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Abstract

The goal of this project was to evaluate the suitability of modifying an open source
VHDL implementation of a RISC microprocessor with the aim of using it as a teach-
ing aid aimed at second year computer-science and third year computer-engineering
students.

The core that was evaluated is the LEON SPARC-V8 compatible processor model, which
was released under the GNU-LGPL and is freely available to download from the internet.
The possibility of upgrading the current microprocessor design project by using the
LEON core in place of the current Motorolla M68008 microprocessor was also explored
and a prototype project board was designed and assembled in order to test the operation
of the modified processor model.

This report outlines the changes made to the LEON model in order to make it suitable
for integration into a new design project, based on the format of the original one. The
model is tested for compatibility and several test programs, written in RISC assembly
code, are evaluated on the processor model.



Chapter 1

Introduction

This project set out to evaluate the suitability of modifying an FPGA® based micro-
processor with the intention of using it as a teaching-aid and, if successful, exploring
the possibility of upgrading the existing microprocessor design project, which is under-
taken by Computer Science and Computer Engineering students, using FPGA processor
instead of the current Motorola processor.

The model that was assessed as the replacement processor for the project is the LEON2-
1.0.10-xst 2 synthesisable VHDL RISC microprocessor core.

The LEON processor would only be suitable as an upgrade if it could be integrated
into a project format similar to that of the current design project. It should replace
all of the functionallity of the Motorola processor while still providing a solid base
for students to acquire a good working knowledge of the steps required to interface a
microprocessor with peripheral devices, as well as understanding and being able to write
machine assembly code.

This chapter describes the current microprocessor project and sets out the arguments for
and against upgrading the project to be based around a synthesisable processor model
as opposed to the Motorola processor.

1.1 The Current Design Project

The current microprocessor design project is based on the Motorola MC68008 CISC mi-
croprocessor and is targeted at second year Computer Science and third year Computer
Engineering students. The main aim of the project is to introduce students to the op-
eration of microprocessor systems at a fundamental level and to give them ”hands-on”
experience in the construction of these systems.

The design project sets out specific tasks for the students to work to, over a six week
period, with each task building on the previous. Successful completion of all of the tasks
results in a fully functional microprocessor system comprising of one EPROM, two RAM
chips and two serial ports. The system is designed to be basic enough to allow completion

!Field Programmable Gate Array
2 Available under the GNU-LGPL from http://www.gaisler.com



within the specified timeframe while, at the same time, enabling the students to learn
about the operation and interaction of the hardware involved in creating the system.
The following list of suggested goals is recommended to students undertaking the current
desing project:

e WEEK 1: Verify the operation of the on-board clock circuitry and learn how to
programme the Gate Array Logic (GAL) chips

e WEEK 2: Implement the core processor architecture (Clock, GALs, EPROM) and
verify that the processor can read from the EPROM

e WEEK 3: Add and verify the RAMs, R6551s and MAX232 then implement and
test a transparent-link program

e WEEK 4: Write and implement a polled monitor program and implement bus
timeouts

e WEEK b5: Extra week to finish project work and start project write-up

e WEEK 6: Hand up project report and completed hardware

1.1.1 The Motorola MC68008

The original Motorola MC68000 family of microprocessors was introduced in 1982, with
the MC68008 being released shortly afterwards. The MC68008 has an internal 16-bit
architecture with an 8-bit external data bus and a 20-bit address bus (IMB address
space). It is a CISC processor and has no internal caches, memory management unit
(MMU) or floating point unit (FPU), however these may be added optionally as external
devices, enhancing the operation of the processor.

VCC ———*

20 A0 - A19
GND — %

CLK ——*
8 ) DO0-D7
FCO - FC2 < 3
> JAS
————»
>
f————
f————
=
-—————————————

RIW
/DS
/IDTACK

E = MC68008

INPA ———————

/BR
/BG

/BERR —————*

/RESET —~—*
IHALT

/IPLO/2
/IPL1

Figure 1.1: Block Diagram of the MC68008 Microprocessor



The various MC68008 signals are summarized in table 1.1. All of these signals operate
using 5V transistor-to-transistor logic (TTL).

| Signal Type | Label | No. |
Power and Timing Vee, Gnd(2), Clk 4
Processor Status FCo0, FC1, FC2 3
M6800 Peripheral Ctrl | E, /VPA 2
System Control /BERR, /RESET, /HALT | 3
Address Bus A0 - A19 20
Data Bus DO - D7 8
Asynch Bus Control J/AS, R/W, /DS, /DTACK | 4
Bus Arbitration Ctrl | /BR, /BG 2
Interrupt Ctrl IPLO/2, /IPL1 2

[TOTAL: | [ 3 |

Table 1.1: Signal Classifications of the MC68008

MC68008 Memory Accesses

The Motorola MC68008 uses an asynchronous bus transfer protocol with a transfer rate
of 1 byte per access. Figure 1.2 outlines a basic read cycle performed by the processor.
The chip and output enable signalling is generated by external circuitry using the address
and data strobes combined with the memory address on the bus and whether or not the
cycle is a read or a write cycle.

S s S S S I e

R/W

Al19 - A0

IAS

/DS

/IDTACK

D7 - DO

Figure 1.2: Simplified MC68008 Memory Read Cycle

The /DTACK signal is used to notify the processor that there is valid data on the data
bus and that the memory cycle may be terminated on the next clock edge. Memory
accesses can be delayed by delaying the assertion of the /DTACK signal. This may be
necessary for slow external memory devices or when performing memory mapped 1/0.
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1.1.2 Project Components

The components used in the project consist of one EPROM, two RAM chips, two GALs,
two ACIAs and one MAX232. The EPROM has an 8-bit data bus and a capacity of
8kB. The RAM chips also have 8-bit data buses and a capacity of 2kB each. These chips
are controlled using a combination of the MC68008’s asynchronous bus control signals
combined with the control signals generated in the GALs.

The GALSs contain a 4-bit clock divider as well as logic that controls the data transfer
acknowledge, output enable, read /write and chip enable signals.

The Asynchronous Communication Interface Adapters (ACIAs) communicate with the
processor using the M6800 peripheral interface via the “E” and “/VPA” control signals.
The MAX232 chip is used to translate the voltage levels between TTL and RS232
standards in order that the system can be connected to a standard serial port.

1.1.3 Project Tasks

e The first task is to verify that the on-board clock circuitry is operational and gen-
erating a 15 MHz signal. This is tested by connecting the signal to an oscilliscope
and measuring the period of the resultant waveform.

e A 4-bit counter is then designed and implemented within one of the GALs. This
counter is used to divide the 15MHz signal down to 8MHz and 1MHz, which are
used to drive the processor and the ACIAs respectively.

e The reset circuitry is designed to debounce the signal from the reset push-button
and to delay the reset signal by holding it at a logic-low level for at least three
clock cycles. This ensures that the processor and peripheral components have reset
correctly.

e The MC68008’s 1MB address space is then segmented into regions where the
ROM, RAM and ACIAs are to be mapped. This memory-mapping is then used
to generate the enable signals, for the chips, from logic within the GAL.

e At this stage, the EPROM is programmed with an infinite-loop test program.
This allows the students to verify that the control logic is working and that the
processor is reading information from the ROM. Trace information is captured
using a logic state analyser connected to the address and data buses.

e The two ACIAs are then connected to the processor and the MAX232. The oper-
ation of serial ports are tested using a transparent link program, which allows two
computers to be connected together using a hyperterm session.

e At this stage, the project hardware has been completed and the students have built
a fully functional microprocessor system. A monitor program is then implemented
and downloaded onto the EPROM. This is the final task in the completion of the

microprocessor design project.



1.2 Motivation

The main reasons for upgrading the design project are to take advantage of new tech-
nology advances both in processor architecture and electronic technology. The current
design project is inflexible and based on ageing technology and, as a result, it is becoming
more difficult and expensive to replace faulty components.

The current project is based on a 20 year old 16-bit CISC microprocessor and while this
serves to teach students about how a processor interacts with peripherals it does not
allow them to learn about the architecture of current RISC processor technology, which
is used in the majority of microprocessors in operation today. The TTL signalling stan-
dards used in the current project have also been superceded by new LVTTL standards
that operate at 3.3V instead of 5V, leading to more power efficient designs.

1.3 An FPGA Based Design

It was decided to upgrade the project to be based on an FPGA solution as this provided
the most versatility in design. Due to the fact that FPGAs are configurable, any future
project design would not have to be constrained to a particular chip type. There are
plenty of open-source models of processors designed around different architectures and
this was seen as one of the major advantages of using an FPGA, as it meant that any
new design project could be easily based around any type of processor that had been
implemented using a hardware description language such as VHDL, Verilog or Handel-C.
Using custom hardware to aid in the teaching of computer architecture is not a new
concept and its success has already been demonstrated in several different projects, for
example the work carried out to design and implement custom hardware and simulation
tools at the University of Waikato[1]. Efforts have also been made to design processor
architectures from scratch[2] with the intention of providing a simple yet functional
platform through which to introduce students to the operation of a microprocessor core.
These implementations do not, however, allow the system to grow in complexity as
the students understanding of processor design and concepts increase, without major
updates to the processor model. By using a fully functional configurable processor
model, the complexity of operation may be tailored to suit the needs of different student
groups. For this reason, it was decided to base the new design project around a mature,
well tested model of a full standardized processor architecture, instead of creating or
using an architecture designed solely for the purposes of teaching.

One such option is the LEON processor. This is an open source implementation of a
SPARC V8 compliant 32-bit RISC processor. It was chosen to be the target upgrade pro-
cessor mainly due to the fact that it was highly configurable and open-source, meaning
that it could be readily modified to suit the needs of the project.

1.4 Platform Options

The FPGA used in this project is the VirtexII XC2V1000[3] on the VirtexII proto-
typing board[4]. This was used as the VirtexII chip has a large capacity and is easily
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programmed. When used in conjunction with the prototyping board it led to a versatile
platform for testing the required circuitry. A Xilinx XC18V04 PROM][5] was used to
automatically configure the FPGA with the bit-file.

Some peripheral components were also required to interface with the processor and
these were chosen based on hardware compatibility with the Virtex IT FPGA. LVTTL
compatible PEROM and SRAM chips were used and a MAX3232 was used to convert
voltage levels between LVTTL and RS232 standard for the serial port connections. All
of these components would be wired-wrapped together.

1.5 Initial Testing

Before any work was done on the LEON core, it was important to test and verify that
the hardware, that would be used in the project, was operational. This was important,
firstly to ensure that all of the components were functional and secondly, to provide
valuable experience in how to generate bit-files targeted at the correct FPGA platform
and successfully download and run them on the prototyping board.

The Xilinx iMPACT software and the Xilinz “Parallel Cable IV” were used to transfer
the program bit-file to the FPGA. The first task to be done was to make a connector
that was able to interface the parallel cable with the prototyping board.

