
ACKNOWLEDGEMENTS

I would like to offer my gratitude to my family who gave me the
support and encouragement I needed while working on this project.
Thanks also to fellow students past and present who gave advise
and feedback on areas of difficulty. Lastly and most importantly I
would like to thank my supervisor, Michael Manzke who was not
only instrumental in my project progress, but who also showed un-
derstanding and compassion when they were needed the most. Spe-
cial thanks to all of the above.

1

Contents

1 First Chapter 7

1.1 Introduction . 7

1.1.1 The Kalman Filter Equations 8

1.2 Two Different Sets Of Equations 8

1.2.1 Time Update Equations 8

1.2.2 Measurement Update Equations 9

1.3 Specific Kalman Filter Equations And Their Role . . 9

1.3.1 Additional Variable In The Equations 10

2 Second Chapter 11

2.1 Background Mathematics 11

2.1.1 Vectors and Matrices 11

2.1.2 Vector addition and subtraction 12

2.1.3 Matrix addition and subtraction 13

2

2.1.4 Matrix Multiplication 14

2.1.5 Matrix-Vector Multiplication 15

2.1.6 Matrix Transpose 17

2.1.7 Matrix Inversion 17

3 Third Chapter 23

3.1 Algorithms for Adding, Subtracting and Multiplication 23

3.2 Addition and Subtraction of Std logic vectors 24

3.3 Six Bit Adder . 24

3.4 Alternative Adder/Subtractor 27

3.4.1 Addition/Subtraction for Fixed Point Numbers 28

3.4.2 Fixed Point Adder/Subtractor 29

3.5 Algorithms for Multiplication 29

3.5.1 Shift And Add Algorithm 30

3.5.2 Booths Multiplication Algorithm 31

3.5.3 Implementation of Sequential Shift and Add
Multiplier . 32

3.5.4 Design for Booths Algorithm in VHDL 33

3.6 Problems in Simulation - Type unsigned 34

3.7 Problems in Simulation - Types in VHDL 35

3.7.1 Libraries in VHDL 36

3

3.7.2 Packages in VHDL 37

3.8 Sequential Multiplier - The final Curtain 39

3.9 Signed Combinational Multiplier - Alternative Ap-
proach . 40

4 Fourth Chapter 41

4.1 Dealing with two dimensional arrays - matrices in
VHDL . 41

4.2 Overview of Arrays 41

4.2.1 Addition of Arrays - Attempt One 43

4.2.2 Addition of Arrays - Attempt Two 44

4.2.3 Addition of Arrays - Final Attempt 45

4.3 Matrix Multiplication using Block Ram 46

5 Fifth Chapter 49

5.1 Simplistic Transpose Design 49

5.2 Inverting a Matrix - Design for an Adjoint Matrix . . 50

5.2.1 Fraction Divisor in VHDL 51

5.3 Inverting a matrix 53

6 chapter six 54

6.1 Review of the project and personal thoughts 54

4

6.2 Doing it all over again 56

6.3 Future Work . 57

5

ABSTRACT

The overall aim of this project was to design, implement and evalu-
ate the performance of a kalman filter using FPGAs. The projects
main concern is the design of a synthesisable VHDL model for the
algorithm which defines this filter. From the project viewpoint it
was not essential for me to become an expert in minimum mean
square error filtering and state space methods. What was required,
however, was for me to be familiar with the algorithm, that defines
the kalman filter. The set of equations, their relevance to one an-
other and indeed the overall functionality of the algorithm required
complete comprehension. If successful the resulting program would
then be implemented with field programmable gate arrays, enabling
the end result to be appreciated visually.

6

Chapter 1

First Chapter

1.1 Introduction

The overall aim of this project was to design, implement and evalu-
ate the performance of a kalman filter using FPGAs. The projects
main concern is the design of a synthesisable VHDL model for the al-
gorithm which defines this filter. From the project viewpoint it was
not essential for me to become an expert in minimum mean square
error filtering and state space methods. What was required, how-
ever, was for me to be familiar with the algorithm, that defines the
kalman filter. The set of equations, their relevance to one another
and indeed the overall functionality of the algorithm required com-
plete comprehension. If successful the resulting program would then
be implemented with field programmable gate arrays, enabling the
end result to be appreciated visually. This chapter firstly presents
these equations, describes their meaning in terms of the next and the
previous equation and outlines what would be needed for success-
ful implementation in a hardware descriptive language. A complete
breakdown of all follows.

7

1.1.1 The Kalman Filter Equations

The kalman filter equations are a set of mathematical equations that
provide an efficient computational means to estimate the state of a
process, in a way that minimizes the mean of the squared error. The
filter is a very powerful device as it supports the estimation of past,
present and future states. It even extends its functionality so it can
carry out this procedure when the precise nature of the modelled
system is unknown. The system may or may not be subjected to
a series of random disturbances, when this occurs it is required to
estimate the state variables from noisy observations. The kalman
filter equations uses two different types of equations in a prediction
of the state variable, these being both the time update equations
and the measurement update equations.

1.2 Two Different Sets Of Equations

The filter estimates its process by using a form of feedback control,
as implied in the previous section. The filter will estimate the pro-
cess state at some time and then obtains its feedback in the form
of noisy measurements. These equations fall into the category of
either Time update equations or measurement update equations.

1.2.1 Time Update Equations

The time update equations are used to predict the current state and
covariance matrix, used in time t+1 to predict the previous state.
These equations can be generally seen as predictor equations as they
are responsible for projecting forward in time. K is representative of
the time step, so the time update equations are basically indicative
of K+1.

8

1.2.2 Measurement Update Equations

The measurement equations are responsible for feedback and for
correcting the errors that have been made in the time update equa-
tions. In a sense they are back propagating to get new values for
the prior state to improve the ”guess” for the next state. These
equations can be seen as corrector equations and the final estima-
tion algorithm resemble that of a predictor-corrector algorithm. So
by definition measurement equations adjust the projected estimate
by an actual measurement at that time.

1.3 Specific Kalman Filter Equations And Their
Role

Kk = Pk̄H
T (HPk̄H

T + R)−1 (1.1)

x̂k = x̂k̄ + Kk(zk −Hx̂k̄) (1.2)

Pk = (I −KkH)Pk̄ (1.3)

x̂k̄ = Ax̂k−1 + Buk (1.4)

Pk̄ = APk−1A
T + Q (1.5)

The initial task when dealing with the measurement update equa-
tion is to compute the kalman gain denoted by Kk. K is an n by
m matrix and is chosen to be a blending factor or a gain factor
that minimizes the error covariance. The next step is to measure
the process to obtain a value for Zk and then to generate a next
state estimate incorporating the previous result for the kalman gain
equation. The last of the measurement update equations is respon-
sible for obtaining the posterior error covariance which is denoted
by Pk. After each time and measurement update equation, the pro-
cess is repeated with the previous ’a posteriori’ estimates used to
project the new ’a priori’ estimates. The fact that the kalman filter
is designed with recursive functionality is one of its many appealing
characteristics when placed in contrast with alternative filters.

9

1.3.1 Additional Variable In The Equations

Pk : PriorErrorConvergence (1.6)

K : KalmanGain (1.7)

Zk : StateMeasurement (1.8)

x̂ : PosteriorStateEstimate (1.9)

Rk : MeasurementErrorCovariance (1.10)

Qk : RandomWhiteNoise (1.11)

Ak : V ariable (1.12)

Bk : V ariable (1.13)

µk : ControlV ariable (1.14)

Hk : Matrix− valuedFunction (1.15)

Above is a table which provides a definition of additional variables
in the kalman filter equations. In the equations , a measurement of
the process, Zk and Xk are previously defined by linear stochastic
difference equations equations. The random variables in these equa-
tions, w and v represent the process and measurement noise and are
assumed independent of one another. They are also assumed to pos-
sess normal probability distribution. For practical examples, process
noise covariance Q and measurement noise covariance R matrices,
might change with each time step or measurement. However for the
purposes of my project, I have assumed them to be constant values.
A is an n by n matrix in the difference equation and relates the
state at the previous time step k - 1 to the state at the current time
step k, without the presence of process noise. Once again A is as-
sumed to be fixed despite the fact that this would more realistically
be susceptible to change with each time step. Matrix B relates the
control variable to the state x. Matrix H relates the state to the
measurement Zk.

10

Chapter 2

Second Chapter

2.1 Background Mathematics

A complete examination of matrices, their functionality and effects
for my particular design was the next step required. This chapter
consists of an overview of vector and matrix fundamentals acquired
previously in the course and reviewed and revised courtesy of linear
algebra books and websites. A little time was allocated to using
matrices in matlab which was in itself beneficial and worthwhile.

2.1.1 Vectors and Matrices

As is probably evident at this stage all equations are comprised
of matrices, vectors or single values. Some arithmetic function is
performed on these components to result in the output value which
is passed to the next equation. Below I have taken each equation
independently and examined the operations that are required to
provide the output function.

