
In the Name of God, the Compassionate, the Merciful

Open Source Real-Time OS (RTEMS)

on SCI based Compute Clusters

Salman Taherian

Senior Sophister Final Year Project

Supervisor: Michael Manzke

B.A.I. Bachelor in Engineering

&

B.A. Bachelor in Arts

University of Dublin

Trinity College

School of Engineering

2003

University of Dublin

Abstract

Open Source Real-Time OS (RTEMS)

on SCI based Compute Clusters

A new class of real-time application demanding high computation and parallel pro-

cessing power has begin to emerge. It is believed that previously proven successful

compute clusters could once again, offer an optimum and cost-effective solution to

such demand. This project investigates the implementation of a specific real-time

compute cluster (RTCC). A dedicated cluster interconnect, SCI (Scalable Coherent

Interface) - IEEE Approved Standard 1596-1992, with hardware based functionality

and deterministic performance was selected as the RTCC interconnect. Implemen-

tation focuses primarily on the hardware based distributed shared memory (DSM)

offered by the SCI technology as the basis of inter-communication within the RTCC;

while providing a solid platform for support of future SCI functionalities on the

RTCC.

RTEMS, Real-Time Executive for Multiprocessor Systems - an “open source”,

“licence free”, real-time dedicated operating system, was evaluated as the target

real-time operating system performing on the RTCC. This project investigates the

incorporation of SCI technology in RTEMS (supporting SCI functionalities and

drivers), as well as implementation of a suitable real-time cluster computing li-

brary on RTEMS for support of DSM based RTCC. Finally, this project presents

a mechanism of performing real-time computing by utilising the DSM based inter-

communication. Synchronisation and mutual exclusion facilities are also supported

through implementation of a suitable two stage lock mechanism.

ACKNOWLEDGMENTS

First and foremost I would like to thank my family, especially my parents

for all their help and support throughout this year, not forgetting the past

twenty. My supervisor, Michael Manzke, merits great appreciation for his

advice, support and guidance on all aspects of this project.

I would also like to thank the RTEMS developers and the people on the

RTEMS mailing list, particularly Joel Sherrill - Director of Research & De-

velopment of OAR Corporation, Ralf Corsepius for and Gregory Menke for

their support and guidance throughout this project. Hugo Kohmann, from

Dolphin Interconnect Solutions Inc., also merits special thanks for helping

me to achieve an in-depth realisation, implementation and understanding of

the SCI technology.

Finally, I would like to thank Sean McEvoy for his guidance on project,

time and risk management in projects, which proved beneficial and Nichola

Murphy for proof-reading the project report and presenting her useful com-

ments.

i

TABLE OF CONTENTS

List of Figures iv

List of Tables v

Glossary vi

Chapter 1: Introduction 1

Chapter 2: Compute Clusters & Cluster Interconnects 5

2.1 Clusters . 5

2.2 Scalable Coherent Interface . 7

Chapter 3: Real-Time Operating Systems 15

3.1 Hard Real-Time Systems . 17

3.2 Soft Real-Time Systems . 18

3.3 Real-Time Kernels . 18

Chapter 4: SCI Drivers 21

4.1 Drivers . 22

4.2 Drivers on Linux . 22

4.3 Drivers on VxWorks . 25

4.4 Structure of SCI Drivers . 29

4.5 Compilation, Build & Configuration 31

4.6 IRM . 32

4.7 SISCI . 39

Chapter 5: RTEMS 42

5.1 RTEMS Rate Monotonic Scheduling (RMS) 43

5.2 Comparison of RTEMS with others 44

5.3 RTEMS Structure . 50

5.4 RTEMS Build . 52

5.5 RTEMS Initialisation . 57

5.6 RTEMS Device Drivers . 59

5.7 Comparison of Device Drivers on RTEMS, VxWorks and Linux . . . 61

Chapter 6: Implementation 63

6.1 SCI drivers on RTEMS . 64

6.2 Building drivers under RTEMS . 65

6.3 SCI Initialisation within BSP . 67

6.4 SCI driver development on RTEMS 71

6.5 Application layer . 79

6.6 Debugging . 83

6.7 SISCI layer . 84

Chapter 7: Evaluation & Conclusion 87

7.1 Implementation . 87

7.2 Project . 88

7.3 Future work . 90

Bibliography 92

Appendix A: RTCC Package API 96

A.1 SCI Initialisation Library (sci init.h) 96

A.2 SCI Driver Interface (sci genif.h) 97

A.3 Real-Time Cluster Computing Library (librtcc.h) 97

ii

Appendix B: Discovered GCC bug 99

B.1 Symptom . 99

B.2 Cause . 99

B.3 Workaround . 100

B.4 Resolution . 100

B.5 Status . 100

Appendix C: Concepts & Tools 101

C.1 Technical Concepts learnt . 101

C.2 Tools and Software utilised . 101

iii

LIST OF FIGURES

2.1 Distributed Shared Memory diagram 10

2.2 PCI-SCI card overview . 12

2.3 SCI Link Controller chip overview . 13

4.1 Linux Module-Kernel Inter-communications Diagram 24

4.2 IRM Internal Structure Diagram . 30

4.3 IRM Source Code Overview . 33

4.4 SISCI Source Code Overview . 40

5.1 RTEMS build diagram . 53

5.2 RTEMS Makefiles . 55

6.1 SCI Shared Memory Segment . 80

iv

LIST OF TABLES

5.1 RTOS’s Features List . 46

5.2 RTOS’s Latency comparisons . 47

v

GLOSSARY

API Application Programming Interface, hides low programming detail and pro-

vides a unique interface for higher level applications.

ATC Address Translation Cache, internal SCI cache for mapping PCI and SCI

addresses.

ATT Address Translation Table, used on SCI card to translate PCI addresses to

SCI addresses and vice versa.

BSP Board Support Package, all portions of RTEMS which are board specific.

BWCE Burst Write Combining Enable, an advanced PCI bus feature on

HB 450NX PXB host-bridges.

Context Switching Delay The time delay from the execution of the last instruc-

tion of a task, to execution of the first instruction of another task, which

includes the time scheduler determines which task to run, time to save the

context of first task and time to restore the context of the second task.

DSM Distributed Shared Memory, memory segment accessible by all cluster nodes

at hardware level.

FAA Federal Aviation Administration.

HAC High Availability Computing

HPC High Performance Computing

HTC High Throughput Computing

vi

Interrupt Latency The time elapsed from the moment of occurrence of an event

(e.g. a hardware interrupt) until execution of the first instruction of the In-

terrupt Service Routine (ISR), which includes the overhead required by the

executive at the beginning of each ISR plus the time required for the CPU to

vector the interrupt.

IRM Interconnect Resource Manager, main section of SCI drivers which directly

interacts with SCI hardware.

IRQ Interrupt ReQuest, the number of interrupt levels available within a system.

ISR Interrupt Service Routine, also known as Interrupt handler.

IT Information Technology.

LC Link Controller, interfaces the SCI card to the global SCI network.

LIBRTCC Real-time cluster computing library, supports real-time computing on

a RTCC.

MMU Memory Management Unit.

OS Operating System, controls and provides a unique hardware independent inter-

face for user applications to access hardware.

PIO Programmed I/O, capability of executing load and store instruction on remote

cluster nodes.

PSB PCI-SCI Bridge, interfaces the PCI bus to the SCI card.

RMS Rate Monotonic Scheduling, special scheduling algorithm utilised in RTEMS

to schedule periodic real-time tasks.

ROM Read-Only Memory.

vii

RTC Real Time Clock, utilities in sensitive embedded applications to perform ex-

ecution on high accurate basis.

RTCC Real-Time Compute Cluster.

RTEMS Real-Time Executive for Multiprocessor Systems, the RTOS used within

this project.

RTOS Real-Time Operating System.

SCI Scalable Coherent Interface, IEEE standard interface technology, dedicated as

cluster interconnects.

SMP Symmetric Multi-Processor, several processors on a single bus, forming a

supercomputer.

VC Virtual Channel, forms the second layer of the SCI inter-communications pro-

tocol.

viii

Chapter 1

INTRODUCTION

Not long ago, substantial computing power was only available within supercom-

puters. These high-performance systems have always been very expensive due to

high design costs and the relatively small market for them. Today however, powerful

computer clusters can be built for a fraction of the cost of traditional supercomputers

by combining inexpensive, mass-produced PCs with dedicated cluster interconnects.

Clusters are known to have two significant characteristics: (i) They are a cost-

effective alternative to large scale parallel systems and (ii) They are scalable. The

most vital component in a cluster is the interconnect, which connects separate com-

puter nodes to form a “unified computing resource”[1]. Communication latency,

throughput and scalability are important parameters when building a cluster of

interconnected computers. These parameters are all governed by the cluster in-

terconnect, which is utilised in the formation of the cluster. The importance of

interconnects in a cluster was recognised, hence Dolphin PCI-SCI (D310 model)

interconnect cards were adapted for this project. This interconnect, referred to as

SCI (Scalable Coherent Interface), is an implementation of the IEEE, SCI: Scalable

Coherent Interface, Approved Standard 1596-1992. SCI is a dedicated cluster inter-

connect, implemented specifically for the task of constructing clusters from a series

of standalone computers [29].

Parallel computing may be divided into two classes: Moderate Parallel systems

based on shared memory (typical SMP machines) and Highly Parallel machines

based on message passing. SCI offers low latency message passing through non-

cached shared memory. Remote memory read, write, lock, interrupt and DMA

operations are available. Hence, SCI cards for a standard PCI bus offer both low

2

latency message passing and distributed shared memory with a large number of

processing nodes for a moderate price. Even though sources of performance loss

within clusters are the the slow PCI bus and the SCI link latency, advancements

within the SCI technology have shifted the focus of the performance loss purely on

to the PCI bus.

Another class of systems, which are fast emerging into the IT1 industry, are

the Real-Time systems. Real-time systems are classified as systems which possess

timing constraints on their execution. These constraints require the system to op-

erate in a predictable and deterministic fashion. Real-time systems are widely used

within embedded applications, where systems are task or operation specific and in

most cases required to be fully reliable. Growth of computer system applications in

all areas, together with the merging of old multi-media systems and modern com-

puter systems, has increased the demand in real-time systems more than any other

previous time.

Modern real-time systems increasingly demand higher computational power.

This may be clearly seen within the developing network and communication tech-

nologies (3G, 4G, etc), which are required to support a tremendously large amount

of network load on a real-time basis. While real-time based supercomputers may

be utilised under such circumstances, this project investigates provision of a cost-

effective solution, RTCC (Real-Time Compute Cluster). There have already been

a number of attempts in implementation of the RTCC, but these have either been

based on proprietary systems or they lack the high-performance required.

The RTOS (Real-Time Operating System) chosen for this project is an open

source, real-time and embedded dedicated operating system named RTEMS. RTEMS,

Real-Time Executive for Multiprocessor Systems, is a “licence free” operating sys-

tem with an extensive set of features and a performance comparable with the most

successful real-time operating systems in the industry (e.g. VxWorks). This project

evaluates RTEMS on an SCI based compute cluster in order to achieve an inexpen-

sive high-performance RTCC. The following points are considered noteworthy when

1Information Technology

3

analysing the choice of elements within this project.

• RTEMS is a high performance RTOS, and SCI a dedicated cluster interconnect

with a sufficiently high performance, they are hoped to contribute towards a

high-performance RTCC.

• RTEMS is an “open source” and “licence free” system and thus not only

significantly reduces the cost when compared to expensive proprietary systems,

but it also offers future research and development possibilities in this area.

• Inexpensive D310 model PCI-SCI cards, which offer the required distributed

shared memory capability were adapted for this project. They also represent a

hardware based, deterministic behaviour, most suitable for real-time systems.

This project will initially aim at incorporating SCI compatibility into the RTEMS

system. Analysis of SCI hardware and specifically SCI drivers, as well as RTOS’s

and specifically RTEMS system, were of extreme importance in this section. It was

necessary to implement full functionality of the SCI hardware on RTEMS, without

introducing any disadvantages or performance losses into the overall system. SCI

technology has particularly close ties with the memory management of systems,

which need extra attention. In addition, SCI drivers and operations must comply

with requirement and standards of a real-time system. Efforts were made to imple-

ment SCI functionality on RTEMS most efficiently and in-line with other sections

of the system. The second section of this project is dedicated to the implemen-

tation of the hardware based DSM (Distributed Shared Memory) within a cluster.

Following this section a full RTCC is implemented with DSM as a basis for cluster

inter-communications. In the final stage of this project, a two stage lock mechanism

is developed to support inter-process synchronisation within a cluster, along with

a simple demonstration program illustrating the result of project on a two node

computer cluster.

This report is composed of seven chapters and three appendices. The following

two chapters provide background information regarding clusters, SCI and RTOS

4

in general. Chapters four and five examine in detail, the SCI driver and RTEMS,

respectively. Lack of documentation in many cases, particularly the SCI drivers,

encourages us to present a detailed view of overall elements examined. It is fur-

ther hoped that this project report will serve as an implementation guide and/or

documentation for systems examined throughout this project. Chapter six details

the implementation of the RTCC and analysis the implementation from various per-

spectives. Finally, chapter seven presents results of the implementation along with

conclusions and an overall evaluation of this project.

Chapter 2

COMPUTE CLUSTERS & CLUSTER INTERCONNECTS

The wide spread use of digital technology and particularly computers within our

daily lives has augmented the need for higher computation power within systems.

In response to this demand hardware manufacturers are producing newer and faster

hardware (and more specifically processors), on monthly basis. It is the high de-

mand for computation power which contributes towards the rapid advancement of

the computer technology. Unfortunately, there is a cost associated with this rapid

advancement. As the technology becomes more advanced and complex, the cost of

production and the related cost of purchase elevates.

Continously maintaining supercomputers and mainframes to the highest level

of technology is extremely costly and in most cases, uneconomical. The concept

of a compute cluster offers construction of cheap supercomputers with the option

of performance scaling, which is independent of technology development, and with

minimum additional costs. Mentioned factors have resulted in rapid deployment of

compute clusters within various industrial sectors, and in particular the replacement

of high performance and large scale supercomputers with the more promising com-

pute clusters. This chapter will provide a brief introduction to the significance of

compute clusters, followed by a detailed examination of the interconnects employed

within clusters. This project specifically employs SCI (Scalable Coherent Interface)

interconnects manufactured by Dolphin. Hence the second section of this chapter

will be focus entirely on this hardware and technology.

2.1 Clusters

A cluster is a collection of interconnected whole computers used as a single unified

computer. Traditionally, parts of computer systems and mainframes had to be

6

replaced with new hardware if higher computation or processing power was desired.

Due to compatibility issues, this process, in most cases, resulted in the replacement

of multiple parts rather than the replacement of one desired section. The process

was highly costly both in terms of money and time. Another disadvantage with this

model was the poor residual value of the computer equipment. A system replacement

often resulted in the invested capital being lost when the old system was replaced

with a newer model.

In late 1993 Donald Becker and Thomas Sterling began sketching the outline of

a commodity-based cluster system designed as a cost-effective alternative to large

supercomputers [4]. The initial cluster computer consisted of 16 Intel 486 DX4

processors @ 100MHz, 16 MBytes RAM and 10 Mbit Ethernet Interconnects. The

machine was an instant success. It was considered as an optimum solution without

the many problems and disadvantages associated with the large mainframe and

supercomputers.

Clusters can be built as result of interconnecting basic off-the-shelf computers,

referred to as nodes. The main characteristics of a cluster are as follows:

• It consists of many of the same or similar type machines (heterogenous clusters

are a subtype, still mostly experimental).

• It is tightly-coupled and uses dedicated interconnects.

• All machines share pre-specified resources such as a common memory segment.

• Initial software is required to setup the system for cluster computing.

The main advantages of clusters are that they are inexpensive and scalable. They

are superior to supercomputers in terms of cost. Clusters need not be composed of

the latest technology hardware available, and rarely need parts replacement. Their

second advantageous factor, is evident scalability, when higher processing power is

desired. Their performance may be improved by the addition of extra nodes rather

than the replacement of parts. Scalability itself, however, is highly dependent on

7

the interconnect technology employed within the compute cluster [36]. The band-

width and latency of the interconnect can determine the scalability of the hardware.

Cluster architectures are physically more scalable than SMP1 architectures. This is

due to the increased aggregate interconnect bandwidth resulting from the addition

of processors to clusters. In an SMP, the interconnect bandwidth remains constant.

The three main cluster application areas are as follows:

High Performance Computing (HPC) Executes programs with parallel algo-

rithms.

High Throughput Computing (HTC) Used in parametric studies (same pro-

gram executed many times with different parameters).

High Availability Computing (HAC) Provides fail-over redundancy.

Finally, cluster topology is a factor which users may use to their advantage.

Clusters dependent on the employed interconnect can form various topologies, the

most common of which is the ring formation. Although interconnects are considered

one of the sources of performance loss within clusters, tuning of applications to a

specific cluster topology may significantly minimise this loss of performance.

2.2 Scalable Coherent Interface

A key decision that will greatly affect the overall performance of a compute cluster

is the method used to connect the nodes together. Performance and scalability of

traditional systems were limited by the scalability of the processor bus. Scalable

Coherent Interface (SCI) was introduced to enable the extension of systems beyond

the scalability limit imposed by the processor bus [12]. The scalable coherent in-

terface (SCI) provides computer-bus-like services [26]. Unlike a bus, however, it

uses a collection of fast point-to-point unidirectional links to provide the far higher

1Symmetric Multi-Processor

8

throughput necessary for high-performance multiprocessor systems. SCI is a ded-

icated cluster interconnect, implemented according to the IEEE Scalable Coherent

Interface (SCI) standard 1596-1992.

The most significant service offered by the SCI is the provision of a single physical

64-bit address space across SCI nodes and the related transactions for reading, writ-

ing, and locking memory locations in this hardware based distributed shared memory

(DSM). SCI supports distributed shared memory with optional cache coherence for

tightly coupled systems and message-passing for loosely coupled systems[19]. The

employment of the unidirectional point-to-point links eliminates the dependency of

bus length and bus speed on the size and number of processors on SCI topology.

