
Distributed Rendering
of Particle Systems

Charles Smith
B.A.(Mod) Computer Science
Supervisor:Michael Manzke

April 22, 2003

Abstract

Scalable Rendering allows the creation of high performance rendering systems without spe-
cialist hardware by utilising clusters of rendering nodes with commercial graphics accelera-
tors.

Particle systems describe a class of rendering techniques for displaying objects without
a rigid structure, including fire, water, and atmospheric effects, which traditional Computer
Graphics approaches find difficult. The term has also been extended to cover decentralised
behavioural systems consisting of large numbers of entities which are independent but influ-
ence one another’s motion.

Here we describe attempts to extend and improve on some existing computer graphics
techniques by making use of parallel computation and rendering, to manage and display
complex particle based systems in real-time on modest sized compute clusters.

Acknowledgements

I would like to thank my supervisor Michael Manzke for his support and advice on this
project, and Dr. Carol O’Sullivan whose help has also been invaluable to me, the Computer
Graphics group at Stanford whose work on Chromium gave me the basis for this project,
and my friends, family and Anne for all their encouragement.

Charles

Produced with LATEX

1

Contents

1 Introduction 4
1.1 Distributed Rendering . 4

1.1.1 Applications . 5
1.2 The Chromium Project . 5
1.3 A History of Particle Systems . 8
1.4 Behavioural Systems . 9
1.5 The Constraints of Realtime Simulation . 9

2 Background 11
2.1 Chromium Parallel API and Parallel Computation 11
2.2 “Embarrassingly Parallel” . 12
2.3 Interacting Particle Systems . 12
2.4 The MPI Standard . 13
2.5 Hardware Setup . 13
2.6 Parallel Architectures . 14

2.6.1 Tightly vs. Loosely Coupled . 15
2.6.2 Scale and Efficiency Considerations 15

2.7 Algorithmic Complexity — The n-Body Problem 15

3 Boids — Behavioural Systems in Parallel 17
3.1 Previous Parallel Implementations . 19
3.2 Binary Tree Domain Decomposition . 19
3.3 Region Splitting . 21

3.3.1 Planar Bisection . 23
3.4 Boid Sharing and Migration . 26
3.5 Load Balancing . 26
3.6 Synchronisation . 27
3.7 Reducing Communications Costs . 29

3.7.1 Message Sizes and Efficiency . 29
3.7.2 Point-to-point communication . 29

3.8 Time complexity . 31
3.9 Simplification and Approximation . 33

2

4 Physically Based Systems in Parallel 35
4.1 Stochastic Modelling of Interactions . 35
4.2 Bucket-Sorted Regions . 36

4.2.1 Performance Tradeoff . 37
4.3 Describing Interactions . 37

4.3.1 Dealing with Non-Determinism . 38
4.4 Implementation in Parallel . 38

4.4.1 Synchronisation . 39
4.5 Issue — Volume of Message Passing . 39

4.5.1 Optimising Distribution of Particle Sources 39

5 Distributed Rendering 43
5.1 Conceptual Overview . 43
5.2 Overview of Tilesort . 43
5.3 Overview of Z-Compositing . 44
5.4 Comparison . 46
5.5 Dynamic Balancing of Tilesort . 48

6 Evaluation 49
6.1 Boids Performance Measurement . 49
6.2 Interacting Systems Performance Measurement 51
6.3 Future Work — SCI Shared Memory Systems 51

6.3.1 SCI APIs and Abstractions . 53
6.3.2 Implementing the Chromium Networking Model on SCI 53
6.3.3 Distributed Textures . 55

6.4 Summary . 56

Bibliography 59

Appendix A — UML Diagrams 61

Appendix B — SCI Transactions 63

List of Figures 65

Index 65

3

Chapter 1

Introduction

1.1 Distributed Rendering

Computer Graphics is one of the fastest growing fields of the Computer Sci-
ence discipline, having progressed rapidly from the primitive vector graphics
of the 1960’s to complex and immersive 3-Dimensional environments with spe-
cialist supporting hardware acceleration. In recent years competition among
the major manufacturers of 3D Graphics Accelerators has resulted in af-
fordably priced cards with extremely fast dedicated graphics processors and
growing amounts of video memory.

Accompanying these technological improvements has been continued in-
creases in the demands which are placed on graphics subsystems, a demand
which for the foreseeable future will always outstrip the capabilities of a
given graphics accelerator. Research always continues toward more realistic,
and hence compute intensive, rendering techniques, and both scientific and
medical visualisation and the entertainment industry require more and more
complex scenes and larger datasets to be displayed.

