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Abstract

The goal of this project was to design a micro-programmed microprocessor with its own instruction
set as a teaching tool for 2nd year computer science students. Following on from Laura Redmond’s
project last year, I started by changing the existing functional components and then adding new ones.
I changed and made additions to the control circuitry in order to micro-program the new functional
components.
The next part of the project was to download the design onto an FPGA.
The final part of the project was to design a GUI that would be a tutorial for the students and allow
the lecturer/student to create a new microprocessor project with the option of not including certain
components so that the students would have to design these themselves.
The report outlines the difficulties of simulating a micro-programmed microprocessor and transfering
the design to the board.
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Chapter 1

Introduction

This chapter serves as an introduction to the Teaching Instruction Set Processor project. The back-
ground and motivations for this project will be outlined. This chapter will also discuss the approach
taken to designing the microprocessor and the tools used to do so. At the end of the chapter there is a
section dedicated to Laura Redmond’s work on the project.

1.1 Project Motivation

The main aim of this project was that it could be effectively used as a teaching tool for Computer
Science students studying the 2BA4 Microprocessor Systems module. The project is an extension to
Ross Brennan’s final year project two years ago in which he replaced the Motorola M68008 processor
chip on an FPGA prototype project board with the LEON SPARC VHDL RISC implementation
of a processor. Last year, Laura Redmond worked on Ross’ board to develop a more creative and
extensive instruction set. My aim was to expand on Laura’s project and create an even more developed
instruction set and time permitting, an interactive GUI to provide a tutorial and an interactive approach
to learning about Instruction sets. FPGAs 1 and HDLs 2 have been around for quite a long time and it
is important that their usefulness for teaching students Hardware Design be investigated.

1.2 Project Breakdown

The majority of the project consisted of writing and testing a microprogrammed microprocessor using
VHDL 3. I followed Laura’s example by designing from a ’bottom up’ perspective wherever possible
i.e. starting with basic components and using them to design more complex components. Then, when
thoroughly tested I would download the design onto the FPGA. I also developed a GUI, that would act
as a tutorial for a student using the Microprocessor. It would also allow a Lecturer or student to create
a new Microprocessor project file, with the option of removing certain components from it, hence the
student would have to design the component themselves, appreciating the surrounding logic.

1Field Programmable Gate Array: A general purpose chip which can used to carry out a specific hardware funtion
2Hardware Description Languages
3Very High Speed Integrated Circuit Hardware Description Language
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1.3 Software

This section focuses on the software tools used for this project.

1.3.1 VHDL

VHDL was chosen by Laura because it used prevalently in the Computer Science department. Xilinx’s
Project Navigator tool (version 6.2) was used to write the VHDL and synthesize it. Modelsim was
used for testing the design. Synthesizable VHDL is discussed later, in chapter 4.

1.3.2 Impact

Impact was the software used to generate the bit file that would be later loaded onto the FPGA.

1.3.3 VB6

The GUI was written in Visual Basic 6.

1.4 Hardware

The microprocessor design was downloaded onto a Virtex II XC2V1000 Xilinx chip in an FPGA. See
figure 1.1.

1.5 Laura Redmond’s Microprocessor Project

Laura successfully implemented a microprocessor with a fairly complex and extensive instruction set.
Figure 1.2 shows Laura’s microprocessor from a tree perspective. If one thinks of the Microprocessor
in terms of layers that instantiate other layers, then the microprocessor is the top layer. It is made up
of the control unit and the datapath layers. The datapath layer instantiates the ALU and register file
layers which in turn, instantiate more layers. The control unit instantiates all the control hardware.
The register file consists of 4 registers which store 8-bit values, a decoder and a multiplexer. The
ALU is made up of a logic unit, a shifter and a ripple-carry adder 4. The control unit is the part of
the microprocessor that sends the required signals to the Datapath, enabling it to perform the required
operation on the required operands. The control unit will be discussed in greater detail in Chapter 3.