Point-to-point unidirectionality of the network also ensures lack of congestion within

a simple ring based SCI network [21]. Distributed shared memory provided at hard-

ware level within a compute cluster results in a low latency, high performance and

deterministic behaviour of the technology.

“The Scalable Coherent Interface (Local Area MultiProcessor) is effectively a

combination computer backplane bus, processor memory bus, I/O bus, high per-

formance switch, packet switch, ring, mesh, local area network, optical network,

parallel bus, serial bus, information sharing and information communication system

that provides distributed directory based cache coherency for a global shared mem-

ory model and uses electrical or fiber optic point-to-point unidirectional cables of

various widths.”[5]

The scalable coherent interface as an “open” distributed bus also provides low-

latency interconnections with full reliable communications for clusters [21]. High

throughput, low latency and low CPU overhead are major factors which classify

SCI as a high performance technology. Bandwidth and latency of SCI are sufficient

in order not to impose any limitation on the performance and scalability of clusters.

Meanwhile, the reliability of communication within SCI network, is also guaran-

teed through node-to-node request/response/acknowledge protocols, as well as the

facilitation of split transactions (independency of the request and response signals)

to prevent deadlocks. Address based communications, rather than stream based

9

methodology, result in the increased efficiency of SCI. Additionally, SCI protocols

do not guarantee in-order delivery of transactions, hence the user must support this

feature, through manual application, if desired.

One must appreciate that SCI is designed to serve both, message-based and

shared-memory programming models [9]. Another feature of the SCI hardware,

which will not be discussed in detail, is the ability to generate hardware interrupts

on the remote nodes. This is performed by writing into the special status register

address (mailbox) of the target node. Once the interrupt is triggered on the remote

node, the SCI interrupt handler on the target node will be invoked and may perform

the desired task or operation.

Exploiting SCI’s flexibility in terms of its efficiency in supporting both parallel

programming models - message passing and shared memory - leads to investigations

targeting a distributed shared memory multiprocessor system similar to Stanford’s

FLASH [23], or MIT’s Alewife [7] machines. The following subsection details how

distributed shared memory (DSM) is achieved within a cluster through the use of

SCI interconnects.

2.2.1 Shared Memory using SCI

SCI, with its origin as a distributed multiprocessor bus, provides possibilities to

directly access remote memory by ordinary load and store operations [37]. Since

remote accesses are going through the I/O bus, these remote load/stores are often

referred to as programmed I/O (PIO).

Figure 2.1 illustrates a typical architecture of an SCI based cluster. SCI tech-

nology has also accounted for caching of remote memory and thus target higher

performances. Hence the resultant memory hierarchy is: (1) CPU registers, (2)

CPU cache, (3) local memory or SCI cache, (4) remote memory [35]. Unfortunately

this is not possible on PCI bus based systems, since transactions on the processor

bus of a system are not visible by the (slower) PCI bus. Nowadays, PCI-SCI cards

are used as cluster interconnects. PCI technology, in contrast to the motherboard

technology, offers a unique interface for SCI cards, accounting for its employment in

10

SCI cable

Processor BUS

Bridge

MemoryCPU

IO

SCI
Card

IO BUS

LC chip

PSB chip

Processor BUS

Bridge

MemoryCPU

IO

SCI
Card

IO BUS

LC chip

PSB chip

Node 2Node 1

B LinkB Link

Figure 2.1: Distributed Shared Memory diagram

a much wider range of systems.

As noted earlier, SCI protocols do not guarantee in-order delivery of transactions.

This is a result of the transaction buffering capability on SCI cards. The bandwidth

of the SCI network is greater than the normal PCI busses, hence it is not uncommon

for the SCI transactions to be delayed as result of the delay within the PCI bus. In

order to eliminate this issue SCI makes use of two concepts. The first is the split

transaction mechanism, which also eliminates the possibility of dead-locks within the

SCI network, while the second is the transaction buffering on the SCI card. Multiple

stores to adjacent locations in remote memory can be gathered (by hardware) into

internal buffers on the local PSB chip [37]. When a buffer is full, the PSB will

transmit the contents of the buffer as a single, fully loaded SCI packet. Thus the

overhead of SCI packet generation is amortised over many store operations. This

technique is referred to as streaming. A read or store barrier operation may be used

to flush all pending operations on the SCI network.

11

Each node can create shared memory segments in its I/O address space and

export them into the SCI network. Other nodes import these DSM (Distributed

Shared Memory) segments into their I/O space. A process may further map DSM

segments into its virtual address space and from that point on, use standard load

and store instructions to access shared, potentially remote memory. A processor

can also send a lock operation (atomic read-write operation) to another node. SCI

transactions are atomic and guaranteed to be delivered to the destination node.

The memory segments are pinned down, meaning that they are non-swappable.

They are assigned a unique id, which remote nodes use to import the segment.

The remote node maps the exported memory segment (available through the SCI

network) into its I/O address space, and creates an entry on its Address Translation

Table (ATT). Additional options and configurations (known as segment flags and

attributes) are also available to the user, which provide a series of services (such as

security and access restrictions to the segment). Though potentially useful under

some circumstances, they are undesirable in the context of this project, since they

may introduce software interventions into the end system.

All remote operations are carried out by addressing part of the local address

space, which is allocated for the SCI card on the PCI bus. Access to the local

virtual memory is first mapped to a physical I/O address through the Memory

Management Unit (MMU). The 32 bit PCI address is hence mapped into a 64 bit

SCI address using the Address Translation Table (ATT) located on the board. The

most significant 16 bits indicate the target node id, and hence also impose the

restriction of maximum 64k nodes on any single SCI network. A portion of the PCI

address is used as an offset to the remote memory segment and remains untouched.

In most cases this is the 18 least significant bits. The remaining portion of the PCI

address signifies the segment id. At the destination node, the least significant 32

bits of the SCI address are the physical I/O address on the target system.

Figure 2.2 shows the basic overview of a PCI-SCI card. The B-Link operates as

a backbone link between the PSB (PCI-SCI Bridge) and the LC (Link Controller)

chips. The PSB (PCI-SCI Bridge) chip translates I/O bus transactions into SCI

12

B−Link

RAM

LC
Daughter

Board
Connector

Connector
JTAGDIP

Switches
LEDs

Reconfigure

Controller
Board

LC

ChipSCI
Link

PCI Connector

(Dolphin ASIC)
PSB32 Chip

PCI−SCI D310 Card

Figure 2.2: PCI-SCI card overview

transactions (and vice versa), and this is the SCI interface to the local machine

(PCI bus). The on-board ATT (Address Translation Table) stored within the RAM

chip, is used to convert local I/O addresses into SCI addresses (and vice versa). The

LC chip is the interface of the card to the external nodes. It manages data transfer

on the SCI physical layer, as well as performing routing and delivery guarantees.

The board controller controls reset and initialisation of the board, as well as

board status reporting and LED management. DIP switches are used to set various

parameters on the card, such as the SCI link frequency, B-Link frequency and SCI

window size. The daughter board connector supports an additional card for high

fault tolerance and routing ability.

The PSB chip is a combination of the following components [15].

PCI Interface Interfaces the PCI bus and contains a DMA controller for high

performance memory-to-memory transfer.

13

Saved Idles

Bypass FIFO BufferStripper

CRC

CRC

Transmit
queues

Receive
queues

Signals echo
R

equests

R
esponses

R
equests

R
esponses

M
U

X

Insert

E
ncode

Link Controller chip

Figure 2.3: SCI Link Controller chip overview

Read and Write Buffers Read and write operation streams (16 streams with 128

bytes buffer each).

Address Translation Cache (ATC) Internal cache for mapping of 32 bit PCI

addresses to 64 SCI addresses.

The PSB chip is formed by the top main components as well as a number of

status and control registers for error logging, initialisation and status information.

The LC chip overview is illustrated in figure 2.3. Having already reviewed its

role, the components present within the chip are briefly listed [15].

Receive buffer Input buffer composed of two queues, requests and responses. Pack-

ets are sent to B-Link from this buffer.

Transmit buffer Transmit buffer, again composed of two queues, requests and

responses. Incoming packets from B-Link are placed within this buffer. In

14

some cases an “active buffer” is also present for retransmission in case of an

error. Packets are discarded on receipt of a correct echo.

Bypass FIFO Stripped incoming packets, if not destined for this node, are placed

within this queue for transmission to the next node.

Saved Idles These are SCI packets, inserted in between SCI packets for permanent

synchronisation of the chip to the incoming data.

Chapter 3

REAL-TIME OPERATING SYSTEMS

Real-time operating systems are an important class of operating systems. An

operating system is considered to be “real-time” if it possesses a strict set of poli-

cies and rules regarding its execution, the most important factor being the timing

constraints [18]. Kernels designed for such operating systems are required to be

extremely efficient, highly deterministic and to perform execution within a specified

timing constraint.

If we model an operating system as a simple process, which takes a set of inputs

and outputs a set of results after internal computations, then a real-time operating

system is one which, is expected not only to produce a correct set of results, but also

to output results within a finite timing duration from the moment of presentation of

inputs to the system.

The strict timing issue of an operating system further implies that the operating

system must perform tasks on a deterministic and highly efficient basis. The fol-

lowing is a fundamental description of a real-time operating system from the early

1980s.

“[An environment] characterised by processing activity triggered by ran-

domly accepted external events. The processing activity for a particular

event is accomplished by sequence of processing tasks, each of which

must complete within rigid time constraints. ...Characteristically, the

computer system is completely dedicated to the control application and

has been configured to guarantee on-time responses even at peak loads.

The environment is such that utilisation of equipment is less important

than responsiveness to the environment.”[18]

Often a very strict hierarchy of commands is built-in to the real-time operating

16

systems. This is to allow for a certain level of flexibility for programmers while

driving the fastest response possible from the real-time hardware. In recent years

a set of rules and policies have been outlined which must be met by developers to

achieve a real-time operating system. Some of these rules & policies are outlined

below [22] [24]:

• A RTOS1 should be a multitasking design in order to maximise the CPU’s

efficiency.

• The kernel should be driven in response to internal and external system events.

• The kernel should support a number of independent or interrelated tasks, each

having its own priority associated with its scheduling importance.

• The kernel’s performance should be highly deterministic.

• The kernel should be designed so as to impose minimal overhead to the appli-

cation tasks and should have small RAM requirements.

• Common rules of task scheduling apply (higher priority task preempt lower

priority tasks and the Null task always has the lowest priority).

• The kernel must be interruptible but not re-entrant.

• An interrupt service routine (ISR) must not issue kernel system calls except

to signal another event or to terminate itself.

Real-time operating systems are rarely implemented fully in software. Hardware

in most cases is custom designed with the intention of providing real-time capabil-

ities. Hence, low level debugging tools such as simple background debuggers, logic

analysers and emulators are used to address flaws within the system.

1Real-Time Operating System

17

Applications of real-time systems are growing and will continue to do so. Many

applications require real-time systems to deliver their objectives with timing con-

straints, from the simplest systems such as a watch to the most sophisticated systems

like NASA space shuttles. They are classified into two types, based on their timing

constraints. These types are called “hard real-time” systems and “soft real-time”

systems. Each type will be addressed individually, and some general common issues

and services involved within the kernels of such systems will also be discussed.

3.1 Hard Real-Time Systems

Hard real-time systems guarantee completion of a critical task within the specified

amount of time. To achieve this, all delays within the system must be bounded and

all operations must take a deterministic amount of time to complete. The scheduler

plays an important role in hard real-time systems. Generally a process/task is

submitted to the scheduler along with the time necessary to complete its operation.

The scheduler will then either accept the process/task or reject it.

The scheduler will accept the task if it can guarantee the completion of the job

within the specified amount of time. It will reject the task if it considers it as

impossible to complete within the provided time limit. For the scheduler to be able

to make such a judgement accurately, it must know the exact execution time length

of each operation within the system.

Hard real-time systems are hence restricted as to what devices or operations they

can support. Secondary storage devices and advanced operating system features are

two major areas which are mostly absent in hard real-time systems due to the

uncertainty involved in their response.

Examples of where hard real-time systems are used are NASA space shuttle

systems, FAA (Federal Aviation Administration) systems, critical medical equip-

ments, weapon & military systems and some automobile-engine fuel-injection sys-

tems. They all require objectives to be met within a specific time-line and failure to

do so will be regarded as complete failure of the system.

18

3.2 Soft Real-Time Systems

Soft real-time systems are less restrictive than hard real-time systems. Tasks and

objectives within such systems are allowed to be completed within a bounded period.

The scheduler in such systems must be priority based. It must assign the highest

possible priority to the real-time jobs, and ensure that their priority does not degrade

over time. Non-real-time jobs are allocated variable priorities, and their priorities

are allowed to vary throughout execution time.

The scheduler must at first level satisfy the real-time job requirements, and at

second level handle non-real-time jobs. Although the scheduler is allowed to act

more freely regarding non-real-time jobs, it should not allow long delays, starvation

or unfair resource allocation among such jobs. This in most cases makes the design

of the scheduler an extreme challenge, because the scheduler is expected to sched-

ule jobs such that it completes all tasks with the minimum overall delay possible.

In particular, dispatch latencies are minimised as much as possible (using efficient

designs) so as to allow the execution of real-time as soon as they are executable.

Applications of such systems are extremely broad since unlike hard real-time

systems, they can support various devices and operating system features. Thus

they are used in many multi-media, graphics, virtual reality and advanced scientific

systems and will continue to grow rapidly over the coming years.

3.3 Real-Time Kernels

Real-time operating system kernels as mentioned are very limited on the operations

that they may perform. It is aimed that all supported operations within a kernel

be deterministic and efficient. This has resulted in most RTOS’s in today’s market

offering a similar set of services, which will be outlined here.

Kernels must manage system resources efficiently. The main system resources are

the CPU, memory and time. The CPU is shared to increase efficiency and execute

processes faster. Memory management is an issue because it is a finite resource.

Time, as mentioned earlier, is the most important factor that every real-time system

19

should manage in order to deliver its objectives.

Considering that the use of real-time systems is mainly within embedded devices,

which might impose size, power consumption, memory and other restrictions, having

the kernel as small as possible is desirable [41]. The user may add further tasks if

required, but these are at the expense of cost of a larger system, possibly slower

performance and the variation of other parameters.

Schedulers, as discussed, are the most significant part of the kernel. There are

three main types of schedulers which most real-time kernels use [22]:

• Round robin scheduling

• Time sliced scheduling

• Preemptive scheduling

Preemptive scheduling is the most popular, supporting the other two scheduling

methods. It uses priorities along with event driven operation.

Services among kernels are more variable. In advanced kernels, the user must

specifically request certain services at compile time if he/she wishes to use them

within the application. Otherwise the kernel would not include such services, re-

sulting in a reduced size and faster operation of the kernel. Some services, however,

are critical and are present within all the systems. A short list of common kernel

services are outlined below [22].

• Static and dynamic task services

• Queues and lists

• Semaphores

• Mailboxes

• Synchronous and asynchronous transmission

• Timers

20

• Memory management

Finally we present a list of properties which industrial users commonly use to

compare and evaluate RTOS’s for their applications [28].

• The interrupt latency (i.e. time from interrupt to task run).

• Maximum time period for execution of every single system call.

• The maximum time the OS2 and drivers mask interrupts.

• System interrupt levels.

• Device driver IRQ3 levels.

The above parameters are fixed regardless of the application program. Users possess

the knowledge that systems operate in a deterministic fashion and estimate whether

their hard real-time jobs can complete on such systems or not. They choose the

hardware together with the RTOS such that it meets their objectives with minimal

cost.

2Operating System

3Interrupt ReQuest

Chapter 4

SCI DRIVERS

Device drivers are the most essential part of resource management within a sys-

tem. In this context, resource refers to a hardware device which the user uses to

obtain its objectives. SCI drivers play an important role in allowing systems to make

correct, efficient and organised use of SCI hardware devices.

SCI provides high speed communication (an interconnection) between cluster

nodes. It is “the” element, which allows independent, separated nodes to engage

in cluster computing and processing of collaborative tasks. Hence examination of

SCI drivers is extremely important in order to achieve a cluster with a performance

comparable to those of supercomputers.

SCI drivers, as a portion of the real-time system, must obey all restrictions

imposed on the system. Therefore, the real-time issues must also be examined and

satisfied within the device drivers.

We shall start this chapter with a brief look at device drivers in general. Having

identified the roles and objectives of a device driver, we will discuss the operation and

implementation of device drivers on two of the most important operating systems

(on which SCI drivers have already been implemented). The next section examines

the general structure and arrangement of SCI source code drivers. Compilation,

building, configuration and loading of SCI drivers are outlined in the following sec-

tion. Finally, two major parts of the SCI drivers are discussed individually with a

detailed analysis of their tasks, roles, initialisation sequences, resource requirements

and inter-communications.

22

4.1 Drivers

A driver supplies a uniform, device-independent, logical interface which allows the

user to interact with a device. They contain detailed knowledge of hardware devices

and ensure correct and proper use of the device by the system and its users.

While they provide the mechanism of accessing hardware functionalities, they

should not provide any policy regarding the use of such services. In other words, the

drivers simplify the use of hardware functions, but may not impose any additional

restrictions for doing so.

Device drivers are particularly important in providing compatibility between

systems and a range of developed hardware devices. Along with the drift of tech-

nology, hardware becomes more advanced and offers new features and function-

alities. Drivers must ensure that a unified interface is provided regardless of the

version/model of a device. It is the drivers’ responsibility to provide various imple-

mentations of their interface in order to support all models of a hardware device.

Device driver implementations vary among operating systems. Each operating

system kernel has its own set of policies regarding loading, initialisation, configu-

ration and access to resources within the system. This enforces various implemen-

tations of device drivers for different operating systems. We will examine policies

and rules imposed by Linux and VxWorks operating systems, and later demonstrate

how this is achieved within SCI source code drivers.