Traditionally, to boost rendering performance, specialist multiprocessor
systems with a custom graphics processing pipeline have been constructed
to meet the specifications required. This approach produces high speed and
efficient rendering systems, but suffers from several disadvantages. Firstly
it is not an option available to general consumers without the resources to
construct such a system, and it is difficult to extend; usually this requires a
redesign of the system.

Scalable rendering addresses these issues by providing an extensible high-
performance rendering architecture that is constructed from readily available

4

general purpose components. Specifically, clusters of standard workstations
with graphics acceleration hardware, combined with high performance inter-
connect. The arrangement of the system does not require any changes to the
rendering pipeline within a graphics accelerator, allowing hardware upgrades
without altering the configuration. Furthermore, nodes can to inserted into
or removed from the cluster to attain the required level of performance.[11]

1.1.1 Applications

Applications for Distributed Rendering include tiled display walls, where an
array of projectors or displays is used to create a very large composite image
- each projector can be given its own machine in the rendering cluster, and
CAVES, where multiple projectors are used to rear project stereo images onto
the inside walls of a cube to create an immersive virtual reality simulation.1

1.2 The Chromium Project

Chromium2 is an extension of the WireGL3 project developed by the Com-
puter Graphics Laboratory at Stanford4. It provides an scalable distributed
rendering implementation of OpenGL, and adds functionality including cus-
tom OpenGL extensions, synchronisation primitives and Stream Processing
capability.[12]

The basic structure of a Chromium cluster consists of 3 types of nodes:

• A single Mothership node — this node coordinates the cluster and pro-
vides configuration information

• Server nodes — these nodes accept rendering commands, and perform
appropriate actions

• Application nodes — these nodes issue rendering commands to servers

Both server and application nodes can have an attached chain of Stream
Processing Units (SPUs). SPUs implement the fundamental processes of

1http://cave.ncsa.uiuc.edu/
2http://chromium.sourceforge.net/
3http://graphics.stanford.edu/software/wiregl/
4http://graphics.stanford.edu/

5

distributed rendering and can also be used to produce special non-photo-
realistic effects. An SPU Chain is a set of SPUs, where rendering commands
enter at the head SPU of the chain and are passed down until the tail SPU
which produces the final result. Any node can have a chain of SPUs, for
application nodes the application’s OpenGL commands are submitted to the
head SPU, and the tail SPU will typically dispatch commands to servers. The
head SPU of a server accepts incoming commands, and the tail SPU will either
pass commands to another server or produce rendered output. This system
allows SPUs which provide logging, performance measurement or extensions
to OpenGL to be inserted without needing to modify applications.

To illustrate the use of SPUs and the basic operation of the system, con-
sider a cluster with 3 nodes: one mothership node, one server node and one
application node. The server node has one SPU, the Render SPU. This sim-
ply carries out the rendering commands that are issued to the server. The
application node also has one SPU, the Pack SPU, which packs all OpenGL
commands into buffers for transmission across the network to the server.

Upon initialisation, the sequence of operations is as follows:

1. The mothership is started, and waits for configuration requests from
other nodes

2. The server node is started, it locates the mothership and requests con-
figuration information regarding the arrangement of the cluster

3. The application node is started, and obtains configuration information
in a similar fashion

4. The application begins issuing rendering commands. These are packed
into network buffers by the Pack SPU, before being sent across the net-
work to the server node, which unpacks them and passes them to the
Render SPU which renders them to the display.

This is a somewhat trivial example which does not illustrate the power of
distributed rendering. Chromium allows configurations with multiple servers
and multiple clients, rendering and submitting commands in parallel, as well
as chains of SPUs which perform complex manipulation of rendering primi-
tives before they are finally displayed. These mechanisms will be explained
in detail and discussed in section 5.

6

Application Node Server Node

Mothership

Rendering Commands

Cluster Configuration Cluster Configuration

Figure 1.1: A minimal Chromium cluster contains a mothership, an application node and a
server node

7

1.3 A History of Particle Systems

Particle Systems were first formally proposed as a rendering technique by
William Reeves in 1983[15], although several of the concepts had been used
previously. Reeves’ paper was titled “Particle Systems — a Technique for
Modelling a Class of Fuzzy Objects”, and describes methods for modelling
water, fire, grass and atmospheric effects, which pose difficulties for tradi-
tional polygonal representation and rendering approaches.

Objects and phenomena such as these are difficult to represent using poly-
gons because they cannot be approximated satisfactorily with flat faces, they
are dynamic and constantly change their form, and their motion is generally
stochastic in nature. Particle Systems represent objects as clouds of points,
each of which is capable of moving independently, the entire set of which de-
fines the particular object. The motion of particles is given by certain rules,
but with some degree of randomness. Generally the system is not static,
and under certain conditions particles may die and new particles may be
generated.