The prototyping board provided for eight different configuration methods which could
be selected using a rotary switch on the board:

H Switch Position ‘ Configuration Mode H

0 Master Serial PROM

Master Serial Upstream
Master Select Map PROM
Master Select Map Upstream
Slave Serial

JTAG

Select Map

External

| O O x| W DN~

Table 1.2: Prototyping Board Configuration Modes

It was possible to configure the FPGA directly from the computer using either Slave
Serial or JTAG mode, however it was only possible to configure the on-board PROM
using JTAG mode so the interface cable was designed to support both JTAG and Slave
Serial modes.

A test program was then synthesised for the XC2V1000-F(G256-5 and downloaded, using
JTAG mode, onto the FPGA. This program was designed to flash the LEDs on the
prototyping boardin continuously sequence and in doing so demonstrated that the bit-
file had been downloaded correctly and that the programme was running successfully
on the FGPA. The demonstration program used is detailed in appendix A.



Parallel Cable IV 3 ! Xillinx Prototyping Board i

gl
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Figure 1.3: Download Interface Cable

The same program was then formatted for use with the XC18V04 PROM and down-
loaded onto it using the same procedure as for the FPGA. Configuring the PROM instead
of the FPGA directly meant that the system would not have to be reprogrammed every
time the board was powered-up, as the FPGA would automatically be programmed
with the contents of the PROM. This procedure would also verify that the configuration
PROM was communicating with the FPGA.

These two tests produced positive results, proving that the basic hardware aspect of the
project had been set up and was working correctly. They also gave valuable insight into
the operation of the prototyping board as well as the download software and hardware
that were required to configure the FPGA and PROM.



Chapter 2

The LEON Core

LEON-P1754 is a VHDL model of a 32-bit processor conforming to the IEEE-1745
standard, which is fully compatible with the SPARC V8 architecture[6]. The model
is fully synthesisable and can be implemented on both FPGAs and ASICs. The model
incorporates an integer unit, separate instruction and data caches and several peripheral
modules, which are connected to the processor through an on-chip AMBA bus.

LEON is provided under the GNU GPL and LGPL. The LGPL applies to the model
itself while the remaining support and test files are provided under the GPL. This means
that additional modules may be added to the core without being open-source as long as
any changes that were made to the model itself remain open.

This chapter describes the architecture and implementation of the unmodified LEON2-
1.0.10-xst model [7], which was evaluated as a possible upgrade to the current micropro-
cessor design project. The modifications made to the model in order to make suitable
as a teaching aid for the purposes of the upgraded microprocessor design project are
discussed in chapter 3.

2.1 Origins

LEON was originally designed by Jiri Gaisler while working for the European Space
Administration (ESA) and is currently maintained by Gaisler Research. It was designed
for embedded applications with the intention of being used in future satellite systems
which are under development by the ESA. A fault-tolerent version of the Leon core
that incorporates hardware features capable of withstanding single-event upset errors
without loss of data is also available, however it is not open-source. The first release of
the LEON core was made available in October 1999, with continuous enhancement and
upgrades being released since then.

2.2 Model Architecture

As LEON was designed for embedded applications, many peripheral modules are in-
cluded in its design. These modules are connected to the processor using two internal



buses and provide most of the on-chip functionality. Figure 2.1 outlines the main archi-
tectural features of the LEON processor core.

LEON Processor

FPU PCl  |————>
Dby Integer Unit |
uppo |

nit User 1/0 <—————>»

1-Cache ‘ D-Cache
AHB Interface

I

I

I

I

1

I

AMBA AHB AHB |

Controller l

1

|

-— g:r?glg Memory Timers |IRQ Ctrl !

: link Controller AHBIAFB :

! UARTSs | 1/O Port Bridge ‘
I

I

1 AMBAAPB | | |

e

1 1 1 1
‘ PROM ‘ ‘ 110 ‘ ‘ SRAM ‘ ‘SDRAM‘

Figure 2.1: Block Diagram of the LEON model architecure

2.2.1 Integer Unit

The integer unit implements the full SPARC V8 standard, including all multiply and
divide instructions, and has been certified by SPARC as a fully complient implementa-
tion of the standard. The number of register windows is configurable from 2 - 32, with a
default setting of 8. The integer unit provides interfaces for an optional Floating Point
Unit (FPU) and Coprocessor (CP).

It uses a 5-stage instruction pipeline:

1. FE — Instruction Fetch Stage
2. DE — Instruction Decode Stage
3. EX - Execute Stage

4. ME — Memory Stage

5. WR — Write Stage

2.2.2 Caches

Seperate instruction and data caches are present within the model. They are connected
directly to the integer unit and access the memory controller via the AHB bus. The
data cache can perform bus snooping on the AHB bus. Both the instruction and data



caches may be configured individually within the model, each cache having a size of
between 1kB and 64kB with a line size of between 4 and 8 words per line. As the size
of the caches is increased, so too will the performance, however the overall size of the
core will also increase.

Cache sets may be replaced using a pseudo random, least recently replaced (LRR) or
least recently used (LRU) algorithm. The LRU scheme has the best performance but
also the highest overhead. It is also possible to configure the caches to use line locking,
however this will increase the size of the tags.

A cacheability table within the model defines which areas of the address space are to
be considered suitable for the instruction and data caches to cache. It defines only the
ROM and RAM areas to be cacheable.

function is_cacheable(haddr : std_logic_vector(31 downto 24))
return std_logic is variable hcache : std_logic;

begin
if (haddr(31) = ’0’) and (haddr(30 downto 29) /= "01") then
hcache := ’1’;
else
hcache := ’07?;
end if;
return(hcache) ;

2.2.3 AMBA AHB/APB Bus

LEON contains full on-chip implementation of the AMBA Advanced Highspeed Bus
(AHB) and Advanced Peripheral Bus (APB)[8]. All of the peripheral modules within
the LEON core implement the AHB/APB interface, making it easy to add new or remove
existing modules. The APB bus is used to access the on-chip registers, while the AHB
bus is used for high-speed data transfers. The default address allocations of devices on
the AHB are given in table 2.1

H Address Range ‘ Size ‘ Mapping ‘ Module H
0x00000000 - Ox1FFFFFFF | 512 MB | PROM Memory Controller
0x20000000 - 0x3FFFFFFF | 512 MB | I/O
0x40000000 - Ox7FFFFFFF | 1 GB | RAM
0x80000000 - 0x8FFFFFFF | 256 MB | On-chip regs APB Bridge
0x90000000 - 0x9FFFFFFF | 256 MB | Debug Support | DSU

Table 2.1: Default AHB Memory Map

The on-chip registers are laid out according to table 2.2 and are accessible via the APB
bridge.
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| Address | Register | Address | Register |
0x80000000 | Memory Configuration 1 || 0x80000090 | Interrupt Mask and Priority
0x80000004 | Memory Configuration 2 || 0x80000094 | Interrupt Pending
0x80000008 | Memory Configuration 3 || 0x80000098 | Interrupt Force
0x8000000C | AHB Failing Address 0x8000009C | Interrupt Clear
0x80000010 | AHB Status 0x800000A0 | I/O Port Input/Output
0x80000014 | Cache Control 0x800000A4 | I/O Port Direction
0x80000018 | Power-down 0x800000A8 | I/O Port Interrupt
0x8000001C | Write Protection 1 0x800000B0 | Secondary Interrupt Mask
0x80000020 | Write Protection 2 0x800000B4 | Secondary Interrupt Pending
0x80000024 | LEON Configuration 0x800000B8 | Secondary Interrupt Status
0x80000040 | Timer 1 Counter 0x800000BC | Secondary Interrupt Control
0x80000044 | Timer 1 Reload 0x800000C4 | DSU UART Status
0x80000048 | Timer 1 Control 0x800000C8 | DSU UART Control
0x8000004C | Watchdog 0x800000CC | DSU UART Scaler
0x80000050 | Timer 2 Counter
0x80000054 | Timer 2 Reload
0x80000058 | Timer 2 Control
0x80000060 | Scaler Counter
0x80000064 | Scaler Reload
0x80000070 | UART 1 Data
0x80000074 | UART 1 Status
0x80000078 | UART 1 Control
0x8000007C | UART 1 Scaler
0x80000080 | UART 2 Data
0x80000084 | UART 2 Status
0x80000088 | UART 2 Control
0x8000008C | UART 2 Scaler

Table 2.2: On-chip Registers
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2.2.4 Debug Support Unit

The debug support unit (DSU) allows non-intrusive debugging of the LEON processor
on target hardware. It provides access to all on-chip registers as well as containing
a trace buffer, which stores executed instructions and data transfers on the internal
buses. The DSU uses a dedicated UART to communicate and may be controlled using
an remote debugger!.

2.2.5 Memory Controller

The memory controller interfaces the processor to the external memory devices. Support
is provided for PROMs, SRAMs, SDRAMs and memory mapped I/O devices. The data
bus width can be programmed for either 8, 16 or 32-bit memory accesses.

ROMSN[1:0] cs
OEN oE PROM
WRITEN WE
10SN cs
oe |/O
WE
RAMSN[4:0] cs
RAMOEN([4:0] oE SRAM
RWEN[3:0] WE
SDCLK < A[16:15]
SDgDSgE:Sﬂ CSN A[14:2]
SDCASN RS SDRAM
SDWEN WE
SDDQMI[3:0] DOM
ADDR([27:0]
DATA[31:0]

Figure 2.2: Memory Controller Interface Signals

The memory controller is attached to the processor through the AHB and is programmed
through three registers (MCR1, MCR2 and MCR3) that govern the setup and operation
of the memory controller. It automatically generates all of the control signals required
to access the external memory devices and can (optionally) add up to 15 wait-states for
slow device access. The memory devices are mapped, by default, according to table 2.1.

2.2.6 Timers

Two 24-bit timers and one 24-bit watchdog are provided on-chip and are clocked by a
common 10-bit prescaler. The timers are controlled through the on-chip timer control
register. When the watchdog reaches zero, it asserts the WDOG signal, which in turn
can be used to generate a system reset.

LA DSU monitor is provided by Gaisler Research
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2.2.7 Internal UARTSs

Two 8-bit UARTSs are provided on-chip for serial communication. The UART outputs
may be connected to a serial port using an appropriate RS232 standard logic convertor,
such as the Maxim MAX3232 [9]. The UARTs are fully functional and are capable
of either generating the bit-rate internally, using a 12-bit clock divider, or by using
an external source obtained from the parallel inteface. Hardware flow-control, parity
checking and stop bit generation are supported.

2.2.8 IRQ Controllers

The interrupt controller manages a total of 15 interrupts, originating from internal and
external sources. Each interrupt can be programmed to one of two priority levels. An
optional secondary interrupt controller may also be configured and is used to add up to
32 additional interrupts, which can only be used by on-chip peripherals.

2.2.9 Parallel I/O Port

A 32-bit parallel I/O port is provided on-chip. 16-bits are always available and can be
individually programmed by software to be an input or an output. An additional 16-bits
are only available when the memory bus is configured for 8 or 16-bit operation. Some
of the bits have alternate usages, such as UART input/outputs and external interrupt
inputs, which are detailed in table 2.3.