4.2 Drivers on Linux

Device drivers on Linux operating system are classified into two types based on

their position in the system. The first class are the built-in device drivers. This

set is compiled and linked into the kernel at the kernel build stage. Built-in drivers

have the disadvantages of increasing kernel size and introducing additional overhead

to the system. However, they provide better reliability, performance, security and

speed due to being part of the system core (the kernel). Drivers are built-in to the

kernel if (i) They are in constant use, (ii) A high operational speed is desired or (iii)

23

If security is a significant issue [8].

Built-in drivers initialise as part of the kernel initialisation process at system

startup [13]. They do not generally terminate until the system shuts down, but

privileged users may terminate some built-in drivers partially at run-time.

The second class of device drivers are known as modules. These are much more

popular and more common within the system. Built-in drivers, as mentioned, are

only reasonable if used on a very frequent basis. However, this is rarely the case

and thus modules were introduced. Modules are, in a general sense, a set of kernel

functionalities which are loaded into the system whenever an application or user

desires their functionalities.

They have three distinct features which separate them from any other normal

program. Once these three basic rules are met, any program can fall into the module

category.

1. It must provide an initialisation routine (init module function).

2. It must provide a cleanup routine (cleanup module function).

3. It must either define, or be compiled with a relevant set of definition flags,

indicating that it is a module, and it should be executed within the kernel

space.

The init module1 function is the first function which is called when a module is

loaded into the Linux kernel. It is responsible for allocating the necessary resources,

tables and registration of its symbols into the kernel public symbol table. The kernel

symbol table can be read in text form from the file /proc/ksyms. The table holds

a list of functions which are supported by the kernel. In fact in most cases, the

init module makes use of such functions to allocate resources to the driver. The

init module calls the kernel register capability function to register its capabil-

ities. The kernel inserts the module capabilities within the system capabilities[]

array, which indirectly references the start of function routines.

1the user may specify an alternative initialisation routine using the module init() function at
the start of module code

24

register_capabilities()init_module()

cleanup_module() unregister_capability()

KernelModule

capabilities[]

Table
Local Reference

rmmod

insmod

Kernel functionalities

Low level and Generic
Function code

Figure 4.1: Linux Module-Kernel Inter-communications Diagram

Conversely the cleanup module2 function unregisters the capabilities from the

kernel capabilities[] array and releases all held resources.

Figure 4.1 illustrates the basic relationship between kernel and module as ex-

plained. The insmod and rmmod functions may be used by privileged users to en-

force module loading and unloading. A list of loaded modules can always be exam-

ined through /proc/modules. I/O region allocations can also be examined through

/proc/iomem and /proc/ioports files.

Linux drivers are further classified into three types, and since they are mostly

implemented as modules, they are termed char modules, block modules and network

modules.

Character devices Similar to normal files, these devices are accessed as a stream

of bytes. The driver implements basic open, close, read and write system

2the user may specify an alternative cleanup routine using the module exit() function at the
start of module code

25

calls. This data channel may only be accessed sequentially.

Block devices These devices are very similar to character devices. Data is usually

accessed (read/write) in multiple blocks3. The only difference compared to

character devices is the way in which data is handled internally by kernel.

Network interfaces These are hardware or software 4 devices which exchange data

with other hosts. They transmit and receive data packets. The kernel also

makes packet transmission based calls rather than reads and writes.

Every hardware device within the Linux system has a major and minor number

associated with it. The major number indicates the class of the hardware, whereas

the minor number is an index into the device 5. Drivers initially find their devices

on the system using the major number. Having found the device on the system6,

they can interact with the target device through kernel system calls. Often for

optimisation and efficiency reasons, such system calls are defined as macros which

reference lower level codings7.

4.3 Drivers on VxWorks

VxWorks is a commercial real-time operating system. It is widely used in indus-

trial systems and has substantial support for a wide range of devices. However

it is considered somewhat unsuitable for research and academic environments. In

response to the “What is a good RTOS?” question, developers and users on the

Comp.realtime newsgroup jointly agree on the following answer, which is presented

in the FAQ section of the news group.

“A good RTOS is not only a good Kernel! A good RTOS should have a

good documentation, should be delivered with good tools to develop and

3each block is usually one kilobyte

4such as loopback interface

5often zero, unless several devices of same type are present (e.g. multiple network cards)

6this generally implies knowing the bus and pci device numbers

7in most cases, Assembly language code

26

tune your application. So even if some figures like the Interrupt latency,

Context switch time are important, there are a lot of other parameters

that will make a good RTOS. For example a RTOS supporting many de-

vices will have more advantages than a simple very good nano-kernel.”[6]

The lack of any proper documentation, information or source code of VxWorks

internals are the main factors which prevent it being addressed in any research

or academic program. Conversely, supporting a wide range of hardware devices,

a significant amount of usage and interface documentation, along with extensive

results on testing and evaluations have made it one of the most popular real-time

operating systems in the industrial world.

It must be noted that substantial efforts were made in the study of VxWorks

internals with regard to device driver implementations. The information provided

here is comprehensive but by no means complete. While no reliable documents8 were

found to verify the following concepts, we believe, to the best of our knowledge, that

they are accurate and correct.

A short overview of the system will be presented, followed by an outline of the

driver implementations of the two most important device types on VxWorks.

VxWorks provides a real-time kernel that interleaves the execution of multiple

tasks by employing a scheduling algorithm. Thus the user sees multiple tasks execut-

ing simultaneously. VxWorks uses a single common address space for all tasks, thus

avoiding virtual-to-physical memory mapping. Complete virtual memory support

is, however, available with the optional vxMem library.

A task is an independent program with its own thread of execution and execution

context. Every task contains a structure called the task control block which is

responsible for managing the tasks’ context. A task has four states as outlined

below:

Ready Task is ready to be scheduled for execution.

Delay Task is put to sleep.

8this section is mainly based on “VxWorks - Device drivers in a nut shell”, AyyalaSoft.

27

Suspend Task has been initialised, but not activated yet

or is debugged

or interrupted by an exception.

Pend Task is waiting for a resource.

The VxWorks scheduler runs a preemptive algorithm, which guarantees that the

highest priority task preempts a lower priority task.

“Interrupt” is the mechanism by which a device seeks the attention of the CPU.

The code which handles such interrupts is called interrupt service routine (ISR) or

interrupt handler. Interrupt response time is the period starting from the occurrence

of the interrupt to execution of the first ISR instruction. This period is composed

of interrupt latency, delay for saving the task context and execution of kernel ISR

entry function.

VxWorks provides a special context for interrupt service code to avoid task con-

text switching, and thus renders faster responses. VxWorks supplies interrupt rou-

tines which connect to C functions and pass arguments to the functions to be exe-

cuted at interrupt level [42].

All interactions with hardware devices in VxWorks are performed through the

IOsub-system. VxWorks treats all devices as files. The two most important devices

are character devices and block devices. There are two points which are common

across both types of device drivers [42].

• Drivers in VxWorks can be dynamically loaded and unloaded.

• Drivers work in the context of the task invoked by an interface routine. Hence

drivers are preemptable and should be designed as such.

There are four major issues involved in implementation of a Character device

driver on VxWorks.

Driver installation The iosDrvInstall() and intConnect() directives are used

28

to provide basic driver functionality references9 and activate the hardware

device related ISR, respectively.

Device descriptor registration The iosDevAdd() is used to add the device to

the I/O system device list10.

Support for interface definitions Developer should provide code for all refer-

enced driver functions11.

Support for interrupt handler12 Developer should provides device ISR, which

is called when CPU receives an interrupt from target hardware.

Block devices interact with I/O systems through file-systems. Each block device

is associated with a file-system. Block device drivers provide logical device struc-

tures. Logical device structures describe the device and contain routines to access

the device in a general fashion via the underlying file system. Furthermore, it is the

file system and not the block device driver which is installed as an entry into the

I/O system driver table. The steps which define the development of block device

drivers are as follows:

• Define and initialise all interfaces within the logical device structure;

• Associate and register the corresponding file system for the block device;

• Setup and connect the ISR.

Section 5.6 details device driver implementations on RTEMS, prior to a compar-

ison of device drivers implementations on all three systems in Section 5.7.

9the user must provide function references for the create, remove, open, close, read, write and
ioctl driver functions

10users can execute driver function calls through the I/O system device function table

11the most important function is the IOCTL since users control the device through this function

29

4.4 Structure of SCI Drivers

The examination and study of SCI drivers have certainly been of crucial importance

throughout this project. SCI drivers are by far one of the largest and most complex

set of drivers seen for a PCI card. On Linux platform, the SCI set of drivers is at

least twice as large as SCSI drivers13.

Throughout the introductory chapters, it was emphasised that all SCI protocols

are carried out at hardware level, resulting in a low latency and high performance

technology. One may wonder why SCI drivers (software) are of such importance?

The reason is the tight connection of SCI and systems memory management in the

nodes. Together with the requirement of connecting operating system kernels that

have no knowledge of their counterparts on the other nodes, this makes SCI drivers

rather complicated and probably the most complex of all drivers.

Unfortunately, lack of documentation, and the existence of few informative files

within the driver source code forced us to thoroughly examine 37MB of source code!

The information obtained is believed to be valuable and as stated within the Intro-

duction Chapter, a simplified internal view of SCI drivers is presented in the hope

that the information provided here will be useful for all future developers, who plan

to examine, study, use, develop and extend the SCI technology and corresponding

drivers.

The SCI drivers may be broken into two sections at the root. One section,

labelled adm, allows users to compile, build drivers and conduct tests without the

intervention of source codes and knowledge of SCI internals. Various scripts have

been provided within the bin directory (located within adm directory) for each

supported operating system to allow the user to compile, build and install drivers

for different sets of cards.

The alternative to adm is src, which enters into the source code tree of SCI

drivers. The SCI driver is split into two main parts.

13by many known to be the largest Linux device driver shipped with Linux distributions

30

genif.h

drv/
src/

demo/sci_lib.h

lib/sciLib.h
Core
IRM

IRM Utilities Test Programs

IRM Internal
Library

Demo
Applications

External
Resources

Figure 4.2: IRM Internal Structure

IRM IRM14 is a low level driver which interacts directly with the SCI hardware. It

also provides higher level interfaces for low level programs, higher level drivers

and modules such as SISCI, for reliable and simplified access to SCI resources.

SISCI SISCI is a higher level driver providing resource management and a simplified

access interface for user level applications to the SCI adapter. While SISCI is

a higher level driver relative to IRM, it is still considered as a low level driver

and many additional layers are coded within the industry to sit on top of it

for further simplified user interface.

Figure 4.2 illustrates the internals of the IRM and its interfaces. Three interfaces

and one component directly interact with the IRM Core. The most significant

interface is genif.h which provides full interface to all external resources. The IRM

Utilities are a series of tools which allow users to configure the SCI adapter card. The

14Interconnect Resource Manager

31

test and demo programs are both a set of applications designed for testing and simple

operations using IRM device drivers. Finally, while all external sections of IRM

partially interact with the core directly, most communication is directed through an

internal sciLib.h interface facilitated also by the IRM Internal Library section. All

external resources and higher level drivers (such as SISCI) must communicate with

IRM through a general interface15.

4.5 Compilation, Build & Configuration

This section very briefly describes the procedure required to perform custom com-

pilation, build and configuration of the SCI drivers. Of course, a set of scripts is

already available within the root adm directory which simplifies all of this for the

user.

There exists a build script within the IRM directory, which compiles and builds

the IRM driver. The user must supply its operating system, architecture and adapter

type in order for this script to compile the corresponding set of drivers. The result

in most cases, is a binary object file, labelled pcisci.o. In the case of Linux operating

system this would be the IRM module, which as indicated in previous sections, can

be loaded into the system.

Similarly the SISCI directory contains a build script which provides a second bi-

nary file, labelled sisci.o. This script also requires the operating system and adapter

type to compile the relevant set of source codes.

The compilation of both sets of drivers is done using GNU Makefile utilities. SCI

drivers use Makefiles in conjuction with some shell scripts to compile the relevant

source codes. The makefiles relevant to IRM, are not only scattered through the

source directories, but an exclusive set is also present within the drv/src/MAKE

directory. SISCI driver makefiles do not have a particular location and they are

mostly scattered through the SCI driver structure.

SCI drivers seem to use run-time shell scripting as a hack to GNU Makefile

procedures to achieve a finer control over the compilation of the drivers. Relevant

15genif.h

32

shell scripts are produced 16 and executed at the runtime stage of GNU Makefile

utilities. This not only results in a high level of complexity in the compilation and

build process, but it also increases the complexity of transferring such drivers to

other platforms.

GNU Makfile utilities, nowadays, offer excellent flexibility and configurability[14].

We shall see how our target operating system (RTEMS) has used the latest of such

tools to achieve a robust set of Makefiles within their source code structure.

The configuration of the adapter is considered when loading the driver into the

system. The generated pcisci.conf specifies the configuration files to be used for

configuring the irm, psb17 and lc18 sections. Only experts are recommended to

specify their own configuration files, and in most cases it is recommended that

irmConfig.h be used. This file contains default configuration for all sections of the

board.

4.6 IRM

Interconnect Resource Manager is the lowest level of SCI driver code, which interacts

directly with the SCI adapter. The source code supports a wide range of operating

systems with all commercially available SCI cards. The present set of available SCI

cards are:

• PCI1 (PSB32) adapter;

• PSB64 adapter;

• PSB66 adapter;

• SBUS2 adapter.

16mostly through drv/src/MAKE/mklib.sh

17pci-sci bridge

18link controller

33

HP_UX11 Sun OS

Source

Code

IRM

Core

UnixWare

Win NT

Tru64

Solaris

VxWorks

LynxOS

Linux

SBUS2

PSB66

PSB64

PSB32

Figure 4.3: IRM source code structure

A general overview of the IRM source code is shown in Figure 4.3. On the left

hand side and at the bottom of this figure, a series of operating systems which

the SCI drivers support are shown. The ones of major importance are Linux and

VxWorks as these will be examined in-depth in the Implementation Chapter. On

the right hand side of the diagram, a list of all supported SCI card models is shown.

Depending on the set of options passed at compile time, the makefiles select the

relevant sections and compile, build and merge them together for the final binary

IRM driver object file.

Firstly, the interaction of the three sections 19 within the IRM source code will

be examined.

The adapter dependent code itself splits into three sections. The first part is

the Link Controller section. This controls the link controller chip on the SCI card.

Several header files in this directory provide various structures which contain the

19IRM core source code, operating system dependent and adapter dependent code

34

location, type and significance of each register controlling the link controller chip.

The second part relates to the PCI-SCI Bridge chip, known as the psb section. Sim-

ilar to the link controller section, this section also provides informative structures

regarding the registers on the PSB chip. The last section is the general adapter code

which provides all the adapter specific functionalities listed in the drv/src/adapter.h

file. This final section uses the structures provided from the previous two sections to

read/write and configure the chips located on the SCI card. Hence, in an overview

of this paragraph the adapter dependent section provides the adapter specific func-

tionalities outlined in the drv/src/adapter.h file.

The operating system dependent code is the main interface through which the

IRM driver interacts with the target operating system. This section is somewhat

complicated due to the tight connection of the SCI drivers with the memory man-

agement of the operating systems. There are three main interfaces which the IRM

driver requires to be supported by the operating system section. The first is com-

prised of various operating system related functionalities and is detailed within

the drv/src/osif.h file. This section facilitates access to hardware, low level re-

source (data and register structures which reference on-chip registers) allocation

and management, handling of events and interrupts, as well as locking, synchroni-

sation and mutual exclusion which are required throughout the SCI drivers. The

second is related to memory management and lists the desired functionalities within

the drv/src/memalloc.h file. Tight connection of the SCI technology with mem-

ory management of operating systems requires support of a significant number of

memory related functionalities, such as I/O buffer space allocation, memory locking

(makes memory non-swappable), memory alignment (ensures the starting address of

memory chunk is divisible by a certain alignment parameter), contiguous memory

allocation, DMA transfer and many other functionalities. The last section is the

SCI driver initialisation routine, which each operating system section must provide.

The section from the IRM core which relates to the initialisation routine is the

bootstrap section. The file drv/src/ldbootstrap.c is used to indicate the approach

taken for initialisation of IRM driver within the target operating system.

35

#if defined(Linux) || defined(OS_IS_VXWORKS)

extern ROUTINE init_module;

#ifdef OS_IS_VXWORKS

extern ROUTINE sci_get_local_csr;

#endif

static ROUTINE *syscall_required[] = {

init_module,

#ifdef OS_IS_VXWORKS

sci_get_local_csr,

#endif

};

#else

According to the above code20, both Linux and VxWorks would like to initiate

the driver by calling the init module function, but VxWorks also proceeds with the

sci get local csr thereafter.

The IRM core section contains numerous interfaces and source files to perform

various operations. The most important interface provided by the IRM core, as

previously mentioned, is the drv/src/genif.h interface, which interfaces all allowable

functionalities through the driver and should be used by all higher level code, driver

and applications.

The IRM core consists of 2.1MB of source code, which supports all SCI technol-

ogy related functionalities that are operating system independent, but not necessar-

ily adapter independent. These functionalities include Session management, support

for SCI communication protocol, Virtual Channel management, Mailbox and Inter-

rupt management, Address Translation Table (ATT) configuration, adapter man-

agement, PCI and B-Link bus control, DMA engine support, Link Controller chip

management, remote memory operations library, Switch, Timer, Topology support

along with many other functionalities. The final IRM issue to be discussed is the ini-

tialisation routine, which must be implemented by the operating system dependent

20taken from the drv/src/ldbootstrap.c file

36

section, and is thus investigated more thoroughly in following subsection.

4.6.1 IRM Initialisation

The SCI card initialisation routine is of substantial importance within the IRM

drivers. Most functionalities of the card are performed at hardware level, which

implies that the initialisation process holds greater responsibility in initialisation

and configuration of the card. This is to allow for hardware based operation of the

card at a later stage.

