. The primary advantage of the
project’s physics engine is its real-time behaviour, which as outlined above, is
unnecessary for these applications.

2.4.2 Computer Games

Many of today’s foremost computer games use physics so that events modelled
in the game appear as they would in the real world. Support for physics is
increasing as both computing power and the demand for realism increases.
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Physics could be used in games in order to model the suspension system of
vehicles or the trajectory of thrown crates.

Physics engines for games must work in real-time. This is extremely impor-
tant as the physics engine determines what the graphics engine renders. There
must be no processing delay, as the graphics engine cannot wait for results, un-
less the game slows down. However, accuracy is not very important. Objects
in the game must appear to behave correctly. Nevertheless, they do not need
to behave exactly as predicted by physics. In fact, to satisfy the real-time con-
straints, software physics engines typically take shortcuts in the calculations
performed, thereby reducing the accuracy but not the perceived accuracy.

Games are the main target for the project’s physics engine, since games
would benefit from the real-time behaviour of analogue computers but would
be unaffected by the minor loss of accuracy.

2.5 Advantages

The three primary advantages that may be obtained using a physics engine are
increased realism, leveraging of expertise and reduced expenditure. Each of
these is discussed in the proceeding sections.

2.5.1 Realism

As outlined in Section 2.4.2, users are demanding increasing realism from com-
puter games. Realism and accuracy are extremely important in engineering
analyses (Section 2.4.1). It is extremely difficult to bluff this realism without
a physics foundation. Reinforcing this view, Gary Powell of MathEngine plc
stated “The illusion and immersive experience of the virtual world, so carefully
built up with high polygon models, detailed textures and advanced lighting,
is so often shattered as soon as objects begin to move and interact.” [11, p. x]
Based on these demands, many software developers now use physics engines
to increase the realism of their products.

2.5.2 Expertise

The majority of game developers do not have a substantial knowledge of
physics. Therefore, it is often desirable to use an existing physics engine in-
stead of replicating the relevant parts inside a product under development. If
an existing physics engine is used, the end developer is unburdened from hav-
ing to understand the underlying physics. Moreover, the physics implemen-
tation is typically left to domain experts. These experts should have a greater
knowledge of the relevant physics, thereby producing a superior physics en-
gine. Therefore, physics engines are commonly used in order to leverage this
expertise.

2.5.3 Expense

Due to the typical developer’s lack of expertise in physics (Section 2.5.2), it is
often time-consuming and expensive for companies to implement their own
physics calculations.
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If in-house physics software were to be developed, the largest cost would
likely result from the need to polish the physics software, and not from tradi-
tional software engineering domains, as illustrated in Table 2.1. Therefore, this
cost is typically concealed and unplanned, which could prove devastating for
small companies.

Research and Development 10%
Implementation 10%
Debugging 20%
Perfecting the software 60%

Table 2.1: Costs arising from implementing in-house physics software [12, p.
23]

The cost of purchasing a physics engine may be minimal. Indeed, a num-
ber of free engines are already available, as discussed in Section 2.3. While the
free physics engines are often less sophisticated than their commercial coun-
terparts, their functionality is likely to be substantially greater than what could
be implemented in-house on a limited development timeframe.

Overall, utilisation of an existing physics engine is likely to lead to savings
for a development company.



Chapter 3

Analogue Computers

This chapter begins with an overview of analogue computers. It continues with
their history before specifying their traditional application domains. Finally,
the advantages and disadvantages of analogue computers are discussed.

The primary objective of this chapter is to provide the reader with an in-
troduction to analogue computers. Their history provides an insight into their
evolution, highlighting the different categories invented. Disadvantages are
outlined so that their impact on the project’s physics engine may be analysed.

3.1 Overview

An analogue computer is “a computer which operates with numbers repre-
sented by some physically measurable quantity, such as weight, length, volt-
age, etc.” [13, p. 432].

It is possible to construct analogue computers that process a number of nat-
ural “analogue” phenomena such as hydraulics or mechanics, but the majority
of analogue computers process only voltages. Consequently, all further discus-
sion will be restricted to voltage processing or electronic analogue computers.

Analogue computers are based on mathematical operations. Therefore, un-
like digital computers, they may be used to directly model equations that ad-
here to a number of restrictions. Consequently, the analogue computer is often
regarded as a more natural tool for evaluating equations than a digital com-
puter.

3.2 History

The history of analogue computers could be said to go back into antiquity,
since devices like the slide rule can be considered to be analogue computers.
However, as stated in Section 3.1, only electronic analogue computers will be
considered here.

Between 1937 and 1938, George A Philbrick constructed the first electronic
analogue computer while working at The Foxboro Company [14, pp. 131–135].
However, he referred to it as an “automatic control analyzer” as opposed to
an analogue computer. It consisted of a hardwired analogue computer, with
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programming limited to potentiometer and switch settings. It operated much
faster than real-time, displaying a steady output on the oscilloscope. The sys-
tem was battery powered and attached to a built-in oscilloscope. Unlike later
analogue computers, the system contained no operational amplifiers, as the de-
vices had not yet been invented. Instead, networks of resistors, capacitors and
amplifiers performed the mathematical operations. The machine was released
as POLYPHEMUS.

Despite the seemingly limited programmability of the device, it was used
for the simulation of a relatively wide variety of systems. For example, it
was used for simulating liquid steam mixing baths and liquid level control
processes. To simplify operation, a cardboard panel could be attached to
the front. This panel illustrated the process under simulation and specified
the purpose of the switches and potentiometers. These features meant that
POLYPHEMUS was widely used for teaching and experimenting with control
circuits.

A successor was constructed between 1945 and 1946. It operated on power
from the mains, removing the batteries required by POLYPHEMUS. Addition-
ally, two oscilloscopes were provided. Despite the success of these systems,
they became the last of their kind.

Although they vary greatly from the operational amplifier based analogue
computers used subsequently, they established the idea on which subsequent
computers were based. They performed mathematical operations on voltages
and displayed their output on an oscilloscope. Moreover, they could be quickly
adjusted for rapid prototyping. The subsequent computers owe much to these
founding computers.

In 1945, Bell Telephone Laboratories (BTL) began to analyse the viability of
operational amplifier based analogue computers [15, p. 10]. Emory Lakatos
directed the design of the resultant device, leading to its completion in 1949.
However, the MIT’s Dynamic Analysis and Control Laboratory (DACL), de-
spite starting work after BTL, completed the world’s first operational amplifier
based analogue computer, the Flight Simulator, in 1948.

Despite these earlier computers, the first major development in operational
amplifier based analogue computers was the establishment of Project Cyclone
in 1946 [16, p. 3]. Constructed by Reeves Instrument Corporation and spon-
sored by the US Office of Naval Research (ONR), it was designed to simulate
guided missile simulation. The system’s functionality was expanded to form
the first commercially available general purpose analogue computer, known
as the Reeves Electronics Analog Computer (REAC). One of the defining char-
acteristics of the REAC was that multiple computers could be purchased and
combined to create one large computer. The system was a great success and
was installed in many government laboratories, industrial laboratories and
universities. At the ONR, the computer was used to run rapid missile sim-
ulations, typically lasting only one minute in duration. The accuracy was sub-
sequently improved by executing the same simulation on a digital computer,
which took from sixty to 130 hours. Project Cyclone produced the definitive
analogue computer, whose design was mirrored by the analogue computer in-
dustry for many subsequent years.

Project Typhoon became Project Cyclone’s successor when it was initiated
by the ONR in 1947 [17, pp. 93–95]. The project, undertaken by the Radio
Corporation of America (RCA), created a single purpose built computer that



Chapter 3. Analogue Computers 12

was never commercialised. The emphasis of the project was on high perfor-
mance and high precision. This led to the development to the drift-free DC
operational amplifier, which became a requisite component for all subsequent
analogue computers.

Both projects had enormous influence on the future of the electronic ana-
logue computer. According to Small, “Projects Cyclone and Typhoon were
instrumental in establishing the technological basis for the postwar general-
purpose electronic analogue computer industry in the USA.” [17, p. 89]

In the UK, the Royal Aircraft Establishment (RAE) had a number of ana-
logue computers built for missile simulation. These included the GEPUS
(General-Purpose Simulator), TRIDAC (Three-Dimensional Analogue Com-
puter) and G-PAC (General-Purpose Analogue Computer).

In the late 1940s, George A Philbrick Researches, Inc (GAP/R) constructed
the first commercial analogue computers [15, p. 12]. Like POLYPHEMUS but
unlike the first operational amplifier based computers, these were repetitive
operation or “rep op” machines. These machines repeated their simulations
much faster than real-time, so that a steady waveform could be displaced on
an oscilloscope. This allowed parameters to be adjusted and the effects seen
instantly. However, these machines failed to achieve commercial success.

Observing the continued reliance of the militaries of the US and UK on ana-
logue computers, commercial interest grew substantially throughout the 1950s.
This led to the formation of a substantial number of companies manufactur-
ing general purpose analogue computers in the US, UK, USSR, Japan, West
Germany and France. In 1955, ninety-five analogue computer installations ex-
isted in the US. However, the late 1950s saw a shift in the market. Repetitive
operation or “rep op” machines started to gain popularity, eroding the mar-
ket share of single shot analogue computers. Although GAP/R had always
manufactured repetitive operation analogue computers, a vast improvement
in electronic component design finally made these computers competitive.

The early 1960s saw a decline in the number of analogue computers, as hy-
brid computers began to grow in popularity (Section 4.2). However, the demise
of analogue computers did not occur until the late 1970s, when the increasing
speed and power of digital computers made analogue computers a less viable
alternative. Digital computers were then able to match the real-time behav-
iour of analogue computers for many operations and offered greater flexibility
and easy of use for many applications. Additionally, substantial work in the
development of algorithms and numerical analysis combined to improve the
accuracy of digital computers to be greater than that offered by analogue com-
puters [18, p. 59].

3.3 Applications

Analogue computers were used for two primary purposes: simulation and
control. Both of these are discussed below.

3.3.1 Simulation

Analogue computers were used to simulate various systems, modelling enti-
ties using representations or analogues of those entities. These systems were
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used where it would be too hazardous or too expensive to experiment directly.
Often simulations were “person in the loop”, meaning they were interactive.

For example, in the early 1960s, NASA ran simulations which placed pilots
or astronauts into capsules that were “flown” in simulated orbits or under the
sea [18, p. 57]. Other systems included the English Electric Saturn, designed
for modelling an entire nuclear power station, and the RAE’s TRIDAC (Sec-
tion 3.2), designed for the simulation of aircraft and missile systems [19, pp.
80–85].

In this project, analogue computers were used for simulation, as the pur-
pose of a physics engine is to simulate physics systems.

3.3.2 Control

Analogue computers were also used in control systems. “A control system is a
group of components assembled in such a way as to regulate an energy input
to achieve the desired output.” [20, p. 2] Analogue computers can be used to
control the behaviour of a closed loop system, whereby the system’s output is
used to influence its input.

Analogue computers were regularly used in the control systems of aircraft,
for example in automatic pilot control systems [21, pp. 94–97]. Such systems
were designed to keep the aircraft flying on a fixed compass bearing. The con-
trol systems monitored the flight of aircraft for deviations and controlled the
rudders to perform corrections as necessary. Therefore, these closed loop con-
trol systems were able to keep the flight path of aircraft straight. More sophisti-
cated analogue computer control systems were found on the Concorde, which
used analogue computers to implement fly-by-wire.

3.4 Advantages

An analogue computer operates in real-time, with an inherent parallelism, pro-
viding results with potentially infinite accuracy. Each of these benefits is de-
scribed in sequence.

3.4.1 Real-Time

When a digital computer performs a calculation, there is a delay called the
propagation delay before the result is obtained. This delay is primarily in-
fluenced by the complexity of the calculation being performed. As computing
power increases, this propagation delay is gradually reduced and becomes less
of a problem. However, complex calculations, such as the computation of large
prime numbers, still require large amounts of computational power and time.
The elimination of this propagation delay would be of great benefit.

Analogue computers eliminate this propagation delay, as they operate in
real-time. While this is useful for even a single calculation, the real advantage
becomes apparent when the same value must be recalculated at myriad time
steps. A single calculation may be left running for a specified period with
samples taken at the necessary intervals.

Suppose a variable must be differentiated with regard to time, using one
millisecond intervals, until one second has elapsed. A digital computer must
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perform one thousand calculations to acquire the desired data. In contrast, an
analogue computer consisting of a differentiator would be left running for one
second, with the output sampled every millisecond. Although modern digital
computers should be able to match the performance of the analogue computer
in this simple example, this would not hold for cases that are more complex.

If real-time is too slow or too quick for the required application, time com-
pression or time expansion can be used to accelerate or decelerate the computa-
tion respectively. This may be achieved through modifying the equations used
to construct the analogue computer, using simple mathematical manipulation.

3.4.2 Parallelism

Parallelism is both a widely researched and widely implemented method for
gaining greater performance from digital hardware. However, for analogue
computers, parallelism needs neither to be researched nor implemented, for it
exists by default.

As outlined in Section 3.4.1, analogue computers operate in real-time. This
real-time behaviour permits analogue computers to achieve greater parallelism
than their digital counterparts.

Figure 3.1 shows a block diagram of a sample analogue computer. This
computer integrates its two inputs and adds the two resultant signals to gen-
erate the output. In this computer, the results would be outputted from both
integrators simultaneously. Nevertheless, two identical integrators in digital
hardware would also work in this way. However, the subsequent addition will
happen in effectively zero time since its output will be generated concurrently
with the outputs of the integrators. In other words, the adder will instanta-
neously add the outputs of the integrators. To recapitulate, the two integra-
tions and the addition are performed in parallel. In contrast, digital hardware
would typically perform the integrations first, with the addition performed
subsequently, leading to theoretically greater delays.

∫

∫
+

-

-

-

-

-

Figure 3.1: Parallelism in analogue computers

This real-time nature also results in the automatic synchronisation of sig-
nals, something that often requires additional logic in digital hardware. For
example, if the result of a multiplication and an integration are to be added,
both results will reach the adder simultaneously. In digital hardware, the in-
tegration would likely take longer to perform than the multiplication, so wait-
ing in coordination with the clock signal would be needed to synchronise the
adder’s inputs.
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To summarise, in an analogue computer the propagation delay is effectively
zero, irrespective of the complexity of its function. This is the greatest advan-
tage offered by analogue computers.

3.4.3 Potentially Infinite Accuracy

Digital computers represent numbers using a finite number of bits. Conse-
quently, digital signals always have a certain finite granularity or resolution.
The only way to increase this resolution is to increase the word length, which
is essentially the standard number of bits used to represent an entity in a partic-
ular architecture, thereby consuming more die area and making the integrated
circuits more expensive to manufacture. This finite granularity is clearly a
problem since manufacturers are continually attempting to increase the word
length of their CPUs, as evidenced by the recent migration of both the IBM
PowerPC and Intel 80x86 architectures from 32 to 64 bits.

This has led to the formation of the study of numerical analysis or nu-
merical methods. It involves reformulating mathematical problems in order
to avoid truncation and rounding errors resulting from this finite number of
bits. Such solutions only slightly improve accuracy and do not work in all sit-
uations. This represents a problem. As Stoer and Bulirsch state, “Assessing the
accuracy of the results of calculations is a paramount goal” [22, p. 1]. It would
be advantageous if these problems could be completely disregarded.

Analogue computers represent numbers using continuous signals, with a
potentially infinite range of values. Consequently, analogue computers do not
suffer from any granularity problem. Therefore, the problems associated with
digital may essentially be completely disregarded. This has resulted in com-
puter theorists referring to analogue computers as real computers, which op-
erate on the set of real numbers.

In summation, digital computers represent entities using an approximation
while analogue computers represent entities using analogues to those entities.

3.5 Disadvantages

Analogue computers are rare today. This indicates that analogue computers
have disadvantages. The main issues are noise, inflexibility and that they are
not dynamically reconfigurable. This section discusses each of these in turn
and highlights how they are unproblematic for the project’s physics engine.

3.5.1 Noise

Theoretical analogue computers offer infinite accuracy (Section 3.4.3). How-
ever, practical analogue computers cannot realise this ideal.

Analogue computers, like all analogue devices, are affected by noise. Every
analogue component will introduce artefacts on waveforms, as a side effect of
that component’s primary function. This is one of the primary reasons for the
current lack of interest in analogue components. Meanwhile, digital compo-
nents use only two voltage levels. An erroneous voltage can be corrected to
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the nearest permissible voltage. Furthermore, adding error detection and cor-
rection circuits to digital computers is unproblematic, but adding such circuits
to analogue computers is relatively difficult.

There are, however, various techniques for reducing noise in analogue com-
puters. The most successful technique is to use higher quality and, conse-
quently, more expensive components. Additionally, there are a number of de-
sign rules that attempt to reduce noise. One such design rule is specified in
Section 6.6.5.

As outlined in Section 2.4.2, the primary application for the project’s
physics engine is computer games. High accuracy is unimportant for games.
Objects must only appear realistic; their behaviour does not need to be entirely
accurate. In the project’s physics engine, any deviations were, as predicted,
well within the limits of human perception. Therefore, for this physics engine,
noise was almost completely disregarded.

3.5.2 Inflexibility

Analogue computers are inflexible in that they are limited in the variety of
functions that they can perform. For computation on an analogue computer,
a program must have a mathematical basis. In comparison, digital computers
only require programs to have a Boolean algebraic basis, substantially increas-
ing the variety of programs that can be created. For example, a program based
on string manipulation could be expressed in Boolean algebra, but not in tra-
ditional mathematics. This inflexibility was one of the principal reasons why
analogue computers have decreased in popularity.

Physics is based on mathematics. Therefore, the inflexibility of analogue
computers did not restrict the project’s physics engine. If additional functional-
ity were desired, the digital circuits of hybrid computers could be used to sup-
plement the capabilities of analogue computers, as discussed in Section 4.4.2.

3.5.3 Not Dynamically Reconfigurable

Traditional analogue computers cannot be dynamically reconfigured. Instead,
their components are wired by hand for each objective. Wiring involves con-
necting the necessary components together through a “patch-board” or “patch
panel” consisting of terminals, similar to manually operated telephone ex-
changes. Sophisticated analogue computers had detachable patch-boards that
could be removed from the “patch bay” and later replaced, similar to the way
programs can be saved on a digital computer.

This could have been problematic for the project’s physics engine. How-
ever, as outlined in Section 1.1.4, hybrid computers offer a solution to this prob-
lem. Hybrid computers are discussed in Chapter 4.