Particles can be thought of a points in 3-Dimensional space, with asso-
ciated attributes which may change over time. These attributes generally
include:

1. Position: the particle’s location in 3-D space

2. Velocity: the direction and speed of the particle’s motion

3. Size and shape: a description of the geometry of the particle

4. Colour and transparency: typically given as red, green, blue and alpha
channel values

5. Lifetime: the amount of time before a particle dies out

Each particle may be represented as simply a coloured dot, as a single
textured polygon, or as a complete polygonal model, depending on the appli-
cation. Reeves proposed that the particles each be considered as a separate
point light source, meaning that lighting and depth calculations can be ig-
nored, giving a large saving in computation time.

The example of particles given by Reeves, and the first major instance of
their use, was the Genesis Effect from the Lucasarts film Star Trek II: The

8

Wrath of Khan, where particles are used to model explosions and a wall of
fire covering a planet. Physically Modellled particle systems are discussed in
section 4.

1.4 Behavioural Systems

Since the publication of the first paper by Reeves, many extensions have
been made to the initial particle system model. One of the most important
was by Craig Reynolds, who published in 1987 “Flocks, herds and schools:
A distributed behavioural model”[16], in which is described a system for
modelling large scale decentralised behavioural systems, including flocks of
birds, and schools of fish.

In this model, each particle represents, say, a bird, and the entire system
of particles represents a flock of birds in flight. Reeves model is extended
somewhat to allow the motion of particles to be influenced not only by their
internal state, but also by the external state, that of the entire flock. This
form of interaction between particles in the system is necessary to ensure
realistic flocking behaviour.

Each bird in the virtual flock acts of various impulses determined by the
world around it. These typically include obstacle avoidance, and maintaining
the overall cohesion of the flock.

The interaction between particles in such a system necessarily makes it
more compute intensive to simulate particle motion, however the underlying
concepts remain much the same. These systems are discussed in section 3.

1.5 The Constraints of Realtime Simulation

The aim of this project is to produce particle system simulations at interactive
framerates, making use of distributed rendering and computation to model
more complex scenes than the constraints of realtime would normally allow
on standard hardware. Interactive framerates typically means upwards of
25 frames per second, and the framerate must be approximately constant or
have a worst case lower bound around this figure.

Issues to be considered include modelling particle systems in such a way
that they can be distributed, the synchronisation issues involved in a parallel

9

solution, optimisation and load balancing considerations, and the choice of
an efficient distributed rendering configuration.

In this report we will describe work on implementing effective parallel
solutions for a behavioural flocking particle system, and multiple interacting
physically based particle systems.

10

Chapter 2

Background

2.1 Chromium Parallel API and Parallel Computation

Highly demanding graphical applications generally suffer from one of a set
of common bottlenecks on system resources[11]. Applications are compute
limited if they cannot generate scene datasets fast enough to maintain the
desired framerate. This tends to be the case where scenes are very large and
computationally complex to update.

Applications are graphics limited if the graphics hardware cannot keep up
with their requests, e.g. the primitives are very time consuming to render, or
involve complex textures, blending, transparency etc.

A program which is limited by the rate at which it can issue commands
to graphics hardware is said to be interface limited ; this is often the case for
large static scenes.

Other applications may be display limited in which case the display reso-
lution is not sufficient to render the dataset at the desired level of detail.

Using multiple application nodes (i.e. compute parallelism) will benefit ap-
plications which are compute limited, whilst multiple server nodes (graphics
parallelism) will be useful for graphics limited programs. Interface limitations
will be lessened where there are multiple servers and application nodes, and
using multiple tiled displays will solve display limitations.

The factors limiting the speed of a particle system will depend on the
nature of the system; if the update cost per particle is low, then very large
particle systems will tend to be interface limited. In cases where the com-
putation of interactions between particles is expensive, then the system will
normally be compute limited. A graphics limited situation can also arise

11

when the rendering cost associated with a single particle is high.
Chromium provides an API to allow applications to submit commands to

rendering servers in parallel. The arrangement of the cluster is largely trans-
parent to the application, and many applications can simply use the standard
OpenGL API. Because rendering servers can accept simultaneous commands
from several clients, they must operate in an asynchronous manner. To pre-
serve the normal ordered semantics of OpenGL, additional synchronisation
is needed, Chromium provides barriers and semaphores for this purpose.