The initialisation routine is comprised of both operating system [OS] dependent

and independent code. The OS dependent section mainly facilitates access to the

card and registers within the card, as well as resource allocation and management

in the system. The OS independent section configures and initiates the card and

resources using the OS dependent layer and this section is primarily dependent on

the card model.

Although we are only interested in the OS dependent section of the initialisation

routine, one must stress that the OS independent section was also studied in-depth

to ensure correct functionality and elimination of unnecessary code under the target

operating system. Lack of documentation of this routine was another reason which

supported the idea of representing the initialisation routine through a sequential

process. Finally, every effort has been made to eliminate the complex nature and

inter-communications of the routine, but where necessary sufficient detail has been

provided to fully explain the objective.

PCI-SCI D310 Initialisation routine:

Find the PCI-SCI card Initialises the PCI BIOS interface and searches through

the PCI bus for any device matching SCI card vendor and device tags.

Adapter Table creation Allocates memory to hold the adapter table information.

Adapter Table initialisation Places preliminary information obtained about the

PCI device into the adapter table.

37

Setup PSB memory areas Sets up the memory descriptor for the PSB’s csr, IO

and prefetch space.

Store interrupt line Obtains the interrupt line number from the card memory.

Map PSB memory areas Maps the PSB’s csr, IO and prefetch space into kernel

memory.

Check PSB Verifies that the PSB is present and alive.

Lock creations Creates semaphore locks for Main Driver, DMA, FlagIntr, ATTin-

dex and timeQ.

Initiate the timeout job handler Initialises a separate thread which creates a

message queue awaiting jobs to be dispatched from the timer thread to be

executed 21.

Pre session and VC initialisations Preliminary configuration, resource alloca-

tion prior to attachment of any adapter.

Attach SCI interrupt Attaches SCI interrupt handler to the ISTAT register of

the card 22.

PSB chip verification Reads and ensures that the PSB chip ID and revision

match the ID and revision of the the current set of drivers 23.

Obtain config info Obtains configuration info related to the card either from the

adapter non-volatile memory or the config struct that has been previously filled

in by a config operation.

21the general timeout handler is called which removes the job from jobs list and subsequently
executes it

22the handler reads and executes the jobs specified at the ISTAT register of the card

23in our case the chip ID is 0x3D65806D signifying PSB32 and rev D

38

Insertion of config info Places the obtained config info into the SCI adapter

structure.

Setup physical ID table Dependent on LC and PSB chip model, initialises the

physical topology settings on the LC chip.

Configure LC chip Initialises and configures the LC chip related registers.

Initialise interrupt mask Stores the interrupt signal masks and their significance.

Set GX timeout Sets up the (possible) GX hostbridge to 30ms timeout on PCI.

Set NX In the case of the PCI host bridge type being HB 450NX PXB, turn on

the BWCE24 and turn off the Assert SERR# on the inbound delayed read

time-out.

Set ServerWorks Latency In the case of the PCI host bridge type being

HB SERVERWORKS LE, set PCI Latency Timer to ensure enough time for

PCI burst transfer.

Enable write posting Enables write posting on PCI host bridge.

Pre PSB initialisation Sets up BIU Control, SlDeadlkCnt, Misc Control regis-

ters, CSR access protection, interrupter, windows protection and Stream con-

figuration in PSB and initialises PCI CSR.

Misc operations A mixture of random configuration reads and sets (related to

both PSB and LC chips), plus the enabling of numerous board related func-

tionalities (such as StoreBarrier, ATT initialise, nodeProbe, Client ErrCheck

and Software packet buffer allocation).

VC initialisation Starts the VC25 watchdog and module for the adapter.

24Burst Write Combining Enable

25related to recieve and transmission functionalities of the card

39

DMA initialisation Starts the DMA engine26 on the board.

Switch module configuration The Card predicts and sets the switch ID to which

it belongs on the overall SCI topology.

Interrupt info initialisation Initialises the interrupt counters monitoring the jobs

and tasks performed by order of the ISTAT register.

PSB initialisation Sets up final configuration of the PSB chip and starts the

chip27.

Final watchdog activations Starts the LC chip and session watchdog28.

At the end of this routine the software intervention of the driver initialisation

is over, but the hardware still performs necessary initialisations through a set of

timer functions which it deems necessary. The osif timeout is the function which

is called with time related jobs. It creates watchdogs for each job which expire at

the time chosen by the caller. Once a watchdog expires it submits the job into

the jobs message queue, which is subsequently handled by the timeout job handler

for execution. The majority of jobs are created through the hardware calls, ISTAT

register and interrupt handler routine.

4.7 SISCI

SISCI is a higher level driver for enhanced resource management and simplified pro-

gramming interface for user applications [16]. It maintains a table of resources held

by user applications, and in the case of failure of the application task, it manages

the resources and releases them appropriately. The SISCI is also responsible for

bridging the user mode operations into kernel mode operations, allowing user appli-

cations, which are normally in the user space, to access IRM functionalities at kernel

26enables for DMA transfer between nodes

27resulting in full functionality of the chip on the PCI bus

28bringing the card to a state where it can interact with external nodes as well

40

SISCI

User space

Kernel space

 IRM

API

Core

SISCI

User Apps

sci_api.h

genif.h

ioctl

Figure 4.4: SISCI source code structure

or privileged user space [16]. Requests, addresses and data from the user space is

copied and/or converted to the kernel execution space. Data in most cases, is simply

copied from users space to the kernel space. Requests are converted/decoded into

a series of IRM commands and functionalities, which are performed to deliver the

objective. Addresses are also converted from the user mode to the kernel mode,

referencing the coped data from the user space to the kernel space.

Figure 4.4 shows how IRM, SISCI and user applications interact with each other.

As shown, the SISCI driver is mainly split into two sections, the Core and the API 29.

After compilation of the SISCI driver, the user is presented with a binary sisci.o

file. In case of Linux, this is yet another module which has to be loaded into the

kernel. This module contains the core section of the driver, which as shown in the

diagram, interacts with IRM through the genif.h interface. The second section of

29Application Programming Interface

41

the SISCI driver30 is compiled as a series of object files. User applications, when

willing to use SCI functionalities, include header and interfaces of the API section

to link their object files with the relevant SISCI API object files. Hence, one can say

the API section of the SISCI driver is linked into user applications, allowing them

to communicate with the Core section.

The main interface between the user applications and the SISCI API is sisci api.h.

The API section transfers calls to sisci internals.h through kernel.h, where ioctl

calls are performed to invoke corresponding SISCI core functions within the kernel

space. Numerous core files are located within the core section which handle all types

of calls. All files within the core section interface with the IRM through the genif.h

interface.

In summary, the SISCI layer, without providing any additional driver function-

ality, has three main objectives.

• To act as a bridge between the user and kernel execution mode;

• To simplify the programming interface, hiding a substantial amount of com-

plexity behind the user interface;

• To handle resources at an internal level as much as possible.

These actions are implemented across all examined operating systems.

30the API section

Chapter 5

RTEMS

RTEMS, Real-Time Executive for Multiprocessor Systems, is the real-time op-

erating system which was selected for this project. RTEMS was developed by

OAR Corp. which also co-ordinates developments and offers commercial support

for RTEMS.

RTEMS was designed for real-time applications from the very beginning, tar-

geting mainly embedded systems. The executive interface is presented to the user

applications through a set of resource managers, each facilitating a certain function-

ality. The main functionalities are built-in to the executive core, while additional

functionalities are wrapped externally to the core. Applications dependent on their

needs would specify, compile and link the desired resources (and their corresponding

managers) into the target system. The term “target” refers to the hardware on which

the end result is expected to function and execute. Although tasks are internally

synchronous, they execute independently resulting in an asynchronous processing

stream.

Some RTEMS features are listed below.

• Multitasking capabilities

• Homogeneous and heterogeneous multiprocessor systems

• Event-driven, priority-based, preemptive scheduling

• Optional rate monotonic scheduling

• Intertask communication and synchronisation

• Priority inheritance

43

• Responsive interrupt management

• Dynamic memory allocation

• High level of user configurability

RTEMS also features POSIX (1003.1b), ITRON and a native API in C language.

RTEMS’s classic (native) API also facilitates Ada users by interfacing Ada language.

With portability in mind, RTEMS supports a range of architectures, such as

A29k, ARM, H8300, I386, I960, M68k, MIPS, PPC, Sparc and Unix.

Throughout this chapter we will be examining RTEMS from various perspectives.

Initially we examine how to achieve real-time systems 1 within RTEMS and satisfy

hard deadlines. Next, RTEMS is evaluated against other RTOS’s and its selection for

this project is justified. The structure of RTEMS is of major importance and rather

complex, we will be discussing those issues through a series of sections. Finally,

system initialisation and device drivers on RTEMS are reviewed at the later sections.

5.1 RTEMS Rate Monotonic Scheduling (RMS)

One of many useful resource managers within RTEMS is the rate monotonic man-

ager. It offer rate monotonic scheduling for periodic and hard real-time tasks. The

rate monotonic scheduling algorithm is a hard real-time scheduling methodology.

Using this scheduling algorithm a set of independent tasks are always guaranteed to

meet their deadlines, even under transient overload conditions.

The algorithm examines the schedulability2 of a task set under worst case con-

ditions and models the system’s behaviour predictably via schedulability analysis

through a set of specific rules.

It has been proven that “RMS is an optimal static priority algorithm for schedul-

ing independent, preemptible, periodic tasks on a single processor”[30]. This implies

1one of the most important issues in any RTOS

2ability to schedule and meet dead-line of a task

44

that if a scheduler3 can schedule a task, then a rate monotonic scheduler is guaran-

teed to be able to schedule the task as well.

The algorithm assigns each task a priority based on its period4. RMS analyses

the schedulability of tasks using task periods and execution times in conjunction

with specific algorithms.

Processor Utilisation Rule can initially be used to examine the schedulability of

the task set. If it fails one can still use the First Deadline Rule to further examine

the schedulability of a task set. If either rules are satisfied, the task set is said to be

schedulable by the Rate Monotonic Scheduler.

While it is important to note the scheduling methodology of real-time operating

systems (and in our case RTEMS), we will not go into any further detail regarding the

rules and algorithms. The following sources may be used to study Rate Monotonic

Scheduling and its schedulability analysis in greater detail.

• C. L. Liu and J. W. Layland. “Scheduling Algorithms for Multiprogramming

in a Hard Real Time Environment.” Journal of the Association of Com-

puting Machinery. January 1973. pp. 46-61.

• John Lehoczky, Lui Sha, and Ye Ding. “The Rate Monotonic Scheduling Al-

gorithm: Exact Characterization and Average Case Behavior.” IEEE Real-

Time Systems Symposium. 1989. pp. 166-171.

5.2 Comparison of RTEMS with others

The number of real-time operating systems available within the industry is growing

in number by the day. This section compares our choice of RTOS (RTEMS) with

some other popular and successful real-time operating systems. The pros and cons

of RTEMS will be laid out and the reasons for this choice of RTOS in this project

will be outlined.

3based on a different static priority algorithm

4the interval between successive iterations of the task is referred to as its period

45

RTEMS shall be compared with other RTOS’s from three perspectives [11]. The

first of these is the availability of documentation and ease of development of the sys-

tems; the second is the features offered by each system and finally the comparison of

Interrupt latency and Context switching parameters between the systems. RTEMS

is examined against two RTOS’s, one a successful commercial product, VxWorks,

and the other a popular open source RTOS, RTLinux.

The documentation available in each case is subjective. While RTEMS and

RTLinux both have extensive documentations available with regards to their opera-

tion, functionality, design and implementation, VxWorks has a considerable amount

of documentation within the production, configuration, testing and application sec-

tors. Industrial users tend to choose systems like VxWorks, which present clear

statistics on their specifications, performance and applications of product. Con-

versely, research oriented industries, developers and academics are mainly interested

in the systems of the first type for obvious reasons.

In relation to ease of developments RTLinux and RTEMS are both superior

to VxWorks. RTLinux and RTEMS present a clear, free and full view of their

internal core, system structure and parameters which a developer may use to his/her

advantage in optimising the target system or exploiting the system to its highest

potentials. Even though both are “open source” based, RTEMS is licence free which

implies clients may freely modify, distribute, develop or even include it as part

of a “proprietary work”. VxWorks, on the other hand, is a proprietary system.

Unfortunately the lack of detailed documentation of VxWorks internals results in

developments which are related to VxWorks system being a serious challenge5.

Table 5.1 illustrates and compares the various features of the three real-time

operating systems [20]. The table itself is detailed and requires little explanation.

An important lesson that may be learnt from this table, however, is that RTEMS

in most cases is superior to the other two systems in terms of availability of features

and support of services. With regards to other services, such as watchdog timers,

these were implemented on RTEMS if deemed necessary. In fact, some services such

5clearly experienced throughout this project!

46

Multi-processor Scheduling Concurrency

RTLinux Yes FIFO Pthreads

RTEMS 4.5+ Static allocation FIFO,RR,Other Pthreads

VxWorks 5.x Optional Fixed,RR Lightweight processes

Inter-process comm. Dynamic Memory Priority Inversion

RTLinux Sem,Mutex,CondVar,FIFO No Ceiling

RTEMS 4.5+ Sem,Mutex,CondVar,PQ,Event Yes Inheritance,Ceiling

VxWorks 5.x Sem,Mutex,Msg,RTsignal Optional Inheritance

Filesystems Timer res. Timers

RTLinux None Hrd. dependent None

RTEMS 4.5+ IMFS,DOSFS/FAT Hrd. dependent POSIX

VxWorks 5.x FAT,NFS,TrueFFS Configurable Watchdog,POSIX

API Debug Languages

RTLinux POSIX 1003.1c trace,GDB C,C++

RTEMS 4.5+ RTEID,ITRON,POSIX 1003.1b GDB,DDD,RDB C,C++,ADA

VxWorks 5.x VxWorks,POSIX 1003.1&1003.1b GDB,RDB C,C++

Table 5.1: Service comparison between RTLinux, RTEMS and VxWorks

as the watchdog timer itself were implemented on RTEMS as part of the SCI driver

development 6.

Finally, we examine parameters which some people, mistakenly, consider as the

most and only factors of importance in evaluation and consideration of an RTOS.

6detailed within the next chapter

47

Interrupt Latency Context Switching

max avg±σ max avg±σ
Idle System

RTLinux 13.5 (1.7±0.2) 33.1 (8.7±0.5)

RTEMS 15.1 (1.3±0.1) 16.4 (2.2±0.1)

VxWorks 13.1 (2.0±0.2) 19.0 (3.1±0.3)

Loaded System

RTLinux 196.8 (2.1±3.3) 193.9 (11.2±4.5)

RTEMS 20.5 (2.9±1.8) 51.3 (3.7±2.0)

VxWorks 25.2 (2.9±1.5) 38.8 (9.5±3.2)

Table 5.2: Interrupt latency & Context switch delay comparison between RTEMS, VxWorks and
RTLinux

They are the Interrupt latency 7 and the Context switching delay8 parameters.

At the 8th International Conference on Accelerator & Large Experimental Physics

Control Systems, 2001, San Jose, California table 5.2 was presented as results of

performance measurement of RTEMS versus RTLinux and VxWorks. Measurements

were carried out on a PowerPC 604 CPU (300MHZ), MVME2306 (PReP compati-

ble) board manufactured by Motorola. This choice was made since all three systems

supported this board, and also it featured a high resolution timer hardware 9. The

software package consisted of initialisation, interrupt service routine and a simple

“measurement” procedure.

“The initialisation code sets up the timer hardware, connects the ISR to the

respective interrupt and spawns a task (MT) executing the measurement procedure

7time elapsed from the moment of occurrence of an event (e.g. a hardware interrupt) until
execution of the first instruction of the Interrupt Service Routine (ISR), which includes the
overhead required by the executive at the beginning of each ISR plus the time required for the
CPU to vector the interrupt

8time delay from the execution of the last instruction of a task, to execution of the first instruc-
tion of another task, which includes the time scheduler determines which task to run, time to
save the context of first task and time to restore the context of second task

9suitable for “on-the-fly” latency measurements

48

at the highest priority available on the system under test. The ISR determines the

interrupt latency by reading the timer and notifies the MT by releasing a semaphore

on which the MT blocks. This causes the system to schedule the MT (having

become the highest priority runnable task), which, reading the running timer is able

to determine the time that elapsed from the ISR releasing the semaphore until the

MT actually getting hold of the CPU. After recording the delay, the MT again blocks

on the semaphore.

This simple test was performed on a system heavily loaded with low priority

tasks, networking and serial I/O traffic causing a large volume of interrupts (also at

a priority lower than the timer hardware IRQ).”[38]

The smallest average and variance values related to the interrupt latency and

the context switching delay, in most cases, is observed to be on RTEMS. VxWorks,

though not the best in average latency and delay, holds the lowest maximum mea-

sured interrupt latency (in idle systems) and switching delay (in loaded systems).

Apart from having the lowest average interrupt latency value on loaded systems,

RTLinux has higher figures in comparison to RTEMS. Differential values between

RTLinux and the other two systems are greater by far than the differential values

between RTEMS and VxWorks. Casting a vote on the systems based on this table,

RTEMS is first, VxWorks closely second and RTLinux is by far the third.

Almost all RTEMS directives execute in a fixed amount of time regardless of

the number of objects present in the system. The primary exception occurs when

a task blocks while acquiring a resource and specifies a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory

block, object name to ID translation, and deleting a resource upon which tasks are

waiting. In addition, the time required to service a clock tick interrupt is based

upon the number of timeouts and other ”events” which must be processed at that

tick. This second group is composed primarily of capabilities which are inherently

non-deterministic but are infrequently used in time critical situations. The major

exception is that of servicing a clock tick. However, most applications have a very

small number of timeouts which expire at exactly the same millisecond (usually

49

none, but occasionally two or three) [31] [10].