Chapter 4

Hybrid Computers

Firstly, an overview of hybrid computers is presented. Next, their history is
depicted before their traditional application domain is described. Finally, the
advantages and disadvantages of hybrid computers are discussed.

This chapter’s objective is to provide the reader with an introduction to
hybrid computers. Their history provides an insight into the different hybridi-
sation concepts proposed. Disadvantages are outlined so that their influence
on the project’s physics engine may be analysed.

4.1 Overview

A hybrid computer is a computer that consists of analogue and digital compu-
tational elements. There is a cornucopia of definitions describing what exactly
constitutes a hybrid computer, but for the purposes of this report, a hybrid
computer is defined to be an analogue computer making use of some digital
components.

The construction of such a system is not trivial, since analogue and digital
are extremely dissimilar. The outputs generated by analogue components are
continuous, while the outputs generated by digital components are discontin-
uous.

4.2 History

The first hybrid systems constructed consisted of an existing analogue com-
puter connected to an existing digital computer. They were not entirely new
systems but the interconnection of two readily available systems.

The expansion of the US intercontinental ballistic missile (ICBM) pro-
gramme in 1954, followed by the space race of the 1960s demanded greater
computational power. Greater computational power meant that both analogue
computers and their programs would substantially increase in size, making
programming difficult and error-prone [17, p. 239]. Hybrid computers were
proposed as the solution.

Convair Astronautics designed the first hybrid system in 1954, to perform
simulation studies for the Atlas ICBM [15, p. 13]. It consisted of an Electronic

17
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Associates, Inc (EAI) PACE analogue computer connected to an IBM 704 digital
computer, via a converter called an Add-a-Verter manufactured by Epsco, Inc.

In 1955, Ramo-Wooldridge Corporation developed a second hybrid system,
for the same purpose as Convair’s. It also used an Add-a-Verter and a PACE
analogue computer, but used a UNIVAC 1103A for its digital computation.

Commercially available computers typically used designs that were more
primitive. For example, the HYDAC 2000 added some digital control elements
to an analogue computer. It was much later before more sophisticated designs
became available.

Despite the quantity of hybrid computers constructed, there was often dis-
agreement as to the best way to unite analogue and digital, leading to a multi-
tude of esoteric designs. For example, the TRICE system designed by Packard
Bell for NASA’s spaceflight simulations used a pulse frequency modulated sig-
nal as the information carrier, whereas most used conventional signals [18, p.
59].

Hybrid computers declined around the late 1970s during the demise of ana-
logue computers (Section 3.2). After analogue computers were deemed obso-
lete, many believed the analogue component of the hybrid computer was a
hindrance and that a digital computer was a better investment. Furthermore,
it became increasingly obvious that hybrid computers were losing their niche
as the abilities of digital computers improved [17, p. 264].

4.3 Applications

Hybrid computers can potentially be used where either analogue or digital
computers are used. However, they were typically used for simulations that
needed to model elements too complex for pure analogue computers. In par-
ticular, hybrid computers were often used for scientific applications, in contrast
to pure analogue computers, which were often used only for engineering ap-
plications.

For example, Professor Vincent Rideout from the University of Wisconsin,
in associated with NASA, modelled the cardiovascular respiratory system of
the human body in 1972 [23, pp. 10–12]. This simulation used 120 differential
equations to simulate the human heart, circulatory system, lungs and control
systems.

4.4 Advantages

The advantages associated with hybrid computers are their ease of reconfig-
urability and the way they unite the advantages of analogue and digital. These
advantages are outlined below.

4.4.1 Reconfigurability

The greatest advantage attained through the fusion of analogue and digital
computing elements is reconfigurability. As outlined in Section 3.5.3, pure ana-
logue computers are not reconfigurable.
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Digitally controlled analogue routing elements can be created to dynam-
ically route analogue signals. Therefore, for increased flexibility, the control
signals for these elements can originate from additional digital computing el-
ements. Instead of manually wiring the computer, programs may be written
that automatically reconfigure the computer. Such solutions alleviate the dif-
ficulty of manually programming an analogue computer. Indeed, one of the
motivating factors in the development of hybrid computers was the increasing
complexity of analogue computers and the laboriousness of interconnecting
their components.

Hybrid solutions impart the propensity to conceive reconfigurable ana-
logue computers. This is the catalyst that made the project’s physics engine
viable.

4.4.2 Leveraging Analogue and Digital

As outlined in Section 3.5.2, analogue computers have the ability to solve only
a subset of the problems solvable on digital computers. However, as outlined
in Section 3.4, analogue computers have certain advantages over their digital
counterparts.

Hybrid computers can be constructed with analogue and digital partitions
of equal status. Then, all functions that can be performed on an analogue com-
puter would be performed using the analogue components. All other neces-
sary functions would be performed using the digital components. This would
allow for the computation of all functions that can be performed using a digital
computer while leveraging the unique properties of analogue computers.

Hybrid computers offer a substantial increase in ability over analogue com-
puters. However, it transpired that this functionality was not required by the
project’s physics engine.

4.5 Disadvantages

Although hybrid computers solve many of the issues arising from analogue
computers, the problem of noise remains partially unsolved. This issue is ex-
amined below.

4.5.1 Noise

The analogue components in a hybrid computer will suffer from noise. More-
over, since results generated by these analogue components will be used by
digital components, the digital components will also essentially be affected by
noise. A more thorough analysis of noise is provided in Section 3.5.1.

As with analogue computers, this noise is likely to prove unproblematic for
the project’s physics engine since it is unlikely to reduce the perceived accuracy
of the engine.
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Analogue

The primary objective of this chapter is to outline how analogue is still widely
used today, despite advances in digital technology.

5.1 Overview

Analogue signals are defined over a continuous range of amplitudes. Typically,
they are defined over a continuous range of times, as illustrated in Figure 5.1a.
However, in ICs analogue signals are often defined only at discrete time values,
as illustrated in Figure 5.1b [24, p. 2]. These are referred to as discrete time or
sampled data analogue signals.

In contrast, digital signals are defined only at discrete times and discrete
amplitudes, as illustrated in Figure 5.1c. They represent objects using only two
values, zero and one.

Since digital is discrete in both time and amplitude, continuous analogue
signals potentially allow for more accurate modelling of many objects. The
properties of objects rarely have a finite number of levels but an infinite num-
ber.

5.2 Applications

Many believe analogue is obsolete, having been superseded by digital. The
proliferation of digital computers, digital television, digital cinema, digital ra-
dio, digital music, digital cameras, digital camcorders and digital mobile tele-
phony reinforces this viewpoint. However, this belief is unfounded.

There are many applications where analogue is still regularly used. Some
of these applications are discussed below.

5.2.1 Wireless Communications

Today, there is substantial enthusiasm for wireless communications and this
enthusiasm is constantly growing. Mobile telephones, wireless local area net-
works (LANs) and wireless broadband all illustrate this trend.

20
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Figure 5.1: Analogue and digital signals
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The signals used for wireless communications are often transmitted close
to the 1 GHz frequency range with only a few millivolts of amplitude. They
will incur substantial noise during transmission. Therefore, a wireless receiver
must amplify the appropriate part of the signal and filter out noise before
processing, while operating at a very high speed. This can only be performed
in analogue electronics, even for digital communications.

Therefore, these wireless devices typically must include both digital and
analogue circuits on the same IC. This has led to a growth of interest in mixed-
signal design. New languages have been proposed in order to simplify design,
while tools allow for a more automated design flow. This is discussed further
in Section 7.1.

5.2.2 Wireline Communications

Broadband technologies such as digital subscriber line (DSL) and cable broad-
band are analogue-based. These technologies use multiple voltage levels, as
opposed to only two digital levels. For example, four levels could be used,
sending two merged bits simultaneously. This reduces the bandwidth re-
quired. Additionally, to reduce the effects of attenuation and noise, signals
are often modulated onto a carrier wave. Both of these techniques result in a
conversion of the digital signal to an equivalent analogue one.

However, technologies with a digital basis such as LANs and fibre optic
also use analogue processing techniques. In the case of communication over
a fibre optic channel, the transmission is made using a laser diode, while the
received signal is observed by a photodiode. Both devices are analogue in na-
ture. Moreover, additional analogue processing must be performed to amplify
the signal before conversion to digital.

5.2.3 Sensors

Sensors are also inherently analogue in nature. This applies for mechanical,
electrical, acoustic and optical sensors. For example, the phototransistors in
a digital camera produce analogue signals, which are only converted to digi-
tal at a later processing step. A different type of sensor is used to control the
airbag release mechanism in vehicles [25, pp. 4–5]. This uses a specially con-
structed capacitor, which detects the sudden change in velocity indicating that
the airbag should be released.

Recent developments in very large scale integration (VLSI) design allow for
the sensor’s analogue and digital processing elements to be placed on the same
IC as the sensor. This increases the level of mixed signal integration, fuelling
the need for greater automation of analogue design.

5.2.4 Disk Drives

Disk drives read and write digital data to disks. When this data is read from the
disk, the result is a high noise, low amplitude signal. This requires analogue
processing involving amplification and filtering. Finally, conversion to a digital
format is performed. These actions become more challenging as the speed of
disks increases.
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5.2.5 Microprocessors and Memories

Microprocessors and memories are digital. However, analogue issues arise in
the design of these devices. For example, analysis of the distribution of high
speed signals requires these signals to be treated as if they were analogue. Non-
idealities in the device such as parasitic resistances and capacitances require
knowledge of analogue design. In addition, the high speed sense amplifiers in
memories are analogue circuits. Based on this, Razavi claims that “High-speed
digital design is in fact analog design.” [25, p. 5]

5.2.6 Game Controllers

A game controller is a device used to control a computer game. They were
originally entirely digital devices, but they are gradually gaining more ana-
logue components.

Joysticks were the first devices to see this transition. Digital joysticks typ-
ically had four or eight possible directions, corresponding to the compass
points. In contrast, analogue joysticks have a much greater number of possi-
ble directions and can determine the force with which they are being directed.
However, there are a finite number of possible directions as the analogue out-
put of the joystick is later converted to digital.

Buttons on game controllers are also making the transition to analogue. Pre-
viously, buttons were either fully depressed or unpressed. Analogue buttons,
in contrast, can determine the level to which they are depressed.

By transitioning game controllers to analogue, game developers are em-
powered to make more immersive computer games that respond more pre-
cisely to the user’s wishes.

5.2.7 Zoom

Camcorders and digital cameras typically provide both an analogue optical
and digital zoom. The analogue zoom manipulates the movement of a lens,
which controls the magnification of the photograph by modifying the light that
hits the charge coupled device (CCD) or complementary metal oxide semicon-
ductor (CMOS) sensor. In contrast, the digital zoom uses the centre portion
of the light hitting the CCD or CMOS sensor, which is then interpolated to
create a full size image. The analogue zoom acquires new data whereas the
digital zoom works with existing data. Therefore, the analogue zoom allows
for greater quality photographs. The digital zoom typically provides lower
quality photographs.
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Operational Amplifiers

This chapter provides an overview of operational amplifiers, which are the
core elements of the analogue computer constructed as part of the project’s
physics engine. Operational amplifier characteristics are briefly summarised
before key operational amplifier circuits are demonstrated.

6.1 Overview

The operational amplifier or “op amp” is the core component of analogue com-
puters. The operational amplifier is an amplifier with a very high open loop
gain and a very low output impedance. It can be wired up with auxiliary pas-
sive components, which cause the operational amplifier to perform a specific
mathematical function. The relation of the output signal to the input signal
is determined solely by the arrangement and magnitude of the other circuit
elements.

6.2 History

In the early 1940s, George A Philbrick developed the first operational ampli-
fier using vacuum tubes [26, p. 541]. Later, in 1962, Burr-Brown Corp and
GAP/R developed the first IC-based operational amplifiers. However, in 1963,
Fairchild Semiconductor’s µA702 became the first commercially available IC-
based operational amplifier.

The best selling operational amplifier of all time is the 741. It was the first
internally compensated operational amplifier available, meaning it required no
external compensatory components. Released in 1968, it was invented by Dave
Fullagar while working at Fairchild Semiconductor. The 741 is still manufac-
tured by a number of companies, including National Semiconductor [27] and
Texas Instruments [28], and has remained popular to this day. However, many
operational amplifiers have since surpassed the 741’s characteristics, exploiting
developments in semiconductor fabrication technologies.

Immediately following their introduction, operational amplifiers were a
commercial success. In fact, they proved so popular that the commonly ac-
cepted analogue design rules were reformulated to accommodate these de-
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vices. Their success is largely attributable to the availability of high perfor-
mance amplifiers in discrete component form [29, p. 2]. To a large extent, the
intricacies of an operational amplifier do not need to be comprehended. As a
result, they may be treated as a black box, greatly simplifying circuit design.

6.3 Terminals

An operational amplifier typically has five terminals, as shown in Figure 6.1a:

V+ noninverting input

V− inverting input

Vout output

VS+ positive power supply

VS− negative power supply

VS+ and VS− must always be connected to appropriate power supplies, typ-
ically +15 V and −15 V. Therefore, circuit schematics usually eliminate these
terminals, creating the circuit symbol depicted in Figure 6.1b. For all practical
purposes, V− will be connected to ground.

Vout

V−

V+

VS−

VS+

+

−

(a) Complete

Vout

V−

V+ +

−

(b) Simplified

Figure 6.1: Operational amplifier circuit symbols

V− and Vout are used to control the mathematical operation performed by
the operational amplifier. One component is typically placed in front of V−.
Another is placed on the feedback loop created by connecting V− to Vout. Such
a configuration is illustrated in Figure 6.2.

More sophisticated operational amplifiers have additional terminals, but
the aforementioned terminals are the only ones germane to the system being
constructed.
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Vin

Vout•
•

+

−

Figure 6.2: Typical operational amplifier configuration. The boxes illustrate
where circuit elements may be inserted.

6.4 Ideal Operational Amplifier

An ideal operational amplifier exhibits five main characteristics [29, p. 3]:

Infinite open loop gain The amplification from input to output with no feed-
back applied is infinite. This makes the performance entirely dependent
on input and feedback networks.

Infinite input impedance The impedance viewed from the two input termi-
nals is infinite. This means that no current will flow in or out of either
input terminal.

Infinite bandwidth The bandwidth range extends from zero to infinity. This
ensures zero response time, no phase change with frequency and a re-
sponse to direct current (DC) signals.

Zero output impedance The impedance viewed from the output terminal
with respect to ground is zero. This ensures that the amplifier produces
the same output voltage irrespective of the current drawn into the load.

Zero voltage and current offset This guarantees that when the input signal
voltage is zero the output signal will also be zero, regardless of the in-
put source impedance.

These characteristics imply a number of useful properties that may be ex-
ploited when constructing operational amplifier circuits [21, pp. 9–12]:

Differential input An operational amplifier has a differential input. In other
words, it only responds to the difference between V+ and V−. The value
of V+ −V− is essentially the input signal of the operational amplifier.

AC and DC An operational amplifier can process both alternating current
(AC) and DC signals.

Polarity The polarity of the output voltage depends on the polarities of the
input voltages.
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6.5 Practical Operational Amplifier

The practical operational amplifier closely approximates the behaviour of the
ideal operational amplifier. It deviates from the ideal in a number of details.
Most of these may effectively be ignored and the analogue circuit designer
can treat the operational amplifier as a black box. However, some of these
details have an impact on the design of the project’s physics engine and must
be considered. The most relevant of these are:

Finite bandwidth The range of frequency that may be inputted to the opera-
tional amplifier is limited. This partially limits the range of signals that
may be processed by the project’s physics engine.

Finite open loop gain The maximum amplification provided by the opera-
tional amplifier is limited by the magnitude of the supply voltages. This
results in upper and lower bounds being placed on the voltages that may
be processed by the project’s physics engine.

In addition, it must be noted that some values of passive components will
not work in the fashion suggested by the black box model. The values of these
components must be within certain ranges if their behaviour is to coincide with
that required by the operational amplifier.

Another deviation from ideality is that operational amplifiers typically
have a voltage offset. Even when their inputs are zero they generate a small
output voltage, which changes over time. This problem is easily overcome as
many operational amplifiers include terminals to tune the amplifier.

6.6 Circuits

A vast number of circuits may be constructing using an operational amplifier
at their core. The operational amplifier circuits relevant to the project’s physics
engine are described below.

6.6.1 Inverter

The inverter is the basic operational amplifier configuration. This circuit can
be constructed by placing a resistor at the V− input and another resistor on
the feedback loop of an operational amplifier, as illustrated in Figure 6.3. The
mathematical function performed by the circuit is:

Vout = −Vin

( R f

Rin

)
where

Vout = Voltage at Vout terminal
Vin = Voltage at Vin terminal
R f = Resistance of R f resistor
Rin = Resistance of Rin resistor

To perform inversion, R f must be equal to Rin.
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Vin

Vout

Rin

•
•

+

−

R f

Figure 6.3: Inverter

6.6.2 Multiplier and Divider

By choosing the values of R f and Rin appropriately, the inverter circuit (Sec-
tion 6.6.1) may be used to perform multiplication or division by a constant. To
construct a multiplier, R f should be set greater than Rin. To construct a divider,
R f should be set less than Rin.

6.6.3 Adder

The adder can potentially sum infinite sources, unlike its digital equivalent.
Each source is allocated an input line, connected to the operational amplifier’s
V− terminal through a resistor. A resistor is placed on the feedback loop. This
configuration is illustrated in Figure 6.4. The mathematical function performed
by the circuit is:

V1

Vout

R f

R1

•

V2

Vn

R2

Rn

...

•

•

+

−

Figure 6.4: Adder

Vout = −R f

(
V1

R1
+

V2

R2
+ · · ·+ Vn

Rn

)
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where
Vout = Voltage at Vout terminal

R f = Resistance of R f resistor
V1 = Voltage at V1 terminal
R1 = Resistance of R1 resistor
V2 = Voltage at V2 terminal
R2 = Resistance of R2 resistor
Vn = Voltage at Vn terminal
Rn = Resistance of Rn resistor

As with the inverter, multiplication and division may be performed by
weighting the resistor values appropriately. Each input may be multiplied or
divided by a different value.

The disadvantage associated with this configuration is that the output is
inverted, so pure addition would require the use of both an adder and an in-
verter.