1.6 Phases of the Project

Since I inherited a large amount of complex code it was a necessity to plan the steps in which I would
tackle each part of the project. I decided to go with a ’bottom up’ approach, adopting Laura’s ethos,
making the project easier to design and test. The main phases were as follows:

4The functionality of Laura’s Register File, ALU and Datapath are explained in more detail in Chapter 2
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Figure 1.1: FPGA Prototype Project Board
[15] Taken form Laura Redmond’s Report

Figure 1.2: Hierarchy of Laura’s Microprocessor Project
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Figure 1.3: Microprocessor

Phase 1

I reviewed all of Laura’s work and made sure that everything worked correctly. I also read up on the
topic.

Phase 2

The existing ALU components were updated and tested, individually and together.

Phase 3

The size of the registers in the register file were increased. The size of the decoder and MUXes were
upgraded also.

Phase 4

New components were designed, tested and integrated into the ALU.

Phase 5

The entire datapath was tested.
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Phase 6

Laura’s controlwords were revised and changed wherever necessary (due to changes in the datapath),
and were then tested.

Phase 7

New controlwords for were added for the new components of the ALU.

Phase 8

Conditional branches were added and the microprocessor was thoroughly tested. 5.

Phase 9

The GUI was written.

Phase 10

The design was put on the board.

5Problems in this phase will be discussed in detail in Chapter 3
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Chapter 2

Hardware Design

2.1 Overview

This chapter outlines the functionality and implementation of layer that performs the operations and
stores the data, the datapath. See figure 2.1.

2.2 The Register File

In the register file, the destination register (the register being written to) is decided upon using a de-
coder. Since the size of the number of registers was expanded to 8, changes had to made to the entire
register file: The decoder takes in a 3-bit binary value, instead of a 2-bit value from an opcode in-
struction identifying the destination register. The resultant output of the decoder is used as read/write
select for each of the registers. Likewise, the AA and BA signals (coming from the opcode) were
changed from 2-bit to 3-bit values. These signals are used as select lines for the A and B busses
respectively. The multiplexers were expanded from 4:1 to 8:1.
The size of the data stored in the register file was updated from 8 bits to 32 bits. The motivation for
this was that since I had planned to integrate a multiplier and a floating point unit into the design
that larger values than 8 bits would be needed to get decent, useful results from them. These changes
produced few problems. See figure 2.2.

2.3 Changes to the ALU

Laura’s ALU consisted of a unidirectional shifter, a logic unit, a ripple carry adder and 2 multiplexers
to choose the necessary inputs and outputs. The select lines for these multiplexers came from the con-
trol instructions issued by the control unit. The following changes were made to these components:

2.3.1 Shifter

Laura’s shifter took in an 8-bit value and shifted it left depending on a 3 bit value coming from the
control unit. It was changed to a barrel-shifter capable of shifting a 32-bit value left or right depending

11



Figure 2.1: Schematic Representation Of Datapath

on another control signal from the control unit. The process of updating the shifter was an easy enough
task but was time-consuming.

2.3.2 Adder

The ripple-carry adder was changed to a carry-look-ahead adder. The reason for this is that although
ripple-carry design works perfectly, it has a huge gate delay associated with it. For an n-bit ripple-
carry adder there would be 2n + 2 gate delays. Hence for a 32 bit adder there would be an inefficient 66
gate delays. The solution to this was to design an adder with the carry-look-ahead (CLA) technique.
The CLA would consist of more complex hardware but would reduce the number of gate delays
significantly.
The implementation of the CLA proved time-consuming. Three boolean equations had to be written
for each bit in the adder, with the logic for each one getting more complicated as the number of bits
increased. This meant that a simple mistake, like a ’typo’ was difficult to find and hence, correct.