Summarising the examined factors, RTEMS as an “open source” real-time oper-

ating system together with RTLinux are more appropriate for developers and aca-

demics with regards to documentation and development. The fact that RTEMS is

licence free would even place it ahead of RTLinux. In relation to the services and

features available on each system, RTEMS and VxWorks are placed first and second

respectively, with RTLinux placed last. Analysing systems from a performance point

of view, RTEMS and VxWorks demonstrated high and tight performance compet-

itiveness. Dependent on the test procedure or target hardware, results may vary,

but RTEMS and VxWorks would be expected to produce results close to each other.

RTLinux’s performance was considered poor and unsuitable for critical real-time

applications. Overall one must agree that RTEMS is the most suitable RTOS for

the purposes of this project.

RTEMS is available as an “open source” system and it is far superior to VxWorks.

To illustrate this fact in today’s technology, a section of NASA’s report on the system

which they use for flight applications is provided below.

“...At present, a commercial OS is commonly used (vxWorks) by Wind

River Systems, which establishes a reasonable baseline for comparisons

with respect to toolchains, runtime footprints and runtime performance.

Due to the class of processors used in flight, operating systems are under

some substantial constraints and have stringent requirements in areas

like runtime size, reliability and task scheduling...

The principal requirement was the operating system be “open”- that

is, the full source should be available. VxWorks is a closed, proprietary

system- it is also very expensive to procure licenses, even more expensive

to get source code, support is frequently poor- in general, its the normal

litany one expects from a closed source vendor.”[3]

NASA considered RTEMS4.5 as a suitable replacement for the VxWorks systems!

50

5.3 RTEMS Structure

The structure of RTEMS has changed in recent months. The latest stable release

version (RTEMS 4.5.0) is nearly two years old. Having initiated the project devel-

opment on the latest stable release, a massive change in structure was observed on

the migration of code from this version to the latest CVS version.

This section briefly touches on the structure of RTEMS based on the latest CVS

release, rtems-ss-20030211 snapshot. Furthermore we will be focusing on the source

tree structure related to the C language bindings only.

In order to relate our section directly to the source tree, we present a similar tree

model, introducing each branch individually.

cpukit Executive RTEMS core.

ada Facilitates Ada API.

itron Facilitates ITRON API.

libblock Provides generic device and block controller functionalities, these

are device and hardware independent IO functionalities. 10

libcsupport Provides the required support for the newlib package (newlib

glue). It also includes implementations of POSIX services as well as non-

threading ANSI C library.

libfs Filesystem support, currently DOS FS and IM (In Memory) FS.

libmisc Miscellaneous libraries, including modules for RTEMS performance

monitoring, high level OS functionalities and interface support for Mi-

croWindows input devices.

libnetworking Supports FreeBSD TCP/IP network stacks.

librpc Facilitates the Sun RPC module (FreeBSD RPC/XDR).

posix Facilitates POSIX API (threading portion).

rtems Facilitates RTEMS API (resource managers).

10e.g. block devices, floppy, CD-ROM and RAM disk controllers

51

sapi This core provides API features which can’t be addressed as part of any

specific API and are beyond any RTOS standardisation. It is common

code across all processors, and implements functionalities such as system

initialisation, shutdown, I/O and error processing.

score This is the Super Core module, which provides the RTEMS internals.

All APIs are implemented on this core (similar to wrappers around a

core). Users should not use the functionalities offered by this core, but

rather use the supported APIs.

lib Contains processor and board dependent libraries.

libbsp Contains processor and board dependent packages and routines, in-

cluding shared routines among boards 11, initialisation routines and board

specific device drivers (processor and board dependent).

libcpu Specific processor functionalities and modules are present within this

directory (processor dependent).

libchip Chip related library supporting hardware chip-sets available across range

of boards (such as ethernet card, serial ports, IDE and rtc).

libnetworking RTEMS networking application layer (rtems servers, rtems telnetd,

rtems webserver and pppd).

librdbg RTEMS remote debugger support for M68k, PowerPC and i386

librtems++ RTEMS C++ API.

tests Test packages.

The RTEMS source code structure design has been aimed at high portability

and efficiency. Every section supports a specific set of functionalities or modules.

11such as pci, io, irq and com modules for i386 hardware

52

Developers and advanced users must have a clear understanding of this structure, so

as to be able to develop, optimise and debug their systems efficiently and correctly.

As a result of developments and enhancements, code sections are moved from

one area to another. In most cases this is as result of generalising code among a

range of target boards or processors. A developer not only has to code relative to

the section he is examining, but must also consider the availability of other sections,

modules and functionalities at the execution stage of his code. Such issues were

carefully examined and analysed throughout this project and will be stated clearly

within the next chapter.

5.4 RTEMS Build

Building RTEMS comes as a great surprise to many developers and users who have

migrated from classical operating systems to RTOS’s and specially RTEMS. The

correct compilation, build, configuration and linking of RTEMS is one of the most

important factors governing proper functionality of the end system. The RTEMS

end result is a binary image file, called RTEMS image file, which entails all elements,

the operating system, application and required modules. The RTEMS image file is

placed on the target board or loaded into memory at the system start by a loader.

The RTEMS image file will take control of the system from the moment of

initialisation of system, customly initiating the processor, board and related attached

devices. The image file in most cases, is placed within a non-volatile memory (e.g.

ROM) on the target board. On a i386 CPU, pc386 board, a grub loader can be used

to load the RTEMS image file into RAM and transfer control to the RTEMS image

file.

The RTEMS image file may be built on most platforms and is independent of

the target environment 12. The platform or system on which the RTEMS image file

is developed on is referred to as the “host”.

In an aim to maximise the range of hardware platforms which may be used as host

for development of RTEMS image file, RTEMS provides its own tools and required

12target processor and board jointly are referred to as target environment

53

RTEMS
Source
Code

RTEMS
Kernel
Library

User
Application

RTEMS
Binary
Image

GRUB
Loader

System is up
& running !

RTEMS

Utils
Make

RTEMS

Tools
Build

Configurations

RTEMS patches

GNU Make Utils

GNU Build Tools

RTEMS patches

Figure 5.1: RTEMS Build Diagram

utilities for the development. Another factor which has resulted in RTEMS specific

tools and utilities is the requirement of the latest tools and utilities for development

of the RTEMS image file.

Figure 5.1 illustrates the steps and procedures required to develop the RTEMS

image file from scratch. Following subsections will give details on each step and

settings used throughout this project.

RTEMS as a rapidly developing platform encounters a significant number of bugs

and malfunctionalities within the existent GNU tools and utilities. Most bugs and

malfunctionalities are resolved within later versions of GNU tools and utilities, but

RTEMS provides patches to resolve problems temporarily.

54

5.4.1 RTEMS Tools

RTEMS tools are composed of GNU tools and corresponding RTEMS patches. The

packages referred to as tools are specifically the bin utilities, gcc, newlib13 and gdb.

All of the above gnu tools may be downloaded from the RTEMS snapshot site,

or alternatively they are provided through the RTEMS CD. The source codes of all

tools must be patched with their corresponding RTEMS patch files. Tools must be

compiled and built in the following order (configurations used for each tool within

this project are also provided below).

binutils configure --target=i386-rtems --prefix=/opt/rtems

gcc configure --target=i386-rtems --with-gnu-as --with-gnu-ld

--with-newlib --verbose --enable-threads --prefix=/opt/rtems

gdb configure --target=i386-rtems --prefix=/opt/rtems

The i386-rtems option is an indication of the target processor, the /opt/rtems

signifies the installation directory and --with-newlib is specified to link the gcc

package with the newlib package.

5.4.2 RTEMS Makefiles

The fast development and complexity of RTEMS structure demands the use of the

latest Makefile utilities to ease and generalise RTEMS developments. The latest

GNU Makefile utilities not only simplify the making process significantly, but also

result in a less error-prone and highly unified structural model when multiple de-

velopers work on a single project [14] [17]. All this, however, comes at a cost of

realisation and understanding of the latest utilities, while maintaining make utilities

up-to date.

The RTEMS development team has recently begin providing the latest GNU

Makefile utilities with corresponding RTEMS patches. Even though users with the

13portable ANSI C library implementation intended specifically for embedded systems

55

configureAutoconf

Makefile.in

User supplied
files

aclocal/*.m4

Source files

Aclocal aclocal.m4

AutoHeader config.h.in

configure.ac

makefile.am Automake

Makefiles

Figure 5.2: RTEMS Makefiles

latest GNU Makefile utilities may still make RTEMS makefiles without installation of

RTEMS patches, in the near future the use of RTEMS patches will become necessary

to maintain a more structured and unified approach towards further enhancement

of RTEMS.

Makefile utilities required for RTEMS are autoheader, aclocal, autoconf, au-

tomake and make. Figure 5.2 illustrates the process for creation of Makefiles. While

most developers directly code makefiles for their projects, some use the configure

and makefile.in approach (increasing portability and configurability, together with

minimisation of error) and very few (such as RTEMS developers) use GNU make

utilities to their fullest [17].

In the final step, configure script is used to achieve configured makefiles from

the Makefile.in files. Next section details the use of configure script to configure

the RTEMS build process.

56

5.4.3 RTEMS Configuration

RTEMS configuration is the process where the user indicates the specifications of the

target hardware and his/her desired modules for the application system. This allows

users to compile and build only the necessary and relevant sections of the RTEMS

source code. Space and time are the main considerations here, the object and library

files related to a single target environment may occupy as much as 800MB of space!

For the purpose of this project the following configuration was supplied to the

configure script.

configure --target=i386-rtems --enable-rtemsbsp=pc386

--enable-posix --disable-itron --disable-cxx --disable-tcpip

--disable-networking --disable-multiprocessing --disable-rdbg

--disable-tests --disable-docs --prefix=/opt/rtems

The above configuration, while minimal, provides the necessary functionalities

for the purposes of this project. The RTEMS kernel library may be built using the

‘‘make all install’’ command.

5.4.4 RTEMS Image File

The RTEMS image file is the final resultant system, which is both target hardware

and user application dependent. The user compiles and builds his/her application

using the RTEMS kernel library. The user may need to provide a suitable Makefile

to perform this process.

The application must state all resource managers and assets it requires. Hence

only the required parts and segments of the RTEMS kernel library will be built

into the resultant binary image file. Furthermore, according to the specifications

of the application (which the user states within his/her source code) the RTEMS

linker allocates memory segments for different sections of the execution environment

(i.e. size and position of code, heap, data, etc). Users may, by aid of linker scripts,

customise the memory allocation process. It is through the application source code

and the linker script which the user can fully customise the resultant image file [32].

57

While the user may develop applications which drift the system towards a dy-

namic behaviour, the RTEMS itself is static. By the term static we imply that the

operating system has fixed behaviour with regards to functionality, services and re-

sources as predefined by the user application and the RTEMS configuration. Hence,

one can not introduce new functionalities, resources or services at run-time level

(e.g. no installation of new OS functionalities unless the user application facilitates

the issue).

5.5 RTEMS Initialisation

The initialisation routine of a system is the first piece of code which is executed

on the system processor after a reboot or restart. This section presents a general

overview of the RTEMS initialisation routine. While the system is “open source” and

open to manual customisation for specific target environments, RTEMS developers

have designed an initialisation routine where users can customise and configure the

routine to great extent through their application source code !

The initialisation routine starts by execution of a processor specific assembly lan-

guage code, located within the libbsp directory. This code initialises the processor

and board at the lowest level, performing basic tasks such as stack initialisation and

disabling external interrupts. It is the minimum necessary code to allow continuation

of the routine through C code.

The invocation of the shared boot card() method signifies the end of assembly

language code and the initiation of execution through C language. This routine

introduces a series of configuration tables (e.g. CPU, RTEMS, BSP configuration

tables) and initiates the board specific initiation via the bsp start() directive.

Following the bsp start() function, the rtems initialize executive early and

the c rtems main directives are invoked sequentially. Finally the bsp cleanup()

directive ends the system.

Note that the user application is executed within the c rtems main function and

once finished the system shuts down by calling the bsp cleanup() function. The

following subsections describe each of the four main stages briefly.

58

5.5.1 bsp start()

In the i386 processor package (with which we are mainly concerned) this directive is

weakly aliased to bsp start default, hence bsp start() does not exist! This al-

lows the user to override the default bsp start() function with his/her own function

if he/she desires to do so. This capability is in-line with the earlier noted flexibility

in initialisation routine.

This routine performs three main tasks:

• It inserts the processor and board specific information into the earlier created

configuration tables

• It initialises the RTEMS interrupt manager

• It initialises the RTEMS exception manager

5.5.2 rtems initialize executive early

This routine is called when the target environment is ready for initiation of the

RTEMS system environment. Hence this is considered as the start of the RTEMS

itself.

The directive initiates the RTEMS using the configuration tables obtained through

the previous routines and the user supplied configuration tables. The following are

the main tasks performed by this routine.

• Initiating a series of managers and handlers (such as user extensions manager,

IO manager, object handler and interrupt handler) starting with the Debug-

ging manager to enable debugging at all stages.

• Initialising the RTEMS API and other supported APIs (upon request)

• Creating the “idle thread” which is considered as the starting point of thread

initialisations as well. Before this point no thread should be created since

Thread Executing and Thread Heir are not set yet.

59

• Initialising all device drivers. It should be noted that the

API extensions Run predriver and the API extensions Run postdriver

functions are provisions for the user to perform desired tasks before or after

the device driver initialisations (ignored in most cases).

5.5.3 c rtems main

This routine after setting the rtems progname (program’s name) variable, simply

calls the rtems initialize executive late directive.

The rtems initialize executive late directive initiates multitasking within

the system, starts the main application and simply goes away. Execution is re-

sumed within this thread once the application calls rtems shutdown executive.

rtems shutdown executive routine stops multitasking and resumes execution of

the c rtems main directive.

5.5.4 bsp cleanup()

Even though the bsp cleanup() directive is executed as part of the shut down

sequence, we briefly describe actions of this directive for the completeness. This

directive simply calls the rtemsReboot routine, which performs board specific reboot

operation.

Within the i386 environment, the rtemsReboot routine performs reboot using

the keyboard controller.

outport byte(0x64, 0xFE);

5.6 RTEMS Device Drivers

This section examines how device drivers are implemented and how they are struc-

tured within RTEMS. Devices within RTEMS are classified according to the RTEMS

source code structure.

Some drivers are generic and hardware independent. An example of this would

be the hard-disk controller which is hard-disk independent but necessary as part of

hard-disk device drivers. These drivers are mostly processor and board independent.

60

They are located within the libblock section. In some cases, they may even be

considered as an intermediate interface between RTEMS and device drivers.

The next class of drivers are ones which are generic among most boards and some

processor types. These are at a lower level than the ones described above (located

within the libchip directory).

At present, the section is composed of ide, network, rtc (real-time clock) and

serial device support. For example, the network chip (ethernet) is commonly used

within the i386 and PowerPC architectures, hence both architectures share a section

of device drivers (which is chip dependent but not board dependent) and this portion

is located within the libchip section. In the future, PCI chip code would also be

moved into this section to be shared across supporting architectures.

Finally processor and board dependent device drivers are located within the

libbsp section. Most device drivers are initially placed in this section. After gen-

eralisation across a set of boards and processors a significant portion of them are

relocated to the libchip section. Sections of the device drivers which are heavily

board dependent remain in libbsp section.

Network device drivers are an example of device drivers which are spread across

most of the areas mentioned above. The interface section of network device drivers,

since common, is placed within the libchip section. Low level read, write and con-

figure operations are board and card specific, and hence are placed within numerous

directories in the libbsp section.

Drivers dependent on their placement (within the source tree structure) would be

implemented differently and are required to support a different set of functionalities.

Since our project focuses on a specific processor (i386) and board (pc386), our SCI

device driver implementation is expected to be located within the libbsp section.

We will examine the requirements of the drivers in this section in detail in the next

chapter.

61

5.7 Comparison of Device Drivers on RTEMS, VxWorks and Linux

Having discussed device driver implementations on each of the systems (RTEMS,

VxWorks and Linux), this section presents an overview of the differences between

device driver implementations on above systems.

Classification of the drivers on Linux and VxWorks systems are quite similar and

heavily based on the type of target devices. Developers on such systems are presented

with an IO Systems Model which allows them to integrate their device capabilities

into the operating system. This IO System model was described in sections 4.2 and

4.3.

Classification of devices, based on their type, arises as a result of operating sys-

tem, and more specifically the IO System, requiring the knowledge of communication

with the hardware device and its device drivers. For example, a device is classified

as a Block device if the IO System and user applications are required to communi-

cate with the device on block basis (send and receive chunks of data at a time). In

VxWorks and Linux systems, user applications communicate with the device and its

drivers through this IO System.

The IO System simplifies a number of issues on the system, these including

access and resource management as well as provision of device interfaces for user

applications. The /dev directory on each system presents a list of devices available

and/or registered on the system. Presence of the IO System Model in both, VxWorks

and Linux, places certain rules and policies which drivers and hence their developers

must obey and account for in the coding and delivering of their objectives through

the device drivers.

RTEMS classification of device drivers are different to that of Linux and Vx-

Works’s. Device drivers on RTEMS, as mentioned in the last section, are classified

on the basis of portability, dependency and hence their location on the RTEMS tree

structure. RTEMS does not have an IO System Model similar to that of Linux

and VxWorks’s. RTEMS’s IO Manager provides basic support for an IO System

model. However, it is mainly designed to manage the initialisation of device drivers

at the system (BSP) initialisation stage. Our implementation, as described in the

62

next chapter, is dependent on the RTEMS IO Manager if user desires to perform

the SCI driver initialisation at the BSP initialisation stage. RTEMS IO Manager

dependency is eliminated if one decides to perform the SCI driver initialisation at

the application level, similar to that of network drivers.