Kk = P−k HT (HP−k HT + R)
−1

(2.1)

11

In this equation P, H and R are all matrices. For the purpose of my
project I assumed that all matrices were n by n despite the fact that
the kalman gain itself can be defined in terms of an n by m matrix.
With the aid of more time, experience and expertise this could have
been accounted for. H is transposed and multiplied by matrix P,
the result is stored. The transpose of H is multiplied by P and the
result is multiplied by H, this is then added to R. This new result
is inverted and multiplied by the previously stored result which de-
termines the kalman gain. The Kalman gain is then taken in by the
next equation where similar operations are performed. Variables
which posess the hat are vector values with all the other variables
representing matrices. The time update equations are basically sim-
ilar with the primary difference being that the time step has now
been updated and we are looking at new time t and new time k.

A Breakdown of the Algorithm

After the algorithm was successfully broken down, it was evident
that understanding every single part of this algorithm came a poor
second to actually being able to implement it in VHDL. Although
the algorithm primarily had all the appearance of being intriguingly
complex and indeed the theory behind it perplexing at times it soon
became obvious that its implementation required no more than a
full comprehension of mathematical operations on n sized matrices
and vectors which had previously been studied in the course.

It was then apparent that a full overview of matrices and vectors was
required in order to become proficient in this area and to successfully
code these operations in VHDL.

2.1.2 Vector addition and subtraction

Adding two vectors is an extremely simple process, one basically
adds the elements in the same position in the vector.

12


X1

X2

X3

X4

 +


Y1

Y2

Y3

Y4

 =


X1 + Y1

X2 + Y2

X3 + Y3

X4 + Y4

 (2.2)

It is important to note that vector addition is only feasible when
vectors of a similar size are being dealt with. Vector addition is also
reflexive which means x + y = y + x. Vector subtraction is simply
vector addition of the negative.

2.1.3 Matrix addition and subtraction

2 4 6
1 8 3
4 2 7

 +

3 9 1
2 3 4
7 5 1

 =

 5 13 7
3 11 7
11 7 8

 (2.3)

The procedure for adding and subtracting matrices is very simple.
First it must be made sure that the dimensions of the matrices are
the same. For this reason I stuck to fixed size n by n matrices and
discarded using m by n matrices. In the eventuality that I would
have to add an m by n matrix to an n by n matrix this would have
caused problems so I rejected this straight off. Dimensions refer
to the size of the matrix. You can add or subtract matrices that
have the same dimensions, i.e three by three matrices or five by
five matrices but one can not add or subtract those which contain
different dimensions such as a three by two matrix multiplied by
a ten by six. The resulting matrix will have dimensions the same
size as the input matrices. When adding matrices each element of
matrix one is simply added to the corresponding element of matrix
2 in the same cell.

 4 2 3
9 6 7
12 2 1

−

2 3 6
4 1 5
7 8 9

 =

2 −1 −3
5 4 2
5 −6 −8

 (2.4)

13

When subtracting matrices, again, the same rule is applied and the
elements that correspond to each other in the same cells are sub-
tracted. In the above matrix you would subtract the value in cell
1A in the second matrix from the value in cell 1A in the first matrix
to obtain the result, 1A in the resulting matrix.

2.1.4 Matrix Multiplication

When multiplying matrices it is essential that the dimension of the
column in the first matrix is the same as the dimension of the row
in the second matrix. If this is not the case successful multiplication
can not be achieved. [

1 2 3
4 5 6

]
×

7 10
8 11
9 12

 (2.5)

Due to the fact that the dimensions of my matrices were a fixed,
n by n size this would always be the case. To obtain the resulting
matrix, you must multiply all the numbers in the first row of the first
matrix by all the values in the first column and all that follow of the
second matrix. After this you multiply the numbers in the second
row of the first matrix by all the values in the first column, and any
others that follow of the second matrix. Once the multiplying is
complete, the products are added together to produce the resulting
matrix.

(1× 7) + (2× 8) + (3× 9) = 50

(1× 10) + (2× 11) + (3× 12) = 68

(4× 7) + (5× 8) + (6× 9) = 122

(4× 10) + (5× 11) + (6× 12) = 167

(2.6)

this gives the resulting two by two matrix

[
50 68
122 167

]
(2.7)

14

Generally the product C of matrices A and B is defined as:

Cik = AijBjk (2.8)

Where, j is summed over all possible values of i and k. In order for
matrix multiplication to be defined, the dimensions of the matrices
must satisfy

(n×m)(m× p) = (n× p) (2.9)


C11 C12 C1p

C21 C22 C2p

......

......
Cn1 Cn2 Cnp

 =


A11 A12 A1p

A21 A22 A2p

......

......
An1 An2 Anp




B11 B12 B1p

B21 B22 B2p

......

......
Bn1 Bn2 Bnp


(2.10)

The exact algorithm for multiplication of n by n matrices is as fol-
lows:

c11 = a11b11 + a12b21 + + a1mbm1

c12 = a11b12 + a12b22 + + a1mbm2

c1p = a11b1p + a12b2p + + a1mbmp

c21 = a21b11 + a22b21 + + a2mbm1

c22 = a21b12 + a22b22 + + a2mbm2

c2p = a21b1p + a22b2p + + a2mbmp

cn1 = an1b11 + an2b21 + + anmbm1

cn2 = an1b12 + an2b22 + + anmbm2

cnp = an1b1p + an2b2p + + anmbmp

(2.11)

2.1.5 Matrix-Vector Multiplication

The definition of multiplication between a matrix A and a vector B
can only be obtained for the case when the number of columns in

15

A equals the number of rows in B. The general formula for matrix-
vector multiplication is:

a11 a12 a1n

a21 a22 a2n

......

......
am1 am2 amn




x1

x2

...

...
xn

 (2.12)

=

a11x1 + a12x2 + + a1nxn

a21x1 + a22x2 + + a2nxn

am1x1 + am2x2 + + amnxn

(2.13)

The process of matrix-vector multiplication is one which takes the
dot-product of B with each of the rows of A (hence the reason why
the number of columns in A has to be equal to the number of com-
ponents in vector B). The first element of the matrix-vector product
is the dot-product of B with the first row of A.

For example, if A is the matrix[
1 −1 2
0 −3 1

]
(2.14)

And B is the vector, (2, 1, 0) then

[
1 −1 2
0 −3 1

]
×

2
1
0

 =

[
1
−3

]
(2.15)

When multiplying a vector by a scalar value, each element of the
vector must be multiplied by this value. Similarly when multiply-
ing a matrix by a scalar the same procedure is adhered to and the
resulting matrix is the product of each element of the matrix and
the scalar.

16

2.1.6 Matrix Transpose

To transpose a matrix all that is necessary is for the columns to be
converted to rows and vice versa. The result is the object obtained
by replacing all objects of Aij with Aji. The matrix transpose, most
commonly denoted AT, is the matrix obtained by exchanging A’s
rows and columns and satisfies the identity:

(AT)−1 = (A−1)T (2.16)

1 2 3
4 5 6
7 8 9

 =>

1 4 7
2 5 8
3 6 9

 (2.17)

When dealing with an n by m matrix the transposed result matrix
will be an m by n matrix, a matrix is symmetric if AT = A and
is antisymmetric if AT = -A. For the purpose of my project this is
useless trivia. The transpose of a matrix is the matrix product of
the transposed matrix in reverted order,

(AB)T = AT BT (2.18)

2.1.7 Matrix Inversion

There were a couple of different matrix inversion methods that I
examined before making a decision as to which one would be most
feasible to implement in VHDL and which one would be most suit-
able in terms of the algorithm.

Matrix Inversion using Gaussian Elimination

For moderate and large matrices the best approach for inversion is
the use of Gaussian elimination more commonly known as Gauss

17

Jordan elimination. When using Gaussian elimination some ma-
trix A is augmented with an identity matrix of the same size. For
example matrix A is: 

1 −.6 0 0
0 1 −.5 0
0 0 1 −.4
0 0 0 1

 (2.19)

augmented with the identity matrix,


1 −.6 0 0 1 0 0 0
0 1 −.5 0 0 1 0 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.20)

A row is picked where the first element is non zero and this is named
the pivot row. This row is then added to the remaining rows, scaling
it by some constant such that the first element of these selected rows
deduces to zero. Let us say that the pivot row starts with the value
Z and the soon to be processed row is headed by X, the pivot row
would be scaled by -X/Z to obtain an outcome of zero for the first
element of X when the rows are added. Each time this scale and
add operation is performed the same procedure is carried out on
the identity matrix. In the example given, the pivot row of the
identity matrix would be taken, multiplied by -X/Z and added to
the corresponding row in the identity matrix. This should result in
the first column of the matrix being all zero with the exception of the
pivot row. From here a row is chosen where the second element in
that row is non zero. The process discussed is then repeated. This is
continually repeated for all columns which should produce a matrix
where only elements of the diagonals are non zero. In the event of
an entire row being zero this will mean that the original matrix is
singular and can not be inverted. Each row is scaled by 1/A, where
A represents the non zero value in the matrix. The inverse of the

18

matrix has now been obtained. Each step of the procedure below:
1 −.6 0 0 1 0 0 0
0 1 −.5 0 0 1 0 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.21)

R1 = R1 + .6R2


1 0 −.3 0 1 .6 0 0
0 1 −.5 0 0 1 0 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.22)