6.6.4 Integrator

The integrator integrates the input signal with respect to time. It is constructed
by placing a resistor at the V− input and a capacitor on the feedback loop of an
operational amplifier, as illustrated in Figure 6.5. The mathematical function
performed by the circuit is:

Vin

Vout

C

R

•
•

+

−

Figure 6.5: Integrator

Vout = − 1
RC

∫ t

0
Vin dt

where
Vout = Voltage at Vout terminal

R = Resistance of R resistor
C = Capacitance of C capacitor

Vin = Voltage at Vin terminal
t = Time

Again, by appropriately weighting the values of the resistor and capacitor,
multiplication and division may also be performed by this circuit. Further-
more, the output is inverted by this operation.
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6.6.5 Differentiator

The differentiator differentiates the input signal with respect to time. It is con-
structed by placing a capacitor at the V− input and a resistor on the feedback
loop of an operational amplifier, as illustrated in Figure 6.6a. The mathematical
function performed by the circuit is:

Vout = −RC
dVin
dt

where
Vout = Voltage at Vout terminal

R = Resistance of R resistor
C = Capacitance of C capacitor

Vin = Voltage at Vin terminal
t = Time

This circuit may also perform multiplication and division if the values of the
resistor and capacitor are appropriately weighted. As with the other circuits,
the output is inverted by this operation.

However, the differentiator is a problematic analogue computer element.
The differentiation process strongly accentuates noise, which is always present
in analogue electronic circuits. Noise tends to have sudden abrupt changes, ap-
pearing as “voltage spikes”. Since the output of a differentiator is proportional
to the rate of change of its input, these sudden changes are greatly amplified.
Therefore, using the differentiator in its current incarnation would result in
very poor performance by the analogue computer.

In order to rectify this problem, a circuit referred to as the practical or low
frequency differentiator is often constructed instead. This consists of the pre-
vious differentiator circuit with a resistor placed before the input capacitor, as
illustrated in Figure 6.6b. The mathematical function of the circuit remains as
before. The frequency range over which this device operates is determined by
Rin. This works because a capacitor is essentially a short circuit at high fre-
quencies, converting the circuit to an inverter. Furthermore, an appropriate
value of Rin will be overshadowed by the capacitance at lower frequencies.

While this circuit performs its stated function correctly, it introduces an ad-
ditional problem. Analogue computers have traditionally been constructed
for a particular experiment with the inputs having a known frequency range.
However, the project’s physics engine had to simulate an extensive range of
problems. Limiting the input frequency to the operational amplifiers would
have substantially reduced this flexibility. Therefore, an alternative solution
was desirable.

The standard solution involves reformulating the problem definition, so
that differentiation is transformed into integration. This can be performed by
using the following formula:

y = a
dx
dt

⇒ x =
1
a

∫
y dt
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(a) Theoretical
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(b) Practical

Figure 6.6: Differentiator
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where
y = Variable
a = Constant
x = Variable
t = Time

After this reformulation, the standard unproblematic integrator may be
used and all differentiators may be eliminated, solving all of the aforemen-
tioned problems.

6.6.6 Logarithm Calculator

The logarithm calculator is constructed by placing a resistor at the V− input
and a diode on the feedback loop of an operational amplifier, as illustrated in
Figure 6.7. For a PN diode:

I = Io

(
eKV − 1

)
(6.1)

where
I = Current through diode

Io = Saturation current
e = Euler’s constant

K = Variable
V = Voltage across diode

The mathematical function performed by the circuit is:

Vout = − 1
K

ln
Vin
RIo

where
Vout = Voltage at Vout terminal

K = Variable
Vin = Voltage at Vin terminal

R = Resistance of R resistor
Io = Saturation current

Vin

Vout

R

•
•

+

−

Figure 6.7: Logarithm calculator

The functionality of this circuit is dependent on the characteristics of the
diode. Practical diodes do not exhibit the theoretical characteristics suggested
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by Equation 6.1, as a diode’s behaviour depends on temperature. Conse-
quently, this is not an ideal logarithm calculator.

Based on these complications and the observation that logarithm is a rarely
used function in physics, it was decided not to use these components in the
project’s physics engine.

6.6.7 Antilogarithm Calculator

The antilogarithm calculator works in reverse to the logarithm calculator (Sec-
tion 6.6.6), due to the presence of a diode (Figure 6.8). The same problems
apply to this as to the logarithm calculator. Therefore, it was also decided not
to use these components in the project’s physics engine.

Vin

Vout•
•

+

−

R

Figure 6.8: Antilogarithm calculator

6.6.8 Further Operations

Many other circuits may be constructed using operational amplifiers, such as
an amplifier, difference amplifier, voltage follower, comparator, Schmitt trigger
and inductance gyrator. However, these are of little use for analogue comput-
ers. Therefore, these circuits are not discussed in this report.
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Design and Implementation
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Chapter 7

Implementation Background

This chapter outlines some decisions that were made before implementation
proceeded, such as the tools and software used to implement the project. It
also highlights how multiple abstraction levels and testbenches were utilised
during the implementation.

7.1 VHDL-AMS

The traditional means for designing analogue and mixed signal circuits is
schematic entry or schematic capture. This involves creating a circuit schematic
by interconnecting components. It is a relatively intuitive way of constructing
circuits.

For digital design, schematic entry could also be used. However, hard-
ware description languages (HDLs) effectively replaced digital schematic en-
try. Schematic entry provides only a structural level of abstraction, where the
components and their interconnections are made explicit. In contrast, HDLs
often provide multiple levels of abstraction, which provides flexibility to de-
scribe each entity at its most natural abstraction level. In addition, searching
and reuse are easier with HDLs, as the graphical natural of schematics hinders
both of these tasks.

Until recently, there were few analogue and mixed signal HDLs. This situa-
tion changed in 1999, when the Institute of Electrical and Electronics Engineers
(IEEE) standardised VHDL-AMS [30], the analogue and mixed signal exten-
sions to digital VHDL. There is currently considerable interest in VHDL-AMS,
although few companies have started using it. This interest is attributable to
the continual growth in integration density, which makes it is no longer neces-
sary to split the digital and analogue parts of a design onto different ICs [31,
p. 199]. It is probable that in the future, it will be possible to fabricate an
IC based on a VHDL-AMS description. Currently, this is an area of active re-
search [32, 33]. Today, many electronic design automation (EDA) tools that
previously supported VHDL have been upgraded to support VHDL-AMS.

A competing language is Verilog-AMS, which is based on digital Verilog.
This has received less support as the standard has not yet been finalised by the
IEEE.

35
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For this project, it was decided to use VHDL-AMS, as its standardisation
provides a vendor neutrality impossible with schematic entry. Vendor neutral-
ity is becoming increasingly important due to the emphasis on interoperability
between heterogeneous systems. Moreover, the use of a single language for
the digital and analogue parts of the design simplifies implementation. Finally,
multiple abstraction levels, searchability and reusability are all advantageous
to this project.

7.2 Software

Mentor Graphics’ SystemVision and Xilinx ISE were the two software applica-
tions used for implementing this project. These two applications are described
below.

7.2.1 Mentor Graphics’ SystemVision

Mentor Graphics Corp is one of the major players in the EDA industry. It pro-
vides a multitude of software products, spanning the entire EDA spectrum.

For this project, Mentor Graphics’ SystemVision was used for creating the
VHDL-AMS descriptions. An associated program, Waveform Viewer, was
used to observe the outputs of the VHDL-AMS simulations.

SystemVision supports VHDL-AMS, SPICE, C and schematic entry. The
application allows for pure VHDL-AMS descriptions without vendor specific
extensions. SystemVision supports only a subset of the VHDL-AMS standard,
but conformance is increasing with each version of the application. The most
important parts of the standard have been implemented. The version of the ap-
plication used for this project was 2002, although a 2003 version was available.
The 2002 version was used, as it was the only version available to the college
during the project.

7.2.2 Xilinx ISE

Xilinx is the world leader in field programmable gate arrays (FPGAs). In ad-
dition to manufacturing the devices, it also provides the software required to
program and analyse the devices.

For this project, Xilinx ISE was used for creating the pure digital VHDL
descriptions. ModelSim was used to simulate these descriptions.

Xilinx ISE supports VHDL, Verilog and EDIF. The application can be used
to check the synthesisability of VHDL designs. This process determines if the
design may be fabricated. SystemVision does not check for synthesisability
as analogue and mixed signals designs are not currently synthesisable. The
version of this application used for the project was 6.2i.

7.3 Behavioural and Structural

In VHDL-AMS, the two principal levels of abstraction at which descriptions
may be written are behavioural and structural. Behavioural code describes the
behaviour of a system at a high level of abstraction. For analogue hardware,
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this usually means a differential equation defining the behaviour of the hard-
ware. Structural code describes the structure of a system or the hierarchy of
components from which it has been constructed. In VHDL-AMS, this involves
the use of port maps.

Behavioural descriptions have been provided for all the components de-
scribed in the following chapters. These descriptions are used as reference
models since they describe idealistic components. The structural description
may later be compared against this ideal model.

In the project, all non-core components have also been provided with a
structural definition. Core components are components such as resistors and
capacitors, which can have no valid structural definition. The structural defin-
ition is the most important as it describes accurately how the system would be
constructed and how it would behave.

In summation, behavioural and structural definitions were created for al-
most all components. Behavioural descriptions are optional but greatly assist
in the debugging and validation of designs.

7.4 Testbenches

For the project, testbenches have been constructed to ensure the correct behav-
iour of every component. Some components have been provided with multiple
testbenches where it was deemed beneficial for either testing or comprehen-
sion.

The same testbenches are used for both the behavioural and structural de-
scriptions. This allows for deviations between the two descriptions to be more
easily analysed. The behavioural definition is typically the idealistic compo-
nent against which deviations in the structural definition should be measured.

In a digital system, it is often desirable to run several test cases for each com-
ponent in order to verify that it works as stated, for every possible scenario. It
is plausible that a design could be 100% tested. However, this is not possible
for most analogue designs. The range of input values to an analogue design
is potentially infinite compared to a maximum of two for digital. Moreover,
analogue designs can be more easily affected by temperature or process varia-
tions so that testbenches can never fully test a real design. Considering these
complexities, the created testbenches test some standard cases, which demon-
strate the standard behaviour of the components. It was deemed superfluous
to stress test the designs because temperature and process variations have not
been considered.



Chapter 8

Prototype 1:
Mass-Spring-Damper

The chapter outlines the first prototype constructed for the project. Firstly, in-
formation is provided on the physics underlying the system. This is followed
with information on the design and construction of the individual entities con-
stituting the prototype. The chapter is concluded with a discussion of the im-
plemented prototype and analyses the deviation of the device from ideality, to
check the viability of this project.

8.1 Background

In order to gain familiarity with the design and construction of analogue com-
puters, it was decided to first implement a prototype. In addition, this proto-
type served as an introduction to VHDL-AMS (Section 7.1) and SystemVision
(Section 7.2.1). Such a prototype needed to be a pure analogue non-hybrid
computer. In other words, it would not feature reconfigurable elements. More-
over, it needed to implement a single relatively simple equation that would be
of practical use.

Based on these criteria, the mass-spring-damper system, one of the simplest
problems in classical Newtonian physics, was chosen for the prototype. Before
discussing the mass-spring-damper system, the simpler mass-spring system is
described.

8.1.1 Physics of Mass-Spring

The mass-spring system consists of a mass suspended on the end of a spring.
At the opposite end of the spring is a fixed or relatively fixed object to which
the spring is attached. This system is illustrated in Figure 8.1.

If the fixed object is disturbed, the mass attached to the spring will oscillate
perpetually with a constant amplitude, creating a sine wave, as illustrated in
Figure 8.2.

However, such a system is only theoretically possible; it cannot exist in re-
ality. Various forces such as air resistance and internal resistances of the spring
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mass

spring

displacement

Figure 8.1: Mass-spring

Figure 8.2: Behaviour of a mass-spring
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will result in the system’s oscillation being damped over time. Consequently,
from the point of view of a physics engine, this model is unrealistic and of little
use. A more developed system that models the damping was necessary.

8.1.2 Physics of Mass-Spring-Damper

The mass-spring-damper system is a development of the mass-spring system.
It consists of the mass-spring system with a damper connected in parallel with
the spring, as illustrated in Figure 8.3.

mass

spring damper

displacement

Figure 8.3: Mass-spring-damper

If the fixed object is disturbed, the mass attached to the spring will oscil-
late. However, it will not oscillate perpetually, since the damper will impede
the motion of the spring. Instead, it will oscillate with a wave whose ampli-
tude starts at a large value and gradually decreases until it reaches zero. This
behaviour is illustrated in Figure 8.4.

Figure 8.4: Behaviour of a mass-spring-damper

This system is feasible, since the damper may be constructed to model the
forces inherent in any assembled mass-spring system. In addition, this system
is used for many purposes. In particular, vehicle suspension systems are often
based on some derivative of this system. This aspect will be discussed further
in Chapter 9.
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8.2 Voltage Sources

VHDL-AMS testbenches for analogue or mixed signal entities typically consist
of the device under test (DUT) and one or more voltage sources. Since there
were many analogue or mixed signal testbenches, it was necessary to construct
voltage sources, before proceeding with the construction of the physics engine.
Only behavioural level descriptions were created for these sources. Structural
level descriptions were not created, since voltage sources are standard entities
and their construction details are unimportant.

8.2.1 Voltage Source

A voltage source provides a potential difference.
The project’s voltage source can be used to generate a square waveform

or any waveform with square edges. It is instantiated with an array of times
and an array of voltages. After the duration specified by the first element in
the time array elapses, the voltage specified by the first element in the voltage
array is outputted. This procedure is repeated for each element in the arrays.

The output voltage is initialised to 0 V. Inside a process, a loop iterates
through the arrays. This loop waits for the duration specified by the first el-
ement. Afterwards, the output voltage is changed to that specified by the
first element. The loop continues until every element of the array has been
processed. The final voltage will be retained indefinitely. This code is illus-
trated in Code 8.1.

23 process
24 begin
25 for i in amplitudes’range loop
26 wait for times(i);
27 voltage_output_duplicate <= amplitudes(i);
28 end loop;
29 wait;
30 end process;

Code 8.1: Excerpt from Behavioural/voltage source.vhd

Instead of supplying the entity with arrays during instantiation, it would
have been more flexible and more natural to supply it with a filename whose
contents contained the values of the arrays. However, such a design was im-
possible as SystemVision 2002 (Section 7.2.1) does not support the VHDL file
input/output (I/O) packages (Section 12.3).

The testbench requests the voltage source to output a stepped waveform,
to verify that a range of values may be obtained from the entity.

8.2.2 Sinusoidal Voltage Source

A sinusoidal voltage source provides an AC potential difference in the form of
a sine wave.

The previously described voltage source (Section 8.2.1) could be used to
generate sinusoidal waveforms. However, doing so would require calculating
the precise voltage at numerous timesteps, which would involve substantial
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effort. Moreover, these waveforms would be of poor quality, only approximat-
ing real sinusoidal waveforms. However, sinusoidal waveforms were essential
to fully test many of the project’s entities. To resolve these issues, a sinusoidal
voltage source was constructed.

The project’s sinusoidal voltage source is instantiated with the frequency
and amplitude of the desired waveform.

A sine wave may be described using a simple formula:

x (t) = a sin (π f t)

where
x = Displacement
t = Time
a = Amplitude
f = Frequency

This formula was mapped into the code shown in Code 8.2.

21 voltage == amplitude * sin(math_2_pi * frequency * now)
;

Code 8.2: Excerpt from Behavioural/sinusoidal voltage source.vhd

The testbench requests the sinusoidal voltage source to output a sinusoidal
waveform.

8.3 Packages

Many functions were used repeatedly throughout the project. Following the
principles of modular design, these functions were placed inside four pack-
ages.

8.3.1 Arithmetic

This package provides a function for the addition of two std ulogic -
vectors, since the packages supplied with SystemVision 2002 (Section 7.2.1)
do not contain such a function. This addition is done by converting the std -
ulogic vectors to std logic vectors, summing them and converting the
result back to an std ulogic vector. Although perhaps slightly inefficient,
it utilises the standard packages to implement the functionality, which results
in a reduced likelihood of errors, as the supplied functions have presumably
been fully tested. Moreover, this source of inefficiency is of little consequence,
as this function will only be used during simulations. The function would be
unnecessary in synthesised code since hardware has no concept of types.

This package also provides a function for testing two real numbers for
equality. The two numbers are said to be equal if they lie within a certain
range of each another. This is necessary because, due to various sources of er-
rors in floating point arithmetic, it is nearly impossible to get two “equal” real
numbers to have exactly the same value.

The testbench checks the validity of this package using assertions.
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8.3.2 Constants

This package defines constants that were used throughout the rest of the code.
These will be discussed in further detail when appropriate (Section 8.5.2 and
Section 10.1).

The testbench checks the validity of this package using assertions.

8.3.3 Type Conversion

A large amount of type conversion was performed in many entities since all of
the project’s digital signals are either of type std ulogic or std ulogic -
vector instead of the more common std logic or std logic vector.
These “unresolved” types were used since they can only have a single driver.
They are recommended in preference to their resolved counterparts in cases
where there should be no more than one driver, since the simulator will warn
if this is untrue.

This package provides a function for converting an integer to an std -
ulogic vector. This function works by performing a sequence of conver-
sions, through different types, in order to utilise inbuilt functions. The pack-
age also provides a function for performing the opposite conversion, from an
std ulogic vector to an integer. Again, this function works by perform-
ing a sequence of conversions.

In a similar fashion, this package provides functions for converting a real
to an std ulogic vector and vice versa.

Finally, this package provides a function for checking if an std ulogic -
vector contains any unknown bits. This function is utilised by the conversion
functions, as attempting to convert an std ulogic vector with unknown
bits will result in errors. This function is typically provided in standard li-
braries, but the necessary functions were unavailable in SystemVision 2002.

The testbench checks the validity of this package using assertions.

8.3.4 Types

This package defines a new type, time vector, which is an array of time ob-
jects. This type is awaiting IEEE approval for addition to the standard libraries.

The testbench only checks if the creation and initialisation of such an object
is valid.

8.4 Core Entities

For the purposes of this project, core entities are the basic entities used to con-
struct more complex entities. These entities are resistors, capacitors and oper-
ational amplifiers. All of these entities were only described at the behavioural
level. As they are standard entities, their implementation details are unimpor-
tant. Therefore, no structural level description was necessary. Further, resistors
and capacitors can have no valid structural level description, as they cannot be
constructed from other entities.
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8.4.1 Resistor

A resistor impedes the flow of current.
The resistance of the project’s resistor is specified at instantiation, making

it somewhat variable.
The behaviour of an ideal resistor can be described using Ohm’s Law:

V = IR

where
V = Voltage across resistor
I = Current through resistor

R = Resistance

While this equation describes an ideal resistor, the majority of practical resis-
tors closely approximate this ideal. Therefore, this equation provides a satis-
factory description for the project. It was translated into the code shown in
Code 8.3.