Absence of a strict IO Systems Model in RTEMS is beneficial to programmers

as it removes a significant overhead from the system. This, however, implies that

the developer of the device driver (on RTEMS) has to account for provision of

some means of communication between the system and its drivers. The simplest

approach is through exportation of libraries and header files. Users may import

related libraries to communicate directly with the corresponding device drivers. This

has numerous advantages over the IO System model used in Linux and VxWorks

systems, outlined below.

• The device drivers have direct access to all system resources (higher customi-

sation, flexibility and efficiency).

• The developer is flexible in providing relevant services and functionalities to

the user applications (less overhead).

• The user has full direct access to the device driver functionalities (higher access

speed).

Conversely, it challenges the developer in providing a suitable set of interfaces

to the system, as well as performing efficient resource handling, management and

routine execution on the system platform.

Chapter 6

IMPLEMENTATION

The implementation chapter is where all the acquired knowledge converges to

develop an end result. Necessary background information was covered in Chapters 2

and 3. Detailed study and analysis of available resources was performed throughout

Chapters 4 and 5. This chapter demonstrates how available resources (in our case

SCI and RTEMS) can be combined and developed to achieve a RTCC (Real-Time

Computer Cluster).

The first and major section of this chapter will focus on the implementation of the

SCI drivers on RTEMS. Initially the position, role and status of the SCI drivers on

RTEMS will be discussed. This will be followed by a description of the methodology

used to insert SCI drivers in to RTEMS as a native section. Section 6.3 will analyse

how the SCI can be initialised as part of the system initialisation process; it will also

deal with the challenges, obstacles and issues involved within this process. The “SCI

driver development on RTEMS” section details the steps and procedures involved

in full implementation of the IRM section, of the SCI drivers, on RTEMS.

The second section of the implementation involves developing an application

layer specific to the objectives of the project. The application layer uses the SCI

drivers to provide “hardware based distributed shared memory” segments among

cluster nodes, hence resulting in a real-time compute cluster. The next chapter

details a simple application which employs the SCI driver and the application layer

implemented to perform simple real-time cluster computing between two nodes.

The last two sections within this chapter discuss the debugging of the implemen-

tation and the SISCI layer respectively. The debugging section outlines the tools

used to perform debugging on the resultant implementation.

Throughout this chapter the SCI drivers mainly refer to the IRM section of the

64

SCI drivers as oppose to the whole SCI drivers (IRM and SISCI, both). This is due

to the fact that IRM is the main and essential section of the SCI drivers, which is

capable of providing full functionality regardless of the presence of the SISCI section.

The last section of this chapter reasons and justifies the exclusion of the SISCI layer

from the implementation. It is worth noting that, until recently, the SISCI layer did

not exist as part of the SCI drivers, and only very recently has it been introduced to

simplify some issues, in particularly the resource handling and management which

users had to pay incredible attention to at the IRM drivers level.

6.1 SCI drivers on RTEMS

Support for hardware devices and high level functionalities comes with time in any

development system. RTEMS developers continously expand systems support for

hardware devices based on the priority of a device within real-time embedded sys-

tems. In the case of the i386 processor and the pc386 board, support for con-

sole, hardware clock and timers were among the first to be addressed on RTEMS.

RTEMS as an open source system also benefits from its external developers and

users. Users based on their needs may also code drivers and provide hardware sup-

port for RTEMS, which upon contribution to the group results in an expansion

of RTEMS’s hardware device support. In fact, this project partially falls into the

above category, where in order to achieve a Real-Time Compute Cluster one must

first provide support for SCI interconnects on RTEMS.

Support for PCI cards on the i386/pc386 target environment, on RTEMS, had

been limited to network (ethernet) cards until the contribution of this project. Net-

work cards of class 3c509, ne2000 and wd8003 chipsets are currently supported on

RTEMS. Network device drivers, however, due to their integration within other

boards and processor architectures (particularly PowerPC), have been partially re-

located to the libchip section. Furthermore, due to the use of FreeBSD network

stacks and facilitation of GDB debugging over ethernet in RTEMS, network drivers

are further integrated within RTEMS. In fact, network card initialisation within

RTEMS does not take place at BSP initialisation stage, but is carried out as part

65

of the rtems bsdnet initialize network directive.

Following observation of the above factors, it was decided to implement a stand

alone set of drivers for the PCI-SCI cards. The device driver was designated to

be placed within the libbsp section, with a minimal amount of RTEMS resource

dependencies. The device driver functionalities are accessible by the RTEMS direc-

tives and user applications through a set of exported libraries and interfaces placed

within the libbsp include section. Device driver initialisation may optionally take

place at the BSP initialisation stage or at the application runtime stage by users re-

quest. While the latter approach simply implies that the user calls the initialisation

routine, the first approach requires attention, which is detailed in Section 6.3.

In future, given that PCI-SCI cards are also compatible on PowerPC architecture,

sections of this device driver may be relocated to the libchip section. New sections

such as librtcc1 may also be initiated to support high level cluster computing

functionalities on RTEMS.

6.2 Building drivers under RTEMS

The makefile mechanism used within SCI drivers is far more different than ones used

within the RTEMS source code. The compilation and making of SCI drivers were de-

tailed in Section 4.5, similarly the making mechanism used in RTEMS was described

in Section 5.4.2. Clearly the makefile mechanism used within our implementation

of device drivers had to be compatible with the RTEMS makefile mechanism. This

conclusion came as a result of realising that the SCI driver functionalities and direc-

tives had to be part of the RTEMS kernel library in order to be available for use by

RTEMS directives and user applications. Hence, they must be present in the first

stage of the compilation and build process (refer to figure 5.1).

Relevant source code was extracted from the SCI drivers source code and a

sample set of stand alone device drivers was implemented. A high level GNU makefile

mechanism (similar to the RTEMS makefile mechanism) was implemented and tested

on the sample device driver files. Dependencies and functionalities were satisfied

1real-time cluster computing library

66

by providing “fake” declarations and functionalities 2. The sample device driver

directory was labelled sciauto, to signify the SCI drivers and the use of GNU auto

tools (high level makefile mechanism) within its make and build process.

Macro and compiler definitions (and flags) were other elements that required

careful examination. SCI drivers, in order to maximise portability and efficiency,

heavily use macro definitions throughout the source code. Necessary macro defi-

nitions were identified by thoroughly examining both the SCI driver makefiles and

the source code. They were analysed first so as to not cause in any conflict with

RTEMS, and hence they were included within the implemented source files and

makefile mechanism.

Macro definitions used within our makefile mechanism are as follows:

DEFINES += -DEXPORT SYMTAB -DOS IS RTEMS -DADAPTER IS PCI1

-DLITTLE ENDIAN -DCPU ARCH IS X86 -DMODULE -D KERNEL -D KERNEL

-D X86 -DUNIX -DIRM INTERNAL -DDBG -DRTEMS KERNEL LIBRARY SCI

-DRTEMS BSP SCI

Macro definitions are maintained throughout the source code as much as possible to

allow for future expansion and portability of the drivers.

Finally, the sample device driver was integrated into the RTEMS libbsp section.

Driver source code was placed in the $RTEMS ROOT/c/src/lib/libbsp/i386/pc386/sci

directory. The relevant makefiles from the sample device drivers were also mi-

grated to this location with required modifications. Target BSPs’ configure.ac

and Makefile.am files were accordingly modified to include compilation and build-

ing of the SCI drivers.

IRM’s main interface, genif.h, was also placed within the BSP’s library files,

to redirect any references to SCI directives to the SCI drivers directory. Further

enhancements include integration of the --enable-sci option into the RTEMS’s

building mechanism. This involved coding aclocal files as well as making modifica-

tions within the main RTEMS scripts. It allows users to specify whether to include

2required functions were declared and implemented to return true at all times without perform-
ing any action

67

SCI drivers into the RTEMS kernel library or not at the compile time 3. Other

relevant files (such as the target BSP’s wrapper files) throughout the RTEMS were

also modified to account for insertion of the new module into the i386/pc386 BSP

as well as the new --enable-sci option.

6.3 SCI Initialisation within BSP

Initialisation of device drivers within the BSP initialisation routine is, in most cases,

the simplest and most preferable method of initialising devices from the user per-

spective. Unfortunately in most cases, simplicity for the user implies extra atten-

tion and development from the developer’s point of view. The RTEMS initialisa-

tion routine was detailed in Section 5.5. Device driver initialisations are carried

out within the rtems initialize executive early directive. Device driver ini-

tialisation routines are called using dynamic reference links from the pre-configured

IO Driver address table.

The IO Driver address table is extracted from a higher level BSP Configuration

table. The BSP Configuration table is the default configuration table provided by

RTEMS, defined within the $RTEMS ROOT/cpukit/sapi/include/confdefs.h file.

The SCI drivers library is linked into the RTEMS image file, subject to the user

defining the CONFIGURE APPLICATION NEEDS SCI DRIVER macro.

#ifdef CONFIGURE_APPLICATION_NEEDS_SCI_DRIVER

#include <scidrv.h>

#endif

The following code is a simplified version of how the SCI and other device drivers

are included in the Device drivers table if requested by the user.

\#ifndef CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

rtems_driver_address_table Device_drivers[] = {

\#ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

3by default SCI drivers are not compiled into the RTEMS kernel library

68

CONSOLE_DRIVER_TABLE_ENTRY,

\#endif

\#ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

CLOCK_DRIVER_TABLE_ENTRY,

\#endif

\#ifdef CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

RTC_DRIVER_TABLE_ENTRY,

\#endif

\#ifdef CONFIGURE_APPLICATION_NEEDS_SCI_DRIVER

SCI_DRIVER_TABLE_ENTRY,

\#endif

\#ifdef CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

DEVNULL_DRIVER_TABLE_ENTRY,

\#endif

};

\#endif /* CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE */

The CONFIGURE HAS OWN DEVICE DRIVER TABLE macro is used to indicate that

the user is supplying a customised table. The SCI DRIVER TABLE ENTRY is defined

as follows within the scidrv.h file.

#define SCI_DRIVER_TABLE_ENTRY \

{ sci_initialize, sci_open, sci_close, \

sci_read, sci_write, sci_control }

sci initialize Initialisation procedure invoked as part of the BSP initialisation rou-

tine 4

sci open Open request procedure, invoked by the open directive of the IO manager,

rtem io open. Not required for SCI, but can be used to open a SCI session

with a target node.

4called within the rtems initialize executive early directive

69

sci close Close request procedure, invoked by the close directive of the IO manager,

rtem io close. Not required for SCI, but can be used to close an open SCI

session with a target node.

sci read Read request procedure, invoked by the read directive of the IO manager,

rtem io read. Not required for SCI, but can be used to receive data from a

target SCI node.

sci write Write request procedure, invoked by the write directive of the IO man-

ager, rtem io write. Not required for SCI, but can be used to send data to a

target SCI node.

sci control Special functions procedure invoked by the control directive of the IO

manager, rtem io control. Not required for SCI, but can be used as an SCI

IOCTL directive.

All of the above routines require major, minor and argument variables. The

major variable is a unique number that identifies the target hardware (e.g. SCI)

among all other hardware present within the system. The minor variable is an

index variable reflecting the device number if multiple devices of the same hardware

type exist within the system (e.g. SCI switch nodes with multiple SCI cards),

otherwise it is set to zero. The argument variable is an object reference pointer on

whose nature and type the developer decides, depending on the data required for

the implementation of this directive.

Initialising drivers as part of the BSP initialisation routine has some constraints

that limit full initialisation of the SCI cards at the BSP initialisation stage. The

first and most important factor is the concept of the “mono task execution” sys-

tem. As noted earlier, RTEMS does not allow for multi-tasking until invocation of

the rtems initialize executive late directive. Hence, even if the SCI “timeout

job handler” task is started through the SCI driver initialisation, it would not be

scheduled for execution until initiation of multi-tasking within the system. Simi-

larly watchdog (VC & LC watchdogs) routines cannot be initiated until activation

70

of multi-tasking within the system.

Board interrupts are also disabled at the start of the

rtems initialize executive early directive. While the SCI interrupt handler

may be attached through the SCI initialisation process, it would be inactive until

board interrupts are re-enabled. Finally, the SCI drivers should note the unavail-

ability of certain RTEMS resources prior to completion of the system initialisation

process. Since the SCI drivers cannot assume any order in initialisation of drivers,

they may not have any dependencies on the routines supported by other drivers or

ones which are unavailable at runtime stage. The above issue forced us to code the

drivers with the minimal amount of RTEMS Managers required.

The implemented SCI driver dependencies are limited to the RTEMS IO, Task,

Timer, Interrupt Managers, as well as POSIX Message and Semaphore Managers;

all initialised and available prior to SCI initialisation. For debugging purposes the

console driver was also included within the dependencies list, but in return ini-

tialisation of console drivers prior to SCI routines was guaranteed through custom

configuration of the RTEMS initialisation routine.

Debugging at BSP initialisation level is extremely tedious since it involves re-

compilation, making and building of the entire RTEMS kernel library and image

file per debugging session. Restrictions and constraints present within the BSP ini-

tialisation stage clearly block the full initialisation of SCI cards. The initialisation

section may be divided into two sections: one is the configuration of the card at

the BSP initialisation stage; the other, activation of the card at the user application

stage.

The last element blocking any further developments in this area was the presence

of a discovered gcc related bug within the RTEMS tools set, detailed in Appendix

B. Having realised that the initialisation of the SCI cards as part of the BSP ini-

tialisation routine was almost impractical, the main focus was steered towards the

alternative option of initialising SCI drivers through user applications. While pro-

viding flexibility for the user applications5 and considerably easing the debugging

5i.e. user may initialise SCI drivers whenever he/she desires so

71

process (now only involving make and building of the RTEMS image file), this ap-

proach resulted in the SCI card initialisation process being somewhat similar to the

network card initialisations, which also take place at the user application level.

6.4 SCI driver development on RTEMS

The development of SCI device drivers on RTEMS accounts for a significant portion

of this project. Having realised that the IRM section of the SCI drivers was the basis

and most important element of drivers, the focus of attention was steered towards

this element in the first section of the project. We shall discuss the SISCI section

later in this chapter. The result of implementing the IRM section on RTEMS was

roughly 3.7MB of source code (approx 110,000 lines). However, we do not intend

to discuss the 110,000 lines of code, but rather present an overview of the approach

taken to achieve this objective.

Prior to reaching this objective, it was correctly predicted that the task would

be of massive scale and extreme complexity. Hence, utilising project and time man-

agement skills, the task was divided into a series of stages; each stage targeting a

local objective, while all together collaboratively approach a global objective.

This approach not only eased the development process significantly, but also

ensured the correctness and fineness of the approach towards achievement of the

objective. We shall be detailing each stage, assessing inputs and outputs of each.

The first three stages (the analytical sections) provide guidelines and a basis for the

latter two sections, which are purely coding and development oriented stages.

6.4.1 Foundation Analysis

Foundation analysis was the first stage of the development process. The local objec-

tive of this stage was to provide a set of code that could be considered as a solid bases

for SCI driver development on RTEMS. We shall refer to the outcome of this stage

as the “foundation core”. SCI drivers were the only resource required throughout

this stage.

72

SCI source code was analysed, and relevant sections were extracted according to

the needs. The main elements extracted from the SCI source code are as follows:

• IRM functionality core (shared code among all boards)

• PSB chip related sections (source codes related to the PSB32 chip specifically)

• LC chip related sections (source codes related to the LC1 chip specifically)

• Operating system related codes (Linux, LynxOS and VxWorks source codes

and interfaces)

The extracted sections were further scanned for any undesirable dependencies.

Irrelevant code and functionalities were eliminated to reduce the scale of the code

for processing in all following stages. While all mentioned sections were reduced,

most were eliminated from the IRM functionality core, due to providing extra func-

tionalities for PSB64 and PSB66 cards. Conversely, in some cases extra code had to

be included to satisfy dependency requirements within the foundation core.

With regard to the operating system section, source code from Linux, LynxOS

and VxWorks was used. Linux was chosen for its support and its “open source”

feature. VxWorks was included since it was the closest match for the RTEMS within

the supported operating systems. LynxOS was chosen as an alternative operating

system, which is both real-time based and Linux compatible. Due to the lack of

SCI driver documentation, VxWorks and Linux code were analysed throughout this

project, and if they were in strong disagreement, the LynxOS code was analysed to

reach a clearer understanding of the issue.

6.4.2 Functionality Analysis

Functionality analysis is a process that is carried out on the outcome of the last

stage (Foundation analysis). The local objective is to identify functions, their role,

dependencies and inter-relationships within the foundation core. Functions were

divided into groups, referred to as “segments”, based on their location within the

73

foundation core. Segments, however, were analysed with the aid of examining the

wider set, this being the full IRM section, rather than just the foundation core.

Furthermore, a minor objective of this stage was to further eliminate any unnecessary

function or source code.

The output of this stage was important in the development of the SCI drivers

on RTEMS. Through this stage segments were classified under three categories:

Solid segments Segments with functions holding unique coding across the IRM

section, regardless of the configuration 6 set used. They should not be modified

under any circumstances and generally provide internal core functionalities of

the driver, independent of any factors.

Soft segments Segments with functions that are present (with same functionality)

throughout the IRM section for almost all configurations, but their implemen-

tation varies depending on the factors chosen within the configuration set.

Loose segments Segments present to generally satisfy dependencies and provide

minor functionalities. Their existence is dependent on the configuration used

and in most cases the implementation is specific to a certain factor used within

the corresponding configuration set.

Segments were classified by inspection and by the use of a set of logical rules.

The presence of dynamic reference links and calls made this process harder than

anticipated.

A summary of outcomes and actions in each case is presented below.

Solid segments Some portions of IRM internals, PSB and LC related sections

were classified under this category. They are to be included without any

modifications in the foundation core.

Soft segments Most of the operating system dependent section plus some of the

IRM internals, PSB and LC related sections were categorised in this branch.

6a specific set of operating system type, architecture, PSB and LC chip model is referred to as
configuration

74

Functionality of all functions is to be understood. Functions must be re-

implemented to be made RTEMS compatible, while maintaining their func-

tionality and interface with other functions.