Barriers are typically used before a clear of the frambuffer, or before swap-
ping buffers in a double buffered configuration, to ensure that all applications
have reached the same point before such an event occurs, since otherwise
graphics data could be lost, or the system could become inconsistent.

2.2 “Embarrassingly Parallel”

If there is no interaction or interdependence between the particles in a system
being modelled, then parallelising this system is simply a case of dividing the
number of particles to be simulated evenly among the nodes of the cluster.
Assuming that the compute and rendering costs are equal for all particles,
this will give an optimum load balance, and a speed up approximately linear
in the number of nodes in the cluster.

This falls into the set of problems known as “Embarrassingly Parallel”,
where no synchronisation or complex load balancing is required, and the
problem can be implemented in parallel with only minimal modifications and
with virtually no performance penalty in doing so.

Problems of this sort will not be discussed in this report, chiefly because
there is little to no work remaining to be done in this area and because they
do not represent a realistic evaluation of the potential of scalable rendering
techniques. Therefore we will concentrate on situations where particles inter-
act with one another, requiring synchronisation and careful load balancing.

2.3 Interacting Particle Systems

Interacting particle systems are those where the next state of a particle is
a function not only of its current state, but of those of a number of neigh-

12

bouring particles, possibly the entire system. When the number of particles
involved grows very large, the process of computing the next state for all
particles can become very expensive. In such a situation, if an interactive or
realtime solution is required (as in our case) then increased computational
power (through parallelism) or decreased computational cost (though approx-
imation and simplification) must be investigated. In practise a combination
of both approaches is used for very large problems.

As discussed above, particle systems tend to be compute limited or inter-
face limited, therefore a cluster configuration with an approximately equal
number of application nodes and server nodes should provide the best per-
formance gain.

2.4 The MPI Standard

As we have already determined that synchronisation among compute nodes
will be necessary, a mechanism for this must be chosen. Here we use the
Message Passing Interface Standard (MPI)1 to exchange state information
between nodes involved in the parallel computation in order to maintain
synchronisation.

MPI allows for a wide variety of point to point and collective communi-
cation operations, although we will only make use of a small subset of these.
The choice to use MPI greatly simplifies the task of developing a parallel
solution as it is a well tested, widely understood standard, which has been
implemented efficiently.

2.5 Hardware Setup

Our cluster consists of 3 machines, all with an identical hardware and soft-
ware configuration. All have Intel Pentium II processors running at 450MHz,
256MB of RAM, and are connected using 100Mb Ethernet. All are run-
ning Red Hat Linux 7.3, and we use the MPICH2 implementation of MPI.[9]
The machines have S3 Virge video cards, which do not have hardware ac-
celeration support for OpenGL, therefore in taking measurements of system

1http://www.mpi-forum.org/
2http://www-unix.mcs.anl.gov/mpi/mpich/

13

performance it is the relative performance gain from utilising larger numbers
of nodes which must be taken into account, rather than an absolute measure
such as framerate.

2.6 Parallel Architectures

It is important here to make clear the distinction between the usage of the
term particle system in computer graphics and its use in mathematics, al-
though there are many common elements. Within computer graphics, particle
systems refers to a group of techniques for rendering loosely structured col-
lections of simple objects, the emergent properties of whose motion gives rise
to an apparent behaviour for the system as a whole.

When mathematicians speak of particle systems, they refer to a branch
of their discipline which deals with computing the interactions (e.g. forces)
among a system composed of independent bodies. It should be clear that
there is a clear overlap between these two areas, since in order to render a
particle system realistically it will be necessary to simulate in some fashion the
motion of the particles, and therefore the forces acing upon them. In many
cases however, we are simply interested in rendering a seemingly realistic
scene, but computational limitations mean that major simplifications are
employed. This is clearly different from the demands of mathematics which
typically requires a simulation as close to reality as possible, and where it
may be acceptable to perform calculations slower than realtime.

A very typical particle motion system in mathematics is that of the mo-
tion of planetary systems, which essentially involves computing gravitational
forces among the bodies (planets) in the system. As these systems can grow
very large, massively parallel supercomputers are sometimes employed to ob-
tain a solution in reasonable time.[3]

In this report we are dealing with a very different situation, in terms of the
aim of the simulation (convincing rendering) and the computational hardware
available (a small Linux cluster). Therefore it is important to differentiate
our approach from previous particle simulations in terms of several aspects
of the architecture of the parallel system.

14

2.6.1 Tightly vs. Loosely Coupled

The supercomputers used for very large particle simulations (e.g. the Cray
T3D), differ from a compute cluster in a very significant way: multiprocessor
supercomputers are tightly coupled, meaning that they share memory space
directly, whereas a multicomputer cluster is loosely coupled, each compute
node has its own local memory space.