18 voltage == current * res;

Code 8.3: Excerpt from Behavioural/resistor.vhd

The testbench attaches a sinusoidal voltage source to one terminal of the
resistor, so that the voltage at the other terminal may be observed. A single
resistor wired in this fashion should not modify the inputted voltage. Conse-
quently, the output is the same as the input.

8.4.2 Capacitor

A capacitor stores a quantity of electrical energy.
The capacitance of the project’s capacitor is specified at instantiation, mak-

ing it somewhat variable.
The behaviour of an ideal capacitor can be described by the capacitor equa-

tion:

I = q
dV
dt

where
I = Current through capacitor
q = Charge

V = Voltage across capacitor
t = Time

While this equation describes an ideal capacitor, the majority of practical ca-
pacitors closely approximate this ideal. Therefore, this equation provides a
satisfactory description for the project. It was translated into the code shown
in Code 8.4.

18 current == cap * voltage’dot;

Code 8.4: Excerpt from Behavioural/capacitor.vhd
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The testbench attaches a sinusoidal voltage source to one terminal of the
capacitor, so that the voltage at the other terminal may be observed. A single
capacitor wired in this fashion will slightly modify the input voltage while it is
charging. After a short period of time, the voltage will become identical to the
input voltage.

8.4.3 Operational Amplifier

An operational amplifier is an amplifier that is capable of performing mathe-
matical operations. It is described in detail in Chapter 6.

The project’s operational amplifier has three terminals, corresponding to
V+, V− and Vout. The other terminals were deemed unnecessary to the core
functionality of the entity and were consequently omitted.

As outlined in Section 6.5, despite continual improvements, operational
amplifiers cannot achieve ideality. Therefore, an ideal model of the opera-
tional amplifier would be insufficient. Consequently, the operational ampli-
fier was described by a simple mathematical model, which took into account
a number of deviations. Some deviations that only affect operational ampli-
fiers while working outside their normal operating ranges were not modelled.
These simplifications were deemed acceptable as the project’s operational am-
plifiers were only used within their normal operating ranges.

The testbench connects the operational amplifier in a negative feedback
configuration, as shown in Figure 8.5. The input voltage is connected to V+,
and V− forms a feedback loop with Vout. In this configuration, the output volt-
age always matches the input voltage.

Vin

Vout•
+

−

Figure 8.5: Operational amplifier in negative feedback configuration

8.5 Derived Entities

For the purposes of this project, derived entities are the entities constructed
from the core entities described in Section 8.4. These entities are described at
both the behavioural and structural levels. The behavioural level describes
these entities in terms of differential equations, which provide a natural way to
model these entities. The structural level describes the construction or assem-
bly of these entities.

8.5.1 Inverter

The inverter was described in detail in Section 6.6.1.
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The inverter is the simplest analogue computing entity constructed for this
project. The project’s inverter has two inputs, each of which is multiplied by a
different specified factor. The two multiplied inputs are summed and the result
is inverted.

The behavioural level description consists of an equation describing this
behaviour, as shown in Code 8.5. The structural level description instantiates
three resistors and an operational amplifier, connecting them in the configura-
tion shown in Figure 8.6. The corresponding code is shown in Code 8.6

19 voltage == -((weight1 * input1’reference) + (weight2 *
input2’reference));

Code 8.5: Excerpt from Behavioural/inverter.vhd

V1

Vout•
•

+

−

V2 •

Figure 8.6: Schematic of inverter

40 resistor1: resistor
41 generic map (
42 res => resistance1
43 )
44 port map (
45 terminal1 => input1,
46 terminal2 => weighted_input
47 );
48 resistor2: resistor
49 generic map (
50 res => resistance2
51 )
52 port map (
53 terminal1 => input2,
54 terminal2 => weighted_input
55 );
56
57 parallel_resistor: resistor
58 generic map (
59 res => basic_resistance
60 )
61 port map (
62 terminal1 => weighted_input,
63 terminal2 => output
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64 );
65 op_amp: operational_amplifier
66 port map (
67 positive_input => electrical_ref,
68 negative_input => weighted_input,
69 output => output
70 );

Code 8.6: Excerpt from Structural/inverter.vhd

The testbench supplies the inverter with two sinusoidal waveforms multi-
plied by different factors and verifies that the output is the inverted sum of
these, using assertions. The testbench output shown in Figure 8.7 demon-
strates that the deviation of the structural model from ideality is extremely
miniscule. The difference may only be observed in the highly magnified wave-
form. Therefore, it may be assumed that this difference is insignificant and
would be invisible to a computer game player, if the inverter were part of a
physics engine.

(a) Original

(b) Magnified

Figure 8.7: Comparison of inverter’s behavioural and structural descriptions.
Red indicates behavioural; blue indicates structural.
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8.5.2 Integrator

The integrator was described in detail in Section 6.6.4.
As with the inverter, the project’s integrator has two inputs, each of which

is multiplied by a different specified factor. The two multiplied inputs are
summed and the result is inverted and integrated with respect to time.

The behavioural level description consists of an equation describing this
behaviour, as shown in Code 8.7. The structural level description instantiates
two resistors, a capacitor and an operational amplifier, connecting them in the
configuration shown in Figure 8.8.

19 voltage’dot == -((weight1 * input1’reference) + (
weight2 * input2’reference));

Code 8.7: Excerpt from Behavioural/integrator.vhd

V1

Vout•
•

+

−

V2 •

Figure 8.8: Schematic of integrator

A difficulty arose during the construction of this entity regarding the basic
quantities that should be assigned to the resistors and capacitors. Empirical
evidence suggested that a large range of resistances were suitable, but that
the range of capacitances was very limited. In essence, should the value of
the capacitors have been too great, the output waveform would be completely
distorted. Low capacitances worked well, but if the values were too low, the
waveform would also be somewhat distorted. Moreover, it was unsatisfactory
to fix the capacitors to some small capacitance and leave the resistors at 1 Ω
because this meant a multiplicative factor of one could never be obtained from
the circuit. Consequently, a high resistance had to be chosen to counteract the
effects of the low capacitance. After repeated experimentation, it appeared that
the values specified in the constants library, 100 kΩ resistance and 10 µF
capacitance, provided the least distorted waveform possible.

The first testbench supplies the integrator with two sinusoidal waveforms
multiplied by different factors. The output is a sinusoidal waveform phase
shifted by 90o or π

2 rad. The second testbench supplies the equivalent square
waveform, creating a triangular waveform output. As illustrated by Figure 8.9,
the distortion to a sinusoidal waveform is negligible. Nevertheless, there is mi-
nor distortion caused to a square wave input. However, the distortion offered
is only 0.03846%. Such minimal distortion is likely to prove impossible to per-
ceive in a computer game using these calculations.
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(a) Original, using a sinusoidal waveform

(b) Magnified, using a sinusoidal waveform

(c) Original, using a square waveform

Figure 8.9: Comparison of integrator’s behavioural and structural descriptions.
Red indicates behavioural; blue indicates structural.
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(d) Magnified, using a square waveform

Figure 8.9: Comparison of integrator’s behavioural and structural descriptions.
Red indicates behavioural; blue indicates structural.

8.5.3 Differentiator

The differentiator was described in detail in Section 6.6.5.
It was noted that use of the differentiator should be avoided in analogue

computers due to the high level of noise introduced by these components. In
order to study the impact of a differentiator on the project, a differentiator en-
tity was constructed and simulated.

As with the integrator, the project’s differentiator has two inputs, each of
which is multiplied by a different specified factor. The two multiplied inputs
are summed and the result is inverted and differentiated with respect to time.

The behavioural level description consists of an equation describing this
behaviour, as shown in Code 8.8. The structural level description instantiates
a resistor, two capacitors and an operational amplifier, connecting them in the
configuration shown in Figure 8.10. The basic resistances and capacitances
used were those that were deemed most appropriate for the integrator.

19 voltage’integ == -((weight1 * input1’reference) + (
weight2 * input2’reference));

Code 8.8: Excerpt from Behavioural/differentiator.vhd

V1

Vout

•
•

+

−

V2 •

Figure 8.10: Schematic of differentiator
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The testbench supplies the differentiator with two sinusoidal waveforms
multiplied by different factors. The output should be a sinusoidal waveform
phase shifted by 90o or π

2 rad. However, this is not the case. As can be seen
from Figure 8.11, the output is heavily distorted at both the behavioural and
structural levels. In fact, the behavioural level description suffers from heavier
distortion, since the nonideality of the operational amplifier serves to distort
the output into a signal roughly approximating that expected. However, the
lesser distortion is still completely unusable and it appears that, as discussed,
the differentiator should be discarded and that it should be substituted with
the integrator. The ease of programming offered by differentiators does not
outweigh the substantial errors they incur.

(a) Behavioural

(b) Structural

Figure 8.11: Differentiator

8.6 Mass-Spring-Damper

The mass-spring-damper is provided with three parameters, the mass, the
spring constant of the spring and the viscosity of the damper. An input dis-
placement is specified and the output displacement and velocity are generated.

The mass-spring-damper uses an input and output displacement. It would
have been more common to use a single displacement with the output con-
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nected back to the input, as was often done with analogue computers. How-
ever, the simulator refused to simulate this system as the input source and
looped back output constituted multiple line drivers (Section 12.4). To solve
this problem, the dual displacement version of the mass-spring-damper equa-
tion was used instead.

The mass-spring-damper is specified by a second order differential equa-
tion, which may be used to calculate the position of the mass at any particular
point in time. This equation is [34, p. 31]:

F = −b
d (xout − xin)

dt
− k (xout − xin) (8.1)

where
F = Force
b = Damper’s viscosity

xout = Displacement out
xin = Displacement in

t = Time
k = Spring constant

This equation could not be implemented directly, as differentiation had to be
replaced by integration:

F = −b
d (xout − xin)

dt
− k (xout − xin)

But F = ma

∴ ma = −b
d (xout − xin)

dt
− k (xout − xin)

But a =
dV
dt

∴ m
dV
dt

= −b
d (xout − xin)

dt
− k (xout − xin)

dV
dt

= − b
m

d (xout − xin)
dt

− k
m

(xout − xin)

V = − b
m

(xout − xin)− k
m

∫
(xout − xin) dt (8.2)

But V =
dxout

dt

∴
dxout

dt
= − b

m
(xout − xin)− k

m

∫
(xout − xin) dt

xout = − b
m

∫
(xout − xin) dt− k

m

∫∫
(xout − xin) dt dt (8.3)
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where
F = Force
b = Damper’s viscosity

xout = Displacement out
xin = Displacement in

t = Time
k = Spring constant

m = Mass
a = Aceleration

To model the output displacement and velocity, Equation 8.2 and Equation 8.3
were implemented. These equations are readily implementable as an analogue
computer, as illustrated in Figure 8.12a, by using an adder or an integrator
with an inverter for each operation in these equations. However, this solution
is nonoptimal and may be optimised through the elimination of duplicate in-
versions. An optimised computer is illustrated in Figure 8.12b. Note that the
number of operational amplifiers has been reduced from nine to seven, which
is a 22.2% reduction. This is important because the greater the number of op-
erational amplifiers, the greater the error in the output, the greater the area
consumed and the greater the expense involved. In more complex analogue
computers, the decrease is often on a larger scale and is consequently of greater
importance.

The behavioural level description consists of the derived equations, as
shown in Code 8.9. The structural level description instantiates inverters and
integrators, connecting them in the configuration shown in Figure 8.12b.

25 voltage_difference == voltage_displacement_out -
displacement_in’reference;

26 voltage_velocity == -((viscosity / mass) *
voltage_difference) - ((spring_constant / mass) *
voltage_difference’integ);

27 voltage_displacement_out == voltage_velocity’integ;

Code 8.9: Excerpt from Behavioural/mass spring damper.vhd

The testbench uses a square wave to perturb the mass-spring-damper. It
supplies a mass of 0.45 kg, a spring constant of 10 N/m and a viscosity of
0.75 m2/s as the parameters to the mass-spring-damper. These parameters
have no special meaning; they were chosen because they demonstrate the
damped oscillatory behaviour of the system illustrated in Figure 8.13. It was
important to determine the error between the ideal behavioural model and the
real structural model, because if the error were too great, corrective measures
would have needed to have been taken before proceeding with the implemen-
tation of the reconfigurable physics engine. However, examination showed
that the error was very low, well below the limits of human perception and not
of consequence if the calculations were used in a computer game.

8.7 Simplified Mass-Spring-Damper

This is the same as the mass-spring-damper except the velocity output has been
removed. This is of little importance at this stage, but it is required for the
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(a) Displacement in

(b) Displacement out

(c) Displacement out magnified

Figure 8.13: Comparison of mass-spring-damper’s behavioural and structural
models. Red indicates behavioural; blue indicates structural.
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(d) Velocity

(e) Velocity magnified

Figure 8.13: Comparison of mass-spring-damper’s behavioural and structural
models. Red indicates behavioural; blue indicates structural.
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construction of the second prototype, discussed in Chapter 9.
The testbench used is identical to that used for the mass-spring-damper.

The results obtained are the same and the amount by which the results deviate
from ideality is the same.



Chapter 9

Prototype 2: Vehicle
Suspension System

This chapter outlines the second prototype constructed for the project. Firstly,
information is provided on the physics underlying the system. This is followed
with a discussion of the implemented prototype.

9.1 Background

The mass-spring-damper represents a real world system. However, it is un-
likely to be of much use in computer games, which are the main target of the
project. Consequently, it was decided to construct a more useful prototype to
demonstrate that analogue computers are suitable for the modelling of game
physics.

Based on these criteria, it was decided to model a vehicle suspension sys-
tem. One advantage of this system is that it is based on the previously con-
structed mass-spring-damper, allowing for reuse of existing components.

9.1.1 Physics of Vehicle Suspension System

Many variations of suspension system are used in vehicles today. The vast ma-
jority of vehicle suspension systems can be closely modelled using standard
equations. However, these equations are complex and this has led to many
simplified variations of the equations. This simplification is essential for soft-
ware physics engines, since modelling the suspension systems of many vehi-
cles simultaneously would require a prohibitively large amount of computa-
tional power.

However, these simplified equations are typically unsuitable for analogue
computers, as they require functions that are difficult to obtain on such a com-
puter. Moreover, these simplifications do not provide any benefit in terms of
computation speed, due to the parallelism inherent in analogue computers.
The only benefit obtained would be a reduction in the number of terms and
therefore, the quantity of hardware required.

59
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The original, more complex, equations work best on an analogue com-
puter. The model illustrated in Figure 9.1 is referred to as the walking-beam
model [35, p. 68]. The model has three degrees of freedom. This model only
takes into account a single axle; the two axles are independent. To consider the
other axle, the system would need to be duplicated. The system consists of one
mass-spring-damper representing the springiness of each tyre. The two mass-
spring-dampers’ outputs are connected to an axle. Above the axle is another
mass-spring-damper representing the suspension of the vehicle. The output
of this mass-spring-damper represents the motion of the vehicle’s body. The
model is very accurate for modelling suspension systems and it is commonly
used to model vehicles such as cars. Moreover, it is suitable for modelling of-
froad driving, which may be useful in some computer games.

displacement1 displacement2

vehicle displacement

Figure 9.1: Walking-beam model for vehicle suspension system

9.2 Vehicle Suspension System

The project’s vehicle suspension system is provided with six parameters, the
mass of each wheel, the spring constant of each wheel, the viscosity of each
wheel, the mass of the vehicle body, the spring constant of the suspension sys-
tem’s spring and the viscosity of the suspension system’s damper. Two input
displacements are specified and the output displacement is generated.

The vehicle suspension system was constructed using three of the previ-



Chapter 9. Prototype 2: Vehicle Suspension System 61

ously constructed simplified mass-spring-dampers and two extra operational
amplifiers. The two extra operational amplifiers emulate the axle by summing
half of the displacement resulting from each wheel. No new entities needed
to be constructed to implement the vehicle suspension system. This system is
illustrated in Figure 9.2. This system only implements one axle of the vehicle
suspension system. The second axle could be modelled in the same way, but it
would require twice the number of entities. Chapter 11 offers a neater solution
to this problem.

The testbench uses two square waves, with one wave applied to each wheel,
simulating a bump on the road surface. It supplies a wheel mass of 0.45 kg, a
wheel spring constant of 0.75 N/m, a wheel viscosity of 10 m2/s, a vehicle
body mass of 0.45 kg, a suspension system spring constant of 10 N/m and a
suspension system viscosity of 0.75 m2/s as the parameters to the vehicle sus-
pension system. These parameters have no special meaning; they were chosen
because they demonstrate the behaviour of the system illustrated in Figure 9.3.
In fact, these parameters would not work well for a real vehicle as there is in-
sufficient damping, which would lead to a very rough drive. Naturally, the
parameters could easily be modified to provide this extra damping.



Chapter 9. Prototype 2: Vehicle Suspension System 62

+

x 1 x 2

- -

- -

−
1

-

m
as

s-
sp

ri
ng

-d
am

pe
r

m
as

s-
sp

ri
ng

-d
am

pe
r

m
as

s-
sp

ri
ng

-d
am

pe
r

-
-

x o
ut

0.
5

0.
5

Fi
gu

re
9.

2:
Ve

hi
cl

e
su

sp
en

si
on

sy
st

em
an

al
og

ue
co

m
pu

te
r



Chapter 9. Prototype 2: Vehicle Suspension System 63

(a) Wheel 1 input

(b) Wheel 2 input

(c) Displacement

Figure 9.3: Comparison of vehicle suspension system’s behavioural and struc-
tural descriptions. Red indicates behavioural; blue indicates structural.
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(d) Displacement magnified

Figure 9.3: Comparison of vehicle suspension system’s behavioural and struc-
tural descriptions. Red indicates behavioural; blue indicates structural.



Chapter 10

Reconfigurable Hybrid
Computer

This chapter describes the reconfigurable hybrid computer, which was con-
structed after the second prototype. The entities that constitute the reconfig-
urable hybrid computer are described, before the computer itself is outlined.

10.1 Switch

A switch is used to control which circuit paths are currently active and which
are disabled. A switch in an IC would typically be implemented using a single
transistor.

The project’s switch has a digital control signal. When the signal is high,
the switch is closed and current flows. When the signal is low, the switch is
open and current does not flow.

The behavioural level description of the switch is idealistic. The entity
breaks the circuit when open but effectively disappears when closed. How-
ever, this model is unrealistic as no circuit element can effectively disappear.
To take into account these nonidealities, the structural level description was
created. If the switch is closed, it has a low resistance and current can easily
pass through the entity. If the switch is open, it has a high resistance and cur-
rent cannot easily pass through the entity. This description works on the basis
that the switch will be on one possible circuit path. Current will flow down
the path of lesser resistance. If there is only one path, the switch will serve no
useful purpose.