2.3.3 Logic Unit

The logic unit is the hardware where the logical operations are performed. The only changes that
needed to be made here were to update it to 32-bits. Later on, the size of the multiplexer, which
chooses the output of the logic unit, was reduced from 8:1 to 4:1. This was because there were four
unused inputs to the multiplexer and that could lead to undesirable situations when later testing the
complete Microprocessor.
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2.4 Additions to the ALU

Once all the alterations to the to the ALU were thoroughly tested I added in new components. They
are described below:

2.4.1 Multiplier

Laura’s microprocessor executed single-cycle instructions only. I thought it would be good to expand
it to be able to execute multi-cycle instructions. It was decided that a multiplier component would
be the most useful multi-cycle instruction to include. The multiplier was designed using Finite State
Machines, roughly following an example from Mano [8] that takes 64 clock cycles to execute an
instruction. Since the result of multiplying two 32-bit numbers would more often than not require
more than 32 bits, the output of the unit would have to be 64 bits as to reduce the risk of inaccurate
results. A special ’temporary’ register was added to the register file to hold the upper 32 bits before the
64 bits were stored in memory. There were a few difficulties integrating the new temporary register.
Since I also wished for this register to be used by other functions I had to integrate two chip-enable
signals into the design. The enable signal for multiplications would be the ’done’ signal from the
multiplier. The difficult part regarding the actual multiplier came later when sequencing and timing
became a difficult issue. These problems will be discussed in Chapter 3.

2.4.2 Floating Point Adder

I obtained a copy of a floating point adder from a classmate. It was a project in the 3BA5 module
last year, however I had deleted mine so I had to seek out another copy of it. The FP adder executes
instructions in 7 clock cycles. This component also yielded timing and sequencing problems later in
the project.
A few changes had to be made to it. The Adder was designed using schematics (See Figure 2.2 or
figure 2.3 for example schematics). Schematics are a feature of VHDL that allow the designer to con-
nect components using a Graphical User Interface. Basically, the designer can compile synthesized
components into symbols which can be ’drag and dropped’ into the GUI and then interconnected with
wires, and input and output markers. These schematics can then be synthesized themselves to see if
the components port map correctly, like in a port map and can also be tested with testbench wave-
forms.
My project used port maps and not schematics. Therefore I had to modify every layer in the floating
point adder. This was more time consuming than difficult. I had to reacquaint myself with floating
point arithmetic and its implementation in hardware as well as code every schematic in to a port map
and thoroughly test it. Changes had to be made to most of the sub-components so that they integrated
properly with the rest of the ALU and datapath. Later on in the project, this unit had to be modified
again to insert a done signal, that would tell the control unit when a floating point computation was
complete (see Chapter 3 for further details).
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Figure 2.2: Schematic Representation of the Register File with incorporated changes and additions

2.4.3 Memory Unit

A local memory unit was added as well. The main reason for this was so that the values in the memory
could be set before the Microprocessor was run ande values could be loaded into the registers at the
beginning so that I could check the outputs from the testbenches and be sure of accurate results.
Otherwise, arithmetic would be performed on zeros or on all ones. 1

2.4.4 Miscellaneous additions

I added one of the inputs to the ALU directly to the 8:1 multiplexer which selects the output of the
unit. This was done to enable MOVE instructions. See Figure 2.3 for a schematic of the ALU.

1what I mean by this is that the only values that could have been in the registers would be zero when reset goes high
or all 1’s when the NOT instruction is issued
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Figure 2.3: Schematic Representation of the ALU with incorporated changes and additions
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Chapter 3

Micro-programming the Design

3.1 Overview

The control unit is the part of the microprocessor that supervises the sequence of operations. In this
chapter I will discuss the implementation of the control unit and the problems that arose.