This has direct implications for the type of parallel solution which can
be implemented. Essentially the lack of shared memory space3 means that
we must attempt to make the work done by each processor as close to in-
dependent as possible. The more interdependence that exists, the greater
the amount of synchronisation that will be necessary. This synchronisation
takes the form of message passing over Ethernet, and can quickly become
very costly if not carefully managed and minimised. In a multiprocessor en-
vironment, all communication takes place over some manner of local bus or
high speed interconnection network, which will be many times faster than
communication over Ethernet.4

2.6.2 Scale and Efficiency Considerations

An additional important factor is the scale of the parallel system. Our aim
is to produce parallel particle systems which are effective on modest sized
clusters. This modest scale consideration means that the solutions must be
quite efficient in terms of good load balancing and low time penalties from
parallelisation, in order to produce a solution which clearly performs better
than the existing serial algorithms.

2.7 Algorithmic Complexity — The n-Body Problem

As stated earlier we will only consider here particle systems in which the
particles interact with one another. In such a system, a single particle can
theoretically be influenced by any other particle, and in a system with n

particles the algorithmic complexity will be O(n2). Even if a particle is only
affected by (say) particles within a certain distance from its location, the task
of identifying which, if any, particles lie within this region will still be O(n2).

3In section 6.3 we explore SCI based clusters (which support shared memory) for problems such as these
4Issues such as cache coherency on multiprocessor systems can slightly complicate this issue

15

This becomes very significant in a simulation with 100, 000 particles, for
example, since 100, 0002 = 10, 000, 000, 000(ten billion) which will generally
be an unfeasibly large number of possible interactions to consider; if the
desired framerate is 25 frames per second then 250, 000, 000, 000 interactions
would have to be computed per second.

This is a famous mathematical problem, known as the n-Body Problem
(or the Many Body Problem), and many approaches have been proposed to
overcome it, the key being to reduce the computational complexity from
O(n2) to a more manageable level.

The standard way to achieve this is to subdivide the domain of the particles
into smaller regions, and sort the particles according to the regions in which
they lie. They speed gain arises since each particle need only be checked
for interactions with those within its own region and those in neighbouring
regions inside a certain distance.

Note that this type of approach does not necessarily need to be executed
in parallel, and a performance gain can usually be achieved on serial systems.
With a parallel architecture, the domain of the problem must be somehow
decomposed further in order to balance the workload over the multiple pro-
cessors, and a good load balance is the key to an effective solution.

16

Chapter 3

Boids — Behavioural Systems in
Parallel

Boids is a name given by Craig Reynolds[16] to the particles in a flocking
simulation. The particles were originally just birds, thus boid = bird-oid, and
this is the term we will use henceforth. To begin evaluation of this type of
system, it was necessary to first construct a serial version of a behavioural sys-
tem. This implementation is closely based on the one described in Reynolds’
paper.

In our implementation, a boid is an object, with the following attributes:

• Position [3D Vector Quantity]

• Velocity Vector [3D Vector Quantity]

• Acceleration Vector [3D Vector Quantity]

• Euler Orientation Angles [3 Scalar Quantities]

The number of boids in the system is static, no boids are destroyed, and
none are created after the initialisation of the system. To begin with, the
boids are randomly distributed within a sphere. The environment may con-
tain static objects which act as obstacles which the boids attempt to avoid.

During each timestep of the system, each boid’s behaviour is influenced
by other boids nearby, and by the surrounding environment. The behaviour
of the boids is given as a set of impulses (movement vectors), the weighted
average of which given the new acceleration vector for the boid. To model
the inertia of the boid, the new velocity vector is a linear combination of the
previous velocity vector and the new acceleration vector.

17

The impulses acting on a boid are:

• Collision Avoidance: avoid collisions with obstacles and other boids

• Velocity Matching: attempt to match velocity with nearby boids

• Flock Centring: attempt to stay close to nearby boids

Several constants determine particular elements of boid behaviour:

• Sight Radius: the distance at which the boids can see other boids and
obstacles

• Sight Angle: the field of view angle of the boids also determines what is
visible to them

• Boid Avoidance Distance: the optimum distance which boids attempt
to maintain from their neighbours

• Obstacle Avoidance Distance: the distance at which boids will attempt
to steer away from an obstacle

The outline algorithm for determining the new states for all boids on a
timestep is:
Compute the distances between all boids in the system, and for boids which
are within the boid sight radius of one another, compute whether they can
see one another according to the boid sight angle
FOR every boid DO