The testbench supplies a sinusoidal waveform to the switch, while the con-
trol signal is tested in both positions. For the behavioural description, when
the switch is closed, the output voltage becomes the input voltage, but when
the switch is open, the output voltage becomes zero. For the structural descrip-
tion, since there is only one circuit path in the testbench, the current will flow
down this path and the output voltage will stay at the level of the input voltage
irrespective of the position of the switch.

65
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10.2 Variable Resistor

A variable resistor or potentiometer is a resistor whose resistance may be modi-
fied. In this case, the variable resistor is a digitally controllable variable resistor
or a digital potentiometer, meaning that its resistance may be specified using a
digital control signal. These entities consist of a chain of small resistors, which
may be individually switched on and off. Many of these entities provide a
serial interface using a technology such as I2C or SPI. Others only allow the
resistance to be raised or lowered by one at any given time.

The resistance of the project’s variable resistor may be modified by supply-
ing a control byte specifying the desired resistance, providing simpler control
than the commercially available devices. The lack of flexibility in the commer-
cially available devices is likely due to the cost and area consumed by adding
extra pins. Since no pins are required for an internal variable resistor, this entity
provides a parallel interface, which is simpler to use and requires less support-
ing hardware. Since a byte is provided for selecting the resistance, up to 256
values may be selected. The granularity provided is 50 kΩ, leading to a range
of possible values spanning from 0 Ω to 12, 750 kΩ. This granularity was cho-
sen because a value of 0.5 is required for certain applications, such as the vehi-
cle suspension system. Moreover, it allows for results of reasonable accuracy in
many simulations. A multiplicative factor of 127.5 should be sufficiently large
for the majority of applications.

Only a behavioural level description was created for this device, since such
an entity is readily available. The control byte is multiplied by the appropriate
values to determine the resistance that the entity should assume. Ohm’s Law
is then used with this resistance value to create the variable resistor.

The testbench is similar to the one used for the resistor. The testbench at-
taches a sinusoidal voltage source to one terminal of the variable resistor, so
that the voltage at the other terminal may be observed. A single resistor wired
in this fashion should not modify the inputted voltage, even while its resistance
is changing. Consequently, the output is the same as the input.

10.3 Switchable Resistor

The project’s switchable resistor consists of a resistor bracketed by two
switches, as illustrated in Figure 10.1, so that the resistor may be switched in
and out of the circuit as necessary.

Figure 10.1: Schematic of switchable resistor

The behavioural level description of the device alternates between Ohm’s
Law and zero volts depending on the state of the switches. The structural level
description instantiates a resistor and two switches in the formation illustrated
in Figure 10.1.

The testbench is similar to the one used for the resistor. The testbench
attaches a sinusoidal voltage source to one terminal of the switchable resis-
tor, so that the voltage at the other terminal may be observed. Meanwhile,
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the switches are opened and closed. A single resistor wired in this fashion
should not modify the inputted voltage. Consequently, the behavioural level
description will show the input voltage at the output while the switch is closed,
but zero volts while the switch is open. However, at the structural level, the
switches should not modify the inputted voltage, for reasons discussed in Sec-
tion 10.1. Consequently, at this level, the output is the same as the input.

10.4 Switchable Capacitor

The project’s switchable capacitor consists of a capacitor bracketed by two
switches, as illustrated in Figure 10.2, so that the capacitor may be switched
in and out of the circuit as necessary.

Figure 10.2: Schematic of switchable capacitor

The behavioural level description of the device alternates between the ca-
pacitor equation and zero volts depending on the state of the switches. The
structural level description instantiates a capacitor and two switches in the for-
mation illustrated in Figure 10.2.

The testbench is similar to the one used for the capacitor. The testbench
attaches a sinusoidal voltage source to one terminal of the switchable capac-
itor, so that the voltage at the other terminal may be observed. Meanwhile,
the switches are opened and closed. A single capacitor wired in this way will
slightly modify the input voltage while it is charging. After a short period of
time, the voltage will become identical to the input voltage. Consequently, the
behavioural level description will show a slightly modified input voltage at
the output while the switch is closed, but zero volts while the switch is open.
However, at the structural level, the switches should not modify the inputted
voltage, for reasons discussed in Section 10.1. Consequently, at this level, the
output is approximately the same as the input, with a slight deviation while
the capacitor is charging.

10.5 Cell

The cell is the basic reconfigurable entity of the project’s hybrid computer, used
to perform a single operation.

The required functions had to be decided. Inversion is often necessary in
analogue computers, since almost all functions invert and this extra inversion
would need to be eliminated. Integration is often necessary for differential
equations, which describe much of physics. Moreover, integration can be used
to eliminate differentiation, which offers poor performance in analogue com-
puters as outlined in Section 6.6.5. Addition is also necessary, but any entity
can be turned into an adder by providing it with multiple inputs. Multiplica-
tion is also necessary, but again, any entity can be turned into a multiplier by
providing it with variable inputs.
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Based on this analysis, it was decided to implement inversion and integra-
tion as the two functions performed by the cell. Two inputs are provided to
allow for addition. If addition of more signals is required, further cells can be
used. The resistor strengths on the input lines are variable, to allow for multi-
plication. It appears that it is possible to construct every simulation required
of a physics engine from these functions. This system is based on a reduced
instruction set computer (RISC) philosophy. It implements only the required
functions; all others may be constructed in terms of these basic functions.

The elimination of differentiation provides an additional advantage. Differ-
entiation is the only function that uses a capacitor at its inputs. The other func-
tions implemented use resistors at their inputs. Therefore, under the current
scheme only resistors would need to be provided at the cell inputs, reducing
the amount of hardware required.

The functionality of the project’s cell is entirely decided by digital control
signals. It consists of an operational amplifier and its associated components,
and performs one operation at any given time.

The behavioural level description switches between the equations for inver-
sion and integration used in previous entities. The structural level description
constructs the circuit illustrated in Figure 10.3. This consists of an operational
amplifier with a fixed resistance switchable resistor and a fixed capacitance
switchable capacitor in parallel. The switches allow either the resistor or the
capacitor to be activated, disabling the other. There are variable resistors on
both input wires. By controlling the variable resistors, many different mul-
tiplicative factors may be achieved, and each input may be multiplied by a
different amount.

• output

input1

input2

••

•

+

−

Figure 10.3: Schematic of cell. Red indicates inversion; blue indicates integra-
tion.

Instead of supplying variable resistors at the inputs, the values of the ca-
pacitor and resistor in parallel with the operational amplifier could have been
made controllable. However, this would have resulted in both inputs being
multiplied by the same factor, offering less flexibility. Moreover, variable resis-
tors are a standard circuit building block whereas variable capacitors are not.
For these reasons, it was decided to use variable resistors at the inputs. This ad-
heres to the RISC philosophy, as there is the potential to make the entire set of
entities variable. Such a scheme would lead to a lot of underutilised hardware
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and questionable gain.
The first testbench supplies a sinusoidal waveform, while changing the op-

eration, so that the output shows both integration and inversion. The first half
of the waveform is phase shifted while the second half is inverted. The second
testbench supplies a square waveform, requesting the same sequence of events
from the cell. The first half of the waveform is triangular while the second half
is an inverted square waveform.

10.6 Hybrid Systems

The hybrid systems are hybrid albeit hardwired versions of the simplified
mass-spring-damper, mass-spring-damper and vehicle suspension system.
These systems are constructing from the cell. These are only reconfigurable
when instantiated, by choosing the parameters supplied to them. All other
variable elements have been fixed.

These systems were designed to observe the differences between the pure
analogue computers and their reconfigurable counterparts. Switches will ob-
viously lead to leakages since an open switch offers a large but not infinitely
large resistance. However, this leakage should be small. These systems enable
the accurate measurement of this leakage before constructing more complex
elements. If the leakage were too great, solutions would need to be found and
implemented at this stage.

The behavioural level descriptions use the relevant differential equations,
so that their descriptions are the same as their non-hybrid equivalents. The
structural level descriptions connected the cells in the required arrangement,
mimicking the arrangements used for the prototypes.

The testbenches used are the same as for the prototypes. This allows for
the results obtained from the two to be compared. All analyses suggested that
these entities worked perfectly. The minor leakage is illustrated in Figure 10.4
and Figure 10.5.

10.7 Router

A routing entity was required to route the appropriate signals to the cell’s in-
put. This entity would likely consist of switches, to create and terminate con-
nections as required.

The project’s router takes a 5-bit digital select signal, allowing thirty two
inputs. The first input is always connected to ground, allowing thirty one input
lines to be connected. Ground is necessary for when an input must be disabled,
such as when only one of a cell’s two inputs is used. Two outputs are provided,
corresponding to the cell’s two inputs.

Only a behavioural level description of the router was created. This de-
scription assigns the voltage of the chosen input signal to the output signal. A
structural level description seems an obvious choice for this entity. However,
this description required thirty two switches, exceeding the design size limits
of the simulator (Section 12.1).

The testbench generates thirty one input signals of differing amplitudes.
Meanwhile, the control signal is incremented, so that each signal will be dis-
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(a) Displacement out

(b) Magnified displacement out

(c) Velocity

Figure 10.4: Comparison of hybrid mass-spring-damper’s behavioural and
structural descriptions. Red indicates behavioural; blue indicates structural.
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(d) Magnified velocity

Figure 10.4: Comparison of hybrid mass-spring-damper’s behavioural and
structural descriptions. Red indicates behavioural; blue indicates structural.

(a) Displacement

(b) Magnified displacement

Figure 10.5: Comparison of hybrid vehicle suspension system’s behavioural
and structural descriptions. Red indicates behavioural; blue indicates struc-
tural.
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played at the output. The output waveforms are discontinuous sine waves that
gradually increase in amplitude.

10.8 Cell Router

The project’s cell router consists of a cell and a router. It simply provides a
convenient entity with which to construct more complex entities.

The behavioural level description merely merges the behavioural descrip-
tions of the cell and the router. A more natural description cannot be created.
The structural level description creates the circuit illustrated in Figure 10.6.

-

-

-- CellRouter

Figure 10.6: Schematic of cell router

The first testbench supplies a sinusoidal waveform, while changing the op-
eration, so that the output shows both integration and inversion. The first half
of the waveform is phase shifted while the second half is inverted. The second
testbench supplies a square waveform, requesting the same sequence of events
from the cell. The first half of the waveform is triangular while the second half
is an inverted square waveform.

10.9 Computer

The computer constitutes the bulk of the reconfigurable hybrid computer. It
consists of cells connected via programmable interconnect. The inputs and
outputs are analogue but the control signals are digital.

The main challenge lay in designing the interconnect. A few ideas were
considered, based around the general ideas of a mesh and a bus.

The mesh would consist of cells arranged in a matrix formation. Each cell
would get its inputs from the cells to its immediate left. The first cells would
also get inputs from the rightmost cells. The mesh’s inputs would come in the
left and outputs would leave from the right. At first glance, this arrangement
appears useful. A great deal of hardware is not required, since the maximum
number of inputs to each cell is equal to the number of cells to its immediate
left. However, on attempting to map systems to such an architecture, problems
are quickly uncovered. Firstly, such an architecture is difficult to program. This
is a disadvantage, but not sufficient to make this design worthless. However,
the lack of flexible routing in this design prevents the mapping of many stan-
dard physics systems, such as the vehicle suspension system. Methods could
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be designed to overcome these problems, but such methods would likely re-
move all advantages gained by the use of such a system, while substantially
increasing the difficulty involved in programming such a system.

The alternative to the mesh was a bus-based architecture. This concept
would use a bus line for each input and a bus line for each cell. Each cell would
be connected to every bus line. A cell’s output would be connected to a specific
bus line for each cell, so that only one cell would drive each bus line. The last
bus lines would be used as the outputs. Therefore, if a specific signal needed to
be present outside the analogue computer, it could be processed by the last cell,
which would output it to an appropriate bus line. Such a solution results in the
use of a lot of hardware to route the correct signal to the cell’s inputs. However,
it appears to be the only solution sufficient to map physics problems, such as
the vehicle suspension system, to the hybrid computer. In addition, this solu-
tion is substantially easier to program that the aforementioned mesh.

Based on this analysis, the bus solution was chosen. Two inputs were re-
quired. The design of the cell router left twenty nine remaining bus lines, so
twenty nine cells were created. The last two bus lines were used as the outputs.
This is sufficient for relatively large problems, such as the vehicle suspension
system.

The behavioural level description simply merges the behavioural descrip-
tions of twenty nine cell routers, connected to thirty one bus lines. A more
natural description cannot be created. The structural level description creates
thirty one bus lines and instantiates twenty nine cell routers as illustrated in
Figure 10.7.

A possible optimisation involves removing the complete flexibility permit-
ted by the current solution, and only allowing a subset of bus lines to be routed
to each cell. However, analysing the prototypes constructed suggested that
such a solution would be difficult to implement correctly. For example, de-
signing an optimised solution that works with the vehicle suspension system
could result in a solution that fails to work with a multitude of other neces-
sary systems. If more problems were to be analysed, patterns could possibly
be detected and such an optimisation could then be implemented.

The testbenches test the system by configuring it to simulate the simplified
mass-spring-damper, the mass-spring-damper and the vehicle suspension sys-
tem problems, using the same parameters as before. These testbenches ensure
that the same level of functionality may be achieved through the computer,
as through the prototypes. Moreover, the prototypes provide a benchmark
against which the computer’s error may be analysed. The outputs of the mass-
spring-damper testbench compared with the mass-spring-damper prototype
are shown in Figure 10.8. The outputs of the vehicle suspension system test-
bench compared with the vehicle suspension system prototype are shown in
Figure 10.9. Both highlight that the deviation from ideality is minimal.

10.10 DAC

Digital to analogue converters (DACs) are used to convert digital signals to
equivalent analogue signals. They provide a means by which digital electron-
ics can communicate with analogue electronics.

The project’s DAC performs its conversion with a granularity of 8 bits.
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(a) Displacement out

(b) Magnified displacement out

(c) Velocity

Figure 10.8: Comparison of computer’s structural mass-spring-damper test-
bench against mass-spring-damper’s behavioural description. Red indicates
mass-spring-damper; blue indicates computer.
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(d) Magnified velocity

Figure 10.8: Comparison of computer’s structural mass-spring-damper test-
bench against mass-spring-damper’s behavioural description. Red indicates
mass-spring-damper; blue indicates computer.

(a) Displacement

(b) Magnified displacement

Figure 10.9: Comparison of computer’s structural vehicle suspension system
testbench against vehicle suspension system’s behavioural description. Red
indicates vehicle suspension system; blue indicates computer.
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More sophisticated DACs are widely available but are expensive. As stated in
Section 2.4.2, accuracy is not very important for computer games. Objects only
need to appear as if they are behaving realistically. Higher accuracy would
lead to more expense that would probably not be observed. Each bit inputted
to the DAC represents 0.1, instead of the more standard 1, to allow for greater
accuracy. This works well because most systems simulated will use numbers
close to zero, so achieving accuracy for lower numbers at the expense of higher
numbers becoming impossible is satisfactory. Additionally, the DAC has clock
and reset inputs. All output voltage changes will occur on the rising edge of the
clock, and the active low reset input forces the device to output 0 V. Although
these inputs serve little purpose for this entity, they were added to create an
inverse of the analogue to digital converter (ADC) (Section 10.11).

Only a behavioural level description of the DAC was constructed because
DACs are standard entities. There are many different ways a DAC could be
implemented, but these details are unimportant for the project. The description
applies type conversion functions to implement the DAC whenever a rising
edge of the clock is observed. The core process of the DAC implementation is
displayed in Code 10.1.

25 process(clock, reset)
26 variable registered_output_voltage: voltage;
27 begin
28 if reset = ’0’ then
29 registered_output_voltage := 0.0;
30 elsif rising_edge(clock) then
31 registered_output_voltage := to_real(input) *

voltage_per_bit;
32 else
33 registered_output_voltage :=

registered_output_voltage;
34 end if;
35 temporary_output_voltage <= registered_output_voltage

;
36 end process;

Code 10.1: Excerpt from Behavioural/dac.vhd

The testbench supplies the DAC with the binary values representing 10 and
−10, which produces a square waveform of amplitude 2 V at the output.

10.11 ADC

ADCs are used to convert analogue signals to equivalent digital signals. They
provide a means by which analogue electronics can communicate with digital
electronics.

The project’s ADC performs its conversion with a granularity of 8 bits.
More sophisticated ADCs are widely available but are expensive. As stated in
Section 2.4.2, accuracy is not very important for computer games. Each bit out-
putted from the ADC represents 0.1, instead of the more standard 1, to allow
for greater accuracy. This works well because most systems simulated will use
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numbers close to zero, so achieving accuracy for lower numbers at the expense
of higher numbers becoming impossible is satisfactory. Additionally, the ADC
has clock and reset inputs. All output voltage changes will occur on the rising
edge of the clock, and the active low reset input forces the device to output
zero. Although real ADCs do not use these signals, they were added to allow
for synchronous behaviour. A synchronous ADC could easily be constructed
by placing a register after an ADC.

Only a behavioural level description of the ADC was constructed because
ADCs are standard entities. There are many different ways an ADC could be
implemented, but these details are unimportant for the project. The description
applies type conversion functions to implement the ADC whenever a rising
edge of the clock is observed. The core process of the ADC implementation is
displayed in Code 10.2.

22 process(clock, reset)
23 begin
24 if reset = ’0’ then
25 output <= "00000000";
26 elsif rising_edge(clock) then
27 output <= to_std_ulogic_vector(input’reference /

voltage_per_bit, 8);
28 end if;
29 end process;

Code 10.2: Excerpt from Behavioural/adc.vhd

The testbench supplies the ADC with a waveform that steps from 0 V to
9 V, so the digital output should rise from zero to ninety in steps of ten.

10.12 Digitised Computer

The digitised computer provides a digital interface to the hybrid computer.
Inputs, outputs and control signals are all specified in a digital format. This
facilitates the use of this entity in a purely digital system, such as a standard
computer.

The behavioural level description combines the description of the computer
with the descriptions of two DACs and two ADCs. The structural level descrip-
tion connects these components together as illustrated in Figure 10.10. The
code implementing this is shown in Code 10.3.