3.2 Laura’s Control Unit

Figure 3.1 is the state machine for Laura’s micro-programmed microprocessor. When the address is
”00000” (Instruction Fetch), the instruction register is loaded with the instruction from the instruction
memory pointed to by the PC, and the PC is incremented. The immediate next instruction is Exe-
cute, which checks the value in the instruction register and then executes that instruction. After that
instruction is executed, the next state is Instruction Fetch again.
The control unit layer instantiated a program counter (PC), an instruction memory (IM), an instruction
register (IR), a multiplexer (MUXC), a control address register (CAR) and a control ROM (CROM).
The instruction memory stored the instruction opcodes which made up the simple test program. The
CROM held the controlwords which controlled the sequencing of the control unit and output results
of the data path. The PC and CAR pointed to address zero of the IM and CROM respectively on reset
going high.Instruction Fetch (IF) is the controlword at address zero, (See Laura’s controlword table
in table 3.1). Therefore, the instruction at address zero in the IM is loaded into the IR as determined
by the IL control bit in the IF controlword. This instruction also increments the PC (via the 1 value
in the PI control bit). The next address pointed to by the CAR is determined by the MC bit in the
controlword. If it.s a 1, the opcode in the instruction memory is the address value ready to be loaded
into the CAR, otherwise the address in the NA field of the controlword is used as the address pointer
in the CROM. This decision is carried out by the above-mentioned MUXC. In the IF controlword the
NA field is always chosen (MC is low). This NA points to the EX controlword which chooses the
OPC address (MC is high). On the next clock cycle this OPC address is loaded into the CAR (the
CAR is clocked) and the instruction we fetched in the IF state will now execute. At this point, the
control unit entity will output the fetched instruction’s corresponding controlword. Laura later added
the hardware needed for unconditional branches and jumps.
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Figure 3.1: State Machine of a micro-programmed microprocessor
[15] Taken from Laura’s Final Year Project Report
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Instruction Name Opcode Action
LOAD1 – 4A – F9 R2←M[01]
LOAD2 – 4B – FA R3←M[02]

NOP – ?E – – No operation
NOTR7 – 27 FF FF R7← NOT(R7)

SHL – 3F 0F FF R7← R7 << × 8
SHR – BF FF FF R7← R7 >> × 8

MOVE – AA – 01 R2← R1

Table 3.2: Initial Test Program

3.3 Change/Additions to ControlWords

Since I had made changes to the ALU, changes had to be made to nearly all of the existing con-
trolwords. This proved to be straight forward enough as there were no timing issues due to all the
instructions being single-cycle ones. A SHR, a new LOAD, STORE and MOVE controlword were
added. Table 3.2 shows a sample test program that was successfully run.
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Branch Condition BRA INS Mnemonic Condition Status Bit
Branch If Higher 000 BHI A < B C + Z = 0

Branch If Higher or Equal 001 BHE A ≥ B C = 0
Branch If Lower 010 BLT A < B C = 1

Branch If Lower or Equal 011 BLE A ≤ B C + Z = 1
Branch If Equal 100 BEQ A == B Z = 1

Branch If Not Equal 101 BNE A != B Z = 0

Table 3.4: List of Conditional Branches

3.4 Conditional Branches

A conditional branch is a branch that is either taken or not taken due to status bits that come from the
datapath. The status bits are the carry and zero flags, set if there was a carry/borrow or a computation
equal to zero performed, respectively. A branch control component was designed that took these
two inputs and a 3-bit input, BRA INS from the controlword and outputted a signal that acted as a
select line for a MUX which would choose either the next address in the PC or the next NABRA
address. When I began testing the branch instructions I came into a number of problems, which will
be discussd in detail later in this chapter.

3.5 Multiplier and Floating Point Adder Controlwords

Since the multiplier and floating point instructions would need more than a single clock cycle I needed
to come up with a way of delaying the next instruction until the the desired computation was complete.
I returned to the above mentioned units in the datapath and changed them, including ’done’ signals
which would be outputs of the datapath layer and inputs to the control unit layer. This was an easy
enough task for the multiplier as there was already an internal signal that was essentially a done
signal. However, there was no such signal in the floating point unit. The unit was remodelled to
propagate the start signal through a series of flip-flops until it reached the end of the pipelined floating
point adder, thus acting as a done signal. In the control unit, these done signals would be inputs to
a modified branch control component. In the controlword for the Multiplier instruction the NABRA
field would be set to the address of a ’hidden’ MULTNOP controlword. 1 This hidden controlword
would evaluate the ’branch out’ signal from the Branch control unit and whenever high, would set the
next instruction to be executed to be the address in the NABRA field, which is itself. When the done
signal goes high the branch out signal will go low, allowing the normal flow to continue while also
allowing the right value to be written to the register file.
Similarly for floating point addition, there is a FPNOP controlword that will loop until the done
signal from the datapath goes high. However, for the FPNOP the signal was staying high indefinitely,

