
Synthesisable VHDL model of a
Java Virtual Machine for HAL

Louise Annamarie Reilly
Supervised By: Michael Manzke
B.A. (Mod.) Computer Science

Final Year Project

May 2005

Abstract

The aim of this final year project was to implement a Java Virtual Machine
on an FPGA. The FPGA is located on a hardware learning board used by
second year Computer Science and third year Engineering students as part
of their coursework. The introduction of a JVM to this hardware will enable
students to program the FPGA with Java in place of lower level languages
such as Assembly or VHDL, VHDL being the language currently in use.

This project is part of a continuing effort to upgrade the learning boards
from the Motorola MC68008 microprocessor technology which has been part
of the course for many years. It built upon the final year project of Ross
Brennan. His project involved implementing a RISC microprocessor in place
of the CISC architecture which was there and resulted in a prototype project
board being designed and assembled. It was one of these boards which was
used here.

The JVM implemented on the upgraded board originated as part of a PhD
thesis at the Technical University of Vienna, Austria. It is an optimized JVM
designed specifically for Altera software and the Cyclone board. As part of
the project the original VHDL code was altered to run on Xilinx software
and the Virtex-II board which the students will be working with∗†.

∗All typesetting for this report was done with LaTeX tools
†All diagrams, except Figure 4.1, in this project were produced using Photoshop 7.0

Contents

1 Introduction 5

2 Background & Research 8
2.1 Background of the Hardware 8
2.2 Background of the Software 9

2.2.1 JVM Basics . 9
2.2.2 JOP Basics . 13

3 JOP Design 15
3.1 Breaking Down The Code . 15
3.2 The Core . 15

3.2.1 Fetch component . 16
3.2.2 Bytecode Fetch component 17
3.2.3 Decoder . 17
3.2.4 Stack . 17

3.3 Extension . 18
3.3.1 Multiplier . 19

3.4 IO components . 20
3.4.1 Universal Asynchronous Receiver-Transmitter 21
3.4.2 Clock Counter . 22

3.5 External Memory . 22

4 JOP Implementation 23
4.1 Generic Parameters . 23
4.2 Altera Library Files . 24
4.3 Other Methods . 24
4.4 Core . 24

4.4.1 BCFetch . 25
4.4.2 Stack . 25

4.5 External Memory . 25
4.6 Short RAM . 26

1

4.7 Clock Divider . 27
4.8 Top Level of Design . 28
4.9 Pipeline Architecture . 28

5 Hardware Analysis 31
5.1 Hardware Description . 31

5.1.1 Configuration Modes 32
5.1.2 JTAG Mode . 32
5.1.3 Slave Serial Mode . 34

5.2 FPGAs in Detail . 34
5.3 Putting the JVM onto the FPGA 35
5.4 Additional Problems . 36

6 Evaluation & Results 38
6.1 Stack Testing . 38
6.2 Fetch Testing . 40
6.3 BCFetch & Decode Testing . 40
6.4 Core Testing . 41
6.5 Extension Testing . 43
6.6 External Memory Testing . 44
6.7 IO Testing . 45
6.8 Set RAM Testing . 45
6.9 8bit RAM Testing . 46
6.10 JOP Testing . 48

7 Future Work & Conclusions 49
7.1 Future Work . 49

7.1.1 Class Loader . 49
7.1.2 Compiler . 49
7.1.3 Editor . 50
7.1.4 GUI . 50
7.1.5 External Memory . 50
7.1.6 Threads, Interrupts and Scheduling 51

7.2 Conclusions . 51

A ROM 55

B RAM 57

2

List of Tables

3.1 Mapping of bytecode to JVM address 18
3.2 JOP hardware registers and memory areas 19
3.3 Address mapping for Extension 20
3.4 Operations of a Booth Multiplier 20
3.5 Address mapping for IO . 21
3.6 Memory mapping for External Memory 22

4.1 Binary bits of count zero to seven 27
4.2 5-stage pipeline . 28

5.1 Configuration Mode . 33
5.2 JTAG Mode . 34
5.3 Parallel Cable connections . 35

3

List of Figures

2.1 JVM Platform . 10
2.2 JVM Components . 11

3.1 Components of the JVM . 16
3.2 Receive and Transmit Buffers 21

4.1 JOP Datapath . 30

5.1 Virtex II Prototype and Demonstration Boards 33

6.1 Stack Testbench Waveform . 39
6.2 Fetch Testbench Waveform . 40
6.3 BCFetch Testbench Waveform 41
6.4 Decoder Testbench Waveform 42
6.5 Core Testbench Waveform . 43
6.6 Extension Testbench Waveform 44
6.7 External Memory Testbench Waveform 45
6.8 IO Testbench Waveform . 46
6.9 RAM Setter Testbench Waveform 46
6.10 New RAM Testbench Waveform 47

4

Chapter 1

Introduction

Throughout the course of this report, it is hoped that the reader will gain a
firm understanding of the methods required to:

1. Create a Java Virtual Machine.

2. Implement a Java Virtual Machine on a microprocessor.

3. Run programs on an FPGA.

4. Port VHDL code from Altera to Xilinx.

5. Test VHDL code.

These five processes will be covered in detail in the coming chapters.
This project set out originally to implement VHDL code for a JVM∗ on a

piece of available hardware referred to as the HAL†. It builds upon the work
of Ross Brennan two years ago, which began the HAL project.

There is always a need to expand knowledge and to ascertain what is
possible. This project is a good representation of this, being a research one.
It tests the boundaries of an FPGA‡ on board the HAL. At the beginning
of it, no-one was even certain if placing a JVM on the hardware board was
possible. Much time was expended researching similar projects as well as
working on the JVM at hand.

The HAL project is currently trying to have several CPUs on the one
board. The FPGA is easily configurable and can be reprogrammed in very
little time. Therefore it has the potential to run several different functions

∗Java Virtual Machine
†Hardware and Architecture Lab-board
‡Field Programmable Gate Array

5

and have many different CPUs all providing different operations and modes
of use. There are several projects which could span from Ross’, it has opened
the door to many new possibilities. Putting a Java platform on the board is
just one of these possibilities and has been attempted in this project.

The HAL (Chapter 2) is a learning board for Engineering and Computer
Science students of Trinity College Dublin. The boards which currently make
up part of the Trinity courses are different to the one used in this project.
The older boards draw upon technology from the early 80’s and are now
almost totally obsolete. It is hoped that they will be changed over to the
new HAL boards. The HAL board is a Virtex II Prototype Platform board
which was altered by Ross Brennan in his Final Year Project[3] to replace
the older boards.

The major problem faced when undergoing such a project as this is lack
of knowledge. Chapter 2 not only details the hardware board utilised in this
project, it also covers a lot of the research done to try to gain a firm grasp
of what is involved in implementing a JVM written for a different hardware
board on the available one. A synopsis of the research involved in this project
is included in this chapter. It will go through the basics of JVMs in general
and the JOP§, Martin Schoeberl’s version of the JVM[14], in particular. The
background of the VHDL code which produces the JVM is gone through
here. This code was downloaded from Schoeberl’s website. Much time was
spent reading through documentation on this website as well as that of other
sources.

Chapter 3 covers the original VHDL code downloaded from Schoeberl’s
site[14]. The code has been split modularly to better explain what each
section does. Having analysed each integral code segment their interactions
with each other are examined. This will provide the reader with a clear
picture in their mind of how the JOP was originally written and how JVMs
generally interact with each other. In doing this the reader is provided with
the necessary prerequisite knowledge of the JOP and an understanding of
the foundation on which the project has been based.

The alteration of the design and subsequently coded implementation is
detailed in Chapter 4. The code had to be ported from Altera on Cyclone
boards to Xilinx running on Virtex II boards as the original software and
hardware platforms were unavailable for this project. In addition, several
sections of new code had to be introduced which necessitated fundamental
changes to the circuit design and subsequently its component interactions.
This chapter will go over such changes and shows much of the work under-
taken.

§Java Optimized Processor

6

Chapter 5 gives physical details of the HAL. Included in this chapter
is a full description of the layout of the board and its different modes of
operation. This chapter will go into detail on how to use the board and
there is a summary of everything needed to program the HAL with VHDL
code. This was a significant component in the final stage of this project and
would ultimately provide proof of concept. As such great care was taken in
the correct operation of the software and hardware involved in coding and
testing. This is where the completed JVM would run. The following two
chapters will cover all of the elements of this stage in the project with the
latter describing the testing which was required on the board.

Chapter 6 describes what was involved in the overall testing and evalua-
tion. The code was tested extensively with ModelSim simulation tools before
finally being loaded onto the board and tested there. Each component of the
JOP had to be tested. The evaluation was an ongoing process and as such
was dispersed throughout the duration of this project. At every point, from
first downloading the code, to getting it onto the board, there were tests
carried out to ensure that everything was operating as it should be. The
testing finally ended when the JOP was running correctly on the board and,
as such, this chapter completes the implementation process of the JOP. After
reading these chapters the reader should have a firm grasp of the different
processes undertaken to complete this project.