R1 = R1 + .3R3


1 0 0 −.12 1 .6 .3 0
0 1 −.5 0 0 1 0 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.23)

R2 = R2 + .5R3


1 0 0 −.12 1 .6 .3 0
0 1 0 −.2 0 1 .5 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.24)

R1 = R1 + .12R4


1 0 0 0 1 .6 .3 .12
0 1 0 −.2 0 1 .5 0
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.25)

R2 = R2 + .2R4


1 0 0 0 1 .6 .3 .12
0 1 0 0 0 1 .5 .2
0 0 1 −.4 0 0 1 0
0 0 0 1 0 0 0 1

 (2.26)

R3 = R3 + .4R2


1 0 0 0 1 .6 .3 .12
0 1 0 0 0 1 .5 .2
0 0 1 0 0 0 1 .4
0 0 0 1 0 0 0 1

 (2.27)

19

hence the inverse


1 .6 .3 .12
0 1 .5 .2
0 0 1 .4
0 0 0 1

 (2.28)

Matrix Inversion using the Adjoint Matrix Formula

For smaller matrices, those of dimensions two, three and four, a
less complex approach to the problem is using the adjoint matrix
formula. When dealing with any non singular matrix, let us call it
A, the inverse of A can be successfully computed by dividing the
adjoint of A by the overall determinant of A. The procedure for
calculating the adjoint of A is quite simple and poses minimum dif-
ficulty for the mathematician. The first step is to find the matrix
of minors for A. This is done by effectively eliminating the ith and
jth row and column of the matrix and computing the determinants
of the resulting two by two matrix at each step. Each of these cor-
responding results will produce the adjoint A. To find the cofactors
of A a sign change is applied to selected elements of the matrix, this
is discussed in more detail below. To find the adjoint, the matrix of
cofactors is then transposed. After finding the adjoint each value in
this new matrix is divided by the determinant of the original matrix.
The resulting matrix is the inverted matrix.

Matrix Determinants

To find the determinant of a two by two matrix, each element is
aligned to a matrix with elements A, B, C and D respectively. The
algorithm for the determinant is AD - BC, so the resulting determi-
nant will be a single value.

In attempting to find the determinant of a three by three matrix,
the procedure is simply extended. The overall determinant can be

20

achieved using cofactor expansion along a chosen row. To obtain
cofactors as stated above, the ith row and jth column are covered
and the resulting two by two determinant is deduced. This is done
for all elements, A11 to A33, and is followed by a sign change on
selected elements as shown in the diagram below. The resulting
determinants C11 to C33:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2.29)

C11 =

(
a22 a23

a32 a33

)
C12 =

(
a21 a23

a31 a33

)
C13 =

(
a21 a22

a31 a32

)
(2.30)

C21 =

(
a12 a13

a22 a23

)
C22 =

(
a11 a13

a21 a23

)
C23 =

(
a11 a12

a31 a32

)
(2.31)

C31 =

(
a12 a13

a22 a23

)
C32 =

(
a11 a13

a21 a23

)
C33 =

(
a11 a12

a21 a22

)
(2.32)

the sign change applied to these results is:

+ − +
− + −
+ − +

 (2.33)

Cofactor expansion can be achieved by using any row in the matrix
and multiplying the determinants in that row by the elements in the
corresponding original matrix. The formula for cofactor expansion
along the first, second and third rows of the matrix is determined
by substituting values into the equations below:

21

det(A) = |A| =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11

(
a22 a23

a32 a33

)
−a12

(
a21 a23

a31 a33

)
+a13

(
a21 a22

a31 a32

)
(2.34)

22

Chapter 3

Third Chapter

3.1 Algorithms for Adding, Subtracting and Mul-
tiplication

After the preliminary step of refreshing the matrix mathematics
course most of which had been covered previously in first year maths,
it was now inevitable that these formulae be converted to VHDL
code. After some thought I came to the realization that writing
code for adding, subtracting and multiplying logic vectors was what
was required. These entities would then be used when attempting
to carry out matrix addition and multiplication. With some delib-
eration I finally came up with an algorithm that I felt would be
feasible for implementation in my project but this was only after I
had toyed with various ways to do each. One by one, for some rea-
son or another I felt I had to discard these procedures in pursuit of
code that would cater for all eventualities. Below is a run through
of some of the algorithms I experimented with for both addition and
subtraction and then for multiplication of logic vectors. I have also
accounted for the reasons why I then found it necessary to pursue
alternatives. Unfortunately for a lot of the time it was only after
the code had been written that I found it to be inappropriate for
certain cases or in some small way flawed.

23

3.2 Addition and Subtraction of Std logic vec-
tors

Due to the fact that the project specification stated that the equa-
tions would be evaluated using FPGAs , I felt that an algorithm for
addition that would be compatible with FPGAs was necessary. This
would mean it would be easier to use the board when the time came
in the closing stages of the application. For this reason I opted
for a design that would use a series of full-adders to add vectors.
These full-adders would be constructed from two half-adders as is
the usual implementation style. I rehashed a section of the code
from ’HDL Chip Design’ which I have referenced in my project and
bibliography.

entity HALF_ADDER is

port(A, B: in std_logic; Sum, C_out: out

std_logic);

end entity;

architecture Logic of HALF_ADDER is

begin

Sum <= A xor B;

C_out <= A and B;

end architecture Logic;

3.3 Six Bit Adder

The sixbit addsub2bit as the name suggests either adds or subtracts
a 2-bit value to or from a 6-bit value. This logical structure is
basically modelled by a series of full adders. A full-adder in turn
comprises two half adders and an OR gate.

24

begin

HA1: HALF_ADDER port map (A => A, B => B, Sum => AplusB, C_out =>

CoutHA1);

HA2: HALF_ADDER port map(A => AplusB, B => Cin, Sum => Sum, C_out

=> C_outHA2);

C_out <= CoutHA1 or CoutHA2;

A single bit half adder is modelled using a single XOR logical oper-
ator and a single AND logical operator. For the adder/subtractor
circuit , the entity, is designed by instantiating six of these full adders
with a ripple carry chain from one full adder to the next. Input B,
the addend uses two XOR functions in order to create the ones com-
plement; they are XORed with the two least significant bits of input
A, the augend. The twos complement which is required for subtrac-
tion, is designed by connecting input SubAddBar to the carry in of
the first, least Significant bit.

Extra logic is modelled to force the output to binary 111111 in
the event of overflow caused by addition. Similarly if underflow
occurs from subtraction the output will result in binary 000000. An
overflow will result in the case where the carry out from the most
significant bit full adder, i.e carryOut[5], is at logic 1. An overflow
will be created when subtracting and carryOut[5] is at 0. This design
only requires minimum changes in order to remodel it with different
bit widths. VHDL constants specify the bus width of inputs A and
B which will later be referenced in the entities body. The design
of the model is such that it uses generate statements to instantiate
the single bit adders in a way that only the constants widthA and
widthB require changes. This will then change the input and output
bit widths.

Problems with the Six Bit Adder

This adder seemed very practical for my application as it allowed
for the input sizes to be changed without difficulty. As can be seen
from a segment of the code and indeed is implied in the name, this

25

adder adds a six bit logic vector to a two bit logic vector. In the
case of subtract when the input subAddBar is asserted it subtracts
a two bit logic vector from a six bit logic vector. The output is
six bits which means it is the same size as the first input. This
is fine for cases where the second input is small in comparison but
this was not always going to hold true for my addition. From the
way that the code is designed it was almost impossible for me to
change the size of the output to be bigger than the first input,
although it was easy enough to change the size of all inputs and
outputs provided the output always remained the same size as the
first input. To change this would mean completely re writing the
code. This was a definite option for me. Another problem that
arose was that this algorithm failed to facilitate for the possibility
of negatives. In the event of the second number being greater than
the first number, with subAddBar remaining low then the output
produced was zero. Similarly for subtract, this problem occurred.
I spent time trying to adjust the code so that not only would the
output be made greater but that the most significant bit of each
value, input and output and indeed all internal signal alike would
be reserved representing the sign of the number. After failing on
occasion, I decided to use this entity in another entity, one in which
I could allow the inputs and outputs to be any size desired .I would
just call this entity on the part of the vector I wanted to add. In this
way I could use the MSB as the sign of the number and still reserve
the implementation previously explored. This would take positives
and negatives into account. I felt confident that this would work
and quickly moved onto designing multipliers without giving it any
more time or thought.

entity sixBitAdder

port(Sub_AddBar: in std_logic;

A: in std_logic_vector(5 downto 0);

B: in std_logic_vector(1 downto 0);

Y: out std_logic_vector(5 downto 0));

end entity sixBitAdder;

26

It was only later when designing the matrix multiplier that I once
again encountered setbacks. This was mainly as a result of the
subAddBar input which needed to be set for each addition or sub-
traction that took place on an individual logic vector. For matrix
addition it was not too problematic as it could just be left at zero
the entire time. However with matrix multiplication it had to be
firstly set to one for subtracting determinants and then it had to
be reset to zero for adding the partial results. This meant that I
would need two input subAddBar signals. This seemed extremely
messy and I felt that it would be best to do away with this com-
pletely and to just have two different entities that would either add
or subtract and that would be called separately as needed. When
realising that the problem of overflow and the size of the output had
not been completely overcome as was previously believed, I decided
after some consternation to rewrite this entity doing away with the
’series of full-adder approach’ yet drawing on the knowledge previ-
ously acquired with respect to integer values as opposed to natural
numbers.