1By hidden, I mean that it would be invisible to the programmer, so that it could not be issued directly from instruction
memory
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case bra_ins is
when "000" => -- 000 Branch Higher (BHI)

if (c or z)= ’0’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when "001" => -- 001 Branch if Higher or Equal (BHE)

if c = ’0’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when "010" => -- 010 Branch if Lower Than (BLT)

if c = ’1’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when "011" => -- 011 Branch if Lower or Equal (BLE)

if (c or z) = ’1’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when "100" => -- 100 Branch if Equal (BEQ)

if z = ’1’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when "101" => -- 101 Branch if Not Equal (BNE)

if z = ’0’ then
branch_out <= ’1’;

else
branch_out <= ’0’;

end if;
when others =>

branch_out <= ’0’;
end case;

Figure 3.2: Excerpt of Source Code from Branch Control component detailing the logic behind the
branch signal
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causing the processor to always branch. After a lot of testing, I discovered that the enable signal for
the unit, which was being propagated through the unit as a done signal was being kept high by the
FPNOP operation, hence the loop. The appropriate changes were made to the FPNOP controlword
and the microprocessor functioned correctly when executing the floating point add operation. See
figure 3.3 for a testbench waveform of the floating point add instruction.

3.6 Problems

3.6.1 Branch Reset

When the branch control component was fully tested I port mapped it into the control unit layer.
However, problems were arising when ever a branch was being taken. When the IF controlword was
being executed the ’branch out’ was remaining high and was interfering with the flow of the rest of
the program. In order to remedy this, I inserted a branch reset input into the branch control unit, that
would reset the branch control unit whenever the next instruction was being fetched.

3.6.2 Delay Register

The branch reset signal only fixed the problem in a few cases. When a conditional branch was taken,
the next sequential instruction was not being executed. This was because the branch out signal was
staying high therefore the NABRA field was always being selected, creating an infinite loop. A
normal branch reset signal would not suffice as it would reset the bit that needed to be examined.
After many possible solutions failed to resolve the problems I added a new field to the controlword
format, ’delay’. The delay bit is set to 1 in the conditional branch controlwords. A register was added
to the control unit, called the delay register. The delay signal would come into the register and be
stored there for one clock cycle then outputted to the branch control component where it would reset
the branch output only after the original value was read. This problem was resolved. However, the
solution created knock on affects.

3.6.3 Floating Point Adder

In figure 3.3 the floating point unit is working as expected. This was before the Delay Register
was implemented. Once it was implemented, the floating point unit ceased to work properly in the
microprocessor layer. However, it worked in the ALU and datapath layers. Due to timing constraints
I was unable to locate the source of the error and correct it.
See Appendix A for a detailed table of the function of all the fields in the controlwords.
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Figure 3.3: Testbench waveform that shows the done signal for floating point addition going high and
then the result being written to the databus

Figure 3.4: Testbench waveform that shows the broken Floating Point Adder. See Figure 3.3 for when
it was working
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Figure 3.5: Schematic Representaion of Control Unit

Figure 3.6: Tree representation of the completed Microprocessor project
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Instruction Name Opcode Action
LOADR0 – 48 – 01 R0←M[01]
LOADR1 – 49 – 02 R1←M[02]
LOADR2 – 4A – 03 R2←M[03]
LOADR3 – 4B – 04 R3←M[04]
LOADR4 – 4C – 05 R4←M[05]
LOADR5 – 4D – 06 R5←M[06]
LOADR6 – 4E – 07 R6←M[07]
LOADR7 – 4F – 08 R7←M[08]

SHL – 39 -? -? R1← R2 << × 8
BEQ 92 5? ?? 80 PC← 4 if z = 1
SHR – B9 -? -? R1← R2 >> × 8

MULT – A0 -? -? R0← R2 × R3
FPADD – 9A -? -? R2← R2 + R3

BNE BF 5? ?? 80 PC← 0 if z = 0

Table 3.6: Final Test Program
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Chapter 4

Synthesizable VHDL, the Board and the GUI

In this chapter I will discuss synthesizing the design, downloading it to the board1, and the teching
GUI.