H I/0O port ‘ Function ‘ Type ‘ Description H
PIO[15] | TXD1 Output | UART1 Transmit Data
PIO[14] | RXD1 Input | UART1 Receive Data
PIO[13] | RTS1 Output | UART1 Request-to-send
PIO[12] | CTS1 Input | UART1 Clear-to-send
PIO[11] | TXD2 Output | UART2 Transmit Data
PIO[10] | RXD2 Input | UART2 Receive Data
PIO[9] RTS2 Output | UART2 Request-to-send
PIO[§] CTS2 Input | UART2 Clear-to-send
PIO[4] Boot Select Input | Internal or External Boot Prom
PIO[3] UART Clock | Input | Use as alternalte UART clock
PIO[1:0] | PROM Width | Input | Defines PROM Width at Boot Time

Table 2.3: Parallel Port Usage (8/16-bit Mode)

2.2.10 PCI Interface

A 32-bit, 33MHz PCI Master/Target Interface is also included as an optional module
in the LEON core. It is based on the OpenCores PCI bridge.
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2.3 Signalling

Figure 2.3 shows the layout of the top-level LEON entity. The processor has a 32-bit
internal address bus, however only 28-bits are visible on the external bus with bits 31-28
being used internally for address decoding.

resetn ———————————*

cdk —————

address ( [27:.0)

pio

dsuen
dsutx
dsurx
dsubre

dsuact

test
wdog

( [15:0]

LEON

™ erorn

[3L0] ) da@

L/ . ramsn[40]

./ . ramoen[4(0]

-/« rwen[3:0]
/ » romsn[1:0]

| . iosn
. o oen
L o read

- = Write

- brdyn

bexcn

Figure 2.3: Block Diagram of the LEON Microprocessor

The various control signals are summarized in table 2.4. These signals can operate using
any signalling standard, which is supported by the target hardware platform. For the
purposes of this project, all signals will operate using 3.3V Low Voltage Transistor-to-
Transistor Logic (LVTTL).

H Signal Type ‘ Label H No. H
System Control | resetn, errorn, wdog 3
Address Bus A27 - A0 28
Data Bus D7 - DO 8
Parallel Port piolb - pio0 16
Bus Control ramsn[4:0], ramoen|[4:0], rwen[3:0], romsn|[1:0],

iosn, oen, read, write, bdryn, bexcn 22
Debug Support | dsuen, dsurx, dsutx, dsubre, dsuact, test 6
| TOTAL: | | 83 |

Table 2.4: Signal Classifications of the LEON processor

14



LEON Memory Accesses

Memory access cycles are controlled by the three memory control registers in LEON.
They are used to configure the bus width of both the ROM and RAM chips as well
as the amount of wait-states, if any, required for each type of memory access. There
are three types of memory access; ROM, RAM and Memory Mapped I/O, however the
memory cycle remains similar for each type as shown in figure 2.4.

e I S S e

ADDR

READ

WRITEN

ICE

OEN

DATA

Figure 2.4: Simplified 32-bit LEON Memory Read Cycle

If the processor is configured for 8 or 16-bit data bus widths, the memory cycles will
still remain the same apart from having to perform 4 cycles in 8-bit mode and 2 cycles
in 16-bit mode in order to retrieve the correct 32-bit quantity from memory.

WRITEN

ICE

OEN

para —— X >——< . >——FX >— >——

Figure 2.5: Simplified 8-bit LEON Memory Read Cycle
It is also possible to access several consecutive addresses using burst mode access. A

burst transfer will be generated when the memory controller is accessed using an AHB
burst request. This functionality is not, neccessary for the purposes of the design project.
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2.4 Configuration

Configuration of the LEON core is accomplished using records, which are defined in
the target package. A single VHDL file called device.vhd is used to set up the correct
configuration record entries, allowing the entire model to be customized for a specific
application or target technology. This file may be edited either manually or using a
graphical configuration utility based on the linux kernel tkconfig scripts.

The model is configured from a master configuration record, which contains a number
of sub-records that configure specific modules and functions.

type config_type is record

synthesis
iu
fpu
cache
ahb
apb
mctrl
boot
debug
pci
peri
end record;

: syn_config_type;

: iu_config_type;

: fpu_config_type;

: cache_config_type;
: ahb_config_type;

: apb_config_type;

: mctrl_config_type;
: boot_config_type;
: debug_config_type;
: pci_config_type;

: peri_config_type;

synthesis options

integer unit config options
floating point unit config options
cache config options

ahb config options

apb config options

memory controller config options
boot config options

debug unit config options

pci config options

peripheral module config options

The synthesis configuration sub-record is used to configure the model for specific synthe-
sis tools and target types. Using this record, technology specific cells within the design
can either be automatically inferred or directly instantiated.

type targettechs is

(gen, virtex, virtex2, atc35, atc2b,

atc18, £s90, umcl8, tsmc25, proasic, axcel);

-- synthesis configuration
type syn_config_type is record

targettech
infer_ram
infer_regf
infer_rom
infer_pads
infer_mult
rftype

end record;

: targettechs;

: boolean; -- infer cache and dsu ram automatically
: boolean; -- infer the regfile automatically

: boolean; -- infer boot prom automatically

: boolean; -- infer pads automatically

: boolean; -- infer multiplier automatically

: integer; -- regfile implementation option

Any peripheral that is disabled in the configuration record will have its functionality
supressed within the model, resulting in a smaller design.
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2.5 Simulation

All simulations of the LEON core were performed using Modelsim-5.7SE2. Generic test-
benches are provided with LEON, which allow simulation of the model with 32, 16 or
8-bit data buses using precompiled test programs. All simulations were performed using
the 8-bit bus configuration as this is the configuration which would be used in the actual
design project.

The three main classes of testbenches provided with the model are:

1. Functional Tests: 'These test most on-chip functionality using either 8, 16 or
32-bit external static RAM or else 32-bit external SDRAM.

2. Memory Tests: These test on-chip memory with patterns of 0x55 and OxAA,
again using either 8, 16 or 32-bit data bus widths.

3. Full Tests: These provide full functional and memory tests.

Several simulations of LEON were performed before any alterations were made to the
model. The purpose of this was to gain familiarity with the Modelsim environment
as well as the operation of the processor. The following output is generated by the
simulator when running the standard func_8 testbench without any modifications.

## *xx Starting LEON system test ***

## Memory interface test

## Cache test

## Register file

## Interrupt controller

## Timers, watchdog and power-down

## Parallel I/0 Port

## UARTs

## Test completed OK, halting with failure

# *x Failure: TEST COMPLETED OK, ending with FAILURE

All of the testbenches operate by simulating ROM and RAM devices, which can be
initialised with data from special files, and interfacing them with the processor model
in the same way that would be done in a real hardware system. Due to this layout,
arbitrary programs suitable for use with the LEON architecture, may be run from within
the testbenches, adding to their versatility.

The simulations allow all of the internal signalling within the processor to be viewed,
aiding in the process of debugging new code or verifying that any changes that have
been made operate in the fashion that was intended.

Figure 2.6 shows as sample of the output waveforms that are obtained from simulations
performed on the model using the 8-bit functional testbench.

2 Available from http://www.model.com
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2.6 Synthesis

The Xilinx Synthesis Technology (XST) suite of HDL compilation tools was used to
build and synthesise the LEON core. The following commands were used to achieve a
final bit-file, targetted at the VirtexII platform.

xst -ifn leon.xst

ngdbuild leon -uc leon-proj.ucf
map -detail leon.ngd

par leon.ncd leon_par.ncd
bitgen leon_par.ncd leon.bit

The xst program was used to compile and synthesise all of the relevant files making
up the LEON model. These files were listed in the correct compilation order in the
“leon.zst” file, which ensured that no dependency issues arose during compilation if the
source files were analysed in the wrong order.

The ngdbuild program was used to create a single “ngd” design file from the various
synthesised project files. This included options from the user constraints file (“leon-
proj.ucf’) telling the program which external IO Pads to lock the signals to.

The map program was used to map the design from the “ngd” file and create a “ncd” file
specific to the target FPGA platform, which in this case was the VirtexIT XC2V1000[3].
The par program was used to place and route all of the signals and nets within the
design. This is the final step in compilation of the design before a bit-file is created.
Finally, the bitgen program was used to create the final bit-file containing the complete
design. This file is suitable for download directly into the FPGA if required, however for
the purposes of the project, this file is then formatted by the PROM formatter utility
before being downloaded into the configuration PROM, which in turn programmes the
FPGA automatically on power-up of the prototyping board.

At this point no modifications had been made to the LEON core so the default synthesis
options and constraints were used to test the synthesis process.
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Chapter 3

Modifying the LEON Core

While evaluating the LEON core, it became clear that several major modifications would
have to be made in order for it to be suitable as a replacement for the MC68008. It
would have to be as simple as possible and include only the on-chip components essential
to the operation of the processor.

These changes would drastically reduce the performance of the processor by an estimated
95% !, however this was not an important issue for the purposes of the design project.
This chapter describes in detail, all of the changes made to the LEON core and the rea-
sons that they were made. Throughout the project, emphasis was placed on maintaining
the configurability of the model, so special care was made to make sure that the effects
of any changes made to the design could be reversed through a configuration option,
which could be easily made, using the graphical configuration utility that had originally
been supplied with the model. This meant that any combination of changes could be
implemented while being able to recover the original operation of the processor at any
time.

3.1 Identifying Project Tasks

The major tasks that would have to be achieved in order to make LEON suitable as
a replacement for the MC68008 were first identified. If all of these changes could be
implemented successfully, then the LEON processor would be deemed suitable for use
as the basis of implementing an upgraded version of the microprocessor design project,
while keeping to a similar format in terms of build time and complexity.

Configurable Modules

Due to the high level of configurability of the LEON model, it was already possible to
disable some of the internal modules which had been identified as uneccessary for the
purposes of the project. These included the debug support unit, the SDRAM controller
and the secondary IR(Q controller. It was also already possible to configure the data bus
for 8-bit operation, which was a major advantage as it meant that the LEON processor

187.5% reduction due to the lowered clock speed and 25% reduction due to the removal of the caches
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could be configured to operate with the same bus width as was present in the MC68008.
It was important to be able to suppress as many of the uneccessary peripherals as
possible in order to simplify the core. Any peripheral that was not required for the
operation of the processor and could not be removed, would have to be altered in such
a way that its functionality was suppressed.

It would be necessary to be able to remove the caches and to alter the memory map
and controller in a suitable manner if the LEON processor was to be used in the new
design project. Failure to implement these modifications successfully would render the
processor unsuitable for use as a replacement for the MC68008.

Clock Speed

The first task identified would be to see what effect, if any, that a reduced clock speed
would have on the processor. It was important to reduce the clock speed as the external
components of the microprocessor system would be wire-wrapped together and a fast
system clock speed might make the system unstable due to poor connections between
the component pins and the connecting wire.

Caches

The second task would be to remove the instruction and data caches. This was an im-
portant task as the only method that the students would have to monitor the operation
of the processor was by capturing and examining the activity on the address and data
buses. If the caches were present within the processor, some of the memory requests
made could be hidden from the external buses if a cache hit occurred. The caches would
also add an extra level of complexity to the processor, which was not desirable.