Chapter 7 suggests several avenues which may be pursued as a continua-
tion of this project. In this chapter the reader will find several areas where
the study of JOP in this environment can be built on. There are feature
recommendations as well as full projects which could spawn from the work
to date and the chapter covers a few of the possibilities.

7

Chapter 2

Background & Research

2.1 Background of the Hardware

As has already been mentioned, this project builds upon work done by
Ross Brennan[3] two years previously for his final year project. His project
involved replacing the MC68008 microprocessor with a LEON2-1.0.10-xst∗

SPARC-V8 processor implemented on an FPGA. The LEON processor was
freely released under the GNU-LGPL license and is available for download
from the Internet.

In the process of testing the new processor, Ross designed two boards
capable of running and using it. He used the Virtex II prototyping and
design boards available from Xilinx. On these he connected various chips,
including an Atmel AT29LV020 ROM, an ISSI IS63LV1024L RAM and a
Maxim-IC MAX3232CPE IO chip. Currently, it is hoped that these boards
may eventually be capable of running several different CPUs. This project,
Ross’, and several others are being attempted towards this end.

The original MC68008 boards were used as teaching aids for second year
Computer Science and third year Engineering students in Trinity College
Dublin. The students are able to get a hands-on feel for microprocessor
design by wiring up the MC68008 boards, connecting the microprocessor
to external chips, and programming them. The microprocessors on these
boards are programmable using Assembly language and are implemented
using CISC† architecture. Though still a worthwhile exercise, these boards
are by now severely outdated and in need of upgrading. Hence the use of
final year projects, such as Ross’ and mine, to find a newer solution than the
MC68008.

∗available from http://www.gaisler.com
†Complex Instruction Set Computer

8

The LEON core is an example of a RISC‡ architecture. Chips designed
using RISC architecture are cheaper to design and run quicker than those
implemented in CISC. CISC use more complex instructions, these can be
slow and time consuming on a processor. On the other hand, RISC have
relatively few instructions, and those it does have are kept simple and brief,
making them quicker to run. This makes RISC, in places, more advantageous
than CISC.

One of these places is on the learning boards. The students use these
boards to get an insight into architecture design. They concentrate more on
the hardware than the software implemented on the boards and don’t need
as many instructions.

2.2 Background of the Software

The original code for the JVM was downloaded as open source code from
http://www.jopdesign.com[14]. This site holds work and documentation
completed by Martin Schoeberl as part of his PhD. thesis in the Technical
University of Vienna, Austria. He set out to develop a simple Java processor
which was optimized down so that it only executes Java bytecode[14]. He
called his hardware implementation of this processor JOP.

2.2.1 JVM Basics

The Java Virtual Machine allows a Java program to be run on any hardware.
Many programming languages are written to be run on a particular Oper-
ating System. Java however, was released as an integrated language for the
Netscape Internet browser[14]. This meant that at any given time it could
be run on any Operating System. Java needed to be portable.

The JVM provides this portability. A JVM resides on the hardware, it
interacts with the OS in native code belonging to that system. Any Java
programs trying to run on the OS must work through the JVM. It is the
Java translator.

The JVM can be split up into several different layers, as shown in Figure
2.1[13]. The uppermost layer is the part which the programmer or user
interacts with. It holds the actual Java Application and generally comes in
the form of an editor or compiler, or both, which the JVM provides. The
programmer puts his/her code into this upper layer and compiles it.

When the program is compiled, a .class file is created. These .class files
contain:

‡Reduced Instruction Set Computer

9

1. Virtual machine code for methods of the Java class.

2. Symbolic reference to the upper levels of the Java class.

3. List of fields defined by the Java class.

4. Literals and symbols used by the Java class.

5. Other data required by the Java runtime system.

What this boils down to is that the .class file contains bytecode[6]. The
original code is broken down and translated to this. Bytecode is an inter-
mediate code which exists between the source and machine code[9]. The
bytecode encodes the above list, the JVM then translates the .class file to a
.exe§ file[6], and runs it on the lower down Operating System, thus providing
Java with much of its portability and basically acting as a translator or a
go-between.

Figure 2.1: JVM Platform

The JVM translates the bytecode to machine code, specific to whichever
machine the JVM currently rests on, or rather, the JVM interacts between
classes from the Java Application and those residing in the Operating System.
It provides bytecode which is an intermediate language between them and

§Executable

10

acts as a medium, thereby running the Java classes on whatever hardware is
available.

Figure 2.2 shows a more in-depth view of the components of a basic
JVM[9]. This figure can be related to the previous one, but provides greater
detail of the components and how the JVM works.

Figure 2.2: JVM Components

The Java Runtime System is the JVM.
The Execution Engine is the equivalent of a virtual processor[9]. It re-

ceives a stream of bytecode and executes instructions contained therein. It
interacts directly with most of the JVM as well as with the Operating System.

Native Method Support enables calling of methods from the underlying
code in different languages. It is the translator from bytecode to machine
code and is hardware specific. Referring to Figure 2.1, it is the link between
the core and the host classes. The native methods are those belonging to the

11

OS, generally C/C++. The JVM associates these with the bytecode instruc-
tions contained in the Execution Engine and thus translates the bytecode to
its corresponding native method, ie: creating a .exe file, and sends them to
the Operating System.

The Class Loader dynamically loads Java classes from the Java class
files[9]. These files can come from Java Library files or from the programmer.
The Class Loader quickly runs through and verifies the code, preparing the
files for execution.

The Class and Method Area holds necessary bytecode for programs. It
has areas for both native methods and Java classes, feeding both through to
the Execution Engine as they are needed.

The Garbage Collection Heap reclaims system resources when the code
has finished using them[13]. It simplifies programming, helping to avoid such
classic errors as memory leaks.

Support Code controls threads, interrupts, exceptions, etc. Threads and
scheduling tools in Java have very loosely defined rules. For example, a
lower priority thread can preempt a higher priority one. This does help
prevent starvation but unfortunately is unacceptable in a JVM due to the
importance of interrupts to a real-time system. The support code helps alter
this behaviour[14].

The JVM simply acts as a platform between the Java program and the
Native Methods of the Operating System. JVMs are OS specific, their lower
layers interacting directly with the OS. Their upper levels however, can run
any Java software. Therefore, a program written on a Mac, could be trans-
ported to a machine running Linux, and from there to one running Windows
with no problems. This is because the Java program would not have to
change at all to compile on the JVM on the system. The system JVM would
act as a cushion between the program and the OS, translating easily from
source to machine code for any of the machines and any Operating System.

Other JVMs

There are several other JVMs available. During the research section of this
project, many were looked at. They provided a wider perspective of the
project and how it can be implemented, as well as an insight into the amount
of work required to get even the basic features working.

One such was kissme. Kissme is freely available under the GNU¶ GPL‖.
It was an Honours project by Stephen Tjasink in the University of Cape
Town, South Africa. It was developed for a set-top box that came with a TV

¶GNU’s Not UNIX
‖General Public License

12

Satellite Decoder. The JVM was run on a slow processor and class files had
to be stored in the ROM, similar to the JOP. This project was continued as
part of Stephen Tjasink’s Masters degree to support more advanced features
such as persistent programming[7].

Kissme works on UNIX systems and can run console Java applications. It
is written in C, Assembly and Java. It currently has native threads, garbage
collection and uses GNU classpath libraries. It supports an extension for
orthogonal persistence which will transport Java data structures between
memory and a persistent store, a feature added as part of Tjasink’s Masters
degree. Also in development is a Just-In-Time compiler for it named cavalry
which is written in Java. Kissme is still a work in progress.

2.2.2 JOP Basics

The JOP forgoes all of the upper levels of the JVM, running it right down to
the basics. This optimized JVM must have an external compiler and editor
to create a .class file. It doesn’t have a dynamic Class Loader so the .class
file, for this implementation at least, must be placed in a predefined static
location, ie: the ROM, where the JOP can access it.

Once the JOP has the bytecode, it acts in a similar manner to the JVM.
It has the equivalent of an Execution Engine which translates the bytecode
to hardware specific code and runs the commands necessary to execute this
code before translating the results back. All the code for this resides in the
Core of the JOP (Section 3.2). The results are saved and would require an
external application to translate them to a human readable or usable format.

Future work for this project will be discussed in Chapter 7. External
applications mentioned here could be created and tied in with the work done
on the JOP so far. Making specific applications for this would remove un-
necessary reliance on external software.

To optimize further, the Support Code has also been removed, or rather,
been moved closer to the Execution Engine. The JOP has been stripped to
its bare bones essentials discarding superfluous methods such as the ability
to manipulate multiple threaded environments.

The JOP is already so well optimized in its internals that it was decided
to abolish the Garbage Collection Heap. Due to limitations of the instruc-
tion set, and the existence memory reclamation code in each segment of the
JOP, the Garbage Collection Heap became redundant and thus provided an
opportunity to free up much needed microcontroller space.