4.1 Synthesizable VHDL

Synthesis is the translation of a high level design into a specified hardware. It translates a register
transfer level model of hardware (written in a HDL) into an optimized technology-specific gate level
implementation. That is to say, the synthesis tool will take the designer’s code and remodel it (main-
taining the desired logic) in order to optimize it. Because of this it was important that my design
be presented well, free of latches and unsupported VHDL constructs so that the optimization by the
synthesis tool did not affect the desired logic of the microprocessor.
It was imperative that the design was synthesizable. It is worth a mention that only a small frac-
tion (around 10 per cent) of the VHDL code constructs are synthesizable. Aside from declaration
constructs, the only VHDL language constructs used in the design are process, case,if-then-else and
concurrent signal assignment. Only code that can be synthesized can be converted by the compiler
into a valid net-list of ports, which then can be translated and mapped onto physical hardware. Not
only would a synthesizable design be downloadable to the target project board but would prove that
an efficient design is in place.

4.1.1 HDL programming styles

There are 3 main styles of HDL programming:

• Behavioral coding

– no specific hardware details supplied

– bus sizes, clocks, resets etc. not specified

– no target technology
1The FPGA
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– not synthesizabe

• RTL coding

– more detailed coding

– bus sizes, clocks, resets etc defined

– target technology not supplied

– is synthesizabe

• Structural Coding

– more detailed description of how circuit operates

– bus sizes, clocks, resets etc. defined

– target technology defined

– is synthesizabe

My approach to the design was Structural coding. I decided not to make use of any of the modules in
the technology library since I thought it would be better to design every component of the micropro-
cessor myself.

4.1.2 Useful Rules For Synthesis

As part of my 4S1 Integrated Systems Design module this year, I learned several partitioning rules
for Synthesis. A number of these, detailed below, were useful for designing the microprocessor in an
efficient way so that the synthesize tool could enhance my design for speed and area. I adhered to
them rigourously wherever possible.

• No hierarchy in combinational paths

– optimization is limited if hierarchy in combinational paths

– hierarchy boundaries prevent sharing of common terms

– example: Combinational modules (CROM, CAR etc.) in the Control Unit are seperated
from the non-combinational ones

• No ’glue’ logic between layers

– optimization is limited if glue logic exists between layers i.e a path between module1 and
module2 consisting of gates

– glue logic prevents sharing of common terms

– example: Multiplexers between control Unit and datapath are part of the datapath layer

• Separate designs with different goals
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Figure 4.1: High-Level Flow for Synthesis Tool

– designer should use different modules for different components to partition design into
blocks

– easier for synthesis tool

– example: All logic operations grouped in one module because they have similar goals

– example: A different module for the multiplier and floating point unit

• Isolate state machines

– FSM optimization tool can’t be used if non-state machine logic exists in process

– separating the FSM logic allows the FSM optimization tool for optimal state assignment
and area reduction

– example: The multiplier module

4.2 The Board

The board in question is a Virtex II XC2V1000 Xilinx chip in an FPGA. An FPGA is a configurable
application specific integrated circuit that is programmable to perform a certain hardware task. Its
main components are

• a regular array of configurable logic blocks (CLBs) that can implement combinational and
sequential logic

30



Figure 4.2: Download Cable Interface
[2] taken from Ross Brennan’s final year project report

• a matrix of programmable interconnects, that surround the CLBs

• programmable I/O cells surrounding the core

Each CLB consists of a look-up table, MUXes and a flip-flop and can be programmed to implement
boolean functions of a few variables. The I/O blocks can be configured to connect to the wiring of the
CLB and interconnects.

4.3 Downloading the design to the Board

I used Xilinx Impact to generate the bit file that would be downloaded to the board (Figure1.1). It was
configured in Serial slave mode and was downloaded to the board via a parallel cable.