1. Compute the average velocity vector for all boids visible to this one

2. Compute the average position of all boids visible to this one, and com-
pute a vector from the current boid to this point

3. For all neighbouring boids inside the boid avoidance distance, compute
a repulsion vector as sum of vectors directly away from these boids,
weighted by the inverse of the distance to the current boid

4. Compute a repulsion vector for static obstacles in a similar fashion

5. Compute the acceleration vector as a weighted average of these impulses

END

18

3.1 Previous Parallel Implementations

A simple parallel implementation of a flocking simulation[13] requires that all
the processors in the parallel system be connected in a ring structure. Every
processor is then assigned a particle, or group of particles. At every step of
the computation, each processor receives information about a set of particles
from its left neighbour, uses this to compute the next state for its own set
of particles, and then sends this data to its right neighbour. If there are p
processors, then p− 1 communication steps are required, and the number of
particles, n, will be divided such that every processor is assigned n

p of the
total.

The performance of this algorithm is very much dependent on the number
of processors and the costs of the communication involved. If the processors
are loosely coupled, then the costs of sending data on every particle around
the entire network of processors may be very high. Additionally, a large
number of processors will be required in any case to attain a reasonable
speed gain. As we are looking to produce a solution that is effective on small
clusters this approach is not suitable.

3.2 Binary Tree Domain Decomposition

As stated previously, a key element in reducing the time complexity of this
computation is to divide the domain of the flock[2]. The Barnes-Hut Method[1]
which was designed to simplify force calculations in simulating interactions
of galactic bodies, uses a hierarchical octree representation of space, where
each node contains a simplified representation the approximate total forces
of all of its children.1

For our initial simulation, we are looking simply to subdivide the domain,
and will not consider simplifications. Since we are dealing with small clusters,
an octree representation is not ideal, as it quickly produces a very large
number of regions[7]. Thus, it was decided to use a binary space partition
representation for the space occupied by the flock.2 The leaf nodes in the

1Each node contains the total mass and centre of mass of all the particles it contains, this so-called
monopole approximation can be used to approximate the total force acting on distant particles

2A binary space partition is formed by cutting space by an n-dimensional hyperplane, then recursively
partitioning each of the two resulting halfspaces. The result is a hierarchical division of space into convex
regions. For more information see http://www.faqs.org/faqs/graphics/bsptree-faq/

19

Region 1

Region 2

Region 4

Region 3

Figure 3.1: A 2D view of a binary space partition of a particle set into 4 disjoint regions.
The solid line gives the split plane at the root node, the dashed lines are the two split planes
of the nodes at the next level down

20

resulting tree will be the actual regions containing boids, therefore the depth
of the tree will determine the total number of regions.

In a distributed environment, each machine3 will be responsible for some
set of nodes, and since it may be possible for boids to see other boids in regions
managed by other machines; synchronisation mechanisms will be needed to
ensure that all machines operate on up-to-date data. Synchronisation is also
necessary to maintain the structure of the BSP as the flock moves. The
overall BSP tree is distributed across the cluster, all machines will maintain
a copy of nodes near the root of the tree, whilst nodes near the leaves may
only be stored locally on individual machines. With this arrangement it is
not necessary for every machine to have knowledge of the entire tree, only
the locally significant nodes of the tree must be stored.

To simplify this representation, we add the constraint that if any machine
is responsible for more than one region, then all the regions it manages must
be children of the same node, and this node must have no children managed
by other machines. We call this node the local root for this machine. Other
machines in the cluster need only have knowledge of the local root of this
machine, and perform any interactions with this machine via this node.4

In our implementation, there can be 3 types of nodes in a tree:

Branch Node a non-leaf node that may be local only or shared with all
machines

Local Leaf Node a leaf node that is local to this machine

Remote Node a node that is the local root of some other machine

3.3 Region Splitting

The division process used to divide regions in the BSP tree must be carefully
chosen to ensure an even load balance between both sides of the split. Ad-
ditionally the process of choosing a split should be relatively fast since the
region tree will need to be updated every frame of the simulation.5

3Note: to avoid confusion here, node refers only to a node in the BSP tree, and machine refers to a single
machine in the cluster

4Conceptually this is because any node in a binary tree represents exactly the union of all the space
occupied by its children

5A situation where the subdivision of the regions is static will quickly degenerate into a very unbalanced
state as the boids move, since they tend to move together and would all cluster in a small subset of regions

21

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

View of Machine 2

Machine 4

Machine 3Machine 2Machine 1

Machine 5

View of Machine 1

(Not Shared)

(Shared)

(Shared)

(Shared)

Remote Nodes

Local Nodes

Local Root Nodes

Common Nodes

Overall System View

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

Figure 3.2: The topmost tree is the complete view of the system, below are shown the views
of machine 1 and machine 2. Note that every machine interacts only with the local root
nodes of the other machines

22

Here we will will treat the boids as 3-Dimensional vertices; there are many
ways in which the domain of a problem such as this may be divided[17][6],
however many are intended for graph structures where the vertices are con-
nected by edges; an unconnected situation is considerably simpler.