In the end this adder was actually used in the very last part of
the inverse of a matrix implementation, which will be discussed
later. However in reference to matrix multiplication and matrix
addition/subtraction it was never used.

3.4 Alternative Adder/Subtractor

This adder was a lot less complex in that it used the arithmetic
library defined in VHDL to add and subtract logic vectors. The
MSB of the inputs and outputs were reserved to represent the sign
of the number, thus indicating whether it was positive or negative.
The entity entailed a process that took in the inputs and contained a
series of if statements that tested the MSB of the inputs to ascertain
their sign and to test which of the values was the greater. Depending
on the outcome it would then add or subtract these inputs and set
the sign of the output accordingly, this again being its MSB. The
output was greater than the inputs which meant that on occasion
when the sign of the output was negative larger numbers were being

27

dealt with in the test bench. The code was changed slightly to deal
with subtraction which at most meant readjusting the if statements
in the process again for each different case. This algorithm although
pretty basic worked for all possible cases.

3.4.1 Addition/Subtraction for Fixed Point Numbers

Obviously my program would have to deal with something more
than whole numbers, positive and negative. After exploring the
floating point number system for some time and due to the fact
that time itself was pushing on I opted to represent all numbers as
fixed point as opposed to floating point. This understandably made
my job somewhat easier. A fixed point number is basically just a
value with a fractional and integer part. As opposed to floating
point numbers, fixed point numbers allow you to fix the position of
the decimal point and then carry out logical operations. Generally,
fixed point representation has ”int” bits to the left of the decimal
point and has ”fract” bits for the fractional part to the right of
the decimal point. When ”fract” = ’0’ the number is treated as
an integer. After researching the fixed point number system with
regard hardware arithmetic functions it became apparent that the
logic vectors would be indicative of completely different values when
converted to decimal and would be interpreted accordingly. In ret-
rospect this should have been apparent straight away given that
negatives in VHDL are also different values when converted to the
decimal system. Alas it took time before finally getting to grips with
this notion, which in the end proved to be quite simplistic. Working
off the premise that a four bit std logic vector, from left to right,
would have two bits that entailed the integer part, then the decimal
point, and the remaining two bits would be representative of the
fractional part of the number. For example with a vector such as
01.01, in decimal form this would be interpreted as 1.25. The MSB
would still be maintained to hold the sign of the number.

28

Fraction Adder/Subtractor

First off was the coding of a fraction adder which added two fractions
as normal numbers. The numbers are merely interpreted as fractions
and the second most significant bit of the output becomes a one in
the event of overflow. This will be representative of a one before the
decimal point, i.e an integer. The most significant bit of all numbers
is used for the sign and the output is obviously one bit bigger than
the inputs to allow for the possibility of an integer. The same holds
true for subtraction.

3.4.2 Fixed Point Adder/Subtractor

Much the same idea was used when coding the fixed point adder.
The integer and fraction parts of the logic vector were separated.
The two fractions were added and if overflow occurred a one was
added to the integer parts which were in turn added. If no overflow
took place then it was not necessary to update the output of the
integer parts. When dealing with subtraction the procedure was
changed for the possibility that the integer part of the first number
was smaller than the integer part of the second input whilst the
fractional part of the first number was greater. This would mean
that the first input was greater and that numbers needed to be sub-
tracted as normal and then the decimal point placed in the correct
position.

3.5 Algorithms for Multiplication

The first two algorithms which I attempted to use were sequential
multipliers also compliments of ’HDL Chip Design’. First was the
shift and add algorithm and second was booths multiplier. Booths
algorithm was specifically designed to speed up sequential multi-
plication operations. Sequential multipliers and dividers are often
implemented because of the substantial savings in chip area. Combi-

29

national logic multipliers are faster, but are significantly larger than
their sequential counterparts for input bit widths in excess of three.
The area of the combinational circuit increases with significance as
the input and output bits grow. Contrasting this, sequential circuits
are much smaller but will take a set number of clock cycles in which
to carry out an operation.

3.5.1 Shift And Add Algorithm

A process of successive shift and add operations can be used to
achieve multiplication when using binary numbers. This process
examines each successive bit of the multiplier in turn, starting with
the least significant bit and proceeding left to the most significant
bit. When examined, if the multiplier bit is one, the multiplicand
is copied down. If the multiplier bit is zero, zeros are copied down.
These numbers copied down in successive lines are constantly shifted
one position to the left from the previous number. When all bits
have been inspected, the shift and adds are complete so the numbers
are added and the sum provides the product.

When multiplying two signed numbers together the code is modified
to cope with the sign bits. The sign of the product is determined
from both the sign of multiplicand and multiplier . If they are alike
then the sign will be positive, and if unalike the sign negative.

DECIMAL BINARY COMMENTS
39 0000010111 multiplicand
49 0000011001 multiplier
39 0000010111 partial product 1
0 0000000000 partial product 2
0 0000000000 partial product 2
0 0000000000 partial product 3
368 0101110000 partial product 4
736 1011100000 partial product 5

1911 1000111111 product = sum of partial products

30

3.5.2 Booths Multiplication Algorithm

Booths algorithm, like all multiplication schemes requires the exam-
ination of the multiplier bits proceeded by the shifting of all partial
products. Booths algorithm is primarily intended for synchronous
logic implementation of a multiplier circuit and works using all in-
tegers, negative and positive. It treats negatives and positives as
one and is most ideally suited for the multiplication of signed twos
complement numbers. Booths algorithm works on two principles.
The first is that strings of successive zeros will have no effect on
the product and thus require no addition, but just that the partial
product be shifted as necessary. The second principle is that the
string of successive ones that comprise the multiplier can be defined
by 2 up + 1 - 2 low where ’up’ is the upper weighted bit and ’lo’
is representative of the lower weighted bit. The rules below are ap-
plied when using booths algorithm. The multiplicand is subtracted
from the partial product upon finding the first one in a string of
ones in the multiplier. The multiplicand is added to the partial
product upon entering the first zero provided that no previous ones
in a string of zeros in the multiplier were encountered. The partial
product never changes provided the bit is the same as the previous
multiplier bit. This algorithm works equally for positives and nega-
tives as a negative multiplier fills the MSBs with a string of 1s and
the last operation will be a subtraction of the appropriate weight.

9876543210 bit weighting number
0000010111 multiplicand (-9)
0000010011 multiplier (-13)

0000001001 1st multiplier bit 1 - subtract(add twos complement)
0000000000 2nd multiplier bit also 1 - no change so no add/subtract
1111011100 3rd multiplier bit changes to 0 so add. note sign extension
0000000000 4th multiplier bit also 0 - no change so add/subtract
0010010000 5th multiplier bit changes to 1 so subtract(add 2s complement)
0001110101 product(+117)

31

3.5.3 Implementation of Sequential Shift and Add Multi-
plier

This multiplier was modelled on the algorithm previously examined.
It also entails a sign bit. The products sign is the result of exclusive
ORing the sign of the two inputs. The operation starts when load
becomes a logic one and the registers are loaded with values. regA
becomes zero, regB is loaded with the multiplicand minus its MSB,
similarly regQ holds the multiplier without its sign bit. Ps, holds
the sign when exclusive oring takes place between multiplicand and
multiplier sign bits. SequenceCounter is the number of bits in the
multiplier without the sign bit. Multiplicand and multiplier are
now in registers B and Q respectively and operation is ready. As
is indicative of this algorithm, a series of consecutive test, add and
shift right operations occur. The signal AddShiftB is controlling add
or shift operations. When this signal is one the sum of regA and
regB become the partial product that is then stored in another reg,
EA, a combination of flip-flop E and register A. The carry out from
the adder in flip-flop E needs to be stored so that it can be used
when it is time to generate the next partial product summation.
EAQ is shifted right, the least significant bit of register A is shifted
into the most significant bit of register Q. The bit from E is shifted
into the MSB of register A, while logic 0 is then shifted into E.
This shift causes one bit of the partial product in register A to
be shifted into register Q, forcing the multiplier bits one position
right. The rightmost flipflop in register Q, now Qn, will hold the
bit of the multiplier which is next in line for examination. Once
inspected, if Qn is a logic 1 an addition will result before the next
shift occurs. However if Qn is a logic 0 no addition is necessary. A
single multiplication will take from the width of the multiplier minus
1 multiplied by the width of the multiplicand minus 1 multiplied by
two, clock cycles to finish. This is dependent on the logic zeros
and ones in the multiplier. When a multiplication has taken place
the one bit output, Done is set to 1. In this multiplier the input
and output bit widths can be specified according to the users needs.
This particular model is also instantiated such that the width of the
output is not necessarily the same as the combined width of the sum
of the two input magnitude widths.