-

-- output1input1

-input2 - output2

Computer

DAC

ADC

ADC

-DAC -

-

Figure 10.10: Schematic of digitised computer
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48 convert_input1: dac
49 port map (
50 clock => clock,
51 reset => reset,
52 input => input1,
53 output => analogue_input1
54 );
55 convert_input2: dac
56 port map (
57 clock => clock,
58 reset => reset,
59 input => input2,
60 output => analogue_input2
61 );
62
63 compute: computer
64 port map (

...

214 );
215
216 convert_output1: adc
217 port map (
218 clock => clock,
219 reset => reset,
220 input => analogue_output1,
221 output => output1
222 );
223 convert_output2: adc
224 port map (
225 clock => clock,
226 reset => reset,
227 input => analogue_output2,
228 output => output2
229 );

Code 10.3: Excerpt from Structural/digitised computer.vhd

The testbenches test the system by configuring it to simulate the simplified
mass-spring-damper, the mass-spring-damper and the vehicle suspension sys-
tem problems, using the same parameters as before. These testbenches ensure
that the same level of functionality may be achieved through the digitised com-
puter, as through the prototypes. Moreover, the prototypes provide a bench-
mark against which the digitised computer’s error may be analysed.
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10.13 ADE

The ADE is the top level entity. Currently, it only consists of the digitised com-
puter and consequently it is unbeneficial to create such an entity. The reasons
for creating this entity will be outlined in Chapter 11.

The behavioural level description is the same as that used for the digitised
computer. The structural level description instantiates a single instance of the
digitised computer.

The testbenches test the system by configuring it to simulate the simpli-
fied mass-spring-damper, the mass-spring-damper and the vehicle suspension
system problems, using the same parameters as before. These testbenches en-
sure that the same level of functionality may be achieved through the ADE,
as through the prototypes. Moreover, the prototypes provide a benchmark
against which the ADE’s error may be analysed. The outputs of the mass-
spring-damper testbench are shown in Figure 10.11. The outputs of the vehicle
suspension system testbench are shown in Figure 10.12. In both cases, the os-
cillatory behaviour may be observed by noting how the numbers change.

(a) Displacement out

(b) Magnified displacement out

(c) Velocity

(d) Magnified velocity

Figure 10.11: ADE’s structural description, using the mass-spring-damper test-
bench

(a) Displacement

(b) Magnified displacement

Figure 10.12: ADE’s structural description, using the vehicle suspension sys-
tem testbench
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Multiplexing

This chapter is concerned with discovering a way to run multiple simulations
“simultaneously”, quickly switching between iterations. The background con-
cept is outlined, before the modifications that were carried out to the reconfig-
urable hybrid computer are discussed.

11.1 Background

The previously outlined physics engine will perform the vast majority of
physics calculations with the desired accuracy. However, if such a system were
to be used in practice, one problem remains: the system is capable of running
only a single physics simulation at any particular time. For example, with the
above system, one vehicle suspension system can be simulated at any particu-
lar time. However, it is likely that a racing game would need to simulate many
vehicle suspension systems simultaneously.

To facilitate this, it was necessary to decide on a scheme through which
simulations could be multiplexed. In other words, a scheme through which
many simulations could be run during the timeframe of one.

11.1.1 Key Concept

All simulations previously described have been executed in real-time. How-
ever, if many simulations are being run in the place of one, the simulations
must obviously be executed faster that real-time. For example, fifty simula-
tions must each be executed in one fiftieth of real-time.

As outlined in Section 3.4.1, one of the most desirable properties of ana-
logue computers is that they operate in real-time. However, analogue comput-
ers may also perform time compression or time expansion. To perform time
compression, each constant multiplier in the equation should be multiplied by
the speed gain. To perform time expansion, each constant multiplier in the
equation should be divided by the speed decrease. In the project, the variable
resistors can be used to modify the equation’s constant multipliers.

Suppose the equation
ax2 + bx + c = 0

81
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describes the system being simulated. If it were necessary to run the system at
twice the speed of real-time, the equation

2ax2 + 2bx + 2c = 0

would be modelled instead. If it were necessary to run the system at half the
speed of real-time, the equation

a
2

x2 +
b
2

x +
c
2

= 0

would be modelled instead.

11.1.2 Multiplexing Suggestions

Multiplexing simulations requires more than time compression. Therefore,
some scheme for saving and restoring the current state must be designed. This
section analyses three possible schemes.

11.1.2.1 Suggestion 1: Iterating Outputs

This kernel of this idea is to store output values so that they may be later reap-
plied to the inputs.

In this scenario, a register file would be placed in the digital part of the
computer. Initial values for each simulation would be read into the registers
from outside the physics engine. For the first iteration, the values in the regis-
ters would be supplied to the system sequentially. The outputs of this iteration
would be saved in the registers after one timestep, overwriting the initial val-
ues. To do this, the final feedback loop of each analogue computer would be
removed. Instead, the loop would go through an ADC, DAC and register file.
After each iteration, the user would read the output values from the register
file. Afterwards, the process would continue using the saved values. A simple
version of this system is illustrated in Figure 11.1.

-

-?

�

Input

Output
Register File Digitised Computer

Figure 11.1: Multiplexed computer using suggestion one

This system works on the principle that the vast majority of analogue com-
puting problems, such as the mass-spring-damper system, can be designed so
that their input and output are connected. This design was not used for this
project, since it would have required two signals driving the same line, which
the simulator cannot simulate (Section 12.4). In the scenario outlined here, the
output of the register would constitute a single line driver, so this should not
be a problem. However, it is not obvious that the vehicle suspension system
can be redesigned to have a final loop.
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There are larger problems as to why this suggestion will not work. State
is not determined by the output value. Supplying the previous output value
will work in the same way as supplying the first input value. Since the signal
varies with time, the state must depend on time. Only the integrators work
with respect to time; all other components work based on the instantaneous
input signal. This time-varying behaviour is provided by the charge stored in
the capacitors, used by the integrators. Therefore, to save state, the charges in
the capacitors need to be stored, instead of the output value.

Consequently, this suggestion is invalid and it could not work.

11.1.2.2 Suggestion 2: Simulating Change

In order to formulate a viable solution, the inputs and outputs of the previ-
ously constructed systems were analysed for patterns. Based on this, two key
observations were made: firstly, that outputs only change because of a change
in inputs; secondly, that outputs will eventually stabilise to a constant value,
unless very unrealistic parameters have been chosen. These properties appear
to hold true for every possible system and could provide a solution.

To supply the input change, a register file would be placed at the inputs to
the system. This register file would contain two registers for each possible sim-
ulation. The first register would contain the “previous input” and the second
register would contain the “current input”. The first register would be supplied
to the system to restore the previous state and afterwards, the second register
would be supplied to apply the transition. If the previous state were supplied
for a sufficiently long duration, then the capacitors should revert to their pre-
vious state. In this system, the inputs would be completely determined by the
user; the system does not feed output values back into the system.

Another register file would be placed at the outputs of the system. This
register file would contain many registers for each possible simulation. These
registers would start recording the value of the output shortly after the current
input is applied to the inputs. One register would be used for each timestep. If
the length of a timestep was chosen well, the output should be constant by the
time the last register is used. Therefore, the software using the physics engine
could retain the previous value until another transition occurs.

A simplified version of this system is illustrated in Figure 11.2.

-Input - - Output
Digitised
Computer

Register

File
- Register

File

Figure 11.2: Multiplexed computer using suggestion two (simplified)

In summation, there are three distinct phases in which this system operates:
firstly, the input value loading phase during which two values are read for each
simulation; secondly, the actual simulation; thirdly, the output value reading
phase during which the results of the simulation are obtained.
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However, such a system would be very slow. The loading and reading
phases will each take time away from simulation, particularly if many output
registers are used. In addition, part of the time allocated to simulation will be
consumed trying to restore the previous state, during which time the system is
effectively idle. Moreover, the system would need to run each simulation for a
relatively long period of time, after which the probability of not having reached
stability is very low. If the software using the physics engine only required
the first few readings, the physics engine would still record many results, sev-
eral of which would be worthless. Therefore, the physics engine would have
expended time performing worthless actions. To summarise, simulation re-
sults will take considerable time to appear, but they will come in clusters. The
biggest problem with this is that results are typically required instantaneously
and concurrently. Therefore, this solution is not ideal.

There is another problem associated with this solution. The time required
to load the previous state is not easily determined, due to the different charges
stored in each capacitor. The only way to fully ensure the system reaches its
previous state is to leave it charging for as long as the simulation has run previ-
ously. However, this would be an extremely long delay and clearly unsuitable.

A modification of this solution would be to connect a register to each ca-
pacitor so that the capacitor’s charge is stored locally. This would be difficult
to implement and would likely be problematic. More importantly, it does not
solve any issues.

Although this solution could work, a better solution would be desirable.

11.1.2.3 Suggestion 3: Capacitor Replication

Capacitors store charge. Instead of using registers to store the value of the
capacitors’ charge, capacitors can be used directly.

This solution increases the number of capacitors. Through switching, each
capacitor is used for only one simulation. If switching is performed slowly, the
charges will leak from the capacitors, but if switching is performed quickly, the
charges will likely stay in the capacitors while the switches are closed.

This solution rectifies the timing issues associated with the second idea.
Moreover, it simplifies both the solution and the programming of the com-
puter. Therefore, this was the suggestion used to implement multiplexing
in the project. This solution required modification of the already constructed
components. The modifications made are discussed in the subsequent sections.

11.2 Capacitor Stack

The capacitor stack allows for switching between capacitors. A digital control
signal operates the switching.

The behavioural level description consists of three instances of the capacitor
equation. The structural description consists of three swichable capacitors in
parallel, as illustrated in Figure 11.3.

Since only three capacitors have been provided, only three simulations can
be multiplexed. It would be desirable to include many more capacitors, but this
was impossible due to the design size constraints imposed by the simulator,
outlined in Section 12.1. However, using three capacitors and one resistor is
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••

Figure 11.3: Schematic of capacitor stack

somewhat beneficial as the operation select signal can be a decoded 2-bit signal.
Higher powers of two also exhibit this beneficial characteristic.

The testbench supplies a sinusoidal waveform, while modifying which ca-
pacitor is currently activated. The output is a mostly undistorted version of the
input. However, some distortion will be present during the charging phase of
each capacitor.

11.3 Cell

The cell was modified to replace the switchable capacitor with the capacitor
stack, as illustrated in Figure 11.4. The operation signal was also modified, to
accommodate the extra bits required for operation selection.

• output

input1

input2

••

•

+

−

•

•

•

•

Figure 11.4: Schematic of multiplexed cell. Red indicates inversion; blue indi-
cates integration.

The testbenches are similar to the ones used previously. However, instead
of testing only inversion and integration, all three integrations are tested. For
the sinusoidal waveform, the first three quarters of the waveform are phase
shifted while the last quarter is inverted. For the square waveform, the first
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three quarters of the waveform are triangular while the last quarter is an in-
verted square waveform. In both cases, when switching between the different
capacitors used for integration, there will be slight glitches.

11.4 Cell Router

The cell router was only modified to accommodate the larger operation signal,
which passes through this entity.

The testbenches are similar to the ones used previously. However, instead
of testing only inversion and integration, all three integrations are tested. The
output appears virtually the same as that produced by the cell.

11.5 Computer and Digitised Computer

The computer and digitised computer were only modified to accommodate the
larger operation signal, which passes through these entities.

The existing testbenches were also modified to accommodate the new size
of the operation signal. In addition, new testbenches were constructed for
the computer and digitised computer. These are based on the previously con-
structed simplified mass-spring-damper, mass-spring-damper and vehicle sus-
pension system testbenches, but use multiplexing to perform three simulations
in the timeframe of one. These are replicas of the testbenches created for the
new ADE entity, so a more complete description is deferred until Section 11.9.
In addition, another testbench was created for the purposes of evaluating the
speed of the entity. This is described in greater detail in Section 15.4.3.

11.6 Operation Decoder

Currently, the operation signal is 4 bits and only one bit can be active at any
given time. All of this information can be encoded in 2 bits. Therefore, it is bet-
ter to provide a 2-bit interface to the user, and to provide an operation decoder
that converts this to its native 4-bit format.

The project’s operation decoder converts a 2-bit signal to a 4-bit signal. This
is done synchronously with the rising edge of the clock. A reset signal converts
the output to all zeroes.

Only a behavioural level description is provided for this entity. A structural
level description is superfluous since the behavioural level may be synthesised.
Nothing is gained by providing a list of the gates used to construct a decoder.
This description assigns the decoded input to the output, synchronous to the
clock.

The testbench supplies all possible input values to the decoder, so that the
output may be observed.

11.7 Operation Decoders

Twenty nine operation decoders are required, since each cell’s inputs must be
decoded. To group these, this entity was created.
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The behavioural description combines the descriptions of twenty nine de-
coders, for there is no simpler behavioural description. The structural descrip-
tion instantiates twenty nine operation decoders.

The testbench supplies all possible input values to each decoder, so that the
output may be observed.

11.8 Control Unit

A control unit is used to send control signals to the datapath of a design. In this
case, the datapath is the digitised computer. Currently, the control unit is noth-
ing more than a wrapper for the operation decoders. It has been designed so
that other control logic could be instantiated inside this unit, if it was required.

The behavioural description combines the description of twenty nine de-
coders, making it the same as the operation decoders entity. The structural
description instantiates the operation decoders entity.

The testbench supplies all possible input values to each decoder, so that the
output may be observed.

11.9 ADE

The top level component was modified to accommodate the new size of the op-
eration signals. It also instantiates the control unit so that the operation signal
inputs are correctly decoded. The new version of this component is illustrated
in Figure 11.5.

?

- -

-

input output

Control Unit

Computer

Figure 11.5: Schematic of multiplexed ADE

The previous testbenches have been modified to accommodate the new size
of the operation signal. Since multiplexing is not used in these testbenches, the
integration operation has been hardwired to 01.

In addition, new testbenches have been created to test the multiplexed func-
tionality of the physics engine. The capacitor switching algorithm shown in
Code 11.1, changes the currently active capacitor every second. This switching
could be performed more quickly if necessary, but this substantially increases
the time the simulator takes to perform the simulation (Section 12.2). These
testbenches also multiply the multipliers of their equations by three, since three
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simulations will be run concurrently and each must run at one third of real-
time. The outputs are displayed in Figure 11.6 and Figure 11.7. As it is diffi-
cult to determine what is occurring during these simulations, Figure 11.8 and
Figure 11.9 show the same simulation executed on the computer component.
Examining these reveals that the same values are repeated at the outputs three
times, corresponding to each of the three simulations. The outputs are not ex-
actly the same but vary slightly in timing. This could be due to leakage of the
switches or the finite precision provided by the simulator. However, it is of
little consequence since such differences will be imperceptible when used in a
computer game, as outlined in Section 2.4.2.

72 multiplexer: process
73 begin
74 loop
75 integrate <= "01";
76 wait for 1 sec;
77 integrate <= "10";
78 wait for 1 sec;
79 integrate <= "11";
80 wait for 1 sec;
81 end loop;
82 wait;
83 end process;

Code 11.1: Excerpt from Structural/ade testbench mass spring -
damper multiplexed.vhd

(a) Displacement out

(b) Magnified displacement out

(c) Velocity

(d) Magnified velocity

Figure 11.6: ADE’s structural description, using the mass-spring-damper test-
bench. The first waveform indicates the current simulation number.
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(a) Displacement

(b) Magnified displacement

Figure 11.7: ADE’s structural description, using the vehicle suspension system
testbench. The first waveform indicates the current simulation number.

Finally, another testbench was created for the purposes of evaluating the
speed of the entity. This is described in greater detail in Section 15.4.3.

11.10 Hierarchy

The final hierarchy of VHDL-AMS entities is displayed in Figure 11.10. Note
that this hierarchy only specifies the types of entity and not the quantity in-
stantiated.
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(a) Displacement out

(b) Magnified displacement out

(c) Velocity

Figure 11.8: Multiplexed computer’s structural description, using the mass-
spring-damper testbench. The first waveform indicates the current simulation
number.
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(d) Magnified velocity

Figure 11.8: Multiplexed computer’s structural description, using the mass-
spring-damper testbench. The first waveform indicates the current simulation
number.

(a) Displacement

(b) Magnified displacement

Figure 11.9: Multiplexed computer’s structural description, using the vehicle
suspension system testbench. The first waveform indicates the current simula-
tion number.
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Digitised Computer
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DAC
Computer

Cell Router
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Router

Operational Amplifier

Variable Resistor
Switchable Resistor

Switch
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Capacitor Stack
Switchable Capacitor

Switch
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Figure 11.10: Hierarchy of VHDL-AMS entities
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Problems and Solutions

A number of problems were encountered during the implementation of the
project, resulting from the simulator used. All VHDL-AMS compilers and sim-
ulators currently available are still under development, hence these problems.
These are outlined in the following sections.

12.1 Size

The software used placed limits on the size of designs. This raised a number of
issues throughout the project.

If the design were too large, the simulator would enter an infinite loop.
During this infinite loop, 100% of the system’s CPU was utilised by the simu-
lator and no feedback was provided as to what was happening. To ensure that
the software was not just sluggish, the simulator was left running for twenty
four hours. After this time had elapsed, no feedback or results were available.
Therefore, it was clear that the simulator could not simulate the system.

However, the manufacturer did not supply guidelines as to the limit on
design sizes. It was often unclear when the simulator was entering the infinite
loop as opposed to when it was only sluggish.

The problem had to be manually diagnosed and corrected. Correction was
limited to reducing the complexity of the circuit either by using alternative
designs or by removing entities. Obviously, these corrective methods were
nonideal.

12.2 Speed

The dichotomy of analogue and digital means digital can never truly simulate
analogue. The finite granularity of digital means that continuous analogue can
only be approximated. This dichotomy resulted in simulations taking exces-
sive amounts of time. Indeed, large designs could take longer than four hours
to simulate.

In addition, the simulator provided options to control the accuracy of the
approximation. The default accuracy of the software was sufficient for many

93
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simulations, but if precise timing was required, the accuracy had to be in-
creased. This resulted in the simulator working even slower.

This was a great hindrance during the project, because more time was
consumed simulating than coding. During simulation, the VHDL-AMS code
could not be modified. This prevented the rapid testing of alternative ideas.
Certainly, had the simulator been faster, more coding would have been
achieved in the same timeframe.

One possible solution was to reduce the complexity or number of entities
in the design, but clearly, this was not a good solution. Consequently, the only
real solution was to wait.

12.3 VHDL-AMS Standard

As outlined in Section 7.2.1, SystemVision 2002 did not implement the entire
VHDL-AMS specification.