4.4 Problems with testing the Board

The RESET button2 on the board was broken so I had to come up with another method for displaying
the results. I designed a reset counter module which counted up with every clock pulse. When the
count got to 2, the reset button went high3 and after a huge number of clock pulses it reset the count
and set reset low.
However, the LEDs on the board appeared not to be lighting up. After I ran a test program on it
I discovered that the reason for this was that the clock pulse was too fast. I wrote a clock divider
module that would take the clock as an input and after a sufficient count had been accumulated, it

2effectively the Start button
3reset was active low i.e the microprocessor was reset when the reset signal went low
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Figure 4.3: Tutorial part of GUI

would output a new clock to the system. However this did not solve the problem and due to timing
constraints I was unable to come up with an adequate solution.

4.5 The GUI

The GUI has two sections. The first part of the GUI provides the user with a list of components from
the microprocessor. When a component is selected i.e. the register file, a schematic of the layer is
displayed, detailing the components and that make up the unit and the connections between them.
At the bottom there is a text box that gives a deatailed explanation of the register file and how it all
works. See figure 4.3.
The second section (figure 4.4) allows the user to make their own VHDL microprocessor project.
Two windows in the GUI allow the user to choose the target folder, where the project is located, and
destination folder where the new project will be stored. On the bottom right-hand side of the GUI
there a total of nine options for which component(s) to have absent from the new project folder. When
the user has selected the components to be absent and clicks the ’Create New Project’ button the new
project is created. Since the program is filtering through a large number of files (more than 2500) this
takes a few moments.
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Figure 4.4: GUI: Creating a new project file
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Figure 4.5: Warnings when opening modified project

4.5.1 Using the GUI

Here we will step through the process of a lecturer creating a new project file for the students. The
lecturer will open up the GUI and proceed to the second part and choose to remove the following
components from the project: The instruction Memory, the branch control unit, and the barrel shifter.
Then he will click the Create a New Project button and when the creation is finished will assign the
job of designing the components to the students. A student will open the new project file. Figure 4.5
shows the warnings that will appear as the project is opened.
The three selected components absent from the project are highlighted in the Sources In Project plane
by red question marks. When the student clicks on one of the these, like in figure 4.6, marks a
window appears inviting them to create a new component where the old one was. If it the component
in question was the branch control unit, like in figure 4.6 the student would have to open up the
’control unit’ layer and look at the declaration of the inputs and outputs of the branch control unit4

in order to start designing the new component. Then the student would have to appreciate the other
components that make up the control unit layer so that they can efficiently design the branch control
unit.
When finished designing the component, a testbench waveform is already available for them to test
their design. This test bench consists of input and output vectors and when matched with a fully
functional branch control unit will display the results with no warnings. This way the student can
design and test the missing components and be sure that their designs are working and efficient.

4the inputs and outputs are declared here because the control unit layer instantiates the branch control unit
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Figure 4.6: Modified Project viewed through Project Navigator
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Chapter 5

Results, Conclusions and Future Work

5.1 Results

The results of the project shows that a simulated complex instruction-set processor could be repre-
sented in VHDL and synthesized with an XST VHDL synthesizer.
The project, with a little further work done to it, could be used as a teaching tool in a few areas:

• for the 2BA4 Microprocessor Systems project. This project goes into detail on the internal
components of a microprocessor and would be ideal for students to see how each of those
components work and how they interact with each other. The project could be modified to hook
up the Virtex chip on the FPGA to other components such as RAM and EEPROM, to provide
a better indication of how the microprocessor interacts with its surrounding components. The
GUI also provides another avenue for the students to learn about microprocessor design.

• for the 1BA3 module. Students learn how to program assembly language and conditional
branches are an integral part of it. This project could be used to teach how the branching is
carried out in hardware and help the students gain a deeper understanding of what they are
programming.

• for the 1BA4 module. In the Digital Logic Design module the students learn the basics of digital
logic from logic tutors. These tutors are huge cases containing gates and flip-flops. They are
quite awkward and have a limited size. This project, or a similar project could be tailored to be
a teaching tool for those students.