Internal UARTSs

The third task would be to remove the internal UARTSs. This was due to the fact that
one of the tasks the students would have to undertake when building the microprocessor
system would be to implement UARTSs using external circuitry and although retaining
the internal UARTSs would not hinder this process, they would add unecessary logic and
complexity to the core.

Reset Generator

The fourth task would be to suppress the functionality of the reset generation unit. This
was due to the fact that the reset generation circuitry would have to be implemented
externally by the students and so was not required within the model.

Memory Map

The fifth task would be to remove the internal memory map for the processor. Its
functionality would be replaced by external logic as part of the design project.
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Memory Controller

Finally, any bus transaction signalling that was generated within the processor would
have to be disabled. A new method of performing bus transactions would then have to
be devised and implemented. This new system would have to be easily understood by
the students.

3.2 VHDL Model Heirarchy

Figure 3.1 details the design layout of the LEON core, showing the individual VHDL
functional modules and their positions within the overall heirarchy of the design. Signals
between the modules are passed in records and each module is individually configurable
from within the device.vhd configuration file.

LEON
( mcore
D &3 @D D G @B

mul div

o) G (o

Figure 3.1: Layout of the LEON Core

3.3 Clock Speed

The first step taken in modifying the core was to simulate the behavioural model operat-
ing at a clock frequency of 6.25 MHz. This was important as the model had initially been
designed to operate at 50 MHz. However, it was felt that the system clock frequency
should be reduced as much as possible due to the fact that the external components
would be wire-wrapped together and a low clock speed would reduce the chance of sig-
nalling errors due to faulty connections. 6.25 MHz was chosen as the operating clock
frequency as it was easily obtainable from the original 50 MHz signal and was approxi-
mately the same frequency as used by the MC68008 in the original project. Tests were
first run using the generic 8-bit data bus testbench (provided with the model) running
at 50 MHz, as a reference.

The testbench and model were then configured to run at approximately 6.25 MHz and
simulations re-run. This was done by changing the clkperiod value in the testbench from
20 to 160, resulting in a system frequency of 6.25 MHz
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clkperiod : integer := 20; -- 50MHz

3.3.1 Simulation

The test program completed successfully for both instances and comparison of the wave-
forms for each run showed no problems with the operation of the simulation. This result
implied that there would be no problem in reducing the clock speed of the processor
once it was running on the FPGA, however to only way to test this fully would be once
the model had been fully synthesised.

3.4 Caches

The Integer Unit (IU) is connect to the AHB bus through the instruction and data
caches. The complete removal of the caches would have meant a major re-write of the
IU so it was decided to leave the main functionality of the caches intact. The caches
were instead altered so that no memory accesses would be cached and that cache misses
would be continually forced. This would have the effect of totally supressing the cache
functionality within the model. The internal cacheability table was also removed and all
address space locations defined as non-cacheable by default. Finally, the on-chip cache
memory was removed as this was now redundant.

3.4.1 Alterations to the Configuration Records

The option to disable the instruction and data caches was entered into the graphical
configuration utility, however this new functionality still had to be supported within the
model. This was done by adding a boolean variable to control whether the caches had
been enabled or disabled, to the cache configuration record as defined in target.vhd file.

type cache_config_type is record

enable : boolean; -- enable/disable cacheing

isets : integer range 1 to MAXSETS; -- no of sets in icache
isetsize : integer; -- icache size per set in kB’s

ilineisze : integer; -- no of words per icache line

ireplace : cache_replace_type; —-- icache replacement algorithm
ilock : integer; -- icache locking

dsets : integer range 1 to MAXSETS; -- no of sets in dcache
dsetsize : integer; -- dcache size per set in kB’s

dlinesize : integer; -- no of words per dcache line

dreplace : cache_replace_type; —-- dcache replacement algorithm
dlock : integer; -- dcache locking

dsnoop : dsnoop_type; -- dcache snooping

drfast : boolean; -- dcache fast read-data gen

dvfast : boolean; —-- dcache fast write-data gen

end record;
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The config.vhd file was then altered to include the new CACHE_ENABLE variable within
the model.

constant CACHE_ENABLE : boolean := cache_config.enable;

At this point, the source code could be altered to include the new changes.

3.4.2 Alterations to the Source Code
Removal of the Cacheability Table

The first task was to remove the internal mapping designating areas which were
cacheable and not cacheable. All areas within the address space were designated as
non-cacheable instead.

function is_cacheable(haddr : std_logic_vector (31 downto 24))
return std_logic is variable hcache : std_logic;
begin
if CACHE_ENABLE then
if (haddr(31) = ’0’) and (haddr(30 downto 29) /- "01") then

hcache := ’1’;
else
hcache := ’07;
end if;
else
hcache := ’0’;
end if;
return(hcache) ;

end;

Cache Control Register

Both the instruction and data caches are controlled using a cache control register. This
register controls the functionality and state of both of the caches and can be used to
disable them.

if CACHE_ENABLE then

if(r.cctrl.ifrz and iuo.intrack and r.cctrl.ics(0)) = ’1’ then
v.cctrl.ics = "01";

end if;

if(r.cctrl.dfrz and iuo.intrack and r.cctrl.dcs(0)) = ’1’ then

v.cctrl.dcs = "01";

end if;

else
v.cctrl.ics = "00"; -- disable instruction cache
v.cctrl.dcs = "00"; -- disable data cache

end if;
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By setting the ics and dcs portions of the control register to “00” in this way, the
instruction and data caches are not allowed to leave the disabled state.

Cache Memory

The cache memory was then removed as it was no longer needed. This also had the
effect of reducing the size of the overall design.

3.4.3 Simulation

Simulations were run using an infinite loop program. This test proved that the caches
were passing the correct information to the IU while not storing the information.

3.5 Internal UARTSs

The UARTSs are seperate entities, which are generated within the mcore module. In
order to remove them from the model, their generation had to be disabled and any
references to them removed. This was done by adding a boolean variable for each
UART, within the configuration records that control the generation of the UARTS.
The generation of the UART modules could then be indivually controlled through the
graphical configuration interface.

3.5.1 Alterations to the Configuration Records

Once the UART enable variables had been added into the graphical configuration in-
terface, their functionality had to be supported within the LEON model. The first step
was to place the entries into the correct configuration record. The peri_config record
was chosen for this purpose. The uarti_en and uart2_en options to enable or disable the
UARTSs individually were added at the end of the appropriate record in the target.vhd
file.

type peri_config_type is record

cfgreg : boolean; -- LEON config register enable
ahbstat : boolean; -- AHB status register enable

wprot : boolean; -- RAM write-protection enable

wdog : boolean; —-- watchdog enable

irg2en : boolean; -- second interrupt controller enable
ahbram : boolean; —— AHB RAM enable

ahbrambits : integer; -- Address bits in AHB RAM

uartl_en : boolean; -- First UART enable

uart2_en : boolean; —- Second UART enable

end record;

The corresponding entries were then placed into the config.vhd file in order to make the
added variable visible within the entire model.
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constant UART1_EN : boolean :
constant UART2_EN : boolean :

peri_config.uartl_en;
peri_config.uart2_en;

At this point, the source code could be altered to include the changes that these new
variables would impose.

3.5.2 Alterations to the Source Code

The two UARTSs were generate separately within the mcore module. “if” statements
were used to disable the code that generated them.

uartlion : if UART1_EN generate
vartli.rxd <= pioo.rxd(0);
uvartli.ctsn <= pioo.ctsn(0);
uartli.scaler <= pioo.io8lsb;

uartl : uart port map(
rst => rst, clk => clk, apbi => apbi(6), apbo => apbo(6),
uarti => uartli, uarto => uartlo );
end generate;

uart2on : if UART2_EN generate
uart2i.rxd <= pioo.rxd(1);
uart2i.ctsn <= pioo.ctsn(1);
uart2i.scaler <= pioo.io8lsb;

uart2 : uart port map(
rst => rst, clk => clk, apbi => apbi(7), apbo => apbo(7),
uarti => uart2i, uarto => uart2o );
end generate;

Once the generation of the UARTs had been disabled, any reference to their functionality
also had to be removed from the model. The two UARTs were assigned IRQs 3 and 2
respectively. Both of these interrupt levels had to be unassigned when the UARTSs were
not enabled within the model. This was done by adding a “when” statement to the IRQ
assignments within the interrupt controller.

irqi.irq(3) <= uartlo.irq when UART1_EN else ’0’; -- First UART
irqi.irq(2) <= uart2o.irq when UART2_EN else ’0’; -- Second UART

Finally, the on-chip registers for the two seperate UARTSs had to be removed from the
memory map. These were defined in the apbmst.vhd file.

-- UART1 0x70 to 0x7C

when "00011100" | "00011101" | "00011110" | "00O11111" =>
if UART1_EN then esel := ’1’; bindex := ’6’; end if;

—— UART2 0x80 to 0x8C

when "00100000" | "00100001" | "00100010" | "00100011" =>
if UART2_EN then esel := ’1’; bindex := ’7’; end if;
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3.5.3 Simulation

Simulations were then performed to see what effect these changes had on the model.
The standard 8-bit functional tests were run. The tests failed the UARTSs proving that
they were no longer functional.

3.6 Reset Generation

The reset generation module was used to extend the active-low reset signal within the
processor on detection of an external reset event. This was necessary to ensure that
all of the signals within the processor were given time to stabilise during reset. As one
of the tasks the students would be required to do when building the microprocessor
system would be to implement the reset circuitry externally, it was necessary to remove
the functionality of the reset generator from the model.

3.6.1 Alterations to the Configuration Records

The peripheral configuration record was altered to include the reseten option to enable
or disable the reset generator module.

type peri_config_type is record

cfgreg : boolean; -- LEON config register enable
ahbstat : boolean; -- AHB status register enable

wprot : boolean; -- RAM write-protection enable

wdog : boolean; -- watchdog enable

irg2en : boolean; -- second interrupt controller enable
ahbram : boolean; -- AHB RAM enable

ahbrambits : integer; -- address bits in AHB RAM

reseten : boolean; -- reset generation enable

uartl_en : boolean; —— first UART enable

uart2_en : boolean; -- second UART enable

end record;
The config.vhd file was then altered to include the new reset option.

constant RESETEN : boolean := peri_config.reseten; -- reset gen enable

3.6.2 Alterations to the Source Code

The generation of the reset delay could then be removed from the model. This was done
by bypassing the shift register that created the delay and passing the signal straight
through the module into the rest of the processor.

if RESETEN then

rsttmp <= r(4) and r(3) and r(2);
else

rsttmp <= rstin;
end if;
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This meant that the reset signal inside the processor would be held low for the same
amount of time as the external reset signal.

3.6.3 Simulation

In order to establish that the reset circuitry had actually been disabled, simulations
were run on the model. It was verified that the reset signal stayed low for only one clock
cycle after the reset button had been pressed instead of the usual five clock cycles. This
proved that the internal reset circuitry was disabled.

3.7 Memory Map and Controller

Memory Map

At this stage, the on-board memory map for the LEON core had to be removed. It was
decided, however, not to remove the address mappings for the on-chip registers or the
debug support unit. The only changes made were to remove all of the ROM, RAM and
I/O mappings from the source code.