In particular, some library functions were not implemented. Although
this did not prevent the construction of any designed entities, it meant that
workarounds had to be found in many cases. For example, the input/output
(I/O) libraries were not provided. The voltage source (Section 8.2.1) used for
this project read its values from an array. It would have been more natural for
the source data to have been read from a text file, but this was impossible due
to the lack of the I/O libraries. Other unimplemented library functions include
conversion functions and functions for determining if there are unknown bits
inside bit vectors. Where necessary, these functions were reimplemented inside
custom-built packages.

In addition, not all VHDL-AMS constructs were supported. This meant cer-
tain that entities have been provided with somewhat unintuitive descriptions.
For example, since aliasing was not implemented, electrical ref had to be
used in place of ground. Another example is that if a voltage or current was
specified in one branch of a statement, it had to be specified in all branches. In
certain cases, it was challenging to implement a description conforming to this
criterion, while retaining the functionality of the design. Ultimately, a solution
was found for every entity.

A final, minor issue is that the IEEE analogue libraries are in ieee -
proposed, instead of the correct ieee, as the software was created before the
entire VHDL-AMS specification had been ratified. The correct library names
have been provided, but commented out, at the top of each file.

12.4 Looped Back Inputs

It is typical to construct analogue computers whose outputs are looped back
to provide the inputs. The output is looped back and connected to the input.
Therefore, the input is specified as the combination of the current state and the
external signal. This provides a very natural way to design analogue comput-
ers.

However, these designs could not be used for the project, as the simulator
cannot simulate multiple line drivers. To resolve this problem, modified ver-
sions of the systems were used so that the input and the output were regarded
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separately. This ultimately had no impact on the outcome of the project, but it
removed the most obvious design path for much of the project.

Even if such designs are superior, the ideas cannot be applied to all situ-
ations. For example, it appears that the vehicle suspension system cannot be
designed in this way, as it has two inputs but only one output.

12.5 Resistor and Capacitor Strengths

As outlined in Section 8.5.2, capacitors and resistors in the integrator must be
balanced so that a multiplicative factor of one can be readily obtained from the
entity. Although this does not sound difficult, the range of capacitor values
that may be used is very limited. The range of resistor values is less limited.
In essence, should the value of the capacitors have been too high, the output
waveform would be completely distorted. Low capacitances worked well, but
if the values were too low, the waveform would also be somewhat distorted.
Moreover, it was unsatisfactory to fix the capacitors to some small capacitance
and leave the resistors at 1 Ω because this meant a multiplicative factor of one
could never be obtained from the circuit. Consequently, a high resistance had
to be chosen to counteract the effects of the low capacitance. After repeated
experimentation, it appeared that the values specified in the constants li-
brary, 100 kΩ resistance and 10 µF capacitance, provided the least distorted
waveform possible.

However, the solution involved much trial and error as the correct values
are dependent on the type of operational amplifier used, and cannot be deter-
mined by an equation. Moreover, due to the slow speed of the simulator, this
experimentation proved extremely time consuming and challenging.
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Chapter 13

Synthesis

One of the goals of the project was to find suitable hardware on which the
physics engine could be implemented. This chapter analyses the viability of
discrete components, application specific integrated circuits (ASICs), field pro-
grammable analogue arrays (FPAAs) and field programmable mixed arrays
(FPMAs). A number of commercially available FPAAs are analysed and com-
pared. Finally, a decision as to the most suitable hardware is made.

13.1 Discrete Components

The physics engine could be constructed as a set of discrete components inter-
connected on a printed circuit board (PCB). This solution would use readily
available, off-the-shelf components, reducing initial assembly expenditure.

However, discrete component solutions provide numerous manufacturing
challenges [36, p. 693]. The total cost of such a solution is likely to be greater
than an equivalent ASIC due to the extra time required to assemble the sys-
tem, coupled with the cost of each component. Moreover, the number of sol-
der joints and connectors is increased, which results in decreased reliability, as
there are more connections and components that may fail. This additionally
increases the time and cost required for visual inspection. Finally, it subjects
the devices to increased noise due to a longer and more exposed signal path.
Based on these difficulties, discrete component solutions are rarely used.

However, the physics engine could be prototyped using discrete compo-
nents connected on a breadboard. This would allow for rapid prototyping,
prior to designing an ASIC solution.

13.2 ASICs

The project described in the previous chapters was designed so that it could be
synthesised to an ASIC. Compared to other solutions, an ASIC offers a greater
degree of flexibility in what can be created. Moreover, since the IC has only a
single purpose, there are no unused components, which would be present in a
reconfigurable device. This provides more die area for useful entities.
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As outlined in Section 7.1, VHDL-AMS will be synthesisable to an ASIC
in the future. When this is possible, the basic components used in the design
such as the resistor, capacitor and operational amplifier will need to be substi-
tuted with the appropriate device from the manufacturer’s device library. This
should result in only minimal changes in the output generated by the design.

In addition, the design could be synthesised to hardware today. This would
involve the reconstruction of the circuit in an application that could produce
appropriate hardware.

13.3 FPAAs

FPAAs are the analogue equivalent of field programmable gate arrays (FP-
GAs). They typically contain a number of operational amplifiers and passive
components joined with programmable interconnect. Like an FPGA, a specific
function may then be downloaded from a host PC to the FPAA. Typically, they
may be reprogrammed potentially infinite times. However, some are write-
once like an electronically programmable read only memory (EPROM). These
have an advantage since the switches of the reprogrammable devices offer a
resistance, thereby modifying the functionality of the device. The write-once
fuses offer much less resistance.

FPAAs provide a natural match for the project outlined above since they
consist of operational amplifiers and their functionality is instantly reprogram-
mable. Instead of the design outlined in previous chapters, a number of ana-
logue computers could be designed. Each analogue computer would perform a
specific task. For example, one analogue computer would implement the mass-
spring-damper system while another would implement the vehicle suspension
system. Then, the game programmer would select the required function and
the host computer would download the appropriate design to the FPAA. The
programmer would supply the inputs and read the outputs from the design.
Of course, this does not offer the complete programmability offered by the de-
sign discussed above, but it is likely that this complete programmability is not
required and would not be fully exploited. Moreover, this solution simplifies
programming since the programmer no longer needs to understand the inter-
nal architecture of the physics engine hardware. In addition, software physics
engines only offer functionality equivalent to the FPAA solution outlined here.

13.3.1 Zetex Semiconductors TRAC

The Totally Reconfigurable Analog Circuit (TRAC) [37], manufactured by Ze-
tex Semiconductors, was the first FPAA commercially available. The most re-
cent version, the TRAC020LHQ36, consists of twenty cells each containing a
single operational amplifier. Therefore, the device is capable of performing
twenty concurrent operations. The device can perform inversion, addition,
logarithm calculation, antilogarithm calculation and rectification. By wiring
additional passive components to the terminals of the device, it can be made to
perform amplification, attenuation, differentiation and integration. However,
the device is no longer available for purchase.
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13.3.1.1 Analysis

The TRAC has enough operational amplifiers to simulate the vehicle suspen-
sion system. In addition, it performs all of the requisite functions: addition,
inversion and integration.

However, integration may only be performed using external components.
This places a limit on the number of concurrent integrations and therefore, on
the flexibility of the device. Nevertheless, these limits are probably sufficiently
high for this project.

The device is programmed on power-up. Therefore, dynamically repro-
gramming the device would require repeated stopping and starting. This
would prove challenging to implement effectively and would result in long
delays during which the device would be performing no useful task.

Coupled with these potential disadvantages, there is one serious problem:
the device has very recently been discontinued. This clearly indicates that the
device could not be used to implement the physics engine.

13.3.2 Lattice Semiconductor ispPAC

Lattice Semiconductor manufactures the In-System Programmable Analogue
Circuits (ispPAC) family [38]. These devices are in-system programmable but
not dynamically reprogrammable. Internal details are vague, but six program-
mable cells appear to be the maximum number available. Each cell contains
three operational amplifiers, but only one is wired in a standard analogue com-
puter configuration. This is because the devices are designed for signal condi-
tioning and filtering applications. However, some of the devices have inbuilt
DACs and up to three inputs. All of the devices have joint test action group
(JTAG) or IEEE 1149.1 functionality to simplify programming.

13.3.2.1 Analysis

These FPAAs are the only ones to include DACs and JTAG, which are useful
but not entirely necessary.

The biggest disadvantage associated with these FPAAs is the configuration
of the operational amplifiers. While suitable for signal conditioning and fil-
tering operations, it is likely that many operational amplifiers would not be
utilised in the physics engine, leading to unnecessary hardware with reduced
functionality. Certainly, six operational amplifiers are insufficient for even the
mass-spring-damper system. Consequently, it appears that these FPAAs are
not suitable for the physics engine.

13.3.3 Anadigm FPAAs

Motorola established Anadigm [39] in January 2000. It produces a range of
FPAAs with differing numbers of inputs, outputs and “configurable analogue
blocks (CABs)”.

The most sophisticated device consists of two dedicated output ports and
four ports that may be switched between input and output at will. In addition,
it consists of four CABs each containing two operational amplifiers, providing
eight operational amplifiers in total. Some configurations will allow for more
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than eight concurrent operations, but certain configurations will only allow for
less, due to the internal layout of the device.

The device can perform a wide range of functions and the user may de-
fine additional functions. Moreover, integration and differentiation may be
performed without the use of external components. It also includes an ADC,
which simplifies integration with digital components.

Finally, these devices are the first FPAAs to be completely dynamically re-
configurable. This reconfiguration may be performed either from the host com-
puter using an API or from an on-board microcontroller.

13.3.3.1 Analysis

The dynamic reprogrammability of the device is the most desirable feature for
the project, making it the most suitable of the currently available FPAAs. Both
methods of reprogramming the device, from the host computer or from an on-
board microprocessor, would be suitable for implementing this project.

Furthermore, it includes an ADC, which makes an external ADC unneces-
sary. A DAC would still be required. It includes sufficient inputs and outputs
for the vehicle suspension system. It also performs a satisfactorily wide variety
of functions with which to implement all of the necessary physics systems.

The glaring problem is that the device is quite limited in the number of
concurrent operations it can perform. This is sufficient for simple problems like
the mass-spring-damper, but not for more complex problems like the vehicle
suspension system, which requires twenty concurrent operations.

Nevertheless, the dynamic reprogrammability of the device offers a solu-
tion to this problem. The system being simulated could be divided into a num-
ber of constituent parts with each part being simulated sequentially, possibly
using input values from previous simulations. For example, the vehicle sus-
pension system could be first modelled as two mass-spring-damper systems.
The two outputs could then be supplied to a third mass-spring-damper system
with an additional halving operation, to obtain the final output. The obvious
disadvantage with this solution is that it takes longer to perform the required
operation, since in the example, three simulations were required instead of
one. Therefore, some of the advantages associated with the inherent concur-
rency of analogue computers have been lost. The simulation could then be
accelerated using the approach taken by the multiplexed physics engine, de-
scribed in Chapter 11. However, this acceleration leads to loss of accuracy and
the reconfiguration between simulations would still lead to some time being
unutilised.

Another solution to this problem would be to use multiple FPAAs but this
increases the cost of the solution and the complexity of programming the de-
vices.

In summation, these devices would be suitable for implementing the
physics engine. However, there are some disadvantages associated with the
lack of operational amplifiers. This problem will be solved as technology pro-
gresses and more operational amplifiers may be placed on a single device.



Chapter 13. Synthesis 101

13.3.4 Other FPAAs

In addition, a number of other FPAAs have been available in the past. For
example, Motorola were one of the first companies involved in the field and
successfully designed and manufactured FPAAs for a number of years. These
products were discontinued when the company established Anadigm. Since
Anadigm’s product range is an evolution of Motorola’s, these FPAAs offered
no additional functionality and warranted no further consideration.

13.3.5 Disadvantages

Of course, any FPAA solution has one major disadvantage: only the analogue
part of the design may be implemented on the device.

To rectify this problem, discrete DACs could be placed at the inputs to the
FPAA and discrete ADCs could be placed at the outputs. The digital part of
the design could then be implemented in software on the host computer. This
means that part of the design is no longer hardware-based but software-based,
potentially reducing its overall speed. Since only a small part of the design
would need to be placed in software, this is likely to have only minimal impact.

Another solution would be to use a combination of an FPGA and an FPAA,
with the digital part implemented on the FPGA and the analogue part im-
plemented on the FPAA. Again, discrete DACs and ADCs would be needed.
However, this solution is likely to be of considerable expense, due to the
amount of hardware required.

The ideal solution would be to place both the analogue and digital parts of
the design on the same device, with the DACs and ADCs integrated into the
device. This is the approach taken by FPMAs.

13.4 FPMAs

FPMAs are an amalgamation of FPAAs and FPGAs, consisting of program-
mable analogue elements and programmable digital elements with the DACs
and ADCs necessary to unite the two divisions.

However, FPMAs are currently not commercially available. They only ex-
ist as research prototypes. Additionally, it is questionable as to whether such
devices will ever be commercially viable, as many potential manufacturers cite
a lack of consumer interest.

13.5 Decision

Ultimately, it was decided not to create a hardware implementation of the
physics engine. The only viable hardware for the physics engine was an FPAA,
but all of the commercially available FPAAs had some problems associated
with them. The Anadigm FPAAs appeared to be the most appropriate. More-
over, FPMAs were more suitable, but unavailable. Besides, any solution in-
volving FPAAs would have required redesigning the analogue computer for
the differing architecture, using different software. Consequently, it was de-
cided to concentrate on furthering the VHDL-AMS solution, rather than create
a similar implementation for an alternative architecture.
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PC Interfaces

Ultimately, it would be necessary to connect the physics engine to a conven-
tional PC. This chapter analyses some potential solutions.

14.1 Peripheral Buses

ICs similar to the physics engine have traditionally been placed on cards,
which interface with the CPU through a peripheral bus.

Many buses have existed since the introduction of PCs, but the two viable
options are currently Peripheral Component Interface (PCI) and PCI Express
(PCIe). The other connection, Accelerated Graphics Port (AGP), is used only
by graphics cards and consequently, is not considered here.

14.1.1 PCI

PCI is the current standard peripheral bus in desktop PCs, having superseded
the slower Industry Standard Architecture (ISA). It allows for data transfer at a
rate of 133 Mbps. PCI evolved into PCI-X, which used a faster clock to achieve
a data transfer rate of 2, 133 Mbps.

PCI offers one possible solution for allowing the CPU and physics engine
to communicate. Its ubiquity makes PCI solutions both low cost and commer-
cially viable. There are, however, faster peripheral buses currently available.

14.1.2 PCIe

PCIe is the next generation of the PCI bus. Although backwards compatible
with PCI, it uses a redesigned architecture to achieve a data transfer rate of
2.5 Gbps. It is expected that faster versions will be available in the future.

Although the majority of PCs do not yet support PCIe, it is available in
many new PCs, having gained widespread support from companies such as
Intel. GPU manufacturers have also supported the technology and are grad-
ually switching to this technology from AGP, due to its increased bandwidth
and speed.

The increased bandwidth and speed is likely to be of benefit to the physics
engine, particularly if it needs to operate at 72 fps (Section 15.4.3). Therefore,
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this would be the most desirable way to interconnect the CPU and physics
engine. However, since it is currently widely undeployed, it makes little sense
to use PCIe only solutions. Consequently, this solution coupled with the PCI
solution (Section 14.1.1) appears to be the best option.

14.1.3 Motherboard

The device could also be integrated onto the motherboard. In order to reduce
the manufacturing cost of PCs, many devices formerly provided only as expan-
sion cards are now integrated onto the motherboard. Examples include GPUs,
audio ICs and network ICs. This allows for sharing of certain resources, such
as main memory, which removes the need to place memory on each card.

Lower end desktop PCs usually use an integrated GPU, but higher end
desktop PCs usually use a graphics card. The graphics card offers higher per-
formance since it is not sharing main memory with the CPU. The same argu-
ments would apply to a physics engine. Since the physics engine would be
primarily aimed at high end users, it makes little sense to manufacture a moth-
erboard integrated physics engine for desktop PCs.

Laptops also use motherboard integrated GPUs in order to reduce space.
They typically do not feature high end graphics cards as they are rarely used
for game playing. Accordingly, it makes little sense to make a motherboard
integrated physics engine for laptops either.

14.2 Graphics Cards

High end graphics cards are almost exclusively purchased for games. Since
games are also the target application of this physics engine, it may be bene-
ficial to place the physics engine IC on high end graphics cards. Therefore, a
computer game player would only need to purchase one expansion card, re-
ducing the cost involved. Moreover, most purchasers would utilise the physics
functionality, so that it would not be wasted expenditure.

The two major graphics companies, ATI and NVIDIA, sell their ICs to card
manufacturers, who then design a card onto which the IC may be placed.
Therefore, it would practical for a company to design a card that uses one of
these GPUs and the physics engine.

14.3 External Device

The physics engine could also be manufactured as an external device, which
would be connected to the PC using Universal Serial Bus (USB) or IEEE 1394
(FireWire). This is an unusual solution and few devices interface a PC in this
way, other than for peripherals such as keyboards and mice. However, USB
“soundcards” may be purchased for PCs with no available expansion slots and
no built-in “soundcard”. Such a solution is convenient for the user since they
do not have to open the case of the PC to install the device. Moreover, it may
be the only solution for making the device available to laptops. Such a device
should work with heterogeneous hardware, including the PC, Macintosh and
Sun workstations, due to the universal nature of USB and IEEE 1394.
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However, such devices are typically unsuccessful since they consume desk
space. The advantages gained by an external device offer little more than
niches for the physics engine. Therefore, such a solution is not entirely ap-
propriate.

14.4 Conclusions

The optimal solution is to place the physics engine IC along with a GPU on
graphics cards (Section 14.2). This allows high end users to purchase a card
that performs two functions they are likely to use, saving PC expansion slots
and expense.

The other viable solution is a custom built PCI (Section 14.1.1) or PCIe (Sec-
tion 14.1.2) card. PCIe is the preferable solution due to its higher bandwidth,
but a PCI solution would still be necessary, as PCIe is currently rare.



Chapter 15

Analysis

As outlined in Chapter 1, the primary purpose for implementing this project
was to determine whether it is viable to construct such a system for use within
a computer. The following sections analyse some of the potential difficulties
associated with this goal.

15.1 Interface

The top-level ADE component has an interface that consists of a large number
of bits. As the calculations in Table 15.1 indicate, it utilises 846 bits or 105.75
bytes of data. The majority of ICs do not have 846 pins. Therefore, a way of
reducing this number is desirable.