The preceding optimisations shrink the already small JVM to such an
extent that it will comfortably operate on an FPGA microprocessor having
come from an ample PC environment. The RISC architecture on the Virtex II

13

boards makes programming them an arduous task. The reduced instructions
means that the microprocessor is now only programmable with a limited
set of languages. These languages are only one or two steps removed from
actual machine code and contain very simple instructions. Having a JVM
implemented on these chips will provide more functionality and usability
than that available with RISC architecture.

14

Chapter 3

JOP Design

3.1 Breaking Down The Code

The original code was downloaded directly from Michael Schoeberl’s website[14].
It had to be split up, broken down and understood. The line count of the
original code plus libraries from Altera[2] and the IEEE[5] totals 11,130 lines.
The final line count totalled a mere 4,575 lines, much less than half of the
original count.

The original code was analysed and described using pseudo code to better
understand the application flow and module interactions and dependencies.
This translation afforded a simplified overview of the entire code structure
allowing easy manipulation of the comprising elements. Areas which were
at this time incomprehensible could then be identified, isolated and studied
autonomously.

The next logical step undertaken was a more specific overview of the
program as a whole. This in turn lead to the view of components shown in
Figure 3.1 as well as a detailed observation of how they interact.

The following sections describe the original design and code implementa-
tion. Subsequent alterations and additional components which were a direct
result of this project will be detailed in Chapter 4.

3.2 The Core

The Core component encapsulates much of the memory, Stack and ALU
functions. It gives the JVM much of its functionality and can also be split
into sections for better understanding.

15

Figure 3.1: Components of the JVM

3.2.1 Fetch component

The Fetch component works with the ROM, feeding bytecode instructions
from the ROM directly to the Decoder where they will be translated to JVM
addresses. Bytecode was explained in Section 2.2.1

Data in the ROM is 10bits long and contains bytecode. As mentioned
previously, bytecode is created when a Java program is compiled and is an
intermediate layer of code between source and machine code[9]. It is stored
into the ROM and is accessed by Fetch. From Fetch it is sent, via the core,
to the Decoder where the bytecode will be split into instructions.

A segment of the ROM code is located in Appendix A. The entire code,
too long to include here, is located on the disk provided with this report.

16

3.2.2 Bytecode Fetch component

In the Bytecode Fetch part of the JVM, jump and branch instructions are
decoded and flags are set so that they can be recognised and executed when
they reach the stack. The signals busy and branch are then sent back to Fetch
to stop other instructions getting through, in the case of an interrupt, or to
change the memory address of the next instruction, in the case of a branch.

3.2.3 Decoder

Here the bytecode is input from Fetch and translated to a JVM address. The
mappings for the instructions are shown in Table 3.1.

These instructions show the importance of the Stack. Explanations of
all the above instructions are available in timing.pdf on the JOP[14] website.
Table 3.2 has been reproduced here based directly on Martin Schoeberl’s
work and explains the registers and memory areas used by the optimized
JVM. Additional information is available from timing.pdf in which pages 11
to 33 provide a full explanation of all of the above instructions.

3.2.4 Stack

JVMs are stack based. The stack is split into three main sections: one section
holds local variables, another exists as the execution environment and the last
holds the operand stack. The execution environment maintains the current
operations of the stack and the operand stack is a workspace for bytecode
instructions and parameters[15].

The Stack component does not just implement the typical push and pop
instructions. This component is an overlay on the three sections of the stack
mentioned above and as such it can also perform all the logic and arithmetic
methods for the system, working on the JVM addresses sent to it by the
decoder. The original Stack held a 32bit RAM, alterations had to made to
this and will be detailed in the next chapter.

Most of the RAM is filled with the hexadecimal value &H12345678∗.
However, there are some constants sent in. The values of the RAM file are
located in Appendix B.

∗Throughout this report, whenever &H is used it is prefixing a hexadecimal value

17

Bytecode Instruction Bytecode Instruction
(in hexadecimal) (in hexadecimal)

00 pop 2X/3X stm
01 and 4X/5X bz
02 or 6X/7X bnz
03 xor 80 nop
04 add 82 jbr
05 sub aX/bX ldm
08 stioa cX/dX ldi
09 stiod e1 ldiod
0a stmra e2 ldmrd
0b stmwa e3 ldmbsy
0c stmwd e5 ldmul
0d stopa e8 ld0
0e stopb e9 ld1
10 st0 ea ld2
11 st1 eb ld3
12 st2 ed ld
13 st3 f0 ldsp
15 st f1 ldvp
18 stvp f2 ldjpc
19 stjpc f4 ld opd 8u
1a not used f5 lp opd 8s
1b stsp f6 ld opd 16u
1c ushr f7 ld opd 16s
1d shl f8 dup
1e shr

Table 3.1: Mapping of bytecode to JVM address

3.3 Extension

Extension provides an interface between External Memory, IO, a Multiplier
and the Core, mapping each to the other. Depending on signals coming from
the Core it schedules reading and writing from each of these components.
The address mapping is shown in Table 3.3, the address coming from the
Core where it was encoded with the bytecode coming from the RAM and
translated in the Decoder before being passed on to this external component.
Some addresses are duplicated in the table because they will be sending

18

Name Description

A Top of the stack
B The element one below the top of stack

stack[] The stack buffer for the rest of the stack
sp The stack pointer for the stack buffer
vp The variable pointer. Points to the first

local variable in the stack buffer
pc Microcode program counter

offtbl Table for branch offsets
jpc Program counter for the Java bytecode
opd 8 bit operand from the bytecode fetch unit
ioar Address register of the IO subsystem

memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem
memwrd Write data register of the memory subsystem

mula, mulb Operands of the hardware multiplier
mulr Result register of the hardware multiplier

member Bytecode address and length register
of the memory subsystem

Table 3.2: JOP hardware registers and memory areas

instructions to multiple components.

3.3.1 Multiplier

The Multiplier implemented in Extension uses the Booth Algorithm. Each
computation takes as many clock cycles as there are bits in the multiplicands.
Here the multiplicands are all 32bits long so every multiplication takes 32
clock cycles.

The algorithm takes three bits at a time and, depending on the pattern
of the bits, performs the action indicated in Table 3.4[11]. The string men-
tioned in the Operations column is A, and these operations are performed
on B. In this way A and B’s bits are added up accordingly to complete the
multiplication.

19

Address Operation

0 IO address
1 IO read/write
2 Store memory read address
2 Load memory read data
3 Store memory write address
4 Store memory write data
5 Load multiply result
5 Store multiplicand A
6 Store multiplicand B and start multiply
7 Store start bytecode load (or cache)
7 Load read new pc base (for cache version)

Table 3.3: Address mapping for Extension

Bit M is
21 20 2−1 Operation multiplied

Bi+1 Bi Bi−1 by

0 0 0 add zero (no string) +0
0 0 1 add multipleic (end of string) +A
0 1 0 add multiplic. (a string) +A
0 1 1 add twice the mul. (end of string) +2A
1 0 0 sub twice the m. (beg. of string) -2A
1 0 1 sub the mul (-2A and +A) -A
1 1 0 sub the mul (beg. of string) -A
1 1 1 sub zero (center of string) 0

Table 3.4: Operations of a Booth Multiplier

3.4 IO components

IO controls any input and output data ports to the JVM, as one would
expect. It also overlays a counter for clock signals and an interface with a
UART†. As such, this component plays a pivotal part in the code. It manages
how the UART and Counter interact, not only with each other, but with the
rest of the system. To do this it, of course, employs address mapping and
internal signals. The mapping is shown in Table 3.5.

†Universal Asynchronous Receiver-Transmitter

20

Address Operation

0 Read clock counter, write interrupt enable
1 Read 1 MHz counter, write us counter and

interrupt acknowledge
2 Write generates interrupt
3 Write watchdog port
4 UART (download), transmit data register
5 UART (download), read data register

Table 3.5: Address mapping for IO

3.4.1 Universal Asynchronous Receiver-Transmitter

The focal point of the IO exists in the UART component. It operates on
a stack based FIFO‡ algorithm, using variable clock signals to control the
receiving and sending of data. The receive clock changes every 8 system
clock cycles while the transmit clock only alters every 16 clock cycles, taking
twice as long.

Figure 3.2: Receive and Transmit Buffers

Shown in Figure 3.2 are the signal changes in the ncts§ and the nrts¶

buffers. These signals control interaction with the FIFO, specifying how it
should be operating at any given time. They implement a simple FSM‖,
cycling through the same four states over and over.

‡First In First Out
§clear to send, ie: another UART is ready to receive data
¶request to send, ie: this UART’s FIFO is cleared and able to accept data
‖Finite State Machine

21

The FIFO portrayed is incredibly simplistic, using a basic stack structure.
If a write signal is input it saves the data coming in and outputs it until the
stack is emptied. The FIFO will continue to take in data but will only output
the first value entered with the write signal unless the stack has been emptied.