Due to the fact that only 28-bits of the 32-bit address bus would be visible externally,
an address space of only 160MB would be available for the students to utilize. This
would not be a problem though, as a maximum of 1MB would only ever be needed to
implement the design project. The on-chip and debug support registers would still be
fully accessible as their internal mappings had not been altered.

| Address Range | Size | Mapping | Module |
0x00000000 - 0x09FFFFFF | 160 MB | Mappable Area External Circuitry
0x10000000 - 0x7FFFFFFF | 1792 MB | UNUSED N/A

0x80000000 - 0x8FFFFFFF | 256 MB | On-chip Registers APB Bridge
0x90000000 - 0x9FFFFFFF | 256 MB | Debug Support Unit | DSU

Table 3.1: Project Memory Map

Memory Controller

The memory controller had to be altered in order to suppress any of the bus transaction
signals that were generated internal to the model. These inlcluded the ramoen[3:0],
ramsn[3:0], romsn[1:0] and rwen[3:0] signals that were responsible for controlling
memory accesses to peripheral devices.

A new bus transaction protocol would have to be implemented in place of the signals
that had been disabled. It was decided to implement a new system similar to that of
the Motorola MC68008 processor. The BRDYEN signal would be altered to operate in a
similar fashion to the MC68008 /DTACK signal. Address and data strobe signals would
then be added to the LEON processor to make it compatible with the Motorola signals.
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3.7.1 Alterations to the Configuration Records

The first step involved in implementing these changes was to add a variable to the
configuration records, which could control whether or not the internal address maps
and signalling should be enabled or disabled. This variable would be called MEMSEL.

-- memory controller configuration
type mctrl_config_type is record

memsel : boolean; -- enable chip select signals

bus8en : boolean; -- enable 8-bit bus operation

busl6en : boolean; -- enable 16-bit bus operation

wendfb : boolean; -— enable wen feedback to data bus drivers
ramselb : boolean; -- enable 5th ram select

sdramen : boolean; -- enable sdram controller

sdinvclk : boolean; —- invert sdram clock

end record;

The corresponding variable entry was then placed into the config.vhd file to make the
new configuration option visible within the model.

constant MEMSEL : boolean := mctrl_config.memsel;

The source code for the memory controller could now be altered to include any changes
that this new variable would have.

3.7.2 Alterations to the Source Code
Changing the Memory Map

The first step taken was to remove the part of the memory map that dealt with access
types. The default access type was set to ram, regardless of the address being accessed.

if MEMSEL then
case haddr (30 downto 28) is

when "000" | "001" => area := rom; -- ROM address space
when "010" | "011" => area := io; -- I0 address space
when others => area := ram; -- RAM address space
end case;
else
area := ram; -- Assume RAM for all address space
end if;

Disabling the Bus Signals

The next step was to disable the appropriate bus signals. The actual generation of these
signals was left unaltered, however their register vaulues were all tied high, preventing
their state from changing within the model. This effectivly disabled all of the bus signals
within the model.
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if MEMSEL then

memo.ramsn(4 downto 0) <= r.ramsn;

memo .ramoen(4 downto 0) <= r.ramoen;

memo . romsn <= r.romsn;

memo . oen <= r.oen;

memo.iosn <= r.iosn(0);
else

memo.ramsn(4 downto 0) <= "11111";
memo .ramoen(4 downto 0) <= "11111";

memo .romsn <= "{1";

memo . oen <= 717,

memo.iosn <= ’17;
end if;

Address and Data Strobes

Once the signals had been disabled, address and data strobe signals, with a similar
function to their MC68008 counterparts, had to be generated within the model. The
fact that the bus transaction signals were still being generated internally within the
model was taken advantage of when generating the address and data strobe signals.

-- Address and Data strobe generation
if MEMSEL then
as <= ’1’;
ds <= ’17;
else
if((r.ramsn = "11111") and (r.romsn = "11") and (r.iosn = "11")) then
as <= ’17; else as <= ’0’; end if;

if((r.ramoen = "11111") and (r.oen = ’1’)) then
ds <= ’1’; else ds <= ’0’; end if;
end if;

The address strobe is activated if any of the ROM, RAM or IO selects are active.
Similarly, the data strobe is activated if any of the output enable signals are active. If,
however, the core is configured to generate the signals internally, the address and data
strobes are held inactive.

Data Transfer Acknowledge

The next step in altering the memory controller was to provide a method whereby the
processor could be notified, by external means, to end the current memory access cycle.
In the MC68008, a signal called /DTACK was provided for this purpose. The unmodified
LEON core provided for a signal called BRDYN, which could be used in a similar way, to
extend the number of processor wait-states during an I/O access.
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The operation of this signal was modified so that it could be used during any type of
memory access instead of just I/O accesses, as long as the processor was operating in
8-bit mode. The state machine controlling 8-bit data bus accesses was altered so that
would add continuous wait-states until it received the active-low BRDYN signal. Once the
signal had been received, the processor would latch the data on the bus and proceed
with the next memory access, as required.

L Place Address on the Bus J

¢

[ Assert address and data }

strobes and read/write signal

¢

Sample BRDYN }

E Latch Data }

Remove address and data
strobes and read/write

¢

[Remove address from the bus }

Figure 3.2: State flow diagram for updated LEON memory cycle

Memory Configuration Registers

The final step in altering the memory controller was to initialise the three memory
configuration registers with the correct data in order to make the controller suitable for
operation with the format required by the design project. Only the first and second
memory configuration registers needed to be initialised as the third is exclusively used
to control the SDRAM interface, which will not be used in the design project.

-- memory configuration register 1

v.mcfgl.romrws := "0000"; -- no rom read wait states
v.mcfgl.romwws := "0000"; -- no rom write wait states
v.mcfgl.romwidth := "00"; -- 8-bit rom data bus
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v.mcfgl.iows := "0000"; -- no I/0 wait states

v.mcfgl.bexcen := ’1’; —-- enable bus exception signalling
v.mcfgl.brdyen := ’17; -- enable BRDYN for ROM and I/0 accesses
v.mcfgl.iowidth := "00"; -- 8-bit I/0 data bus

—-- memory configuration register

2

v.mcfg2.ramrws := "0000"; -- no ram read wait states
v.mcfg2.ramwws := "0000"; -- no ram write wait states
v.mcfg2.ramwidth := "00"; -- 8-bit ram data bus
v.mcfg2.rambanksz := "0111"; -- 128kB per RAM bank
v.mcfg2.rmw := ’0’; -- read-modify-write
v.mcfg2.brdyen := ’17; -- enable BRDYN for RAM accesses

These default values can be over-written at any stage during program execution by
writing to the appropriate on-chip register. The advantage of having them automatically
set up in hardware is that the registers do not have to be set up by software routines
before the processor may be used.

3.7.3 Simulation

At this point, testing with the standard test benches could not be accomplished as too
much functionality had been removed from the model. To get around this, a new test
bench (called “tb_projnew”) was created, which emulated the bus transaction signals for
the processor. This testbench would be used temporarily until the external control logic
had been implemented.

3.8 Model Synthesis

Once all of the modifications had been made, the LEON model had to be synthesised
and compiled into a bit-file, which could be downloaded onto the target hardware. This
process involved configuring the model with the appropriate options, synthesising it,
applying the user constraints to lock the processor signals to the correct FGPA pins,
placing and routing the netlist and finally creating the bit-file before downloading the
LEON processor to the FPGA. The synthesis followed the same pattern as outlined in
section 2.6.

3.8.1 Configuration

The first step in creating a bit-file was to set the correct configuration options for the
model using the graphical configuration utility provided.

All of the changes made to the model could easily be activated or deactivated using this
utility. The actual final configuration file used for the model, including all of the new
configuration options, can be found appendix B.1.
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3.8.2 Synthesis

Once the model had been configured correctly, the source code was compiled using the
Xililnx xst programme. A summary of the synthesis report is given below.

-- Target Parameters

Target Device : xc2v1000-fg256-5
Output File Name : leon

Target Technology : virtex2

Speed Grade : 5

--HDL Synthesis Report
Macro Statistics:

# FSMs : 6
# ROMs 3
# Registers : 349
# Counters 2
# Multiplexers : 478
# Tristates : 48
# Adders/Subtractors : 25
# Comparators 11
# XORs : 16

-- Final Results
Macro Statistics:

# ROMs : 3

# Registers : 361
# Multiplexers : 30
# Tristates : 48
# Adders/Subtractors : 16
# Comparators : 10

Design Statistics:

# I0s : 110

Cell Usage:

# BELS : 6207
# Flipflops/Latches : 1594
# RAMs : 2

# Clock Buffers 1

# 10 Buffers : 105

-- Timing Summary

Speed Grade : -5
Minimum Period : 17.096 nS (Maximum Frequency : 58.493 MHz)
Minimum Input Arrival Time Before Clock : 2.691 nS
Maximum Output Required Time After Clock : 10.849 nS
Maximum Combinational Path Delay : No Path found
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CPU : 1872.48 Secs / 1894.20 Secs
Elapsed : 1872.00 Secs / 1894.00 Secs

3.8.3 Constraints

The user constraints were then applied to the model using the ngdbuild tool, locking
the signals to the appropriate output pins on the Xilinx chip. A table of the constraints
used for the project can be found in table B.1 in the appendix. These constraints were
created for the LEON model when running on the VirtexIl FPGA using the Xilinx
prototyping board. Though most of the pin allocations were arbitrary, an attempt was
made to place signals close to each other according to functionality.

3.8.4 Mapping, Placing and Routing

After the user constraints had been incorporated into the design, it was mapped into a
target specific netlist. The following report was generated by the mapping tool, showing
that approximately 62% of the available logic inside the VirtexII chip was being utilized
by the LEON core (including the control logic block).

-- Design Information

Command Line : map -detail leon.ngd
Target Device : xc2v1000

Target Package : £g256

Target Speed : -5

-- Design Summary

Number of Errors : 0

Number of Warnings .1

Number of Slices : 3195/5120 (62%)

Number of Slice FlipFlops : 1593/10240 (15%)

Total Number 4 Input LUTs : 5374/10240 (52%)

Number of Bonded IOBs : 106/172 (61%)

IOB Flipflops 1

Number of Block RAMs 1 2/40 (5%)

Number of GCLK : 1/16 (6%
Total equivalent gate count for design : 178,222
Additional JTAG gate count for IOBs : 5,088

The model was then placed and routed using the par programme, which resolved any
unrouted signals within the design. This was the last compilation step in generating the
LEON core.
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3.8.5 Bitfile Generation

The final stage was to create the final bit file that would be programmed onto the
VirtexII FPGA. This was done using the bitgen tool and did not produce any errors
or warnings.

3.9 Downloading the Core

The LEON bit-file was then formatted for the XC18V04 chip using the PROM formatter
utility that came with the Xilinx Software. Once complete, it was downloaded onto the
prototyping board using the Xilinx iMPACT programme. This meant that the FGPA
would automatically be programmed with the LEON bit-file when power was applied to
the prototyping board, eliminating the need to keep reprogramming the FPGA before
every use. The bit-file was downloaded in the same way as described in section 1.5.
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Chapter 4

Hardware Design and Assembly

Once all of the modifications discussed in chapter 3 had been made to the LEON core,
the process of designing and building the hardware aspect of the microprocessor system
began. This chapter describes the steps taken in implementing the prototype hardware
design for the project and details the decisions made during the design process.