32

3.5.4 Design for Booths Algorithm in VHDL

I also toyed with the possibility of using a sequential multiplier that
implemented booths algorithm. This hardware structure contained
distinct similarities with the structure implemented in the previ-
ously examined shift and add algorithm. The three fundamental
differences, however, were firstly the need for an extra flipflop to
be placed at the LSB of the multiplying register. This is mainly to
facilitate double bit inspection of the multiplier. Secondly, this al-
gorithm required the ability to subtract and lastly the flipflop that
held the carry out from the adder in the standard shift and add
approach is not needed as an add here can never cause any over-
flow. Once again when load is set the registers are loaded as before.
After the two numbers to be multiplied are loaded into the appro-
priate registers the operation starts by examining two test bits of
the multiplier in a simple case statement. In the event of these two
bits being ’10’, the first 1 in a string of 1s has been found in the
multiplicand. This then requires a subtraction of the multiplicand
from the partial product. After this subtraction has taken place one
or more shift operations take place until the multiplier bits stored
in a register are equal to binary ’01’, t meaning that the position
of the first ’0’ in the multiplier has been found. When this first ’0’
is found in the multiplier the multiplicand is added to the partial
product, one or more arithmetic shift rights can occur until either
the next ’1’ is located or the total number of shifts is equivalent to
the length of the multiplier. After loading data again, if the two
test multiplier bits are equal to ’00’, no addition or subtraction is
required and the shifting begins, searching for the first ’1’ in the
multiplier. No overflow will ever take place due to the fact that ad-
dition and subtraction operations alternate and the numbers being
either added of subtracted have different signs. This condition will
never yield overflow. Following addition or subtraction the arith-
metic shift right occurs on the partial product, the multiplier and
the flipflop. The arithmetic shift ensures that the most significant
bit of the register of the partial products, before the shift, is copied
into the most significant bit of the register, after the shift. This ad-
dition/subtraction process is repeated for the number of bits in the
multiplier. The VHDL implementation uses a process which takes in
variables to compute intermediate values of addition or subtraction

33

prior to the shifting process. A procedure is then used to perform
the shifting process as it is identical for each of the case statements
that examine the test bits.

3.6 Problems in Simulation - Type unsigned

The code for both these implementations synthesised perfectly. How-
ever when I tried to generate results for a testbench waveform I ran
into difficulties. The code would not generate results although I
was able to get a testbench module. Each time I tried to generate
results or perform simulation for the testbench I got an error which
read, ”no feasible entries for subprogram write”. After trying to
find the reason for this apparent error I stumbled on a conclusion.
All my inputs and outputs were of type unsigned. I soon came to
the conclusion that VHDL can not simulate testbenches when the
outputs are of type unsigned. I tried out other entities with all out-
puts of type unsigned and the same error occurred. However when I
changed these to type std logic vector, testbenches were simulated
correctly and results generated as expected. I tried to verify on nu-
merous occasions that what I had established was in fact correct. I
asked several other students doing VHDL and Verilog projects who
didn’t know if this was in fact true for all cases. I then asked past
students who had previously completed a project in a hardware de-
scriptive language. They both said that they thought that it was
possible to generate a testbench using this type. There was little or
no information in VHDL books that helped and information on web-
sites was again minimal. So for a time I was undecided on this issue
until I came across a question on a website from a student trying
to simulate testbenches using all unsigned inputs and outputs and
again encountering similar difficulties. The response to her query
was in fact that it was not possible to simulated testbenches using
this type but was possible for the remainder of types. To this point
I still am uncertain as to whether or not this can be done.

library.IEEE; use IEEE.STD_Logic_1164.all; IEEE.Numeric_STD.all;

entity MULT_SEQUENT is

34

generic(WidthMultiplicand, WidthMultiplier, MaxCount: Natural);

port(Clock, Reset, Load: in unsigned(WidthMultiplicand - 1 downto

0); Multiplier: in unsigned(WidthMultiplier - 1 downto 0); Done:

out std_logic; Product: out unsigned(WidthMultiplicand +

WidthMultiplier - 2 downto 0))

end entity MULT_SEQ;

3.7 Problems in Simulation - Types in VHDL

I disregarded the possibility of using unsigned outputs. Dealing
firstly with the sequential shift and add algorithm, I changed the
outputs to std logic vector, whilst leaving the inputs as unsigned.
As I expected I got a type conversion error as I was foolishly try-
ing to convert an unsigned input to an output of std logic vector.
I then began researching type conversion in VHDL. I had previ-
ously thought that these two types convert automatically as they
are closely linked types. Converting from one of these types to the
other requires a type conversion in the form of casting or a type
conversion function. VHDL does have automatic type conversions.
It is possible to convert from std logic vector to std ulogic vector.
Type casting can be used when two types have a common base, like
unsigned and std logic vector.

FROM TO FUNCTION
Std Logic Vector unsigned unsigned(Std Logic Vector)
Unsigned integer to integer(unsigned)
Integer unsigned to unsigned(integer, no of bits)
Unsigned Std Logic Vector Std Logic Vector

I tried endlessly to convert one type to another in VHDL using
predefined functions that should have made my job pretty simple
but that didn’t. I would be unable to say for definite if this was
down to me or problems with these functions in general that posed
such difficulties. I also attempted writing my own type conversion

35

functions but I encountered similar setbacks. I was getting errors
in synthesis saying that these conversions were in compatible with
the packages, namely numeric std. However other functions in the
program depended on this package and when I changed it, I got a
whole new set of errors, although it seemed to fix this particular one.
I finally admitted defeat and what I had learnt on type conversion
and casting now seemed fruitless. A whole new approach to the
problem was necessary.

3.7.1 Libraries in VHDL

Back to square one, I made the decision to totally exclude all inputs,
outputs, signals and variables of type unsigned from my instantia-
tion in the hope that issues connected with them would now be re-
solved. I hoped that I could simply replace them with std logic vectors
and began wondering why I hadn’t just done that in the first place
and saved myself needless intricacies. Back on track and with all
variables converted, I once more synthesised my instantiation. The
package that I included was the previously defined package for this
entity, ’numeric std’. Once synthesised, this generated more er-
rors for me in the form of ’shift-right can not have operands in this
form’. I was swamped with similar error messages for the resize
operator, which was primarily used to adjust the size of registers to
hold growing bits in variables and signals. After running a different
example from a different source(not my own work), using the same
package and inputs/outputs of type std logic vector, when using the
shift right operator I got exactly the same error message in synthe-
sis. However, if changed to an slr or sll operator with the operands
rearranged to suit I found that the entity synthesised. It also simul-
tated a testbench and generated the appropriate results accordingly.
Having finally made a breakthrough I tried this approach on my pre-
vious code, exactly as was in the simpler entity only to find it didn’t
have a similar effect and once again left me with the same errors.
On examining my new-found situation, I found that for pre-defined
operations, the package numeric std is used to define types of signed
and unsigned and all arithmetic, comparison and logical operations
for these types. Similarly for the package std logic arith it defines

36

arithmetic and comparison operations for types signed and unsigned.

3.7.2 Packages in VHDL

Whilst experimenting with packages, I changed the package from
numeric to arithmetic whilst keeping all types as before. This time,
after synthesis, error messages were different. They took the form
of ”Undefined symbol ’resize’” and ”Undefined symbol ’shift-right’”.
This would in fact verify the deduction that these functions are not
available to std logic vectors when using std logic arith. However
this may not be the case for std logic vectors and the package nu-
meric std as the error indicates that these operations are compatible
with this particular package but that they should simply take a dif-
ferent form. In the event of both of these packages being excluded,
it becomes apparent that these operations are dependant on nu-
meric std as once again an ’undefined symbol’ message is returned.

Reviewing these Packages

From the synthworks website, I ascertained most of the basics needed
when dealing with packages and types in VHDL. As stated in the
previous subsection, numeric std is used for types signed and un-
signed and all logic, arithmetic and comparison operators carried
out on them. Std logic arith defines types signed and unsigned and
arithmetic and comparison operators can be defined within the scope
of these types . Std logic unsigned defines arithmetic and compari-
son operators for std logic vectors. From the aforementioned source
and a couple of other sources, it is widely recommended that one
uses numeric std for all new designs. This package also maintains
compatibility with the package std logic unsigned. It is also ad-
vised that for numeric operations, you can use std logic arith with
std logic unsigned, but that the packages std logic arith and nu-
meric std should never be used together. When examining this I
found that if these two packages are used together, the one named
first is the one used and the other package is ignored. Other than
this it has no effect on the entity. The higher one simply takes

37

precedence and the later will be unaffecting. When using arith-
metic operations availing of the package unsigned in conjunction
with the arithmetic package worked best. It was useful to later find
out that this was due to the unsigned packages influence as opposed
to any other which primarily didn’t register. When replacing or
eliminating the arithmetic package errors were endured, which pre-
sumably meant that there was a reliance on this package but that
the unsigned package was priority. These packages were later used
together in pursuit of alternatives.