3.3.1 Planar Bisection

The simplest method for dividing a set of vertices is known as recursive
coordinate bisection(RCB). It is easy to implement and is relatively fast.
The process is as follows:

1. Determine longest expansion of domain (x, y or z direction)

2. Sort vertices according to coordinate in selected direction

3. Assign half of the vertices to each subdomain

4. Repeat recursively (divide and conquer)

This approach is not ideal for our requirements, however, as it does not give
us easy access to a hyperplane separating the two new subdomains. This is
important for the flocking system as it will become necessary to test whether
a boid has crossed such a hyperplane and entered a new region. Additionally,
the need to sort the vertices means that the algorithm is O(n log n) could
become very costly for large numbers of vertices.

An intuitive alternative is to take the mean of the coordinate values of all
vertices, and construct a plane which passes though this point and is normal
to the axis vector of a chosen dimension. This plane can then be used to
partition the vertices. This does not guarantee to provide an even balance;
consider the following example:

• let V be a set of vertices longest in the x dimension

• let X be the set of x coordinates of these vertices = {1, 2, 4, 21}

• X̄ = (1 + 2 + 4 + 21)÷ 4 = 7

• Dividing the set at the point 7 will give two sets containing 3 and 1
elements respectively

23

Despite this shortcoming, we will use this form of evaluating splitting
planes for regions, since it can be computed in O(n) time. If the boids are
distributed approximately evenly, then the amount of imbalance will be quite
low. There is also a further property, the advantages of which will become
clear later — all that is needed to compute a split plane is the sum of the
coordinates of all boids in a region, and the number of boids that are present.
If the determination of splitting planes is carried out bottom up, i.e. starting
with the leaf nodes, then computing the split plane for a branch node is simply
a matter of summing the information already computed for its children.

This is vital to the efficiency of a parallel solution, as it means that the
only information which must be synchronised between machines in order to
rebuild the BSP tree is the sum of the coordinates of all boids and the number
of boids present, for every local root node. Since each machine has exactly
one local root, the amount of message passing for this synchronisation step
is linear in the number of nodes present, and independent of the number of
boids in the system.

There is a further refinement to this process, which requires slightly more
information, but has other desirable properties. To justify this, consider a
situation where all the boids in the system are in a long line in one dimension.6

If we split the domain along this dimension (see figure 3.3), the boids will
be divided evenly, however the distribution of boids will be “unstable” since
small movements of boids will result in them crossing the splitting plane.7

Therefore an improved solution would be to split using a plane orthogonal
to the longest dimension, as with RCB, which will eliminate the instability as
there will be less boids in the immediate vicinity of the split plane. A further
problem can arise, however, if the boids begin to move into an arrangement
where the flock is oriented along a different dimension. At the point where the
flock shape moves to being longer in the new dimension, the split plane will
be reoriented orthogonal to this new dimension, and the resulting distribution
of boids among the regions will likely be very different from the preceding
arrangement. Again a large amount of migration between regions will result,
which could cause irregular framerates when such a situation arises.

What is required is a method for choosing a splitting plane, which can
be computed from the minimal amount of data, produces a reasonable and

6This is not an unrealistic situation, since birds often fly in such a formation
7This will be seen to be undesirable when we discuss boid migration

24

Figure 3.3: A set of boids has been split along the Y axis, leaving many in a position where
slight changes in position would cause them to cross the split plane

Boids assigned to machine 2

Boids assigned to machine 1

Assignment of boids with split along Y axis Assignment of boids with split along X axis

Figure 3.4: The distribution of boids between two machines shown over a period of two
frames illustrates how changes to the axis chosen to divide the flock could cause many boids
to migrate to another region

25

stable division of boids, and changes continuously as the flock moves. Here we
will use a plane based on the coordinates of a bounding box surrounding a set
of particles. The plane is defined as passing though the mean of the position
of all the the boids, and orthogonal to a vector between two opposite corners
of the bounding box. Choosing a different two corners of the bounding box
to form plane normal will give an alternative splitting plane for the set of
particles. Since we are splitting the domain recursively, the subdivision will
be most effective if choice of which plane to use when splitting is cycled as
depth in the tree increases, such that planes at adjacent levels in the tree
meet with an angle of approximately 90 degrees. Since the coordinates of the
bounding box of a set of boids can only move as fast as any given boid, this
splitting plane will move continuously with the flock as we required.