If a read signal is sent to the FIFO, the stack is emptied and the out-
put cleared. This makes the FIFO ready for new input which was read in
previously.

3.4.2 Clock Counter

The Clock Counter entity controls the interrupt handling and sets the watch-
dog bit if necessary. It generates two clock signals; a clock counter and one
called us counter and has a tri-state output:

1. If the signal addr is zero, the clock counter is output.

2. If the signal addr is one, the us counter is output.

3. Otherwise, the output is undefined and set to ‘Z’.

The clock counter output simply counts clock signals, as its name would
imply. The us counter, on the other hand, increments every 99 clock signals,
effectively creating a 1 MHz counter.

As well as the timers, the Clock Counter generates interrupts. Using the
address mapping inherited from the overlying IO and shown in Table 3.5, the
Clock Counter sets the variables which set the interrupts.

3.5 External Memory

The External Memory component interacts with the Cyclone board. It pro-
vides a link to the external RAM and ROM on the board as well as to an
external NAND flash chip. The RAM contains 32bit words while the ROM
contains 8bit ones. They are referenced using the memory mapping shown
in Table 3.6.

Memory Address Memory Unit

000000 - x7ffff External RAM
080000 - xfffff External ROM
100000 - xfffff External NAND flash

Table 3.6: Memory mapping for External Memory

22

Chapter 4

JOP Implementation

Many changes had to be made to the original code to get it operating correctly
on the Virtex II board. One of the biggest problems encountered in the course
of this project was that the code was originally written for Altera[2]. College
resources employed in this endeavour meant that the entire program had to
be ported over to Xilinx[17], a rival of Altera. Altera and Xilinx provide very
different libraries, methods and editors for programming VHDL. Also, due to
the removal of some unportable components or size issues, new components
had to be introduced to the JOP. All of this had to be taken into consideration
and every component of the JOP had to be altered accordingly.

4.1 Generic Parameters

Some built-in features of Altera’s editors were not portable to Xilinx. These
had to be replaced with newly coded equivalents. One such feature was
generic parameters. Generic parameters were used in almost every part of
the JOP. They are dynamic parameters. These parameters are often de-
faulted but can also be reassigned throughout the code at either component
level or somewhere hierarchically higher up. They act as globals and are
accessible throughout the application, including in the port section. This
enables dynamic inputs and outputs which can be of any size, as determined
by the generic parameter.

Unfortunately, Xilinx does not allow generic parameters[10]. This meant
that every generic parameter had to be removed throughout the code. Every
reference to a generic parameter had to be replaced with the value that
generic would hold in this version of the JOP. Therefore, wherever a generic
occurred, the entire hierarchy had to be traversed to find the original value
for it, or to determine that it was loaded with its default value. This was

23

long and time consuming but, after it was complete, many of the components
ran on the Xilinx compiler and just needed to be tested (Chapter 6).

4.2 Altera Library Files

Some Altera library files were used in the original code. These had to be
broken down and understood before they could be replaced. A lot of the
code was very obfuscated, being intended to be readable by machines rather
than humans and this slowed down the process.

It was eventually discovered that the main libraries employed by the orig-
inal code were for reading and writing external files. The memory units made
the most extensive use of these libraries. ROM and RAM programs and data
were saved in external files of type .mif∗. These files program memory units
in Altera but not in Xilinx. In order to port over to Xilinx, these files had
to be removed. This meant re-writing all of the memory units in the JOP.
Using the .mif files as a basis, virtual memory units were created with vari-
ables which held arrays of memory for the JOP, the same values as before
but accessed in a different manner.

Segments of the ROM and the full RAM .mif files are included in the
Appendices A and B respectively.

4.3 Other Methods

Various disparate code segments would not port directly to Xilinx. These
were identified and rewritten. Many were not discovered until the full JOP
was running during the testing phase. The ramifications of each change could
then be better ascertained and incorporated into the re-work. The ‘knock-on’
effect of these changes were not significant and will not be detailed here.

4.4 Core

Many parts of the Core were drastically altered to enable them to run on the
designated software and hardware platforms. The necessary Core changes
resulted from not only editor, compiler and synthesiser incompatibilities but
also from the size constraints imposed by the hardware.

∗Memory Initialisation File

24

4.4.1 BCFetch

In the original code, the bytecode with jump and branch instructions was
fetched from External Memory. Due to size differences between the original
and final hardware platforms’ memory units and the discrepancies mentioned
in Section 4.2, these functionalities had to be removed. The fact that the
bytecode could not be successfully reverse engineered also contributed to the
discontinuation of these instructions. There is room for this memory unit
to be put back in place (Chapter 7). To facilitate this the jump and branch
instructions have been defaulted to zero and the the associated interrupts
disabled. As previously mentioned the memory module can be refitted on the
board and indeed this would have to be the case before the aforementioned
instructions set were to be re-enabled. It was deemed unnecessary to do so
at this time and remains outside the boundaries of this project.

4.4.2 Stack

The Stack implemented in the original code used a 32bit RAM. Unfortu-
nately, due to space constraints on the board, this had to be downsized. It is
now an 8bit RAM. To avoid data loss it is treated like its 32bit counterpart.
By manipulating the clock, four consecutive 8bit memory addresses are ac-
cessed and appended to be output as a 32bit value. If the RAM is about to
be written, the memory is split and fed into these addresses. The clock pulse
feeding to the RAM is four times faster than the system clock to allow for
this.

With this altered RAM and a Shift Register, the Stack still performs all
the operations sent to it by the Decoder.

4.5 External Memory

Due to the internal RAM already being made external (Section 3.2.4) there
was a lack of available memory on the board. Therefore it was decided
that the External Memory unit was no longer needed. Its memory units
are not needed and so were removed, freeing up much needed resources. Its
only current use is to output control signals to the JVM to ensure smooth
running.

25

4.6 Short RAM

This section should further explain the RAM mentioned in Section 3.2.4. The
original code, as mentioned previously in this chapter, used 32bit values. This
proved too large to fit on the board so allowances had to be made for it.

Originally it was thought that moving this RAM to the external chips
on the board would solve the problem. This meant structurally changing
the code and re-writing the internal RAM so that it acted as a conduit to
the outer chip. In order to retain the same usability in memory accesses, it
was decided to create a new clock pulse (Section 4.7) which was four times
quicker than the system clock. This allows four addresses to be accessed per
system clock pulse.

An Addition component was created to manage the addresses being ac-
cessed because the Booth Multiplier (Section 3.3.1) would have taken too
long. The addresses fed out to the on-board RAM, through the conduit
component are the same as the original ones. However, because the data
values are now 8bits long instead of 32bits, the addresses must be converted
accordingly. This means multiplying them by four and incrementing them
by one each time the quicker clock pulses. This will be discussed in greater
detail in Section 6.9.

To properly test the RAM conduit, and show it working during the
demonstration, a virtual prototype RAM was created. This was another
VHDL module which was programmed as an 8bit RAM containing values
which the original RAM had held. It was intended to represent the on-board
RAM and synthesise the full working JOP on the host computer. A top
level component was also written which would connect the JOP code to this
RAM.

During testing it was observed that the JOP code plus this new virtual
RAM, was small enough to fit on the FPGA. It contained all the data of the
original 32bit RAM but was structured and accessed differently. On further
testing it was obvious that the JVM could now exist using either the external
on-board RAM or this new 8bit RAM. The new RAM is located outside the
JOP but is internal to the program so will be loaded onto the FPGA.

The version of code which is implemented dictates which of the two meth-
ods of RAM access is utilised. Using the JOP top level file, written specif-
ically for this reason (Section 4.8), the new 8bit RAM is included. If the
JOP module one step lower in the hierarchy is used then the virtual RAM is
excluded and the on-board RAM must be used.

At this point a RAM writer was also created. When loaded into the
FPGA this file takes the original 32bit values and breaks them down to
8bit pieces, feeding each piece into an adjacent address. When the write

26

is finished, the program will flash the LEDs available on the board in a
“1010101” pattern. The lower level JVM can be loaded onto the FPGA and
will access the external on-board RAM in exactly the same manner as before
with no differences in the output.

4.7 Clock Divider

The Clock Divider does exactly what it says it does, it divides up the clock.
It’s a very simple method of creating different clock pulses. The incoming
clock to the FPGA is fed directly to this module. Once there, the clock pulse
is converted to a 32bit signal. By taking say the 24th bit of this signal, one
can effectively slow down the clock to 224 or 16,777,216 times slower than
its original speed of 25MHz. This means that the clock is now running at
14x10−7MHz. Look at Table 4.1 to clarify the matter. The table shows zero
to seven being counted in binary. If you look at the first bit, it changes,
one to zero and vice versa, each time the number increments. However, the
second bit only changes with every two incrementations, or 21 times. In turn,
the third bit changes every 22 or four incrementations. From this it should
be obvious that to get a slower clock cycle one must simply take a more
significant bit since the pace decreases by a factor of two with each bitwise
shift toward significance.