Loose segments Some of the operating system dependent sections plus a small

portion of PSB and LC related sections fell into this category. They are to be

eliminated as much as possible, and replaced with new loose segments which

are RTEMS specific if required.

Conclusions made from this stage are important in the achievement of our global

objective. While solid segments should not be altered, both the soft and loose seg-

ments require modification and developments. One must realise the functionality of

the soft segments and develop the corresponding functions on the target operating

system (RTEMS). Loose segments require little or no attention, and, while tech-

niques in achievement of certain objectives may be learnt from them, they may be

almost entirely eliminated.

It must be noted that realisation of the functionality of routines was by far the

hardest challenge within this stage, reaching its peak when attempting to digest

the functionality of some VxWorks implemented functions which were not only of

significant complexity, but also utilised VxWorks system calls whose source code

and function was beyond our reach.

6.4.3 Implementation Analysis

Functions within the segments identified as soft or loose should be re-implemented

to perform the desired functionalities on RTEMS. This stage analyses the resources

and facilities available to a developer within RTEMS to perform such a task.

Following study of RTEMS and examination of Linux and VxWorks implemen-

tation of target routines, a set of goals and aims was developed. These were targets

to be met throughout the development process. The list is outlined below.

• Given that portions of the SCI drivers may be desired to be initiated at the

BSP initialisation level, dependencies of the developing routines must rely on

75

available resources at the BSP initialisation stage 7. Note that this may not be

possible for all routines (such as initiation of the timeout job handler, which

introduces an unpermitted multi-tasking). Hence, only a portion of SCI drivers

can be initiated at the BSP initialisation stage at any time.

• Maximise load handling, by developing the relevant routines such that they

could be executed in parallel, independently. Furthermore, minimise the crit-

ical sections within the “favourable routines” 8.

• Utilise multi-tasking to allow for a more flexible system. Variable priorities

may also be used to give preferential treatment to critical section of routines.

• Given that interrupts preempt any executive task (even ones of highest pri-

ority), polling should be considered as a suitable solution for lower priority

events.

• As a rule of thumb within real-time systems, avoid blocking ISRs and minimise

processing within ISRs as much as possible.

• Implementations are encouraged to employ the RTEMS API in achievement of

their objectives. RTEMS API as an all-time available library, not only ensures

the operation of routines under all circumstances, but in most cases this also

results in minimum system overhead in execution of the routines.

• Implementations should perform their functionalities (properly) with a mini-

mal amount of executive operations. In real-time systems the user takes re-

sponsibility of resource management, resulting in a much more optimised and

deterministic system.

7available resources at the BSP initialisation stage were discussed earlier in this chapter

8routines which are executed on frequent basis either by users request or occurrence of frequent
event, signal and/or interrupts

76

• Implementations should minimise assumptions made regarding the status of

the system at various executive stages. For example, the SCI driver initialisa-

tion routine should account for the possibility of the PCI bus not having been

initialised yet, if invoked as part of the BSP initialisation routine !

• Considering the absence of the virtual memory, user/kernel mode space and

swap space concepts within RTEMS, routines associated with such concepts

should preferably be eliminated.

• Since VxWorks itself is an RTOS, its implementations may be used as a guide-

line for RTEMS development of routines.

Portability of applications across different operating system platforms is of signifi-

cant importance. This is especially important for applications designed for longevity,

where the hardware and software infrastructure may change during the application’s

life cycle. Dolphin SCI drivers have also been designed with portability in mind.

In real-time systems, however, where predictability and low overhead are impor-

tant, portability is often sacrificed [25]. While every effort was made to maintain

the portability of the SCI drivers throughout the implementation process, the high-

lighted goals were of higher priority and were permitted to influence the portability

of the end result, if necessary9.

Throughout the next two development stages, we will briefly touch on techniques

and approaches used to achieve the various goals listed above.

6.4.4 First stage development

The SCI initialisation routine is a significantly large routine. Implementation of this

routine itself was considered as the first stage of development.

The sci init routine was chosen as the start of the initialisation process. The

routine (detailed in Section 4.6.1) was studied in conjunction with the results ob-

tained from the functionality analysis stage. Relevant10 functions, which were clas-

9yet another difference between normal and real-time systems

10in this context meaning functions involved in the SCI initialisation process

77

sified as part of the soft segments, were re-implemented on RTEMS. Throughout the

implementation process, the goals and aims set at previous stages were constantly

targeted.

In order to allow for the use of major sections of the code within the BSP ini-

tialisation stage, the implementation was made dependent on only three RTEMS

resource managers: IO, Task, and Timer Managers, and two POSIX managers:

Message and Semaphore Managers. All other functionalities were implemented at

RTEMS C standard library level, minimising dependencies and in most cases max-

imising execution speed of implemented routines.

The SCI initialisation routine is a one time routine, so the issue of “load han-

dling” is irrelevant in this section. Multi-tasking was utilised wherever appropriate.

The timeout job handler is a perfect example of this, where functions submit a sec-

tion of their job to the timeout job handler and facilitate the next requests. The

SCI interrupt does not block other ISRs and was developed to minimise processing

within its ISR. The SCI interrupt handler (ISR) processes the ISTAT register, and

submits the necessary jobs to other routines, minimising the processing within the

ISR itself. While VxWorks and Linux implementations had certain influences over

the implementation, developments were primarily based on functionality analysis

and relevancy of routines within the RTEMS.

The outcome of this stage was a complete and correct SCI driver initialisation

routine for RTEMS.

6.4.5 Second stage development

The second stage of development was a continuation of the first stage. Second stage

development targeted the remaining functionalities of the SCI drivers.

The local objective of this stage was implementation of all of the necessary (re-

maining) functionalities for the ported foundation core on RTEMS. This stage re-

sulted in implementation of various sections of the foundation core plus a major

section of the operating system dependent interface of the SCI driver.

Since the routines addressed within this stage were guaranteed to be addressed

78

at the user application level, multi-tasking, optimisation and efficiency were heavily

exploited. A large number of simple routines were implemented. Parallel execution

and multi-tasking were considered wherever appropriate.

Simplicity of implementations ensured deterministic behaviour of functions - one

of the most desirable factors within any RTOS. Use of simple, low level system

routines in implementation of functions, in most cases, ensured optimisation. A

routine was considered optimised if the number of its run-time instruction executions

on the processor, to deliver its corresponding functionality, was reduced.

One of the major areas where the above issues were utilised was the memory

management section of the SCI drivers. The use of RTEMS Partition and Region

Managers and POSIX Memory Managers was avoided. Instead, optimised and sim-

ple functions were implemented using the RTEMS C standard library to address the

specific functionalities necessary.

The outcome of this stage was the full SCI drivers implemented on RTEMS.

Some statistics on the overall result are provided below.

Source code size 3.7MB, approx 110,000 lines of code

C source files 46 files

C header/library files 88 files

Re-Implemented C source files 16 files

Re-Implemented C header files 9 files

RTEMS libraries used assert.h asm/system.h stdarg.h stdlib.h stdio.h

asm/io.h bsp.h fcntl.h errno.h sys/types.h sys/conf.h sys/types.h

pcibios.h irq.h mqueue.h time.h semaphore.h unistd.h time.h

rtems/error.h rtems/score/coremsg.inl confdefs.h string.h assert.h

79

6.5 Application layer

The development of SCI drivers on RTEMS was certainly the major portion of the

project and a great achievement. However, without an application layer, SCI drivers

by themselves would not result in a real-time compute cluster !

The SCI driver development had a global objective of full driver development

on RTEMS. This section, however, focuses entirely on the objectives of this project.

We had discussed in earlier chapters how SCI provides various useful functionalities

on clusters. The functionality that this project is interested in achieving is the

“hardware based distributed shared memory” among the cluster nodes.

Specific nodes on a cluster topology will share segments of their memory space

with other SCI nodes in the topology. We shall call these type of nodes “servers”

since they offer their memory resource to the SCI network. Nodes that map the

offered memory segments as part of their memory address space are referred to as

“clients”. All nodes access the shared memory by referring to a specific address in

their local memory address space.

Figure 6.1 illustrates a simplified process of memory sharing among SCI nodes.

Following this procedure, the server and client nodes may access the shared memory

segment by accessing a certain memory address on their local address space.

The server nodes need to perform the following steps to share their memory

segments within the SCI address space.

sci create segment Creates a unique segment on the local node

sci export segment Makes the segment available for remote access (the local node

can access the segment after this procedure)

sci set local segment available Permits nodes within the SCI topology to access

the exported segment

sci local kernel virtual address Returns the local virtual address11 of the locally

created segment

11in RTEMS this would same as the allocated I/O address

80

Map shared SCI memory
on local memory address

space (B = mapped address)

���

��
� B

���

���

Local memory
address space

Create a segment on the
 local memory space
 A = starting address

Share segment across
 the SCI space

Server node

memory segment by server
Connect to the SCI shared

node

���

���

	�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���

���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��

���
A

Physical memory segmentPhysical memory segment

SCI Address Space

Client node

SCI

Obtain address of
created segment (C)

C is a virtual address which maps
to A through SCI

I/O address space

Figure 6.1: SCI Shared Memory Segment

At segment creation stage, the user provides a handle to a callback function that

handles incoming connect requests from remote nodes. The handle may be used to

carry out client verification and other appropriate operations.

The attributes provided by the user at the segment creation stage determine

the behaviour of SCI regarding local segments. Special features or functionalities

(briefly discussed in Chapter 2) may be enabled on the local segments. The use

of such factors may introduce driver (software) interventions, which are undesirable

within a real-time system. Hardware processing in most cases results in a more

deterministic system.

For the purposes of this project, however, attributes were analysed and set so as

to minimise any processing by the SCI card. In fact, the appropriate set of attributes

were adopted to fully eliminate the intervention of software (SCI drivers) after setup

of the RTCC.

The following attributes were provided for the segment creation function to en-

81

sure complete hardware processing of the packets.

sci_create_segment(NULL,

0xBD, // Module id

0x10000001, // Segment id

0, // Attributes

size, // Segment size

local_segment_msg_callback,

(void *)0xbd1, // Callback arguments

&local_segment_handle);

The memory segment is a physically locked memory segment within the main

memory. Physically locked implies that this memory segment is non-swappable and

has a fixed location for the duration of its existence.

The physical address of the created segment, A, is not usually provided to the

user. Instead the I/O address, C, of the SCI card is provided first. If no special

configurations have been setup on the SCI card regarding the segments, the card

simply forwards the packets to the main memory, otherwise it performs the necessary

operations and then forwards the packets to the main memory.

The procedure is carried out fully through the SCI card hardware. Limited

segment information (VC12 information) and the ATT (Address Translation Table)

on the SCI card allow hardware level handling of the packets.

The client nodes perform the following steps to obtain access to the shared mem-

ory segment on the SCI address space.

sci connect segment Connects to a segment on the SCI address space.

sci map segment Allocates and maps I/O space for the connected segments on

the local machine.

sci kernel virtual address of mapping Returns the local I/O address of the

mapped segment.

12Virtual Channel

82

Similar to the creation of a segment, the connect routine has its own complex-

ities. It initiates the connection from the local side and transmits a request for

connection to the remote node. As an argument, this routine must also be provided

with a callback reference, which is invoked upon response of the remote node. The

connection is not established until the callback function indicates so. Note that the

connect routine returns following transmission of the request packet, hence return

of the function by no means signifies the completion of the objective.

The following arguments were used from the client side to minimise SCI inter-

ference.

sci_connect_segment(NULL,

target_node_id,

adapter_id,

0xBD, // Module id

0x10000001, // Segment id

0x00000001, // INCLUDE_SHORT_CONNECT_MESSAGE

remote_segment_callback,

(void *) ptr_array, // Callback arguments

&remote_segment_handle);

sci_map_segment(remote_segment_handle,

0, // Flags

0, // Offset

sci_remote_segment_size(remote_segment_handle), // Size

&remmap);

After execution of the application layer, all nodes are provided with a local

pointer that points to the globally shared SCI space. Users may treat this address

pointer similarly to a local address pointer. While users perform normal read and

write operations on the memory space addressed by the pointer, the SCI processing

is hidden at hardware level.

It must be noted, that the above functions perform a certain task and return

83

following the execution of that. The functions return irrespective of the remote

nodes’ reply to the issued request. They do not wait for the reply, rather they

provide a callback routine which is called once reply is received. This approach

results in high determinacy and predictability of the routine executions. System

may execute any of the above functions, knowing that they will return within a

fixed time duration. It may schedule other processes, following the request, until

reply is received. The callback routines are also short and predictable. Overall,

to perform a connect operation, the user and the system know it will take a fixed

amount of processing time, this accounting for the execution of the function and

the callback, this demonstrates determinacy and predictability of execution of the

above routines in RTEMS.

This application layer provides a significant resource for real-time cluster com-

puting. It has been specifically coded to provide “hardware based distributed shared

memory” segments among cluster nodes. Furthermore, a useful 2-stage lock mecha-

nism was developed for synchronisation and mutual exclusion services in the cluster.

The lock is 2-stage based to eliminate the need of atomic-execution on the remote

nodes, hence normal load/store operations are used to perform the locking. FSP

(Finite State Process) model and LTSA (Labeled Transition System Analyzer) were

used to ensure the implementation of a fair, fail-safe and suitable lock for the pur-

poses of the project.

6.6 Debugging

Testing and debugging of implementations are always an important section of projects

and usually the most time consuming element of project work.

Debugging in this project has been more difficult than any experienced before.

While debugging device drivers requires significant amounts of information for trou-

bleshooting purposes, it is quite hard to extract this information from the real-time

operating systems (in particular the RTEMS).

It was decided to initially use a simple console debugging mechanism and if

further needed, GDB over ethernet or serial to be approached. It was also decided

84

to perform SCI driver initialisation at application level for the following reasons.

Only choice It was clear that the SCI initialisation routine could not take place

at the BSP initialisation stage, hence it was decided to be performed at the

application level. This placed the SCI driver at a class similar to the network

card drivers in the RTEMS, as well as offering a range of useful features.

Time saving The RTEMS kernel library did not necessitate rebuilding for each

test session, rather only the RTEMS image file had to be re-built as a result

of modifications made in the application code.

Console debugging tool available Given that the driver initialisation routine is

fully performed at application level, the console device is fully in service for

use in the debugging process.

Flexible debugging Using the console debugger one has a more flexible choice

in debugging, execution and flow of the program. (i.e. can print relevant

parameters anywhere deemed necessary and can hold program execution, using

the getchar routine, at any stage desired)

Fortunately, console debugging was sufficient for this project. Proper manage-

ment and implementation seemed to have saved a significant amount of time within

the debugging process.

The discovered gcc bug, however, seemed to be the only element that required

extra attention and debugging. Essential debugging was carried out through the

execution and source code to investigate the source of the problem. When it was

discovered that the source of problem was a gcc related issue within RTEMS build

tools the issue was considered out the scope of the project and reported to the

RTEMS maintainers. Once again, Appendix B details this issue.

6.7 SISCI layer

In Chapter 4 we highlighted two sections of the SCI drivers, IRM and SISCI. The

connection between the two was examined as well as examining each individually.

85

It was noted that the IRM was the main driver section with direct interaction

with hardware, and SISCI was a higher level driver using IRM to provide resource

management, simplified programming interface and connection between user and

kernel mode executions.

This chapter, however, had focused purely on the IRM section. SCI driver im-

plementation was only considered in the context of the IRM section as well. This

section of this chapter details our reasons behind the decision not to include SISCI

as part of our implementation. Each objective of the SISCI will be addressed and

its attainment will be analysed.

The first and most important role of SISCI was to handle user mode calls within

kernel execution mode. This involved copying/converting user data, request and

addresses. This factor, however, is completely useless in RTEMS. User applications

and RTEMS both execute in kernel mode, hence there is no need for a layer to

connect the application mode execution to the system mode execution. Application

of the SISCI layer, here, is considered as an overhead. IRM routines, if supplied

with the address, can access user data at any time. The user address space, is the

same as the RTEMS address space, both being the physical address space of the

system, due to the flat-memory scheme employed in RTEMS. Furthermore, upon

the application program including the necessary libraries at the link time, it may

execute any instruction in much the same way as the RTEMS operating system.

Linux, however, as an operating system which is open to a wide range of users,

includes and applies user mode protection. VxWorks system facilitates user mode

protection, which if desired may be applied to the system. Though application of

user protection mode in VxWorks this is not recommended, SCI drivers have covered

the general case of accounting for this through SISCI layer.

The second role of SISCI was to simplify the programming interface, hiding sub-

stantial amounts of coding from user applications. This, also, is an undesirable

element. The extra code and overhead involved in the SISCI layer targets fail safety,

error checking and resource management mechanisms. While useful, a real-time sys-

tem developer in most cases prefers to overtake such tasks personally, since he/she

86

can optimise a system based on known relevant factors rather than general issues.

A real-time system developer would, however, appreciate the existence of a real-

time cluster computing library that eases relevant issues, such as sharing segments

of main memory to the SCI network, mapping segments from SCI address space,

implementation of locks on shared memory segments, implementation of shared ob-

jects or message queues among cluster nodes. Hence, the SISCI layer implementation

was replaced with the implementation of a real-time compute clustering library (LI-

BRTCC). Within the implemented library, DSM as well as locking mechanisms are

supported to facilitate the synchronisation and the mutual exclusion services within

a cluster.

The last task handled by the SISCI layer is the resource management, which, as

described in the last paragraph, is not a demanding element. The SISCI layer over-

all, on a real-time system, is considered as an overhead layer, which was not at any

stage justified throughout this project to be implemented on RTEMS. In summary,

the IRM section was implemented on RTEMS, which provides full support for all

capabilities of the PCI-SCI card. However, the SISCI layer was not implemented,

and as a result users obtain more control over the performance of the system. In-

stead, a much more useful library for real-time systems was developed, to perform

useful clustering functionalities with minimum overhead, optimised and once again

flexible to users objectives.