Influencing Nature of these Packages

Believing that a wealth of knowledge would have been obtained from
the experiences with these packages, difficulties were attempted to
be rectified once and for all. Needless to say this was easier said
than done. Failure at every point when trying to adjust the shift
and resize statements to work effectively for my design was met.
To this point I do not know if the shift operator can be used with
std logic vectors when using the numeric package. I only know that
it is impossible with the arithmetic one. If it is not possible for logic
vectors and only possible for type unsigned it is in fact useless if one
can not generate testbench waveform outputs. However on either
of these counts I would be open to correction and indeed any feed-
back or expertise that could shed light on my apparent inabilities.
Regrettably not an awful lot of information was available to me.
Any information that was on offer was sometimes ambiguous and
often contradictory. Confusing would be an understatement. Any-
thing else ascertained on this subject was through plain old trial
and error. With more experience in the first place setbacks could
have been avoided or once encountered eliminated. Examination
of the need to use unsigneds in the first place brings its own con-
clusions and in hindsight this was perhaps completely unnecessary
and logic vectors would have been a safer alternative. Lessons were
learnt as frustration mounted and from here on in the easier option
would inevitably be pursued as more confidence and ability with the
constructs of the language was paramount to any progress.

38

3.8 Sequential Multiplier - The final Curtain

Rewriting the shift right operator to simply shift the vector one place
to the right and concatenating it with a zero in its lsb and similarly
coding a function for resize that placed all contents of a register into
a register of a greater defined size made my entity synthesisable.

E_regA_regQ := shift_right(E & RegA & regQ), 1);

This is replaced by a small set of instructions. RegG was previously
declared a signal one bit size larger.

E_regA_regQ := E & RegA & RegQ;

RegG <= E_regA_regQ & ’0’;

Test bench waveform results were all undefined for certain inputs
and for a time I believed it to be the readjusted code. However on
closer examination I realized that it was because of the structure
of the if statements and that because of the inputs I had given a
relevant output could never be met because the program had no
where to go. I further verified this by inserting fixed inputs into the
testbench that I knew would result in output as it would comply with
the first if statement and would not require any further testing in the
program. The results were as expected. Due to the complexity and
structure of the entity I was unable to change it. However this was
the first time I had found a flaw in the code. Due to my frustration
and ongoing struggles with this particular piece of code, I firmly
decided to leave it where it was, in a book. I felt now that if I had
better employed my time in writing entities of my own as opposed
to using ones from source it would have been more rewarding. Code
like this, on both counts, turned out to be worthless in terms of
my project. I resigned myself for future exploits to design and code
from scratch given these prior dilemmas and experiences.

39

3.9 Signed Combinational Multiplier - Alterna-
tive Approach

This combinational multiplier is also modelled on the shift and add
algorithm and is the one I used in my implementation. Once more
it contains an exclusive OR of the input sign bits when generating
the output sign. The models structure is based on parallel adders.
Partial products are computed according to the algorithm, zero if
the associated bit in the multiplier is zero or a shifted version in the
event of a one. The partial products are obtained using conditional
signal assignments and don’t infer logic but merely specify how the
shifted multiplier input is connected with the adders. It is much less
complex than the sequential multiplier but was easily implemented
and adjusted to deal with fixed point numbers and integers alike.
The input bit width can be changed at will, however all internal
signals then have to be modified accordingly. This can be achieved
without too much effort or indeed thought. As stated fixed point
numbers were taken into account by a modification of the design
that once again separates out the integer and fractional parts of the
number, dealing with them separately and outputting an integer
and fraction when the set bit is asserted. When the set bit is a zero
integer multiplication simply takes place incurring a single integer
output.

40

Chapter 4

Fourth Chapter

4.1 Dealing with two dimensional arrays - ma-
trices in VHDL

This chapter entails examining two dimensional arrays in VHDL
and finding the most feasible approach to matrix implementation.

4.2 Overview of Arrays

Like in most software object oriented languages, an array in vhdl
is an indexed collection of objects all of the same type. Arrays
may be one dimensional or indeed multidimensional. In VHDL,
an array type may be constrained, in which the bounds for the
index are determined when the type is first defined. Naturally an
unconstrained array would imply that the type is defined and the
index bounds are established subsequently. This is exactly what
happens.

type myWord is array(15 downto 0)of std_logic;

41

Multi-dimensional arrays can be declared in the following way:

type MY_MATRIX3X2 is array(1 to 3, 1 to 2) of natural;

An unconstrained array takes the form of:

type VECTOR_INT is array(natural range <>) of integer;

This symbol is generally assumed a ’place-holder’, which is filled in
when the array is used for the first time. There are two predefined
types in VHDL, both of which are unconstrained. They are:

TYPE string is array (positive range<>) of character;

TYPE bit-vector is array(natural range<>) of bit;

Any element of an array can be reference by indexing to the position
of that particular element in an array. Supposing that X and Y are
arrays of dimension one and two respectively, then X(1) will refer to
the first element in the X array and Y(3,2) will reference the element
in the third row and second column of X. When writing a literal
value of an array type, it is necessary to use an array aggregate,
which is a list of the values of the elements. If an array is declared
in the form of:

TYPE myArray is array(1 to 5) of character;

and it is necessary to write a value of this type containing the ele-
ments ’D’, ’A’, ’N’, ’C’, ’E’. It is possible to write an aggregate with
positional association as below: (’D’,’A’, ’N’, ’C’, ’E’)

In VHDL, a multidimensional array is implemented as an array of
arrays, and matrices fit the multidimensional array specification per-
fectly.

42

4.2.1 Addition of Arrays - Attempt One

The first approach to adding matrices using the previously defined
adder as discussed in section 3.2.2 was to define an array outside the
actual entity in a package. This specified two constrained arrays,
one that would be used for the input matrices and the other for the
resulting matrix to be outputted. The reason I needed two different
matrices was because although the dimensions of both arrays would
be similar, the logic vector for the output matrix would be bigger
than the logic vectors for the input elements of the input matrices.
I had little experience with packages until I happened upon an ex-
ample of one used for holding one dimensional matrices. It seemed
an easily understandable, straightforward approach to what I was
trying to achieve. Packages can be created similar to normal VHDL
modules, and modules that they depend on will in turn be linked
to them in the hierarchical manner in which all entities relating to
one another are depicted in Xilinx. Single types, arrays and records
can all be defined using packages. Defining two arrays in a package
is as follows:

PACKAGE array_example is

TYPE arrayOne IS ARRAY(2 downto 0, 2 downto 0) OF std_logic_vector(8 downto 0);

TYPE arrayTwo IS ARRAY(2 downto 0, 2 downto 0) OF std_logic_vector(9 downto 0);

END array_example;

When using this in another entity it must be included with the other
packages normally included so that it can be accessed in this entity

USE work.array_example.All;

In the input port, as opposed to declaring many inputs to fill up
both arrays as I had expected to do, it was now possible to input
the arrays of type arrayOne and arrayTwo instead.

PORT(matrixA: IN arrayOne; matrixB: IN arrayOne; resultMatrix: out

arrayTwo);

43

In the body of the entity was a process containing the two input
matrices which would be subsequently indexed through using a for
loop and the corresponding elements would be added together using
portmaps. The output of the adder would then carry the results to
each position in the resulting matrix.

MA1: adder port map(adder1 => matrixA(i), adder2 => matrixB(i),

adderOut => resultMatrix(i));

After a little work the code synthesised and the testbench waveform
was generated. However when I tried to input numbers into the
testbench that contained more than one bit, a warning was returned
which read, ”string error” ”bit width is more than 1”

On entering a 1 or a 0 into the testbench no warning was returned,
however anything bigger caused the above warning to be outputted.
This was of course little use to me as the problem could not be
located as all of the logic vectors were nine and ten bits wide re-
spectively. Once again, having hit a brick wall, it was back to the
drawing board. Rectifying this error by checking it out on the inter-
net was impossible and finding a means of resolution was difficult.
However in a bid to prove that this was not to do with my code,
an example from a VHDL textbook , which my code was closely
modelled on was synthesised. This code used a package to declare
two one dimensional arrays of type bit and with 32 and 8 bit array
elements respectively. A function was performed on these arrays
which is irrelevant to the problem description. When the bits were
changed to anything more than a single bit, the error once more oc-
curred in the testbench. A couple of other examples gave a similar
error and I was unable to sort it out. Disillusioned, I disregarded
the possibility of using packages to define arrays and set about to
find an alternative way to do this.

4.2.2 Addition of Arrays - Attempt Two

After this it was decided that I would declare all inputs and outputs
of the array in the input port. This meant I would now be using

44

arrays of fixed size and I decided on firstly using three by three
matrices until I was in a better position to be changing the size
when required. This was very easy to do. After all inputs were
declared, two array types were defined in the architecture of the
entity. Then three matrices of these types were declared as signals.

TYPE arrayOne IS ARRAY(2 downto 0, 2 downto 0) OF

std_logic_vector(8 downto 0);

TYPE arrayTwo IS ARRAY(2 downto 0, 2

downto 0) OF std_logic_vector(9 downto 0);

Signal matrixA: arrayOne; Signal matrixB: arrayOne; Signal

ResultMatrix: arrayTwo;

Each of the inputs were placed into each element of the arrays, these
elements were then added together and results were placed in the
resulting array, which were in turn outputted. Although a very
simple approach, this was one that worked.