Bit 2 Bit 1 Bit 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 4.1: Binary bits of count zero to seven

For the demonstration, the clock was slowed considerably so that outputs
could easily be displayed and more readily observed on the LEDs. The slowest
clock available on the Virtex II boards was 25 MHz. By taking the 24th bit
this was slowed to a pace the human eye could follow. The true purpose of
this Clock Divider however is to operate the RAM properly. This component
will output bit zero and bit two of the clock, thereby giving the RAM a direct

27

clock signal and the rest of the JVM a signal four times slower. The system
could be set to operate using only the 24th bit but it would prove extremely
inefficient.

An adaption of this divider could help students in future who are doing
experiments on the board.

4.8 Top Level of Design

As mentioned in Section 3.2.4, there are two possible top layers. One links
the Clock Divider, the External Memory unit, the IO, Extension and Core
components together and provides the inputs and outputs to the JVM, in-
cluding those applicable to an external RAM. The second, built upon the
first layer, links the virtual 8bit RAM to the JVM code and only deals with
inputs and outputs integral to the working of the JVM itself.

4.9 Pipeline Architecture

All of the code put together runs in a pipelined architecture. Shown in Table
4.2 is a 5-stage pipeline. Instruction Fetch(IF) is the first stage, instructions
are fetched from memory. After this comes Instruction Decode(ID), the
decode stage where the instructions are prepared for processing. The third
stage is EXecute(EX), where the instructions are carried out. The fourth
and fifth stages, MEMory access(MEM) and Write Back(WB), can differ
from system to system. The memory access stage writes any results from
the execution into memory. During the entire operation, some variables may
have been altered which need to return to their original values, the write
back stage takes care of this.

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

Table 4.2: 5-stage pipeline

The pipeline works because each set of operations will be on the pipeline
at a known amount of time. Instructions are fetched in the first stage. When
an operation has fetched its instructions it progresses to the second stage

28

in the pipeline. This leaves the next operation in the queue free to fetch its
instructions and in turn enter the pipeline. When the first has completed the
second stage, the second finds it vacated and progresses to this stage. This
progression continues while there are still waiting operations. This sequen-
tial loading of the pipeline ensures that several operations can be running
concurrently and, because none of them are accessing the same resources at
the same time, incur no conflict errors. This greatly speeds up the running
of the system.

The JOP works on a similar pipeline, although it lacks a WB stage and
has a few alterations to allow for the differences with other architectures.
The stages are shown in Figure 4.1, taken from Design Rationale of a Proces-
sor Architecture for Predictable Real-Time Execution of Java Programs[14].
Each stage implements the previously mentioned components of the JOP.
They all have to be carefully timed and controlled to fit into the pipeline
as intended. In the first stage, bytecode instructions are fetched, these are
translated to addresses in microcode. Any bytecode branches or interrupts
are also decoded and executed here. In the second stage, microcode is fetched.
This microcode comprises the actual instructions of the JOP itself, rather
than Java bytecode. Any branches in the microcode are taken here. The
third stage decodes the instructions. It also generates a stack address in
the RAM. It is possible to generate addresses for a following instruction here
and thus speed up the running processes. The memory access and write back
stages shown in Table 4.2 are no longer necessary when the execution stage
is reached. Operations in the execute stage are performed on the TOS† and
TOS-1 registers. Data between these registers and the Stack are moved, ie:
filled or spilled, during this stage. This makes a specific stage for write back
and memory access defunct.

†Top Of Stack

29

Figure 4.1: JOP Datapath

30

Chapter 5

Hardware Analysis

5.1 Hardware Description

There were two boards used in Ross’ project[3] (Chapter 2). Both were
Virtex II prototype boards[4]. These boards allow a designer to mount ad-
ditional chips and wire new circuits. The prototype model encourages rapid
development, flexibility and real world experimentation without incurring
the monetary and time cost of once off PCB∗ fabrication.

Both Virtex II boards are wired almost identically except that one has
a CPLD† chip mounted and the other doesn’t. During the course of this
project the prototype board without the CPLD was used. Any references to
a ‘board’ may be assumed to reference the Virtex II prototype board under
analysis unless otherwise specified.

The board comes with some chips already in place. Among these it has
a PROM‡ for programming purposes. Also connected are two FPGA’s; a
Service FPGA and a DUT§ FPGA. In the course of this report, whenever
reference is made to the FPGA, it is the DUT FPGA which is being discussed.

The DUT can be configured, or programmed. It is easily changed and
provides the real platform upon which this project was built. There are
several ways to program it, one method involves directly downloading the
program in Slave Serial mode. To do this a Parallel Cable IV was connected
to the board, through which the program could be downloaded using Xilinx’s
iMPACT tool. This method was used extensively in the course of this project.
Another way involves downloading a program from the PROM which would
have been programmed earlier. The board used here had a preprogrammed

∗Printed Circuit Board
†Computer Programmable Logic Device
‡Programmable Read Only Memory
§Device Under Test

31

PROM which lit the LEDs, showing quite primitively the correct operation
of the entire board.

Shown in Figure 5.1 is the Virtex II board used in this project. The com-
ponents just mentioned are visible as well as a few which will be referenced
later in this chapter. On the top left is a vertical line of pins, these are the
Configuration Port User PROM and FPGA header pins. Beside these pins
is a red box with white dipswitches, these are the clock enable switches. Be-
low the dipswitches are four grey switches which hold, going downwards, the
Clock Frequency changer, the Configuration Mode switch, the JTAG mode
switch and the Chip Select. To the right of these switches is the development
area. Placed here are the RAM, ROM and max32 chips. Above the devel-
opment area are two chips. The one to the left is the PROM. It is placed in
a holder from which it can easily be removed to prevent accidental bending
of the contact pins. To the right is the Service FPGA. Further over to the
right, located amongst several pin connectors, is the DUT FPGA, which is
also located in a holder. The pin connectors can be wired to any device in
the development area. Below the FPGA, near the bottom of the board, are
eight LEDs, which can be used for testing sequences, and the Reset and Pro-
gram buttons. To their right are two more LEDs, these representing Done
and Init. Init is lit when a program is being loaded, and Done is lit when
the program is loaded.

5.1.1 Configuration Modes

The Board has several different modes of operation built in. The only two
configuration modes explored in the course of this project were JTAG¶, which
is a testing mode, and Slave Serial mode. By using switches already on the
board any of eight separate configuration modes could be in use, as shown
in Table 5.1. The definition of PROM and Upstream in the table represent
what method of input is going to be used, i.e.: whether the new program
will come from the PROM or from the Upstream Configuration Interface
connector located at the side of the board.

5.1.2 JTAG Mode

JTAG mode deserves some mention as it has its own subsections. JTAG is
generally accepted as a testing mode which, on a prototype board, gives it a
primary position.

¶Joint Test Action Group

32

Figure 5.1: Virtex II Prototype and Demonstration Boards

Switch Position Configuration Mode

0 Master Serial PROM
1 Master Serial Upstream
2 Master Sel Map PROM
3 Master Sel Map Upstream
4 Slave Serial
5 JTAG
6 Select Map
7 External

Table 5.1: Configuration Mode

33

As well as the configuration switch on the board, there is also a JTAG
switch. This comes into use when the config switch is set to 5. When this
point is reached, the testing mode can be selected using the JTAG switch
located below the config switch on the board. This switch allows testing of
the FPGA and the PROM in different circuits according to the modes shown
in Table 5.2. It allows loading of programs directly to the FPGA or to the
PROM, as well as sending the program from one to another, as shown in
modes 2 and 3 of Table 5.2. If the program is saved to the PROM and the
board switched to JTAG Mode 3, the FPGA will be loaded with the saved
program in the PROM. This is an easy way to program the FPGA, which
loses its program each time the board is turned off.

Switch Position JTAG Mode

0 FPGA
1 PROM
2 FPGA > PROM
3 PROM > FPGA
4 Feed Through

Table 5.2: JTAG Mode

5.1.3 Slave Serial Mode

The Slave Serial mode is used for this project due to problems discussed in
Section 5.4. Using a Parallel Cable IV, with wire mappings shown in Table
5.3, the board is connected using the Configuration Port User PROM and
FPGA header to a computer. The cables on the Parallel Cable IV correspond
directly to those of the Configuration Port. The computer holds the code for
the JVM. The code is downloaded to the board and programming the FPGA
only takes a few moments.

5.2 FPGAs in Detail

Producing project specific hardware chips would prove prohibitively expen-
sive. As with the boards discussed earlier, inbuilt flexibility is the best so-
lution to keeping costs to a minimum. For this reason on-site or ‘field’ pro-
grammable chips have become the industry standard for most PCB devices.
From this comes the FPGA, or Field Programmable Gate Array.