5.2 Conclusions

As well as proving useful for teaching needs, the project demonstrates the usefulness of Hardware
Description Languages and FPGAs, not only from a design and synthesis perspective but also as
teaching tools. VHDL is already used in the Computer Architecture I module and in the 3BA5 mod-
ule. It could easily be integrated into the 1BA3, 1BA4 and 3BA4 modules.
The project also shows why FPGAs are gaining popularity in industry. In a matter of minutes a
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simulated design can be placed on a board and then fully tested. For a full-custom1 or semi-custom
design2, when the design is finished and thoroughly tested the design is sent off to a factory to made
into hardware. This is expensive in terms of time (up to 8 weeks) and money, especially if a fault is
found on the hardware chip after. In the case of an FPGA, the design can be tested on-board and if
any errors arise then the design can be debugged and replaced on the FPGA.

5.3 Future Work

More complex instructions could be made if more ALU units like an integer division unit was de-
signed and added. Three other final year projects have been done this year that could be integrated
including an optimised floating point adder, an optimised floating point multiplier and a project that
implements Tomosulo’s method.
The GUI could be expanded to include the subcomponents of each layer in the design and any other
new layers. A different GUI could be implemented as a teaching tool for the control words, allowing
the students to construct their own control words and testing them out on the system.

1A design where every single component is designed by the designers in order to maximise speed and area
2A design consisting mostly of ’primitive’ components from a standard library
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Appendix A

Control Word Table
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Bit(s) Field name Signal Function
0 IL 0 Disable Instruction Register

1 Enable Instruction Register
1 MC 0 Select NASEQ in MUXC

1 Select opcode in MUXC (to execute next instruction in memory)
6 - 2 NASEQ XXXXX The address of the next instruction to be executed immediately

7 PL 0 Hold PC
1 Load PC

8 PI 0 Hold PC
1 Increment PC

14 - 9 Control Instructions 0000XX Shift Left
0001XX Shift Right
001X00 AND
001X01 OR
001X10 XOR
001X11 NOT

010XXX CLA ADD
0111XX Start FP Add
0110XX FP Add
100X0X Output HiZ
100X10 Store
100X11 Load

101XXX Multiply and Enable temp register
110XXX Move

15 MB 0 MuxB select: select immediate value
1 MuxB select: select value register file

16 MR X No Function
17 MW X No Function
18 CIN 0 Add in CLA adder

0 Subtract in CLA adder
19 Branch Reset 0 Do not reset branch control unit

1 Reset Branch control unit
20 RW 0 Enable write to register file

1 Disable write to register file
21 DC X No function
22 Delay 0 Do not reset Branch control unit after one clock cycle

1 Reset Branch control unit after one clock cycle
27 - 23 NABRA XXXXX Address of the next instruction to be executed if branch taken

28 Enable 0 Read from external chip(micro-processor disabled)
1 Do not read from external chip (micro-processor enabled)

31 - 29 Branch Instruction 000 BHI
001 BHE
010 BLT
011 BNE
100 BEQ
101 BNE
110 Wait for Mult Done
111 Wait for FP Done

Table A.1: Control Word Fields
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Appendix B

Terminology

• Register: A kind of placeholder for data

• Flip-Flop: Basic element of memory storage

• Bus: A shared transfer path between registers, driven by selection logic

• Port: A pin on an IC

• Port Map: A VHDL statement that instantiates components

• Schematic: A feature of VHDL where components can be connected through schematics

• Bit file: The file that is downloaded to the FPGA, representing the design

• Controlword: A 32 bit signal, sent by the CROM to other coponents, that indicate what instruc-
tion is to be perform

• ALU: Arithmetic/Logic Unit: the hardware that performs the operations

• Register File: The layer containing the registers

• Datapath: The layer that connects the ALU and Register File

• Control Unit: The layer that determines and then sends the control signals to the datapath

• Testbench Waveform: A waveform that takes in the input vectors of a component and outputs
the simulated results

• Opcode: The part of the instruction that tells the CROM the desired controlword

• Gate Delay: The delay associated with signals propagating through gates
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