4.2.3 Addition of Arrays - Final Attempt

After a meeting with my supervisor, I was strongly advised to imple-
ment these arrays in VHDL using blockram. Previously unknown
to me, once again research was inevitable. The Spartan 2E FPGAs
have blocks of bits, 4096 bits per block, called block ram that can be
configured as single port or dual port ram. Block ram can be used as
data ram for a processor or if broken into smaller pieces can be used
as register files. To my understanding, in dual port ram the inputs
are written to memory using the address lines and the outputs are
subsequently read. Depending on the size of the board being used
the input bit widths have to be adjusted accordingly. Deciding not
to make this factor a priority, I firstly set the data inputs to 20 bits.
This meant that data for both the first element of matrix A and the
first element of matrix B would come in on the first data line. The
data outputs were set to 10 bits. This was done as below:

45

Generic(data_width1 : natural := 20;

Addr_width1: natural := 18;

Data_width2: natural : = 10;

Addr_width2 : natural := 10);

The same amount of address lines as data input lines were required.
An array was created to store the data elements. This took the form
of:

Type mem_type is array(2 downto 0, 2 downto 0) of

std_logic_vector(data_width -1 downto 0);

On realising that the inputs and outputs were not the same size,
difficulties were envisioned. Attempting dual ported ram would not
be feasible unless two different arrays were created of different bit
sizes or if inputs were made one bit bigger. In reality neither of
these options would work due to the fact that the same memory
array would be needed when writing and reading values. Due to this
I opted for the easier option of using single port block ram where
the inputs would be written to memory and outputted from here.
This was done using a process, on the rising edge of the clock with
the write signal asserted, all data inputs were written to memory.
From here, exactly the same procedure as was described above to
add the matrices using portmapping was carried out. The code was
synthesised and testbench outputs verified that the implementation
worked as expected. Some time was allocated to trying to get the
design to work for dual port ram. However with time pushing on
and so much other work needing to be done, I resigned myself to
what I had and made a mental note to return to this in the event
of me having any spare time towards the end. I hoped rather than
believed this would be the case.

4.3 Matrix Multiplication using Block Ram

The next logical step in the project was to similarly use block ram in
an implementation of matrix multiplication. Block ram was used in

46

exactly the same way as above to allocate memory for storage of each
of the data inputs. The algorithm for matrix multiplication required
the use of the multiplier entity to multiply the data inputs and then
the adder entity to add these products. Internal signals were used
to hold the results of the partial products after multiplication was
achieved. These signals had to be continually changed to facilitate
the growing bit widths, as data inputs were multiplied added to
another product of multiplication and this in turn added to another
product. This also meant that the bit widths of the adder had to
be changed.

As the signals grew in size to store products it was essential that the
sign was handled. If a zero was concatenated with a number, in order
to make it bigger, and it was positive this would be fine. However
in the event of it being negative and the msb being representative of
its sign, this would seriously damage the process. For this a process
was created with a series of if statements which tested whether the
msb was a 1 or a zero. In the case of a one, this one was shifted to
the most significant bit and a zero was put into this position, the
rest of the logic vector remaining as it was. This meant that it would
be still the same number and represent that number whether it was
plus or minus. When generating expected outputs in the test bench
it made it a little difficult to calculate whether the design worked
as required as the growing bit widths meant that for any negative
numbers, the output number was extremely high. However after
checking all these results, clearly the design worked as expected.

Problems with Block Ram

One of the only difficulties encountered when using block ram was
the size of the data inputs. When declared at the beginning of the
entity as:

Generic(data_width1: natural:= 20);

This being used to effectively hold two data inputs it appeared to
be fine to do this. However in synthesis the process ran forever and

47

never came to the point where it returned the output message ’syn-
thesis completed’. On one occasion, when left, the process had not
finished after forty five minutes so the process was then terminated
as it looked as though it would never synthesise. If the data width
was subsequently changed to ten and then synthesised, obviously
with the size of everything else changed too, then the process was
very slow but it did eventually synthesise. Beyond this point if the
bit width was changed the process became slower and slower to the
point where it was uncertain whether or not it would ever finish.
Obviously changing the data width to ten was of little use to me
as it was too small to hold two inputs. Afterwards, not knowing
the cause of this and not really knowing what to do, I just allowed
all data inputs to be independent of one another and were declared
separately in the entity. This was indeed contradictory to one data
input holding two matrix values but on feeling that it couldn’t be
helped this was the next best thing.

48

Chapter 5

Fifth Chapter

5.1 Simplistic Transpose Design

The most non complex of all entities, the module basically took nine
inputs and outputted them in order which is intrinsic to the trans-
pose algorithm. Placing the elements into different array positions
and then outputting these results was all that was needed in this
implementation. The size of the matrix could be changed at will
as is understandable from the simplistic nature of matrix transpose
algorithm. Sizes were adjusted in accordance with what would be
needed for successful implementation of this entity in the design
for a matrix inverter. The time taken to complete this design was
minimal in comparison with previous entities. Synthesis was per-
formed and simulation results proved that this specification worked
as expected.

49

5.2 Inverting a Matrix - Design for an Adjoint
Matrix

As the size of the previous matrices were all three by three in dimen-
sion, the adjoint matrix presented itself as a very real possibility for
successful matrix inversion. Having been advised by my supervisor
to implement an inverter using Gaussian elimination, I researched
this once again in great detail and examined the C++ code on ma-
trix inversion that was presented to me. Naturally, Gaussian elimi-
nation would have been the most effective and indeed elegant option
to pursue as it deals with matrices of any dimension. The adjoint
matrix formula is limited to a specific size and is inefficient for ma-
trix inversion when the dimensions grow in excess of four by four.
However due to the apparent complexities that would be involved
in carrying out Gauss Jordan elimination in VHDL I opted for the
later and time permitting would perhaps review my choice. Once
again I was dubious. Feeling that I was ill equipped for concatena-
tion of an identity matrix with the original matrix in the very first
step evidently posed some concerns. This coupled with a series of
complex tests and adds of individual rows, whilst trying to derive
an identity matrix on the LHS, further confirmed my reservations.
A more confident VHDL programmer may have had the means and
ability to successfully deal with this. Regrettably I was not at this
stage of expertise.

As is indicative of the adjoint matrix formula, cofactor expansion
needed successful coding. First off was the task of computing the
matrix of minors. This involved computing cofactors(determinants
of the matrix for ith row and jth column as in chapter 1). Availing
of the multiplier entity along with a subtractor (already designed)
this was achieved quite easily. To compute the matrix of minors, a
sign change is then applied to the second, fourth, sixth and eight
elements of the newly formed matrix of cofactors. This sign change
was computed by making all elements one bit larger whilst dealing
with the msb as the sign of the number as in matrix multiplica-
tion. Subsequently, the second, fourth, sixth and eight elements
were exclusive ored with a one, changing their signs. This had the
same effect as multiplying them by minus one. This being achieved

50

the values were transposed and this completed the first stage , the
matrix of minors.

Next logical step was to compute the determinant of the whole ma-
trix. Cofactor expansion along the third row seemed appropriate.
This step again was straightforward in that matrix multiplication
and subtraction, coupled with addition of these results, was all that
was necessary. Not very complex as all were previously coded enti-
ties. This concluded this step.

The final step was were any difficulty would lie. All the values in the
matrix of minors needed to be divided by the overall determinant
achieved through cofactor expansion. This inevitably required a
fractional divisor, as the values in the matrix are always going to be
much smaller than the determinant value.

5.2.1 Fraction Divisor in VHDL

The combinational divider was modelled closely on a 10 bit divide by
5 bit combinational logic divider from ’HDL chip design. However
this divider had to be changed to a fraction divider for the purposes
of my design implementation. With this divisor instead of using
consecutive sequences of shift, compare and subtract operations, it
is more appropriate to use consecutive sequences of shift and add
a twos complement number. Adding a twos complement number is
equivalent to subtraction, however its convenience lies in that fact
that a single adder can perform both the compare and subtract
operations. The carry out from this will provide an indication as to
which of the inputs is the larger of the two.

The first compare is of the upper bits of the dividend this size always
being the same as the size of the divisor. This is followed by a chain
of add, compare and shift operations. The VHDL code used for this
implementation is a series of signal assignments and if statements.
As the number of bits in the dividend grows with the dividend re-
maining the same there will be a significant growth in the number
of if statements.

51

SIGNAL NAME BINARY VALUE OPERATION
A (dividend) 0111000010 (450)
B (divisor) 10001 (17)
2’s comp B 01111
Overflow 0
Compare1[5:0] 101011 A[8:4] + 2’s comp B
Quotient[4] 1
PartRem1[4:0] 01011 Compare1[4:0]
PartRem1 Abit[4:0] 10110 Bring down dividend bit 3
Compare2[5:0] 100101 Compare1 Abit + 2’s comp B
Quotient[3] 1
PartRem2[4:0] 00101 compare2[4:0]
PartRem2 Abit[4:0] 01010 Bring down dividend 2
Compare3[5:0] 011001 Compare2 Abit + 2’s comp B
Quotient[2] 0
PartRem3[4:0] 01010 Compare2 Abit
PartRem3 Abit[4:0] 10101 Bring down dividend bit 1
Compare4[5:0] 100100 Compare3 Abit + 2’s comp B
Quotient[1] 1
PartRem4[4:0] 00100 PartRem3 Abit - B
PartRem4 Abit[4:0] 01000 Bring down dividend bit 0
Compare5[5:0] 010111 Compare4 Abit + 2’s comp B
Quotient[0] 0
Quotient[4:0] 11010(26)
Remainder[4:0] 01000(8)

Changing the structure of this entity a little, a 20 bit divide by 10
bit divider took on the same form as the previous divider. When
completed a 9 bit divide by 10 bit was attempted using the be-
haviour modelled in the 20 bit divide by 10 bit. The 9 bit input was
multiplied by 100 and concatenated with zeros so it would fit the
twenty bit wide stipulation. To multiply the number by 100 it was
multiplied by 10 twice. This was achieved by shifting it to the left
three times storing the result. The original was shift left once and
subsequently added to the stored result. The procedure with this
new result was repeated, effectively multiplying the original number
by 100.