34

Parallel Cable Board Pins

VREF VCC3
GND GND
CCLK CCLK
DONE DONE
DIN D0

PROG PROG
INIT INIT

Table 5.3: Parallel Cable connections

Re-programmable devices have been increasing in popularity over the
years. By now a lot of circuits have dynamic rather than static chips on them
because they allow more freedom to the designer of the circuit. The FPGA
is just one more step in that direction, it can be reprogrammed whenever
needed and is excellent for testing purposes. Using a static chip in such
circumstances would be wasteful especially if the logic did not work first
time.

The internal circuitry of the FPGA allows it to be reconfigurable by
downloading new logic into its memory so that its internal logic reconfigures
itself to allow for the new functionality. An FPGA can be thought of as an
IC‖ with logic gates connected with the equivalent of fuses. Originally, the
fuses are intact; programming the device involves blowing the appropriate
fuses to make the required circuit. The FPGA returns to its original state on
power off, due to the FPGA’s circuit functions being saved on SRAM∗∗. Using
RAM memory makes the FPGA easily and quickly configurable, however it
also makes it volatile. As a result, the FPGA must be reprogrammed every
time it is powered off[8].

5.3 Putting the JVM onto the FPGA

This project was completed with various tools, including many belonging to
Xilinx. Using Project Navigator, the JVM code was converted from Altera
to Xilinx (Section 4). Extensive testing followed using ModelSim tools to
testbench and check outputs and waveform signals (Chapter 6). Following
the simulation testing part, the JVM had to be downloaded to the FPGA

‖Integrated Circuit
∗∗Static RAM

35

for on-board testing. This led to many unforeseen problems which will all be
covered in Section 5.4.

When converting the code to a format understandable by the FPGA, size
remains an important consideration. The resultant .bit file must physically
fit in the available memory of the FPGA. Project Navigator provides tools
for this occurrence. First, a User Constraint file has to be created. This file
has a .ucf extension and is viewable as a text file or by opening PACE. PACE
is an editor with which the user can graphically assign the pins of the FPGA
to the inputs and outputs of the program.

Once the .ucf file has been created, Project Navigator can implement the
design. This process involves mapping out the pins and translating from
code to hardware format. A place and route process also runs at this point
which decides where each section of code will be implemented in the FPGA,
i.e.: how the FPGA’s circuits will be redefined to provide the functionality
described in the code.

Project Navigator is now finally able to generate a programming file, the
least time consuming process of all. This programming file will be used to
reconfigure the FPGA.

Once this programming file has been generated, saved as a .bit†† file,
iMPACT can be opened. iMPACT is a tool provided by Xilinx. It interacts
between the host computer and the hardware board to program the latter.
A Parallel Cable IV connects the board to the host computer (Section 5.1.3).
The Parallel Cable IV’s cables correspond directly to the Configuration Port
User FPGA and PROM header on the board, as shown in Table 5.3. Once
these have been connected up, and the board plugged in and turned on, the
config switch should be turned to 4 to allow for Slave Serial programming.
Next, turning to the iMPACT window, and choosing Slave Serial mode, a
device can be added using the .bit file created earlier. By right clicking the
device and choosing ‘program’ the bitstream file is downloaded to the FPGA,
programming it with the original .vhdl code.

5.4 Additional Problems

After the board was programmed several fundamental problems were discov-
ered. Through the synthesis and translate processes it was discovered that
the requirements of the JVM exceeded the resources of the Virtex II boards.
It was simply too large to fit on the board. As discussed extensively in Sec-
tion 3.2.4 and Section 4.6 in Chapter 3, removal of the RAM and inclusion
of a smaller one eventually solved this problem.

††bitstream

36

When the code was the right size and format for downloading, a problem
with iMPACT was discovered. It was originally decided to use the JTAG
mode for downloading and testing the JVM on the FPGA. Unfortunately
iMPACT, on several computers, refused to work in JTAG mode. To resolve
this a change to Slave Serial mode had to be made. JTAG mode is an
accepted testing mode but, due to circumstances, all testing had to occur in
Slave Serial mode. This limited the application’s functionality. Specifically
the option to save the .bit file to the PROM, which would have enabled
the JVM to be loaded whenever the board was turned on, was unavailable.
Instead, the bitstream file had to be downloaded every time the board was
rebooted. Although not prohibitive, this did have an impact on the time
taken for testing the code.

As well as this, the clock speed of the board was a major problem. When
the code was first placed on the board it was impossible to tell whether or
not it was working correctly because the clock speed was too fast. LEDs
connected to the FPGA lit dimly indicating that there were outputs, but
fully lit, unlit or flashing LEDs were indistinguishable from each other. This
problem was solved by the addition of the Clock Divider component (Section
4.7), which slowed down the clock to speeds the human eye could follow.

A final additional problem with the board arised when testing of the
code required a Reset signal. The Reset button on the board does not work.
The Reset on the second Virtex II board was also testing and found to be
malfunctioning. This did not threaten the project as the top level of the code
simulated its own Reset signal. However, it did hinder testing of lower levels
of the code on the board.

37

Chapter 6

Evaluation & Results

Much of the testing of the JOP took place on a PC, using Project Navigator
and ModelSim tools. As mentioned in Section 3.1, the code was broken
up into more manageable parts. Working from the bottom level up, each
piece of code had to be changed and then tested extensively by comparing
waveformations to the code. The code was tested as it was broken up and
will be described as such, thus creating building blocks for the final testing
on the board.

6.1 Stack Testing

The Stack was the first part of the code which was ready for testing. The Shift
Register and RAM conduit were independently tested prior to a combined
investigation into the overall functionality of the Stack. Shown in Figure 6.1
are the waveforms produced by the stack code running. The values shown
are in hexadecimal for easier understanding.

The red lines at the far left of the waveform represent unassigned values.
Nothing in this system is set until reset has toggled low. Reset is located at
the top left of the diagram. It is set to active-high, so as soon as it changes
to 0, the Stack can begin functioning.

The Stack’s waveforms are quite complex. It implements an ALU∗ for the
JVM. Most of the waveforms in Figure 6.1 are inputs, calculated to test for
specific outputs. The last six waveforms represent the outputs of the Stack,
aout and bout being the most important. The first combination of input
signals loads the input din into both aout and bout. This can be seen at the
start of the waveform where the outputs are the same as the input. The

∗Arithmetic Logic Unit

38

Figure 6.1: Stack Testbench Waveform

next change in aout is caused by sel amux† going to zero, this causes aout to
become the sum of aout and bout which is &H56. All that is visible in printed
form is the toggle in aout at that point. For three further system clock pulses,
aout continues to be set to the sum of aout and bout thereby incrementing by
&H2B each time and resulting in aout holding &HD7. Before the next clock
pulse, the signals are changed once more, resulting in bout being loaded with
the value &H12345678 from RAM. This value remains constant for the rest
of the waveform. Turning back to aout, the selects, located in the center of
the waveform, are now changed. Sel shf and sel lmux both change to one,

†sel amux is the eight waveform

39

this will force a shift to the left of aout’s value. It is here that some of the
other outputs begin to toggle. Aout and bout are, at every second clock pulse,
equal to each other, so the eq waveform toggles to one and back, true and
false, to represent this. Take note that the other time eq was set to one was
at the start of the waveform when aout and bout were first both unassigned
and then both filled from din.

6.2 Fetch Testing

Fetch implements the ROM and the offset table for bytecode operands.
Fetch’s waveform is much easier to follow than that of the Stack. The main
output is dout, situated at the bottom of the waveform. It’s clear that this is
constantly changing. It is actually accepting and outputting ROM data on
every clock pulse. It runs through the program located on the ROM, fetching
and outputting the operands required by the system.

Figure 6.2: Fetch Testbench Waveform

6.3 BCFetch & Decode Testing

BCFetch and Decode were tested together to save time. Unlike the other test-
benches, the outputs jpc out and jbc addr of BCFetch are mixed in with the
inputs while the rest are located, as usual, at the bottom of the waveforms.
Jpc out is set to zero until jopdfetch goes high, after which jpc out increments
by one every clock cycle. One can observe that, due to jopdfetch going high,
jbc addr also begins to increment every clock cycle. In this case, however,
this is caused by jbc addr being equal to jpc out plus one on each clock cycle.
Therefore, when jpc out increments, so too does jbc addr. Jpaddr is the ad-
dress of the next branch command. When bytecode is fed through the jump
table jpaddr is the resulting address. Opd also changes when jopdfetch goes

40

high. While jopdfetch is low, the first two bytes of opd are set to zero, while
the last two are set to one of the inputs: jbc data. When jopdfetch goes high,
its first two hex numbers are now filled with the last two bytes. It should be
clear from this that jopdfetch, and also jfetch, which was not shown here, are
control signals for BCFetch.

Figure 6.3: BCFetch Testbench Waveform

The Decoder has a multitude of inputs and outputs. It receives instruc-
tions from Fetch and breaks them down into signals for the Stack. These are
the select and enable signals visible in the waveform. Table 3.1 shows the
mapping from the input instruction to an actual operation. The output sig-
nals from the Decoder will ensure that the correct operations are performed
elsewhere in the system.