The first step in designing the microprocessor hardware is to re-implement any of the
control logic that had been removed from the LEON model, such as the bus transaction
signalling and memory map.

25 MHz Clock N
Control Address <27:0>

Logic
< ) Reset <CPLD >
A 0
D Data <7:0>
FPGA )
Service X IS
PROM o° 3 ROM
O [2)
N
I o [
2 5
, IS
[ — RAM
LEON _>
Processor
<FPGA> 8 UART #1
MAX3232

— 8 UART #2

1 MHz Clock A

Figure 4.1: Block Diagram of the Proposed Project Hardware
The basic layout of the hardware required in the project is shown in figure 4.1. The

system comprises a ROM chip, a RAM chip, a voltage convertor for the RS232 interface
and the control logic block.
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4.1 Control Logic

All of the control logic was written in VHDL and implemented as a seperate entity
within the same FPGA as the LEON core. This was done for the purposes of testing
the operation of the hardware. The students undertaking this project will be required
to implement the control logic in a separate FPGA or CPLD to the LEON core.

The main advantages of this is that they are not required to have any knowledge about
the implementation of the LEON core itself and that all of the control logic may be
written in a Hardware Description Language (HDL) such as VHDL or Verilog and
implemented entirely within one chip, moving away from the need to implement external
circuitry or GAL logic and cutting down on the number of ICs required in the overall
design. This means that the students have more time to concentrate on the logic required
to get the processor to operate correctly and have to spend less time building the project
circuitry.

A brief description of each of the VHDL modules within the control logic block and their
operation follows. All of the source code is made available under the GNU-LGPL, in
keeping with the spirit of LEON.

CONTROL LOGIC BLOCK

CIKIn (25 MH2) Clock Divider > CPUCIk (6.25 MHz)
Resetink @ ——Mm—» \_4’ UARTCIk (1 MHz)
Reset Generator
= CPUReset
@70) Memory Map
— > RAMen
Reed ————» > OEN
Writen —— & Bus Signal Logic = Brdyn
Asn _— —————» Bern
Dsn
Wsen

Figure 4.2: Block Diagram of the Control Logic

Figure 4.2 shows a block diagram of all of the control logic signals that are required to
be implemented in order to make the processor operational. The signals are generated
in three seperate VHDL modules, which are outlined below.

1. The Clock Divider Module
2. The Reset Signal Generator Module
3. The Memory Controller Module

These three modules are then combined together into one control entity. In order to
demonstrate the operation of the system within the time constraints of the project, the
control entity was incorporated into the LEON core as a separate module, with the
appropriate signalling being “wired” together using VHDL signal assignments.
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4.1.1 Clock Divider

The function of the clock divider is to obtain a 6.25MHz system clock signal and a 1MHz
UART reference signal from the 25MHz on-board signal. This is done by implementing
a b-bit counter and using bits 2 and 4 to recover the system and UART clock signals.

entity clkdiv is

port (
clkin : in std_logic; -- 2bMHz reference signal
clkout_cpu : out std_logic; -- (25/4) MHz CPU system clock
clkout_uart : out std_logic -- (25/16) MHz UART signal
)
end clkdiv;

sosmzooae || [ [ 1 [

1.5 MHz Clock J ‘

Figure 4.3: Diagram of the clock divider output

The second bit of the counter is used to obtain the 6.25MHz clock signal as it effectively
divides the input signal by 4 (22). The fifth bit is used to obtain the 1.5MHz clock signal
as it effectively divides the input signal by 16 (2*).

4.1.2 Reset Generator

The purpose of the reset generator is to ensure an active-low reset signal for a minimum
period that allows all of the on-board devices, as well as the processor itself, to reset
correctly.

entity rstsig is

port (
clk : in std_logic; —-- CPU system clock signal
rstin : in std_logic; -- reset button signal (active low)
rstout : out std_logic —-- delayed system reset signal

)3

end rstsig;

This was implemented using a 4-bit shift register, which would extend the reset signal
by a further 4 clock cycles after the reset button had been pressed, as shown in figure
4.4. This delay provides adequate time for all of the system devices to be reset.
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Figure 4.4: Diagram of Reset Signal Generation

4.1.3 Memory Controller

The memory controller module is responsible for implementing the desired project
memory-map. It needs to provide chip select signalling for both the ROM and RAM
chips as well as the various other bus control signals necessary.

entity memctrl is

port (
rst : in std_logic; -- system reset
clk : in std_logic; -- system clock (6.25MHz)
addr : in std_logic_vector(27 downto 0); -- address bus
read : in std_logic; -- read cycle
writen : in std_logic; -- write cycle
asn : in std_logic; -- address strobe
dsn : in std_logic; -- data strobe
romOen : out std_logic; -- ROM #0 select
ramOen : out std_logic; -- RAM #0 select
outen : out std_logic; -- output enable
brdyen : out std_logic; -- bus ready
bexcn : out std_logic; -- bus exception (timeout)
wsen : out std_logic -- write strobe enable
);

end memctrl;

The memory map set out in table 4.1 was decided upon for the purposes of this project
after taking into account the constraints set out in table 3.1.

| Address Range | Size | Mapping | Module |
0x00000000 - 0x00003FFF 256 kB | ROM 0 MemCtrl
0x04000000 - 0x04001FFF 128 kB | RAM 0 MemCtrl

0x10000000 - Ox7FFFFFFF | 1792 MB | UNUSED N/A
0x80000000 - 0x8FFFFFFF | 256 MB | On-chip Regs | APB Bridge
0x90000000 - 0x9FFFFFFF | 256 MB | DSU Regs DSU

Table 4.1: Device Memory Map
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The internal mappings for the on-chip and debug support unit registers had not been
altered, so it was not necessary to implement external logic to control their operation.
The assignable address space (between 0x00000000 and 0xOFFFFFFF) was initially split
into three types of memory access; ROM, RAM and I/O.

case addr(26 downto 24) is

when "000" | "001" => area := rom; -- 0x00000000 - OxO1FFFFFF

when "010" | "011" => area := io; -- 0x02000000 - OxO3FFFFFF

when others => area := ram; -- 0x04000000 - OxOFFFFFFF
end case;

This made it easier to add multiple chip selects for each type of access, even though only
one ROM chip and one RAM chip would be used in the design project.

ROM Select

The EPROM that would be used in the project had a capacity of 256kB and this was
reflected in the control logic. The device was placed at address 0x00000000 as that was
where initial program execution would start after processor reset.

romOen <= not( (not rin.romOsn) and (not asn) ); -- active low

The above logic ensured that the ROM enable signal is only asserted when there is valid
data on the address bus.

RAM Select

The chip select signal for the RAM chip was generated in a similar way to that of the
EPROM. It had a capacity of 128kB and was placed at the start of the RAM address
space (0x04000000).

ramOen <= not( (not rin.ramOsn) and (not asn) ); -— active low

The above logic ensures that the RAM enable signal is only asserted when there is valid
data on the address bus.

Output Enable

The output enable signal was generated in such a way as to avoid bus contention between
memory mapped devices.

outen <= not( read and (not dsn) ); -- active low

This ensured that the device outputs would only be enabled if valid data was present
on the data bus and the processor was performing a read cycle.
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Write Strobe

The write strobe signal is used to notify peripheral devices if the processor is performing
a read or a write cycle. A logic “1” signal means a read cycle and a logic “0” signal
means a write cycle.

wsen <= not( (not writen) and (not dsn) ); -- active low

The above code ensures that a write strobe will only be generated if there is valid data
present on the data bus when the processor is performing a write cycle and that all of
the bus signals have stabilised.

Bus Ready

The bus ready signal is used to notify the processor that it may end the memory cycle
on the next clock cycle. As both the ROM and RAM chips have fast access times, there
is no need for a delayed bus ready signal so it is generated as soon as either the ROM
or RAM is selected and there is valid data on the address bus.

brdyen <= not( ( (not r.romOsn) or (not r.ramOsn) ) and (not asn) );

Bus Error

The bus error signal was tied low for the purposes of testing the processor operation,
however a bus timeout signal may easily be generated using an 8-bit counter. It should
assert a bus error (timeout) signal after a specified period. This signal may be used to
skip or re-initiate the faulting bus transaction.

4.1.4 Simulation

At this point, the control logic had been fully implemented as a VHDL entity, however
it’s operation had yet to be tested in order to ensure that it would function correctly once
synthesised. This was accomplished by creating a new testbench, based on the standard
“func8” testbench, that could be used to tie the altered LEON core and control logic
module together.

This testbench proved that the control logic operated as expected and that the modified
processor code worked and was able to read information successfully from the simulated
ROM as well as execute the instructions. The infinite loop test program (detailed in
section 5.2) was used at this point in the testbench simulations.

These simulations provided waveforms that could be used to verify the operation of the
processor once it was running on-chip, by comparing the expected results against the
actual trace results obtained using a logic analyser.
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4.2 Hardware Decisions

Several decisions had to be made at this stage, with relation to the hardware that would
be used in the project. This included deciding upon which chip package types to use
and what kind of signalling standard would be used between the devices. The cost of
any required components would have to be evaluated along with their ease-of-use and
functionality.

4.2.1 TTL vs LVTTL

The first choice to make was what kind of signalling standard would be used in the new
project. The obvious choice was to stay with TTL, as suitable ROM and RAM chips
were readily available. This would cut down on the expense of migrating to the new
project design due to the fact that it would not be necessary to acquire as many new
components. The problem with this approach, however was that the VirtexII FPGA
was not capable of fully supporting TTL devices[10].

As a result, the possibility of incorporating logic level convertors into the design of
the project was considered. Some devices such as the MAXIM-3000E[11] and the
HEF4104B[12] were already available and suitable for use in the project. Although
it would be possible to create a system using mixed LVTTL and TTL signalling[13][14],
doing so would add an unecessary amount of complexity to the final project design.This
would increase the overall time required by the students to build the microprocessor
system but would not provide any educational aspect so was discounted.

The VirtexIl FPGA was, however, capable of supporting LVTTL[15] signalling. It was
decided to implement the entire project hardware using LVTTL components, as it was
the most similar standard to T'TL available and had been originally created in order to
supercede the old TTL technology. This kept in line with the aim of taking advantage
of new technological advances during the design of the new microprocessor project.

4.2.2 TSOP vs DIP

In searching for suitable LVTTL components, it became apparant that very few came
in DIP packages. This was a major problem, as DIP package component were required
if the wire-wrap method was to be used to connect the devices together.

A solution was found when a company was discovered that provided TSOP-to-DIP
adapters[16]. These adapters provided a 1-to-1 pin mapping from 32-pin TSOP packages
to 32-pin DIP packages. This option was chosen as any ZIF convertor sockets for TSOP-
DIP were found to be prohibitively expensive for the purposes of the project.