Quantity Vector Width Bits Bytes
Input

2 1 2 0.25
29 2 58 7.25
58 5 290 36.25
58 8 464 58
2 8 16 2

Total 830 103.75
Output

2 8 16 2
Total 16 2

Input & Output
Total 846 105.75

Table 15.1: Pins used by the interface physics engine

The most obvious solution is to input the bits serially and convert them to
parallel on the IC, using a standard serial-to-parallel converter.

Alternatively, the description of a number of physics systems could be
stored on the device. Afterwards, the programmer would only select the re-
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quired system, instead of specifying a layout. However, the flexibility of the
device would be reduced. This is unlikely to be problematic since it is the ap-
proach taken by software physics engines. Besides, the majority of program-
mers typically use only a subset of the systems provided. Additionally, this so-
lution has the advantage of simplifying the programming of the device, which
could potentially make it more viable. There is a great deal of interest in re-
ducing development cycles, which would be facilitated by this solution. Fur-
ther, many hardware devices have a finite number of configurations and do
not allow for complete flexibility. Complete flexibility is of questionable bene-
fit because it exposes the internal architecture, making its later redevelopment
difficult due to the need to maintain backwards compatibility.

Therefore, hardwiring a limited number of systems into the device is prob-
ably the best solution. It simplifies programming, allows later redevelopment
of the device and the reduced flexibility would likely have minimal impact on
developers.

15.2 Die Area

The project’s physics engine consumes a large quantity of hardware resources.
In order to determine if the current design fits on a single ASIC, an estimate of
the die area is calculated below.

The design consists of twenty nine cells, each using one operational ampli-
fier.

Each cell uses a fixed resistor of 100 kΩ and three fixed capacitors of 10 µF.
These components are switched using eight switches. The two inputs are mul-
tiplied by variable resistors whose values may vary from 50 kΩ to 12, 750 kΩ,
with a granularity of 50 kΩ. This results in 256 possible resistor values for each
input. Therefore, such a resistor consists of 256 resistor slices interconnected
with 256 switches. In other words, the system consists of 87 capacitors of 10 µF
and 7,453 resistors of 100 kΩ.

External to the cell are two routers, which allow any of thirty one possible
inputs or ground to be routed to each output. Each of these would be con-
structed from thirty two transistor switches.

At the perimeters of the digitised computer are two 8-bit DACs and two
8-bit ADCs.

The control unit of the ADE consists of twenty nine 2-to-4 decoders, featur-
ing registered outputs.

The resistors and capacitors are constructed using special fabrication tech-
niques. Recent IC fabrication data was used to calculate the area of these com-
ponents [40, pp. 142–144]. The typical resistance that can be achieved from
CMOS is 300− 1000 Ω per square. For the calculations, it is assumed that the
maximum resistance, 1000 Ω, is the default and that a square is 0.35 µm2. The
typical capacitance that can be achieved from CMOS is 1− 4 fF/µm2. For the
calculations, it is assumed that the maximum capacitance, 4 fF/µm2, is the de-
fault. In addition, the transistor switches would be fabricated using standard
techniques.

The resistor and capacitor values used were chosen for convenience and
not for minimum area. Using these values inside a real IC would waste a large
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quantity of area. To use the minimal area, the area consumed by all of the resis-
tors and the area consumed by all of the capacitors should be equal. This can be
achieved by setting the resistors to 31, 959, 361.354853709459277903125423 Ω
and setting the capacitors to 0.000000031289736640752012689654937536124 F.
These values are obviously unsuitable for fabrication but serve to illustrate the
likely area of the physics engine. The calculated area uses these values.

The operational amplifiers, ADCs and DACs would typically be purchased
as intellectual property (IP) blocks. Therefore, to calculate the area of these
components, some recently IP blocks, designed by austriamicrosystems, were
used [41, 42, 43].

The digital control unit would be constructed from standard logic games. A
2-to-4 decoder consists of two NOT gates and four NAND gates, or six NAND
gates. A NAND IP block was used to determine the area [44]. Registers could
be constructed from standard logic gates, but they are typically constructed
using some optimisations. Consequently, an IP block for a D-type flip-flop was
used to determine the size of the registers [45].

In addition, routing typically adds 10% to the size of the IC.
These data are displayed in Table 15.2.

Die Area per Total Die
Component Area

Component Quantity (µm2) (µm2)
Fabricated

Resistors 7, 453 91, 312.4610 680, 551, 771.9364
Capacitor 87 7, 822, 434.1602 680, 551, 771.9364
Switch 15, 080 0.35 5, 278

Subtotal 1, 361, 108, 821.8727
IP Blocks

Operational Amplifier 29 12 348
ADC 2 17 34
DAC 2 39.9 79.8

Subtotal 461.8
Digital Logic

NAND 174 55 9, 570
D Flip-Flops 116 310 35, 960

Subtotal 45, 530
Subtotal 1, 361, 154, 813.6727

Routing
Subtotal 136, 115, 481.3673

Total 1, 497, 270, 295.04

Table 15.2: Die area consumed by the physics engine

This design is too large to be fabricated. However, there are solutions
whereby the die area may be reduced.

The resistors and capacitors consume the greatest quantity of area. The
Zetex TRAC FPAA (Section 13.3.1) combats this problem by including few in-
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ternal resistors and capacitors, requiring external ones to be connected to the
pins of the IC as necessary. This is not a perfect solution for the physics engine,
as it greatly restricts the reconfigurability of the device.

If the capacitors, resistors and variable resistors were placed off the IC, more
pins would be required. Eight pins would be needed for the devices parallel
to each cell. In addition, four pins would be required for the variable resistors
at each cell. This would require an extra 124 pins. This figure is well within
the limits of current design techniques, so this solution will work, although it
would be somewhat ungainly.

Other FPAAs eliminate resistors, replacing them with switched capacitors.
This is the most viable solution for the physics engine. A switched capaci-
tor consists of a capacitor that may be switched on and off by a clock [24, pp.
492–495]. By controlling the clock, the effective resistance of the circuit may be
varied. This switching results in a discrete time analogue signal as opposed
to a continuous analogue signal, but this is unimportant since the digital con-
version process ultimately results in a discrete time signal. This would reduce
the area consumed since the resistor and capacitor values no longer need to be
balanced. Instead, low capacitance capacitors, typically in the picofarad range,
would be used. High resistance switched capacitors may then be constructed
from these components. Another advantage obtained is that the variable re-
sistors do not need resistor slices but a single capacitor with a variable clock,
whose period determines the resistance. A final advantage is that the circuit is
less likely to be affected by process variations, since the resistor and capacitor
do not need to be balanced. It is easy to fabricate many capacitors with the
same capacitance. For this reason, switched capacitors have almost entirely
replaced resistors in analogue ICs.

To convert the physics engine to a switched capacitor based solution would
require the resistor parallel to each operational amplifier to be substituted with
a capacitor. The switches already surrounding it may be used to perform the
switching. The variable resistor would be substituted with a capacitor and
two switches. It is assumed that capacitors of 4 fF would be sufficient. The
size of the clock generation logic cannot be calculated precisely, so a value of
10, 000 µm2 was chosen, as it is assumed that this logic would be similar in size
to the decoder logic. Finally, the registers used by the decoder logic may be
removed as these are not entirely necessary.

The new die area calculations are displayed in Table 15.3.
The size of this design is within the limits of current fabrication technology.
This project implementation did not use switched capacitors, since the main

goal of the project was to design and implement a physics engine. Therefore,
the design of the system had precedence over the fabrication of the system.
Moreover, the simulator would almost certainly be unable to simulate a system
using switched capacitors due to the design size limits outlined in Section 12.1.

Therefore, although the physics engine could not be currently fabricated
as an IC, it could be easily modified to make it suitable for fabrication. More-
over, the current design of the system is suitable for construction using discrete
components.
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Die Area per Total Die
Component Quantity Component (µm2) Area (µm2)

Fabricated
Capacitor 174 1 174
Switch 348 0.35 121.8

Subtotal 295.8
IP Blocks

Operational Amplifier 29 12 348
ADC 2 17 34
DAC 2 39.9 79.8

Subtotal 461.8
Digital Logic

NAND 174 55 9, 570
Clock Logic ? ? 10, 000

Subtotal 19, 570
Subtotal 20, 327.6

Routing
Subtotal 2, 032.76

Total 22, 360.36

Table 15.3: Hypothetical die area consumed by a switched capacitor implemen-
tation of the physics engine



Chapter 15. Analysis 110

15.3 Design

One of the disadvantages associated with analogue design is that it is very
labour intensive, in comparison to digital design.

The current analogue circuit sizing process is labour intensive. Experienced
designers regularly take weeks to size complex cells. In addition, the layout
process is similarly labour intensive. In contrast, the digital circuit sizing and
layout processes have been highly automated with only manual fine-tuning
required today. This leads to reduced time-to-market, making digital designs
more competitive than analogue designs.

However, due to the current resurgence of analogue circuits for use in appli-
cations such as wireless communications (Chapter 5), there has been renewed
interest in automating these techniques for analogue designs. Moreover, the
rapid increase in computing power predicted by Moore’s Law makes automa-
tion continually more viable, as the once extremely long execution times have
now been substantially reduced. In addition, distributed computing tech-
niques have been employed so that analogue back-end engineering runs at
comparable speeds to its digital equivalent. Consequently, analogue designs
now have virtually the same time-to-market as digital designs. The technol-
ogy is likely to improve as time progresses.

15.4 Timing

This section analyses how fast the physics engine could be multiplexed. The
relevant issues, ADC conversion rate and operation amplifier bandwidth, are
first considered. Then, a sample problem is designed and analysed. The results
are compared against a software implementation of the problem.

15.4.1 ADC Conversion Rate

Physics engines provide the data enabling the graphics engine to render the
necessary objects. Since the graphics engine must execute at a certain mini-
mum speed, this determines how quickly the physics engine must generate
data in order to be viable.

The maximum number of frames per second that can be detected by the
human eye is approximately seventy two [46, pp. 82–83]. In other words, the
human eye detects changes only every 0.0138̇ s. The rate of change of the out-
puts in the physics engine is determined by the conversion rate of the ADCs
used for digitising the computer’s analogue outputs. The converters currently
in place may not be used for an analysis, as they are ideal ADCs. Current
practical ADCs range from a few thousand to a few million samples per sec-
ond [47]. Further, the ADC IP block used in Section 15.2 has a conversion rate
of 111.1̇ kHz [42]. Therefore, ADCs that have more than adequate performance
are widely available. This will not be a problem for the physics engine.

15.4.2 Operational Amplifier Bandwidth

Another potential problem caused by running the analogue computer too fast
is that problems may occur based on the nonideality of the operational ampli-
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fiers. It was mentioned in Section 6.4 that ideal operational amplifiers have infi-
nite bandwidth. In other words, they can process an infinite range of input fre-
quencies. In contrast, practical operational amplifiers have a finite, but usually
very large, bandwidth. If the analogue computer is executing faster than real-
time, this may lead to higher frequencies and the possibility of exceeding the
operational amplifier’s bandwidth. Current operational amplifiers have band-
widths in the range of a few kilohertz to a few hundred megahertz [48]. More-
over, high bandwidth operational amplifiers are not of substantially greater
cost than their lower bandwidth counterparts. The operational amplifier IP
block used in Section 15.2 has a bandwidth of 2.57 MHz [41].

Whether the operational amplifier’s bandwidth limit will be reached de-
pends on the system in question. In the case of the mass-spring-damper exam-
ple developed in Chapter 8, the maximum frequency is 1.1̇ Hz. This example
should be somewhat representative of the type of problems for which the en-
gine would be used. If fifty of these simulations were to be multiplexed, the
maximum frequency would not exceed 55.5̇ Hz. These figures are well within
the limits of today’s operational amplifiers. Consequently, it appears that the
bandwidth of the operational amplifiers will also be unproblematic.

15.4.3 Execution Speed

Another figure that could be calculated is the maximum speed at which the
system will execute simulations. Of course, the system would usually be exe-
cuted in real-time, but here the goal is to find the maximum possible speed.

The analysis was performed using the vehicle suspension system, which
is a relatively complex example. The analysis simulated fifty vehicles. It ran
for a length of 10 m and the vehicles moved at a speed of 5 m/s. A wedge
shaped bump of maximum height 1 m and depth 2 m was placed 1 m from the
starting position. The rear wheels were offset 0.7 m from the front wheels, so
that objects detected at the front of the vehicle were detected 0.14 s later at the
rear.

To simulate fifty vehicles, one hundred vehicle suspension system models
must be multiplexed, since each model only accounts for a single axle. The
provided simulation uses only one axle since, due to limitations imposed by
the simulator (Section 12.1), one hundred axles cannot currently be simulated.
If the ADC IP block described in Section 15.2 was used, the system could be
run so that the maximum frequency is 110 kHz. If 72 fps (72 Hz) were desired,
the system could be executed at 15.27̇ times faster than real-time. Therefore,
these two seconds would only require 0.130̇9̇ seconds to simulate.

However, the system may be optimised. As observed in Section 11.1.2.2,
the outputs only change once the inputs have changed. Most of the simula-
tion involves the vehicle driving over a level surface, so that the suspension
system remains in equilibrium. In fact, the output is only nonzero from 0.2 to
2.0 seconds. These 1.8 seconds of simulation could be performed 15.27̇ times
faster than real-time, so that the entire system would finish execution in 0.1178̇1̇
seconds. Other simulations could obtain a much larger gain from the same
optimisation. Therefore, exceptional performance may be obtained from the
system.

For comparison purposes, a similar model was built using the ODE soft-
ware physics engine, based on provided examples. A graphical version (Fig-
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ure 15.1) was created for reference purposes, but the graphical component was
disabled for the analysis. The system used for testing had an AMD Athlon
64 3000+ (2 GHz) CPU with 512 MB of RAM, making it a relatively powerful
system. As its operating system, it used the 32 bit version of Fedora Core 3,
which used GNU/Linux kernel 2.6.9-1.667. The 64 bit version was not used
since ODE failed to compile with the 64 bit X11 libraries. The average CPU
time taken to execute the simulation over 100 runs was used. The calculated
figure was 4.053 s, much slower than that obtained from the project’s physics
engine and slower than real-time.

Figure 15.1: Screenshot of vehicle simulation application

Note, however, that the two systems cannot be compared precisely. For
example, the software physics engine is modelling more than just the vehicle
suspension systems. It is also modelling collision detection and the effects of
gravity, for instance. More importantly, the software engine simulates the flight
of the vehicles through the air, whereas the hardware engine does not. How-
ever, the comparison of the two figures does provide a rough estimate into the
relative performance of the two systems.



Chapter 16

Conclusions

This chapter provides some conclusions to the project, outlining the knowledge
acquired and potential future work. The chapter concludes with a summary of
what was achieved during the project.

16.1 Knowledge Acquired

Before starting this project, I had no knowledge of operational amplifiers and
therefore, of analogue and hybrid computers. Since these systems formed the
foundation upon which the project was constructed, I now believe I am adept
at the design and implementation of such systems.

In addition, although I had some knowledge and experience of analogue
components such as resistors and capacitors, my knowledge was greatly ex-
panded during the implementation of this project. Moreover, I acquired tech-
niques for the design of analogue of which I had been previously unaware. I
also realised that there are still a great number of applications in which ana-
logue pervades, even in a world that many claim is digital.

Building on my newfound knowledge of analogue devices, I learned how
to design and implement dynamically reconfigurable analogue systems. Ad-
ditionally, I learned how to integrate digital components into such a system, so
that reconfiguration may be performed automatically.

For this project, I had to determine how state was stored in an analogue
computer. I subsequently utilised this knowledge to multiplex simulations.

My knowledge of VHDL was adequate but not complete. During the course
of this project, I furthered my knowledge of the language. I also learned a new
language, VHDL-AMS, the analogue and mixed signal extensions to the ex-
isting language. Analogue HDLs are a recent development. Indeed, this lan-
guage was only standardised by the IEEE in 1999 and although still widely un-
used, it is rapidly gaining in usage and support. Through using VHDL-AMS, I
became skilful in using the industry-standard Mentor Graphics software.

I also attained an insight into both FPAAs and FPMAs. I acquired informa-
tion about the internal architectures of these devices and became au fait with
their construction and reprogramming. In addition, I was introduced to the
process whereby analogue circuits are synthesised to an IC.
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Finally, this project contributed to my research skills since, as outlined
above, many of the project’s concepts were alien to me. This resulted in a con-
siderable amount of research, in both published and electronic resources. The
cross-subject nature of this project resulted in the need to acquire information
in the fields of both computer science and electronic engineering. Many of the
most important analogue computer books were published in the 1960s, while
many of the most important digital computer books were published more re-
cently. Therefore, my research had to span decades, since the project involved
a fusion of analogue and digital computers.

16.2 Future Work

Firstly, the construction of additional physics systems that are relevant to com-
puter games would be advantageous. Examples of relevant systems includes
trajectory, collision response and recoil calculations. In addition, the vehicle
suspension system could be expanded to model other physics relevant for ve-
hicle simulation. Other complex systems such as aircraft and ships could also
be constructed. These systems could be used to further test and analyse the
system.

Next, the existing physics engine could be optimised. Based on data ob-
tained from the constructed physics systems, patterns could be observed in
either the behaviour or construction of such systems. These patterns could be
used to remove redundant entities from the physics engine, resulting in a po-
tentially smaller die area.

The physics engine could also be modified so that it could potentially be
placed on hardware. This would require a reduction in the number of bits used
by the interface, which could be achieved by using a serial-to-parallel interface
or, preferably, by building certain physics systems into the device, as outlined
in Section 15.1. Additionally, the resistors in the design could be replaced by
switched capacitors, for reasons outlined in Section 15.2.

Finally, the project could be implemented on an FPAA. This would require
the project to be rewritten using the FPAA manufacturer’s custom software.
This would allow for a hardware demonstration of the physics engine, proving
that the concepts can be translated into hardware.

16.3 Summary

The ultimate result of this project is a reconfigurable hybrid computer with
a purely digital interface. This computer has the capability to be used as a
physics engine because it is adroit at performing sophisticated simulations that
would be of use in a physics engine, such as the vehicle suspension system.
Moreover, the computer executes in real-time, which is necessary for computer
games. Accuracy is high albeit with some minor deviations, which are unim-
portant to computer games.

In addition, the physics engine is capable of multiplexing three simula-
tions. This allows multiple simulations to run concurrently, which is pivotal
for games, as they often contain a multitude of objects that need to be simu-
lated concurrently.
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Based on these points, the constructed physics engine would be suitable for
use as a hardware equivalent to today’s software physics engines, if it were to
be synthesised and connected to a PC. Although some minor issues remain,
the project forms a foundation for future work and proves the viability of the
original concept. Therefore, this project was successful in achieving its goals.
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