52

Because it was a fraction divisor there was a need for an extra bit
which held the sign of the number. The input signs were tested
in a process containing a series of if statements The output signs
were then deduced accordingly. The output number was also con-
catenated with a 0 to represent the bit left of the decimal point.
Testbench outputs verified its functionality.

5.3 Inverting a matrix

With this new divisor successfully implemented, matrix inversion
seemed like just a step away. First the design was tested to see
if the matrix of minors was working. This along with cofactor ex-
pansion for finding the matrix determinant was working. However
when trying to divide by the determinant it became apparent that
bit widths didn’t match because the sign part of the fraction divisor
had been overlooked. Having spent an awful lot of time on the divi-
sor and encountering some difficulties, I felt that it would be more
appropriate to change the bit width of the rest of the entity. With
just a day to the demonstration, this seemed like an impossible task.
After changing the entity and allowing the divisor to remain as was,
I was in undated with a series of synthesis errors and was unable to
figure out what they were. Disappointed and disillusioned, I decide
to just demonstrate what I had done with the hope of perhaps get-
ting it working after the demo. Needless to say once again this did
not materialise, at large due to difficulties with an adequate divisor
and ongoing commitments to other course material.Previously find-
ing it difficult to locate appropriate material on this topic, did not
help my cause.

53

Chapter 6

chapter six

6.1 Review of the project and personal thoughts

The initial task which was probably of most importance was back-
ground research. A lot of this proved to be informative and at times
interesting. Without this key factor project progress would have
been impossible and reference material, though at times sparse, en-
abled a form of resolution and even verification. It was paramount
to achieving any kind of finished product and to say that it proved
a helping hand is an understatement. Without resources readily
available any support a student has would be severely diminished.
My only reservation is that at stages I personally felt that I did not
have as much material as I could have. From the early stages of the
project, it was thought-provoking to see how the kalman filter actu-
ally worked. Without deep examination, one could not understand
its capabilities and what I believe of it now is far removed from any
initial reaction towards it.

Its implementation in VHDL although at times difficult and even
straining was all in all a worthwhile experience. My familiarity with
the language grew in leaps and bounds as the project progressed
and in the later stages I felt I had really obtained a firm grasp of
the key concepts of VHDL. For a relatively inexperienced program-

54

mer, it was refreshing to know that most things in VHDL can be
done using simple statements, namely processes, if statements and
loops. This strongly influenced my learning curve as the spectrum
of what was needed to be known could often be kept to a minimum.
I would now have a strong belief in what was attempted to be in-
stilled in me from first year. This being, that the only way to learn
anything in any programming language is to actually take the time
to sit down and do it for yourself, without interruption. The hard-
ware labs provided an environment to do just that, an environment
that is not always available when dealing with other languages. It
provided solitude, isolation and above all somewhere to think and to
work. I wished I had taken this advise earlier on, and my relation-
ship with and of course attitude towards the course would have been
different. Ideally this habit should come naturally to a student but
unfortunately for me it was a case of needs must. It was only toward
the end of the project that I really appreciated how dedication and
hard work were of utmost importance and anything else would come
second. Arguably interest should remain high on ones agenda but
where this is lacking dedication towards some form of interest could
in circumstances compensate. Despite at times being set back or
disappointed, sometimes this could have been mistaken for negativ-
ity, there were areas of the project that proved enjoyable. There is
an immense sense of achievement as stages are completed, goals ob-
tained and the finishing line in sight as opposed to a tiny spec far,
far away. This of course also empowers the student and provides
confidence for the next stage. As confidence builds the next stage is
more do able. As things become easier, productivity grows and time
is more well spent. It is only when resolution seems impossible that
ones ability to apply themselves wane and that time is consumed
needlessly. Also paths taken that need not be taken are also unde-
niably another factor that uses time and resource. However this is
probably all part and parcel of the learning curve. Indecisiveness
and reliability on trial and error understandably did not help my
case but I suppose that this could be eliminated with practice.

55

6.2 Doing it all over again

At my demonstration, I was asked that all important question ”what
would I do differently if I was starting the project now?” I felt I
hadn’t answered the question as well as I could have. Obviously
a lot of things could have been done differently but at times too
many approaches seemed to be more of a problem than anything.
Justifiably I would spend less time on research as full knowledge of
the kalman filter although interesting was a little more than use-
less. Also given that I did not have time to put my project on the
board, thorough research of FPGAs seemed a little wasted. Time
like this could have been better spent on actual coding and at the
very least getting a working inverter. Too much time was spent
checking alternative code that had no reference to my project, just
to see if a particular thing worked in VHDL. A lot of frustration
came from the fact that at times things seem much harder to do in
this hardware language than they would in an alternative software
one. Also my limited knowledge on libraries, types and packages
left me naturally disadvantaged. As time was an issue I would have
set out a timetable for steps to be achieved. I would not have al-
lowed myself to be as flexible as I was though. In hindsight looming
deadlines for other coursework at times did not give me much scope.
If I started tomorrow with the benefit of what I now know I would
be more focused and have a definite plan in mind of the path the
project would take. I would also not allow myself to become dis-
heartened when things didn’t work out as planned and with more
time I would be able to step back, take a deep breath and regain
my focus. In saying this continually crashing computers wouldn’t
help my cause. Needless to say timing was a major issue and every-
thing considered there just seemed there wasn’t enough of it. With
the benefit of hindsight things could have been managed better and
demonstration more successful.

56

6.3 Future Work

Scope for improvement - obviously, quite definitely. My work is only
a tip of the iceberg in comparison to what could be done with this
project. With adjustments across the board, namely with a vari-
able size for matrices and bit widths, the kalman filter algorithm
could be successfully carried out in VHDL. Also some work would
be needed for an efficient inverter and fractional divisor. This all
being achieved it would be time to implement the all important,
aforementioned equations. There would only be a very small transi-
tion between having a working inverter and having a working kalman
filter implementation. I strongly propose that another student take
on this project and see what they can achieve. Undoubtedly the fin-
ished product would be well worth the hard work and I personally
would take a great interest in its implementation in the later stages.

57

BIBLIOGRAPHY

(1.) Pellerin Taylor - VHDL Made Easy, 1997 Prentice Hall

(2.) Lipsett/Schaefer/Ussery - VHDL: Hardware Description and
Design, Eleventh printing 1993

(3.) Weng Fook Lee - VHDL Coding and Synthesis with Synopsys,
2000 Academic Press

(4.) Morris M Mano - Logic and Computer Design Fundamentals,
3rd Edition

(5.) Wiley - VHDL Programming with Advanced Topics, Wiley
Professional computing

(6.) Douglas E Ott, Thomas j Wilderotter - Introductory VHDL
from Simulation to Synthesis, Klumei Academic Publishers

(7.) Smith, Douglas J - HDL chip design: A Practical Guide for
Designing, Synthesising and Simulating ASICS and FPGAs using
VHDL or Verilog, Madison, Al Doone Publications(1996).

(8.) Yu-chin hsu, Kevin F Tsai, Jessie T Liu, Eric S Lin - VHDL
Modelling for Digital Design Synthesis, Klumer Academic Publish-
ers

(9.) Ercegovac, Lang, Moreno - Introduction to Digital Systems

(10.)Kevin Skahill - VHDL for Programmable Logic, Addison Wes-
ley

(11.) Charles E. Roth, Jr.- Digital System Design Using VHDL,
PWS Publishing Company

(12.) Sudhakar Yalamanchili - VHDL Starter’s Guide

(13.) Brian Hahn - Essential Matlab for Scientists and Engineers

58

(14.) Darren Redfern - The Matlab Handbook

(15.) Anton - Elementary Linear Algebra, John Wiley and Sons Inc

(16.) Hoffman/Kunze - Linear Algebra, Second Edition

(17.) Lang - Linear Algebra, 3rd edition

(18.) F.R. Gantmacher - The Theory of Matrices, Amer Mathemat-
ical Society

(19.) http://www.xilinx.com/bvdocs/appnotes/xapp204.pdf

(20.)http://www.eda.ei.tum.de/forschung/vhdl/

(21.) http://www.eda.org/comp.lang.vhdl/FAQ1.html

(22.)http://ieeexplore.ieee.org/

(23.)http://www.acc-eda.com/

(24.)http://toolbox.xilinx.com/

(25.)http://www.ashenden.com.au/

59