4.2.3 Interconnects

Components would be connected together using wire-wrapping techniques. This is the
same method as is used in the original design project. All of the devices were seated on
the breakout area of the VirtexII prototyping board
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4.3 ROM

The AT29LV020 is a LVTTL in-system flash Programmable and Erasable Read Only
Memory (PEROM)[17]. Tt was decided to use this device as the ROM due to its avail-
ability and the fact that it was already supported by the chip-programming tools used
as part of the current design project.

The main features of the device include:

e Single Voltage, Range 3V to 3.6V Supply

3V only read and write operation

Fast read access time (100nS)

e Low power dissipation (15mA active and 40uA Standby)

Fast programme cycle times
e CMOS and TTL compatible inputs and outputs

The memory capacity of the ROM is 256kB using an 8-bit data bus. This is more than
adequate for the purposes of the design project.

—AT20Lv020

14 A1l /OE |22
2 A9 A10|a1
3 A8 ICE |20
__ 4 A13 D7 |20
_ §A14 D6l2a
_ §A17 D5 |2z
__ 74/WE D426
____gVCC D3 |25

__dNC GND |22
_ 10| A16 D2 |2z
1| Al15 Dl|>»
12| A12 DO | 21

13l A7 AOl2n0
14 A6 Allw
_ 151A5 A2 |1
_ 16/ A4 A3 |1z

Figure 4.5: Block Diagram of the ROM chip (DIP adapter fitted)

Figure 4.5 shows the pin assignments of the ROM chip when fitted into the TSOP-DIP
adapter. The pins are assigned in a 1-to-1 mapping directly from the ROM chip.
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4.3.1 Programming the ROM

Even though the ROM chip had been fitted with a DIP adapter, the pin mappings were
not correct due to the fact that the adapters provide a 1-to-1 pin mapping between TSOP
and DIP format. This is not a problem when designing the project hardware as the pin
assignments can be taken into account when connecting the components together. It
does, however, become a problem when using the chip-writer to programme the ROM,
due to the fact that the pins are mapped in the wrong order for the corresponding DIP
version of the chip. This problem was overcome by using the pin mappings in table 4.2
to create a convertor that would alter the pin assignments to make it suitable for use
with the chip writing device!.

[ TSOP Pin # | DIP Pin # || TSOP Pin # | DIP Pin # ||

1 25 17 9
2 26 18 10
3 27 19 11
4 28 20 12
) 29 21 13
6 30 22 14
7 31 23 15
8 32 24 16
9 1 25 17
10 2 26 18
11 3 27 19
12 4 28 20
13 ) 29 21
14 6 30 22
15 7 31 23
16 8 32 24

Table 4.2: Pin Mappings for Convertor

The pin convertor was made by placing two 32-pin sockets on a small piece of circuit
board and then wire-wrapping the connections between the two sockets in the appropri-
ate order according to table 4.2. This pin convertor would be placed between the ROM
chip and the chip-writer when it was required to write information to or verify the ROM
contents. The ROM chip could be placed directly into the project circuitry without the
use of the pin convertor.

With the convertor attached, the ROM chip could be directly programmed using the
chip-writer and the “ChipWin” software download programme, in the same way that
the EPROMs used in the current design project. The main advantage of the new ROM
chip is that it may be electronically erased on the spot before programming it with new
information, instead of having to use the UV eraser as with the current EPROM devices.

!Obtained from http://www.ebccompany.com/TS32_ DRAWINGS.htm
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4.4 RAM

The IS63LV1024L is a high speed, low power CMOS static RAM[18]. It was decided to
use this device as the RAM due to its availability, 8-bit data bus and LVITL compati-
bility.

The main features of the device include:

e High speed access time (12nS)
e High performance, low power CMOS

e /CE power-down function

Fully static operation

TTL compatible inputs and outputs

Single 3.3V power supply

The memory capacity of the RAM is 128 kB using an 8-bit data bus. This is adequate
for the purposes of the design project and so it is only necessary to use one RAM chip,
cutting down on the amount of wire-wrapping that has to be performed.

1S63LV1024L
__1A0 ~ Al
A1 AlS5|a
_ 3aA2 Ald|z
4 A3 Al13|20
__ §ICE /IOE |28
g DO0 D7 |2z
__ D1 D6l2s
____gVCC GND |25
94 GND VCC|2a
10/ D2 D5 |22
1| D3 D422
_ 1l /IWE Al2|21
13l A4 All|20
14 A5 Al10|10
_ 15/ A6 A9l
__ 18| A7 A8liz

Figure 4.6: Block Diagram of the RAM chip (DIP adapter fitted)

Figure 4.6 shows the pin assignments of the RAM chip when fitted with the TSOP-DIP
adapter. The pin assignments are a 1-to-1 mapping directly from the RAM chip. No
pin-convertor is required in the use of this device.
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4.5 UARTSs

For the purposes of the project, the two internal UARTSs were left running inside of
the LEON core. Both of the UARTSs are identical in operation and provide the same
functionality as any external UARTSs that would be used in the design. The only major
difference is that the UART registers are available “on-chip” in the LEON core and are
accessed via the internal APB bridge.

The UARTSs support data frames in 8-bits, one optional parity bit and one stop bit. The
bit-rate can be obtained from either an internal 12-bit clock divider or from an external
source, through the parallel interface port. The UARTSs support both hardware and
software flow control. The UART's also support loopback mode, whereby the transmitter
may be directly connected to the receiver, for the purposes of testing.

The internal UARTSs may be individually removed from the LEON core by setting the
appropriate options in the graphical configuration utility. If this is the case, external
UART devices may easily be incorporated into the hardware system by altering the
control logic to add the appropriate chip select signals, mapping the UART registers
into an appropriate area of memory, then connecting the chips to the MAX3232 converter
in the same way as for the internal UARTS.

4.5.1 LVTTL to RS232

Regardless of whether internal or external UARTSs are used in the hardware system,
they still required an interface device to translate between LVTTL and RS232 voltage
signalling standards. The Maxim MAX3232CPE chip was chosen for this purpose[9]
as it is compatible with LVTTL signalling and is readily available in DIP format. The
MAX3232 is an LVTTL varient of the MAX232 chip used in the current design project
and operates in the same fashion, requiring similar external circuitry for its operation.
Additional circuitry required to work it and is detailed in figure 4.7. This shows the
way in which the four external 0.1uF charge-pump capacitors should be connected to
the MAX3232.

MAX3232
1
Cl+ VCC |18 —
It + V+ GND
0.1UF T~ 0.1uF ~ —i . o
C1- TX2| 14 e
L [ 4 C2¢ RX2|13 9)
OLuF —T= s C2- Rin2| 1 UART #1
6 V- Rout2
0.1UF J; ; O_—z X1 Routl
j:T T O—— 4RX1 Rinl
UART #0

Figure 4.7: Block Diagram of the RS232 Interface Circuitry
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Only one MAX3232 is required for the project as it contains two internal receivers and
drivers, capable of interfacing the two UART's to two separate serial ports. An additional
MAX3232 would be required, however, if the dedicated DSU serial port is to be used.

4.6 Final Design

The schematic of the final hardware design for the project is given in figure B.1. This
details block diagrams of all the different components and the way in which they were
connected together to create a fully functional microprocessor system based around the
LEON processor.

Figures 4.8 and 4.9 show the final hardware system implemented on the VirtexII pro-
totyping board. The first figure shows the ROM, RAM and MAX3232 on the breakout
area, as well as the FGPA and configuration PROM. The second figure shows the wire
wrap connections made between the components on the underside of the board.

Figure 4.8: Front View of Completed Hardware

In the front view of the prototyping board, the FPGA is the chip situated in the right-
most ZIF socket and the configuration PROM is situated in the ZIF socket directly
above the breakout area. The PEROM is the leftmost chip on the breakout area, with
the RAM being situated in the center and the MAX3232 and charge-pump capacitors
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being situated to the right. Both the ROM and RAM chips are shown mounted in their
TSOP-to-DIP adapters.

Figure 4.9: Rear View of Completed Hardware

The rear view of the prototyping board details the wire-wrap connections made between
the different components. The wires are colour-coded according to their functionality,
as given in table 4.3.

H Wire Colour ‘ Signal Type H

Purple Address Bus
Green Data Bus

Orange Control Signals
Red Serial Port Wiring
Black Power and Ground

Table 4.3: Colour coding of wire-wrap connections
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Chapter 5

Testing and Conclusions

At this stage, the entire prototype hardware design has been finalized and constructed
using the various components and techniques described in chapter 4. The final step in
the evaluation of the new microprocessor design project is to test the functionality of
the project hardware.

This chapter describes the programs used to test the hardware design and the results
obtained, as well as detailing the software tools available for use with the LEON pro-
cessor and how they may be useful in the project. Finally, the future of this project will
be discussed, outlining work that may be continued based on this project.

5.1 Software Tools

Several useful software tools are available free of charge from Gaisler Research and may
be obtained from their website. These include a suite of compilation tools for the LEON
processor, a simulator suitable for testing new programs without having to put them on-
chip and a monitor program, which may be used to interface with the optional internal
Debug Support Unit using the dedicated serial port.

5.1.1 The LECCS Compiler

The Leon Erc32 Cross Compiler System (LECCS) allows cross-compilation of assembly
code or single and multi-threaded C and C++ applications for the LEON processor. It
includes the following components:

e GNU C/C++ Compiler

e Linker, assembler, archiver, etc

Standalone C-library
RTEMS real-time kernel

Boot-prom utility

Remote debugger monitor for gdb

49



e GNU debugger with TK frontend
e DDD graphical user interface for gdb

The LECCS compiler was used to compile all of the test programs using the following
commands.

sparc-rtems-gcc -nostdlib -nostdinc -02 -Ttext=0 program.S -o program
sparc-rtems—-objcopy -0 binary program program.bin

The sparc-rtems-gcc command compiles the assembly, C or C++ program and links it.
The sparc-rtems-objcopy command then converts the compiled program into binary
format. This binary file may then be downloaded directly in binary format onto the
ROM, using the chip-writer and download tools.

5.1.2 The TSIM LEON Simulator

TSIM is an instruction level simulator capable of emulating the LEON processor core.
The full functionality of the VHDL model is emulated, including caches, on-chip periph-
erals and memory controllers. The amount of simulated main memory can be configured
at run-time.

TSIM can be run in stand-alone mode, or connected to the GNU gdb debugger. In stand-
alone mode, a variety of debugging commands are available to allow manipulation of
memory contents and registers, break-point insertain and performance measurement.
When connected to gdb, TSIM acts as a remote target and supports all gdb debug
requests.

The simulator can be obtained for free, under an evaluation licence, as long as it is used
for purely academic or educational purposes.

5.1.3 DSUMON

DSUMON is a monitor for the optional LEON processor debug support unit. It supports
the following functions:

e Read/Write access to all LEON registers and memory

e Built-in disassembler and trace buffer management

Downloading and execution of LEON applications

Breakpoint and watchpoint management

Remote connection to the GNU debugger

Auto-probing and initialisation of LEON peripherals and memory settings

It can be run in standalone mode or in conjunction with the GNU gdb. It connects to
the LEON debug support unit using the dedicated serial port in the model.
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5.2 The Infinite Loop Test Program

The infinite loop program is used to test the basic functionality of the microprocessor. It
verifies that the processor is reading information correctly from the ROM and in doing
so, also verifys that all of the control logic is operating correctly.