6.4 Core Testing

The Core interlaces the previous components. Prior to putting it all together,
these components needed to be tested. When they were proven to be working
correctly, the Core itself had to be tested. This proved to be overly complex
so a basic test was devised. The waveform for this test is shown in Figure 6.5.
To facilitate the testing, the program from the ROM is run on the Core. This

41

Figure 6.4: Decoder Testbench Waveform

program is a continuous loop, as shown by the read and write signals, rd and
write respectively, going from one to zero and back repeatedly. Also notable
is the ext addr output. This shows part of the instruction code coming from
the ROM, the looping is visible here too, in the form of the same outputs
being shown at regular time intervals. The segment of code depicted here is
shown in Appendix A. The program attempts to continuously load values
from registers located on the NAND Flash memory unit into the aout and
bout outputs. Due to the NAND memory being disabled, this results in both
aout and bout being equal to &H4000. They are then combined with a bitwise

42

AND operation, shown by the one in ext addr, to put an &HFFFFFFFF into
aout, hence the toggle in the result and more values are loaded. The four in
ext addr represents the ‘branch if zero’ command. At no point, shown in this
waveform, is the output aout equal to zero. Therefore, the branch will not
be taken, and the program loops back to begin again at the command which
sets ext addr to zero, this is actually the nop command. The ext addr only
represents 3bits of the 10bit instruction. Therefore, the most significant bit
is missing in the hexadecimal digit. The zero representing a nop command
should actually be an eight except that it has lost its MSB. The nop command
is represented by “0010000000” in binary or &H080 in hexadecimal. Ext addr
holds bits four to seven of this instruction. This makes it easier to tell what
part of the ROM’s program the JOP is currently executing and thus aided
testing. All of the instruction set is acted upon in the core itself save for
bits four to seven which also encode a separate instruction for the extension
component located outside the core.

Figure 6.5: Core Testbench Waveform

6.5 Extension Testing

After the Core was complete and proven to be functioning correctly, the
extra pieces of the JOP had to be tested. The Extension component was one
of these. It provides an interface between other components and the Core
(Section 3.3). It does this using the address mapping shown in Table 3.3.
Extension also implements a Booth Multiplier. An example of the multiplier
in motion is shown in the waveform in Figure 6.6. Ain is loaded into dout

43

and multiplied with bin to give the result &H3380. The multiplication takes
as many clock cycles to complete as there are bits in the operands, in this
case: thirty-two. The read and write inputs, as well as ext addr which is
really the command signal for Extension, have been set here accordingly to
multiply ain and bin. All the other input and output signals are set to zero
to allow this computation to take place. All other data locations not directly
impacting the current computation are assigned random values.

Figure 6.6: Extension Testbench Waveform

6.6 External Memory Testing

Due to a decision having been taken that the External Memory was unneces-
sary, it was not tested as extensively as the other components. The waveform
shown in Figure 6.7 represents the skeleton code of the memory. The RAM
and ROM originally loaded into it have been removed and now output only
zeroes. The mem bsy signal, which is the important output the memory is
still available for, is still being set when a read is occurring. This signal helps
implement interrupts in the system.

44

Figure 6.7: External Memory Testbench Waveform

6.7 IO Testing

The IO component is highly important as the system must be able to commu-
nicate with the outside world. Din provides the command for the components
of the IO system; the UART and the Cnt. Due to the least significant bit
of din being a zero, the output dout will be set equal to the clock counter,
clock cnt, in the Cnt component. This means that dout will increment at
each clock cycle, and ensures that the IO component is doing what it should
be according to the address mapping in Table 3.5. The signals l, r, t and b
are all set to ‘Z’, i.e.: left unassigned. These signals are intended for direct
mapping to the hardware of the Cyclone board and are unnecessary for the
Virtex II ones.

6.8 Set RAM Testing

The Set RAM component, though not part of the JVM, still underwent
testing once it was written to verify it was functioning as expected. As well
as testing on the board, the RAM setter was also tested on the simulator.
Its job was to set write signals for the on-board RAM and send values to
it (Section 4.6). It’s visible from the waveform in Figure 6.9, that on every
second clock pulse, a new value is fed from the virtual RAM in this component
to the output. This will feed it through to the on-board RAM.

The testing on the board was quite simple. When the program was syn-
thesised, and made into a bitstream file (Section 5.3), it was loaded onto the

45

Figure 6.8: IO Testbench Waveform

Figure 6.9: RAM Setter Testbench Waveform

FPGA. When the program finishes running correctly, i.e.: the RAM is set,
the program lights the LEDs to “01010101”. By observation of the board
and waveform, the RAM setter was proven to be running correctly.

6.9 8bit RAM Testing

This particular RAM was written to interact with the external RAM in the
transition stage from Altera to Xilinx mentioned in Section 4. It therefore
takes write enable signals, etc. directly from the JOP to be fed to the on-
board RAM and routes responses accordingly. This RAM is 8bits wide but

46

accepts data which is 32bits wide. As discussed in Section 3.2.4, the 32bits
are split up and fed through on four consecutive clock cycles. This requires
two clock signals coming into the RAM, clock being four times slower than
clk. The slower clock cycle is the system clock, the RAM only reads or writes
one 32bit value during each of these clock cycles. During the clk signal, it
reads or writes four 8bit values per cycle.

The first half of the waveform in Figure 6.10 is reading, the second half
writing. This RAM holds no data hence q, the output data going to the
external RAM, remains unassigned. A, the address output, is loaded with
the value of the read or write address multiplied by four. The read and write
addresses input are intended for 32bit values, therefore if four 8bit values
are to be accessed, the addresses must be multiplied by four. A is then
incremented for the next three clock cycles so that the data is loaded into, or
taken from, four consecutive memory locations. The values in A are changed
when we, write enable, goes high to be four times the write address rather
than four times the read one. The RAM will only begin to read or write on
the next long clock cycle. Shown in the waveform is a time when the write
enable signal goes high in the middle of a read. The read completes and on
the next long clock cycle IO gets loaded with the 32bit data fed in, which
has been split up into 8bits. In this case, the hexadecimal value &H06542435
is split up into four pieces, which are output on every clock cycle as first
&H06, then &H54, next &H24 and finally &H35. This proves that the RAM
interface is responding correctly to signals from the JOP and outputting the
expected signals and data for the external RAM.

Figure 6.10: New RAM Testbench Waveform

47

6.10 JOP Testing

Most of the testing of the JOP took place on the board. The testbench
waveform of the JOP did not show much of interest because its outputs and
inputs were intended for the board. To avoid confusion, this report will
forgo description of multiple versions of the JOP and skip straight to the
final version. The final version of the JOP implements the shorter RAM and
the JOP together, as described in Section 4.8. Testing this took place on
the board. Specific testing outputs were linked to the LEDs on the board.
These came directly from the Core. The resulting LED combinations were
then compared with the waveform in Figure 6.5. When it was discovered
that the completed JVM was looping through the correct program located
on the virtual ROM it was evident that it was all working properly. The
board clock speed was slowed down to make these results observable, and
it was this version which was demonstrated. The version with an increased
clock speed will be attached in disk form at the back of this report.

48

Chapter 7

Future Work & Conclusions

7.1 Future Work

7.1.1 Class Loader

Class loaders can get very complex, generally too complex for embedded sys-
tems. They require resolution and verification of classes before they are
loaded into the execution engine. They tend to consume large amounts
of memory and the upper bound of execution time is near impossible to
predict[14].

However, ignoring this, having something which will dynamically load
whichever classes are currently needed would be very helpful for the JVM.
It would speed up operation, and provide functions and libraries previously
unavailable. Though outside the current scope of the project, a class loader
could be envisioned for future versions of the JOP, although care must be
taken to design one which would not eat through the resources of the hard-
ware.

7.1.2 Compiler

Most commonly used with JVMs is JIT∗ compilation. These compilers are
basically code generators which will convert bytecode into native quickly and
efficiently. They are embedded into the execution engine of the JVM. Code
is compiled just as it is about to be executed, hence being a ‘Just-In-Time’
compiler[1].

As mentioned in Section 2.2.1, kissme is currently developing a JIT com-
piler named cavalry, because the cavalry always arrives “just in time”. Cav-

∗Just-In-Time

49

alry simply does a fixed substitution for each piece of bytecode in a method
without properly converting operations, a direct and literal translation.

The JIT is optional. It currently is not implemented and is not needed to
run the bytecode on any specific Operating System architecture[16]. How-
ever, it would speed up bytecode translation to machine code immensely.
These optimizations would not negate the JVM’s platform independence nor
any of the inherent benefits of its code[12].

7.1.3 Editor

An editor is a simple addition to the JVM. An implementation of notepad or
vi could be used, the only thing really needed is somewhere to type the code.
Complexities arise as the programmer requires more functionality. It could
be as common as having a spell checker or even up to having a syntax checker
implemented. The editor could have specific functionality for the JVM code,
such as simulating how the hardware would react to the program.