Chapter 7

EVALUATION & CONCLUSION

In this final chapter, the end result of the project work is evaluated. Suggestions

for further work in-line with this project are also presented.

7.1 Implementation

SCI drivers were fully implemented on the RTEMS. Additionally, a new library

(librtcc) was coded to enable DSM based real-time cluster computing on the re-

sultant RTCC. A 2-stage lock mechanism was also implemented and included in

the librtcc, in the hope that it can be used and possibly generalised for future

purposes. The API of the full implemented package is provided in Appendix A.

A sample real-time cluster computing application was developed to examine the

projects implementation. The program first invokes the SCI device driver initialisa-

tion routine. The existence of a bug prevented full execution of this stage. However

the cause of the bug was discovered and a “work around” solution was developed to

allow testing and full execution of the implementation until the bug in the RTEMS

is completely removed.

The application uses the second section of the project (the RTCC application

layer) to obtain a hardware based shared memory segment in between the cluster

nodes. Following this step, the system was ready for real-time cluster computing

and hence a simple cluster data processing application was deployed on the cluster.

The application employed two cluster nodes, one transferring (writing) data to

the shared memory segment and the other retrieving (reading) data and printing

on the console screen. The application also employed the implemented 2-stage lock

mechanism to ensure mutual exclusion for access to the shared memory segment.

In order to further complicate the scenario and slow the process (for the user to be

88

able to observe the results on the console), sleeping mechanisms were used to place

the task executions out-of-phase with each other.

Print functions were extensively used throughout the program to fully monitor

and control the execution of the application. While they indicated how successful the

implementation was, step by step, the absence of the debugging print info suggested

the lack of software intervention within the last section of the application. Hence,

achievement of a complete hardware based distributed shared memory, among the

RTCC nodes.

This project’s implementation is hoped to start a new area of research devel-

opment and activities. Applications of RTCC systems are foreseen to be wide and

extensive in the near future. This is particularly in the area of networking where

voice and modern data systems are under close examination to be merged under 3G

or 4G standards. New telecommunication systems are required to have real-time

capabilities (to satisfy multimedia features) as well as high performance computing

power. At present, the availability of the already implemented OpenH323 protocol

on RTEMS allows for replacement of highly loaded H323 Gateways with the RTCC

H323 Gateways. Further applications of the RTCC systems would include support

of high level OS functionalities on hard real-time basis; possible on RTCC due to

the high level of distributed computation power available.

7.2 Project

Success of a project is, in most cases, determined by the success of the end result.

An engineer should examine his/her approach to the achievement of the end result,

as well as comparing his/her work against the finest models present in industry.

The closest industrial implementation available to the achieved result is the real-

time compute cluster comprised of VxWorks as the real-time operating system and

SCI as the cluster interconnect. The end result of this project is considered compa-

rable, if not superior, to the equivalent VxWorks implementation for the following

reasons:

• RTEMS is a “licence free”, “open source” based system, freely available world-

89

wide. VxWorks, however, is an expensive proprietary system, with little info

on its internals.

• RTEMS is a fast developing system, with frequent updates, keeping up with

the latest tools and highest technology standards.

• The performance of RTEMS is comparable and in some cases better than

VxWorks (as analysed in Section 5.2).

• SCI drivers implemented on the RTEMS are finely tuned for RTEMS 1.

• SCI drivers on the RTEMS are optimised and are in direct interaction with

core sections of the operating system, unlike the Linux and VxWorks imple-

mentations which are confined to an IO Systems Model and structure.

• Some differences between RTEMS and VxWorks (such as unconditional lack of

user/kernel mode executions and also unconditional full access to the flat mem-

ory scheme within RTEMS) were exploited to achieve a higher optimisation

and lower SCI drivers overhead on RTEMS than the VxWorks implementation

2.

• Provisions have been made to allow for both, partial initialisation of the SCI

drivers at the BSP initialisation stage and dynamic load/unloading of the SCI

drivers at the application level stage. This flexibility is not offered by the SCI

driver implementation on VxWorks.

• Unlike the VxWorks implementation, the SISCI layer was completely elimi-

nated and replaced with a much more useful library (real-time cluster com-

puting library) on RTEMS.

1having the adverse effect of breaking compatibility with the Dolphin SCI drivers, as happens
regularly in real-time system developments

2VxWorks has support for both user mode execution and virtual memory space. They may be
disabled through configuration of the system, but the SCI drivers in order to function on either
case, support these issues to a variable extent. This is mainly seen throughout the SISCI layer

90

The following factors are worthy of consideration when one evaluates the ap-

proach, management and work employed throughout this project.

• Non-working SCI drivers on Linux 3 and unexaminable drivers on VxWorks 4

were studied to achieve a correct and working set of SCI drivers on RTEMS.

• The developed SCI driver on RTEMS is currently the largest set of drivers on

RTEMS (i386/pc386 BSP).

• The project objective was achieved without any loss in functionality or pre-

sentation of any disadvantages to the system at software level.

• Though the implementation was first targeted at the latest RTEMS Stable

Release (RTEMS4.5.0), implementation was modified and steered towards the

latest snapshot of the RTEMS to develop a package compatible with the latest

system with all its improvements and new services.

• Unexpected threat elements (such as the gcc bug and the unexpected structural

change of RTEMS from the latest stable version to the latest snapshot version)

were identified and worked around within the projects time frame, without any

influence on the end result.

7.3 Future work

This project is believed to provide solid foundations for a new range of applications,

a new research area and numerous activities within the near future. A number of

issues related to this project, which could be considered as future work are presented

below.

• This project had focused on the PCI-SCI D310 model cards. Support for other

SCI card models can be incorporated into the implementation model and this

3in fact, non-functionality of the SCI drivers (the October 2002 distribution) on Linux resulted
in a student changing the focus of his project away from SCI this year !

4Unexaminable, since no VxWorks systems were available for analysis, testing and drivers could
not be built on a non-VxWorks system

91

involves extraction of the related source code from the original Dolphin SCI

driver source codes and its insertion into the implementation. Sections of the

current implementation would also need modification since they have been

made adapter card specific through the implementation process.

• The testbed for this project consisted of two nodes. Even though the imple-

mentation can support any number of nodes within a cluster, load analysis

must be carried out with a higher number of cluster nodes. The implementa-

tion provides hardware based communication between cluster nodes, but the

performance is lower than a single supercomputer system due to the existence

of the PCI bridge and SCI links bottlenecks 5. The effects of traffic, congestion

and an increase in the number of nodes must be analysed on the cluster. These

issues are highly critical within a real-time system.

• Implemented SCI drivers on RTEMS support full functionality of the hardware.

Series of such functionalities were used to achieve the required objective of the

project (within the application layer). Other functionalities may be used for

different task or objectives. Hence extension of the new librtcc (real-time

cluster computing library) is recommended as further future work. Some useful

functionalities which could be developed are the extension of the IO bus from

one node to another or utilisation of the DMA facilities within the RTCC.

5source of performance loss is mainly the low speed and bandwidth of the PCI bus

BIBLIOGRAPHY

[1] http://cmp.ameslab.gov/cmp/cluster computers

[2] http://microcontroller.com/wp/DeviceDrivers/device drivers.htm

[3] http://that.gsfc.nasa.gov/osgroup/benchmarks.html

[4] http://www.beowulf.org

[5] http://www.cs.tcd.ie/Michael.Manzke/research.html

[6] Comp.realtime: FAQ.

[7] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson and D. Kranz. The MIT

Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor. In Pro-

ceedings of the Workshop on Scalable Shared-Memory Multiprocessors. Seattle,

USA, June 1990. Kluwer Academic Publishers.

[8] Alessandro Rubini. Linux Device Drivers. February 1998

[9] Alexander Reinefeld and Jens Simon. A High Performance Compute Cluster

with SCI.

[10] Antoine Colin, Isabelle Puaut. Worst-Case Execution Time Analysis of the

RTEMS Real-Time Operating System. IRISA, Campus de Beaulieu, 35042

Rennes Cedex, France.

[11] Avionic Systems Standardisation Committee. Evaluation of Real Time Operat-

ing Systems - The Role of Standards. March 1997.

[12] Bjarne G. Herland. SISCI - Implementing a Standard Software Infrastructure

on an SCI Cluster. Parallab, University of Bergen.

93

[13] Bryan Henderson. Linux Loadable Kernel Module HOWTO. 21 May 2002.

[14] David MacKenzie. GNU Auto-tools. 2001.

[15] Dolphin Interconnect Solutions. PCI-SCI Adapter Card D320/D321 Functional

Overview. version 1.01, November 30 1999, part no.: D1950-10299.

[16] Dolphin Interconnect Solutions. SISCI API User Guide.

[17] Eleftherios Gkioulekas. Developing software with GNU. Department of Applied

Mathematics, University of Washington.

[18] Harold Lorin and Harvey M. Deitel. Operating Systems. (Reading, Mas-

sachusetts: Addison-Wesley Publishing Company, Inc.), p.65. 1981.

[19] IEEE: IEEE Standard for Scalable Coherent Interface (SCI). IEEE standard

1596-1992, New York, 1993.

[20] Ismael Ripoll. RTOS State of the Art Analysis. DISCA, Universidad Politecnica

de Valencia.

[21] Jason C. Fan. Assessment of Scalable Coherent Interface (SCI). IEEE 802

Plenary - La Jolla, CA: RPRSG.

[22] John P. Kraus. Real Time Operating Systems CS384 Design of Operating Sys-

tems. 1998.

[23] K.J. and D. Ofelt. The Stanford FLASH Multiprocessor. In Proceedings of the

21st International Symposium on Computer Architecture. volume 22, pages

302-313, Chicago, IL, 1994. ACM.

[24] Kang G. Shin. Real-Time Operating Systems: Principles and a Case Study.

Real-Time Computing Laboratory, EECS Department, University of Michigan.

94

[25] Kevin M. Obenland. The use of POSIX in Real-Time Systems, Assessing its

Effectiveness and Performance. The MITRE Corporation, 1820 Dolley Madison

Blvd. McLean, VA 22102.

[26] Knut Omang, and Bodo Parady. Scalability of SCI Workstation Clusters, a

Preliminary Study. Department of Informatics, University of Oslo, Norway.

[27] LynxOS Release 4.0. Writing Device Drivers for LynxOS.

[28] Matt Verber. Real-Time Operating Systems. 1998.

[29] Maximilian Ibel, Klaus E. Schauser, Chris J. Scheiman, and Manfred Weis.

High-Performance Cluster Computing Using SCI. Department of Computer Sci-

ence, University of California, Santa Barbara.

[30] On-Line Applications Research Corporation (OAR). RTEMS C User’s Guide.

2001.

[31] On-Line Applications Research Corporation (OAR). RTEMS Intel i386 Appli-

cations Supplement. 2001.

[32] Red Hat Inc.. Using ld. Edited by Jeffrey Osier.

[33] Richard M. Stallman and Roland H. Pesch. Debugging with GDB. Seventh Edi-

tion, for GDB version 4.18, February 1999.

[34] Robert W. Todd, Matthew C. Childester and Alan D. George. A Direct Flow

Control for Real-Time SCI. HCS Research Laboratory, 2000..

[35] Roger Butenuth, Hans-Ulrich Heiss. Shared Memory Programming on PC-based

SCI Clusters.

[36] S. Millich, A. George, and S. Oral. A Comparative Throughput Analysis of Scal-

able Coherent Interface and Myrinet. HCS Research Lab, ECE Dept., University

of Florida, Gainesville, FL 32611.

95

[37] Stein J. Ryan, Stein Gjessing, Marius Liaaen. Cluster communication using a

PCI to SCI interface.

[38] T. Straumann. Open Source Real Time Operating Systems Overview. 8th In-

ternational Conference on Accelerator & Large Experimental Physics Control

Systems, 2001, San Jose, California. 2001.

[39] The Linux Document Project Organisation. Linux PCI-HOWTO.

http://www.tldp.org

[40] The Linux Document Project Organisation. The Linux Kernel API.

http://www.tldp.org

[41] Yanbing Li, Miodrag Potkonjak and Wayne Wolf. Real-Time Operating Sys-

tems for Embedded Computing. Department of Electrical Engineering, Princeton

University.

[42] WindRiver. VxWorks Programmer’s Guide 5.3.1. Edition 1.

Appendix A

RTCC PACKAGE API

This appendix outlines the API of the implemented packages on RTEMS. The

three main libraries, which provide implementation interfaces for application pro-

grams are detailed below.

A.1 SCI Initialisation Library (sci init.h)

This library contains routines involved in the SCI driver initialisation process. The

full SCI driver initialisation process is carried out by calling the sci init(0) direc-

tive.

Some individual initialisation routines are listed below (please refer to the Section

4.6.1 for description on any of the following).

• static void getDevices(char *drvname)

• static int createAdapterTable(u int count)

• static int initAdaptorTable(char *drvname)

• static int createAdapter(Sci p up)

• signed32 gen init pre(osif init args t args)

• static int openAdapter(Sci p up)

• scibool gen adapter init(Sci p sci p, osif instance t instance,

scibool attaching)

97

A.1.1 Application Level Initialisation

User mat simply import the above library, and call the sci init(0) directive. After

return of this directive, the SCI card is not fully functional yet (still a set of timer

jobs need to be completed at the background), but user may initiate his/her program

and make SCI calls and the card will catchup with the application.

A.1.2 BSP Level Initialisation

Developers keen to perform a portion of the SCI driver initialisation within

the BSP initialisation stage, may still do so by placing their desired routines

in the $RTEMS ROOT/c/src/lib/libbsp/i386/pc386/sci/sci.c:sci initialize

routine. The above routine shall be called at the BSP initialisation stage.

NOTE: Full SCI driver initialisation can not take place at the BSP initialisation

stage, hence user must execute the complementary initialisation routines at the start

of his/her application.

A.2 SCI Driver Interface (sci genif.h)

This is an extensive library, covering all supported SCI driver functionalities. The

library contains useful documentation on each routine, which user may refer to for

further guidance.

The number of routines available in this library run into hundreds and are well

documented, therefore we make no further comments on this library except to say

if you imports the above library he/she has full access to all SCI functionalities.

A.3 Real-Time Cluster Computing Library (librtcc.h)

This library contains the application layer developed within the second section of

the project. It uses the general SCI driver interface (described above) to deliver the

following functionality. It hides substantial amount of coding and resource manage-

ment from user, and specifically targets DSM based real-time cluster computing.

98

• volatile unsigned32 *Export SCI segment RTCC(

int segment size,

int source node id,

int target node id)

Creates and exports a local segment into the SCI address space. The returned

address is the local address of the segment on the local machine. If an error

occurs (such as uninitialised SCI drivers), a NULL pointer is returned.

• volatile unsigned32 *Connect SCI segment RTCC(

int *segment size,

int source node id,

int target node id)

Connects to a shared memory segment of a specific node on the SCI network.

It returns the size of the segment as well as the local address on the local

machine used to access the remote segment.

• void lock(volatile unsigned32 *address, int node id)

Provided the local address of a shared memory segment, it will lock the segment

for the use of local node only.

• void unlock(volatile unsigned32 *address, int node id)

Provided the local address of a shared memory segment, it will unlock the

lock.

NOTE: The lock implementation is provided to facilitate synchronisation and

mutual exclusion with minimum overhead, it does not provide safety or security

against abuse of the shared memory segment.

Appendix B

DISCOVERED GCC BUG

This appendix details a bug which was discovered throughout this project. It

was sufficiently analysed, and without any side effects on the project, a work around

solution was adopted until further attention on the issue. Following the realisation

that bug was GCC and RTEMS build tools related, RTEMS developers were in-

formed and efforts were made to diagnoze and resolve the problem. Below is a short

description of this bug, which if not handled correctly, could have placed a halt on

the project.

B.1 Symptom

The bug was encountered when a new task was created and initiated for execution.

Various threads and tasks were initialised through SCI drivers, hence it was observed

that whenever a new thread was initiated the system would halt with a Faulty

Thread message.

B.2 Cause

Crash occurs in the middle of context switch between the running task and the newly

initiated task. When a new thread is created, three minimal contexts are created

with Thread Handler as the entry point. When performing task delete the first

context is used, and performs correctly. But when calling the Context Switch,

unfortunately EIP is corrupted, hence the new thread is not initiated properly,

resulting in the crash.

100

B.3 Workaround

As a workaround solution for this problem, a “dummy victim thread” was created

with special attributes which would be killed in place of the main execution thread.

B.4 Resolution

The following line in the new lib package was identified as the cause of this bug.

*ptr = (struct _reent) _REENT_INIT((*ptr));

Replacement of the above line with the following, would result in correct func-

tionality without corruption of the EIP.

_REENT_INIT_PTR((ptr));

B.5 Status

Problem was identified on the new lib package of GCC 3.2.1 and 3.2.2. Above

resolution would resolve the problem. However, at the time of writing of this report,

RTEMS is already swifting towards GCC 3.2.3 (pre-release GCC version), which is

yet to be analysed with regards to this bug.

If GCC 3.2.3 does not address the issue, the RTEMS patches will certainly be

responsible to do so.

Appendix C

CONCEPTS & TOOLS

C.1 Technical Concepts learnt

• High-performance and parallel computing, with regards to compute clusters.

• SCI (Scalable Coherent Interface), role and importance of cluster intercon-

nects.

• Embedded and Real-Time systems.

• Operating system concepts, with special regards to hardware initialisation,

task and object handling, process scheduling and device drivers.

• In depth knowledge of RTEMS, an “open source”, high-performance dedicated

real-time operating system.

C.2 Tools and Software utilised

• Ctags - analyse flow of system calls within a large project

• CVS - for extensive version and source code management

• GDB (GNU debugger) - for monitoring step by step execution of processes.

• Latex - for writing this project report.

• SourceNavigator - for studying/analysing large amount of project source codes.

• VIM - as an extremely powerful text editor for programming and writing doc-

uments, both.