.seg "text"
.proc O

.align 4
.global _start

_start:
set 0xCO0, %gl 82 10 20 CO
mov %gl, ‘'psr 81 88 40 00
mov %g0, ‘hwim 81 90 00 00
mov %g0, Jtbr 81 98 00 00
mov %g0, hy 81 80 00 00
call main 40 00 00 01
nop 01 00 00 00
main:
jmp main 81 CO 20 1C

The above code is the entire program used to test the operation of the processor. It is
written in SPARC assembly language and compiled using the LECCS cross compiler for
LEON. It was downloaded into the ROM chip using the WinChip download program
and chip-writer as described in chapter 4.

The infinite loop program has two parts. The _start section initialises the processor
status register, the trap base register, the “y” register and the window invalid mask
register and then calls the main part of the program. The main section enters the
processor into an infinite loop, continually calling itself.

The numbers to the right of the code show the hexidecimal values of the binary bit-
stream of code that was downloaded onto the ROM chip. This may be used to verify
the functionality of the processor as it should be possible to view “81 CO0 20 1C” being
repeatidly fetched by the processor from the memory.

The infinite-loop program can also be used to verify that the instruction and data caches
have been removed from the processor correctly. If they were functioning, the processor
would not need to keep fetching the jmp main line from the memory, but instead would
retrieve it from the internal cache. If this were the case, no activity would be present
on the address and data buses. If however, the caches were removed correctly, the
address and data bus would continuously show the processor retrieving the appropriate
information from the memory. This can easily be verified to be the case using a logic
analyser connected to the address and data buses.
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5.2.1 Test Results

The results of running the infinite loop program on the physical processor showed that
everything worked perfectly first time. ..

CLK

ADDR

READ

WRITEN

/ROMOEN

OEN

/BRDYN

DATA

e e e e e e

0x000001C 0x000001D 0x000001E 0x000001F 0x000001C 0x000001D 0x000001E

(8L {.co L2 ) {1c) ] (8L {.co (20

Figure 5.1: Expected Waveform Results of Infinite Loop Program

Figure 5.1 shows the waveform obtained from simulations running the infinite loop pro-
gram. The operation of the processor was verified by the trace results obtained from
the logic analyser, shown in figure 5.2.

ADDR

READ

WRITEN

/ROMOEN

OEN

/BRDYN

Do

D1

D2

D3

D4

D5

D6

D7

S e ) s I B

0x000001C 0x000001D 0x000001E 0x000001F 0x000001C 0x000001D

Figure 5.2: Actual Waveform Trace from Logic Analyser

This test proved the operation of the processor. It was continuously reading the same
data from the memory and proved that the caches had been disabled correctly.
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5.3 Conclusions

During the course of this project, it was determined that the LEON processor is indeed
suitable for use as a teaching-aid and would be able to replace all of the functionality
of the Motorola MC68008 processor. The LEON processor was modified in order to
make it suitable for use in place of the Motorola processor and a new design project was
created and implemented to replace the current one.

This new design project was modelled closely on the format of the original project and
achieved the aim of creating an updated project, designed around an FPGA based micro-
processor, while still keeping to a format that allows students to learn about computer
architecture.

This project succeeded in it’s aims, resulting in a fully configurable implementation of
the LEON core and a new microprocessor design project layout, which is similar in
format and implementation to that of the current design project yet flexible in nature
due to the underlying hardware.

5.4 Future Work

The work carried out during the course of this project is the first step towards implemen-
tation of a new microprocessor design project. The basic hardware design requirements
and components have been set out and its operability proved, however further projects
arise from this work. These include:

e Designing a dedicated project board
e Writing the transparent link and a monitor program in SPARC assembler code
e Implementing several different LEON configuration options on the one board

e Evaluating different processor architectures, which may be implemented using FP-
GAs

e Implementing a synthesisable model of an MC68008 in VHDL

These projects would help to build on the work accomplished in this project and realize
the full potential of a microprocessor design project which is based on a reconfigurable
hardware platform.
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Appendix A

Demo Program

module demo (clk, led, USER_RESET);

output [7:0] led;

input
input

clk;
USER_RESET;

reg [7:0] 1led;

reg [20:0] count;

reg [20:0] count2;

reg [8:0] shift;

wire USER_RESET;
reg nxt_count;
wire clk;

always @(posedge clk) begin
if (USER_RESET) begin

end

count <= 0;
nxt_count <= 0;
shift <= 1;
count2 <= 0;

else begin

if (nxt_count == 0) begin
count <= count + 1;

if (count == 100000) begin

shift <= shift << 1;

led[0] <= shift[0];
led[1] <= shift[1];
led[2] <= shift[2];
led[3] <= shift[3];
led[4] <= shift[4];
led[5] <= shift[5];
led[6] <= shift[6];
led[7] <= shift[7];
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if (shift[8] == 1) begin

count <= 0;
count?2 <= 0;
nxt_count <= 1;
shift <= 1;
end
end
end
else if(nxt_count == 1) begin

count2 <= count2 +1;
if (count2 ==

end
end
end
end
endmodule

The above code can be used to test the functionality of the VirtexII FPGA and proto-
typing board. It is written in Verilog and its function is to alternately flash the on-board
LEDs continuously. Table A.1 details the pin assignments in the user constraints file

used.

Table A.1: Pin Constraints used for the Demo Program

shift <=
led[7] <=
led[6] <=
led[5] <=
led[4] <=
led[3] <=
led[2] <=
led[1] <=
led[0] <=

100000) begin
shift << 1;
shift [0];
shift[1];
shift[2];
shift[3];
shift[4];
shift[5];
shift[6];
shift[7];

if (shift[8] == 1) begin
nxt_count <= 0;

count

count?2

shift
end

<= 0;
<= 0;
<=1

b

H Signal ‘ LOC # H Signal ‘ LOC # H
clk RS USER_RESET | T13
led 0 | P13 led_1 R13
led 2 | N12 led_3 P12
led 4 | P5 led_5 N5
led 6 | R4 led_7 P4
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Appendix B
LEON

B.1 LEON Configuration File

The following code is taken from the device.vhd file and is used to set the configuration
options for all of the modules within the LEON core. It details the set-up used for the
purposes of synthesising LEON during the project. The target technology is set for the
VirtexII chip, the caches have been disabled, the memory control signalling is set to
emulate the MC68008 and the reset generator is disabled. The two internal UARTSs are
left enabled and the expected system clock signal is set to 6.25 MHz.

library IEEE;
use IEEE.std_logic_1164.all;
use work.target.all;

package device is

constant syn_config : syn_config_type := (
targettech => virtex2, infer_pads => false, infer_ram => false,
infer_regf => false, infer_rom => false, infer_mult => false, rftype => 1);

constant iu_config : iu_config_type := (
nwindows => 8, multiplier => none, mulpipe => false, divider => none,
mac => false, fpuen => 0, cpen => false, fastjump => false,
icchold => false, lddelay => 1, fastdecode => false, watchpoints => 0,
impl => 0, version => 0, rflowpow => false);

constant fpu_config : fpu_config_type :=
(core => meiko, interface => none, fregs => 0, version => 0);

]
~

constant cache_config : cache_config_type :
enable => false,
isets => 1, isetsize => 2, ilinesize => 4, ireplace => rnd, ilock => O,
dsets => 1, dsetsize => 1, dlinesize => 4, dreplace => rnd, dlock => 0,
dsnoop => none, drfast => false, dwfast => false);
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constant ahbrange_config : ahbslv_addr_type :=
(0’03010’0’0’03011’7’7’7,7’737’7);

constant ahb_config : ahb_config_type := ( masters => 1, defmst => O,
split => false, testmod => false);

constant mctrl_config : mctrl_config_type := (
memsel => false, bus8en => true, busliben => false, wendfb => false,
ramselb => false, sdramen => false, sdinvclk => false);

constant peri_config : peri_config_type := (
cfgreg => true, ahbstat => false, wprot => false, wdog => false,
irg2en => false, ahbram => false, ahbrambits => 11,
reseten => false, uartl_en => true, uart2_en => true);

constant debug_config : debug_config_type := ( enable => true, uart => false,
iureg => false, fpureg => false, nohalt => false, pclow => 2,
dsuenable => false, dsutrace => false, dsumixed => false,
dsudpram => false, tracelines => 64);

constant boot_config : boot_config_type := (boot => memory, ramrws => 0,
ramwws => 0, sysclk => 6250000, baud => 19200, extbaud => false,
pabits => 11);

constant pci_config : pci_config_type := (
pcicore => none, ahbmasters => 0, ahbslaves => 0,
arbiter => false, fixpri => false, prilevels => 4, pcimasters => 4,
vendorid => 16#0000#, deviceid => 16#0000#, subsysid => 16#0000#,
revisionid => 16#00#, classcode =>16#000000#, pmepads => false,
p66pad => false, pcirstall => false);

constant irq2cfg : irq2type := irqg2none;

end;

B.2 Pin Constraints

Table B.1 details the signal-to-pin mappings used in the project. Pins pio_0, pio_1
and pio_2 should have a “PULLDOWN?” resistor attached and pins pio_10 and pio_11
should have a “PULLUP” resistor attached. This sets the processor up for 8-bit external
PROM mode, accepting an external source on pio_3 as the UART baud reference signal
(according to table 2.3).
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| Signal | LOC # || Signal | LOC # | Signal | LOC # |

clk R8 clkout R10 clkuart R11
resetn T13 errorn P13 wdogn R13
read Al12 writen E15 asn B12
dsn B13 iosn C16 oen C12
romen C13 ramen E14
brdyn D12 bexcn D13

address_0 A6 address_1 AT address_2 A8
address_3 A9 address_4 A10 address_5 All
address_6 B6 address_7 B7 address_8 B8
address_9 B9 address_10 B10 address_11 B11
address_12 C6 address_13 Cc7 address_14 C8
address_15 C9 address_16 C10 address_17 Cl11
address_18 D6 address_19 D7 address_20 D8
address_21 D9 address_22 D10 address_23 D11
address_24 E6 address_25 E7 address_26 E10
address_27 El1

data_24 E4 data_25 E3 data_26 E2

data_27 E1l data_28 D5 data_29 D3

data_30 D2 data_31 D1

pio_0 M6 pio_1 M7 pio_2 T8

pio_3 T9 pio_4 M10 pio_b M11
pio_6 N6 pio_7 N7 pio8 N8

pio9 N9 pio_10 N10 pio_11 P11
pio_12 P6 pio_13 P7 pio_14 P8

pio_15 P9

Table B.1: User Constraints Pin Allocations

B.3 Project Board Circuit Diagram

Figure B.1 is a schematic of the final design for the hardware that was used in the
project. It details the control logic block as an external entity and shows all of the
interconnects required to make the LEON processor operate correctly. The ROM and
RAM chips are shown in DIP packaging, as appear in the actual hardware system.
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