The main difficulty, however, arises from the lack of an interface on the
hardware. Therefore, the editor would have to be implemented on the host
computer. A GUI†, which will be covered in the next section, could help
refer back to the JVM.

7.1.4 GUI

A GUI could be written for the JVM and implemented on the host computer.
Both the editor and the GUI are add-on extras which could be provided by
external vendors. However, having one developed specifically for this project
could provide some interesting and helpful features.

7.1.5 External Memory

As remarked in Chapter 4, the External Memory unit is almost obsolete.
The memory units it referenced have been removed and would need to be
replaced, using Xilinx architecture, to re-enable it properly. This means that
interrupts, etc. are now disabled.

It would be preferable to have these fully functioning, therefore the mem-
ory unit should be returned to its former capacity. This would have been
accomplished in the course of this project except, due to time constraints,
other areas had to be prioritised leaving no time to integrate new external
memory units. Working with the internal RAM and planing to move it to

†Graphical User Interface

50

an external RAM on the board meant little time was spent changing the
External Memory unit. It was believed then that it would not fit onto the
board. Now that the RAM is once more an internal unit, this is no longer a
problem.

7.1.6 Threads, Interrupts and Scheduling

This section can be linked to the previous one. Interrupts, threads and
scheduling tools are already available on the JOP. However, they were dis-
abled along with the External Memory unit. When this memory unit is
re-enabled, it is likely that most of the interrupts and other features will
work too, though some debugging may be required.

7.2 Conclusions

The goal of this project was to implement a Java Virtual Machine on a
hardware board used by students of Trinity College Dublin. Throughout the
previous months, much research, effort and time has gone into this project
and there is now a JVM implented on one of the Virtex II boards. As it has
been noted previously, this is just one part of an ongoing project to provide
these boards with as much functionality as possible (Chapter 1).

The code used was downloaded from GPL licensed software online[14]
(Chapter 2) but had to be changed significantly to run on the available
hardware. This generated the greatest amount of work for the project and
thus constituted its bulk. The code itself and all the changes to it are covered
in Chapters 3 and 4. These chapters describe the code layout and create a
visual image of JVMs in action.

Information on how to get all of this to the board is described in Chapter
5. Many different tools were combined to convert from a .vhdl file a .bit
one with all of the appropriate settings to be loaded into the FPGA. This
is discussed in Chapter 5 in addition to a detailed description of the board
itself and all components fitted thereon.

The testing and evaluation of the hardware and software is covered in
Chapter 6. This chapter builds upon all the previous ones, showing how
every stage in the development process leads to another until the final stage
where the code is on the board and working correctly.

This project, though at times frustrating, was overall a great learning ex-
perience. Virtual Machines and the low-level basics of Java were not covered
in the course of a B.A.(Mod) Degree in Computer Science in Trinity College
Dublin. This project thus afforded me with a great opportunity to build on

51

and independently enhance the knowledge I had in these areas. As well as
this, previously unknown parts of the VHDL programming languages were
uncovered. VHDL scripts written for Altera software are quite different to
Xilinx counterparts. This created the feeling of entering entirely new terri-
tory when it came to debugging the code. Many new aspects of VHDL were
discovered and several pieces of code had to be replaced to port between
Altera and Xilinx correctly (Chapter 4).

In comparison to the rest, the Virtex II boards were easily decipherable,
though this is likely due to some very timely help given by Ross Brennan.
Ross explained the board’s inner workings and gave tutorials on its program-
ming. This aid proved invaluable when integrating the software with the
hardware.

To sum up, the goal of this project was met and surpassed. While working
on it I learned many new things which would have otherwise gone uncovered.
I gained a lot of knowledge and hopefully my contribution will help future
students doing hardware subjects and working with the HAL in Trinity Col-
lege Dublin.

52

Bibliography

[1] Wikipedia. http://en.wikipedia.org/.

[2] Altera corporation. http://www.altera.com/.

[3] Brennan, R. Design and Evaluation of an FPGA Based Microproces-
sor Project Board. Final Year Project.

[4] Brennan, R. Documentation of Virtex II Prototyping Boards. http://-
www.cs.tcd.ie/Ross.Brennan/?sub=college.

[5] Chang, K. C. Digital Design and Modeling with VHDL and Synthesis.
Wiley-IEEE Computer Society Press, 1997. http://www.computer.org/-
cspress/CATALOG/bp07716.htm. ISBN: 0-8186-7716-3.

[6] Gary B. Shelly, Thomas J. Cashman and Joy L. Starks. Java
Programming : Introductory Concepts and Techniques, 2nd ed. Course
Technology, 2003. ISBN: 0789568314.

[7] Leuner, J., and Crawley, S. kissme: A free Java Virtual Machine,
2003. http://kissme.sourceforge.net/.

[8] Mano, M. Morris. Digital Design, 3rd ed. Prentice Hall, 2002. ISBN:
0-13-035525-9.

[9] Meyer, J. Java Virtual Machine. O’Reilly, 1997. ISBN: 1565921941.

[10] Meyer-Baese, U. Digital Signal Processing with Field Programmable
Gate Arrays, 2nd ed. Springer, 2004. http://hometown.aol.de/-
uwemeyerbaese/XilinxExamples2e.htm. ISBN: 3-540-21119-5.

[11] Mlynek, D., and Leblebici, Y. Design of VLSI Systems, 1998.
http://www.vlsi.wpi.edu/webcourse/ch06/ch06.html.

[12] Naughton, P. The Java Handbook. Osborne McGraw-Hill, 1996.
ISBN: 0078821991.

53

[13] Saulpaugh, T., and Mirho, C. Inside the JavaOS Operating System.
Addison-Wesley, 1999. ISBN: 0201183935.

[14] Schoeberl, M. JOP - Java Optimized Processor, 2005. http://www.-
jopdesign.com.

[15] Venners, B. The Lean, Mean, Virtual Machine. Java World
(June 1996). http://www.javaworld.com/javaworld/jw-06-1996/jw-06-
vm.html.

[16] Winder, R., and Roberts, G. Developing Java Software, 2nd ed.
Wiley, 2000. ISBN: 0471976555.

[17] Xilinx incorporated. http://www.xilinx.com/.

54

Appendix A

ROM

– Starts a comment
depth = 1024;
width = 10;

content

begin
0 to 1ff : 080; – nop
– //
– // JVM starts here.
– //
– // new fetch does NOT reset address of ROM =>
– // it starts with pc+1
0000 : 080; – nop // this gets never executed
0001 : 080; – nop // for sure during reset (perhaps two times executed)
–
0002 : 0c0; – ldi 127
0003 : 080; – nop // written in adr/read stage!
0004 : 01b; – stsp // something strange in stack.vhd A->B !!!
– //
0005 : 0c1; – ldi 1 // disable int’s
0006 : 025; – stm moncnt // monitor counter gets zeroed in startMission
–
0007 : 0c2; – ldi 0
0008 : 022; – stm heap // word counter (ram address)
–
– //
– // start address of Java program in flash: 0x80000

55

– //
0009 : 0c3; – ldi 524288 // only for jvmflash useful
000a : 02c; – stm addr
–
– xram loop:
000b : 0c4; – ldi 4 // byte counter
– ser4:
– // ************** change for load from serial line **************
000c : 0c4; – ldi io status // wait for byte from uart
000d : 008; – stioa
000e : 0c5; – ldi ua rdrf
000f : 0e1; – ldiod
0010 : 001; – and
0011 : 080; – nop
0012 : 040; – bz ser4
0013 : 080; – nop
0014 : 080; – nop
–
0015 : 0c6; – ldi io uart // read byte from uart
0016 : 008; – stioa
0017 : 080; – nop
0018 : 0e1; – ldiod
–
0019 : 0f8; – dup // echo for down.c, ‘handshake’
001a : 009; – stiod
–
– // ************** end change for load from serial line **********

56

Appendix B

RAM

depth = 256;
width = 32;
content
begin
0 to ff:12345678;
0000:00000000;
0001:00000000;
0002:00000000;
0003:00000000;
0004:00000000;
0005:00000000;
0006:00000000;
0007:00000000;
0008:00000000;
0009:00000000;
000a:00000000;
000b:00000000;
000c:00000000;
000d:00000000;
000e:00000000;
000f:00000000;
0010:00000000;
0011:00000000;
0012:00000000;
0013:00000000;
0014:00000000;
0015:00000000;
0016:00000000;

57

0017:00000000;
0018:00000000;
0019:00000000;
001a:00000000;
001b:00000000;
0020:0000007f;
0021:00000001;
0022:00000000;
0023:00080000;
0024:00000004;
0025:00000002;
0026:00000005;
0027:00000008;
0028:00004000;
0029:ffffffff;
002a:00000003;
002b:0000ffff;
002c:80000000;
002d:000000ff;
002e:0000001f;
end;

58