3.4 Boid Sharing and Migration

The division of the domain gives rise to several issues which must be con-
sidered when boids interact with a neighbouring region. Firstly, boids may
migrate to a neighbouring region if they cross one of the dividing split planes.
These boids must be transmitted to their new region, and removed from that
which they previously occupied.

A second issue is sharing of boids between regions, since a boid’s sight
radius may well extend into regions outside its own. If we do not employ any
simplifications, then any boid which is within the boid sight radius of a split
plane must be shared with the region on the other side of that plane. It may
be the case that the region on the other side is itself composed of subregions,
and the boid will then need to be shared with one or more of these.

In both cases, migration and sharing of boids, a boid may need to be
transmitted to a remote machine. This will be discussed as part of the syn-
chronisation mechanisms.

3.5 Load Balancing

Load balancing this system is relatively simple, if it is assumed that the
approach to region subdivision employed is reasonably good. Since only the
leaf nodes of a tree contain boids, the depth of a tree will be determined by

26

the number of machines in the cluster, such that there is at least one leaf
node per machine.

A binary tree of depth d has 2d leaf nodes. Therefore a cluster with m

machines will need a tree of depth d = dlog2me. The number of leaf nodes
in such a tree will be 2d which may be larger than m. In this case it will be
necessary for some machines to manage more than one region. A problem
would arise if it were necessary for a machine to manage, for example, 3
nodes, since we earlier imposed the constraint that all the nodes on a given
machine must be the only children of a single parent node, thus the number
of nodes on any machine must be a power of 2. We will show here that this
will always be the case, and that furthermore it will never be necessary for a
machine to manage more than 2 nodes.

Proof Let m = the number of machines in the cluster. Let d = the tree
depth required = dlog2me. Let n = the number of leaf nodes in the resulting
tree = 2d. Therefore 2d−1 < m ≤ 2d. If one machine were to manage 3
nodes, then this would imply that all other machines were already managing
2 nodes each. In this case, the total number of nodes managed by the cluster
would be s = 3 + 2 × (m − 1). Since 2d−1 < m, we have m − 1 ≥ 2d−1, and
s ≥ 3 + 2 × 2d−1 = 3 + 2d > n. Therefore more nodes are being managed
than exist in the tree, therefore there is no need for any machine to manage
3 nodes.

3.6 Synchronisation

The process of updating this system involves several steps, all performed in
parallel across all machines.

Update boid positions the new acceleration, velocity and movement vec-
tors for all boids are computed. This process is as described for the serial
case

Compute local bounding regions the average position and the bounding
box extents for every local region is computed bottom up

Synchronise bounding regions all machines pass the bounding region info
for their local root nodes to all other machines. This is implemented
as an MPI collective communication operation (MPI Allgather), which

27

gathers data from each machine and distributes the complete set to every
machine

Compute shared bounding regions the bounding region information is
computed for all shared regions, again bottom up. Note that since all
machines will have the same shared regions, this step will be identical
on all machines

Compute split planes and boid migration and sharing this step is per-
formed top down. The root node computes a new split plane based on
its bounding region information, and tests the boids in all of its children
against this plane. Once this is complete, the children of that node per-
form the same process recursively. If sharing or migration of boids is
detected, the boids must be inserted into the new region. This region
may of course be composed of subregions, so the process is again recur-
sive, and boids are tested against split planes until the correct leaf node
is identified.

The result then depends on the type of node the boids in question inter-
act with. If the node is local to the current machine (i.e. the boids are
moving from a local region to another local region), then the boids are
transfered directly. If the node is a remote node (i.e. the boids are inter-
acting with the local root of a different machine) then information about
the boids must be buffered for transmission to the remote machine, and
in the case of migration, the boids are marked as having migrated, but
are not yet removed from their previous region

Synchronise migration and sharing in this step, the information on boids
which have migrated, or which must be shared is transmitted between
machines and cached. The details of this operation will be discussed
under communication costs

Rendering all boids are rendered using their current state information

Apply migration and sharing the boids which have been received as hav-
ing migrated or been shared from remote machines are inserted into the
local trees on each machine

Remove migrated boids boids which have been marked as having mi-
grated to a remote machine are removed from their previous machine

28

3.7 Reducing Communications Costs

3.7.1 Message Sizes and Efficiency

In a realtime situation such as this, latency is critical, therefore the costs of
message passing should be reduced as far as possible. The first consideration
is the size of the messages involved, and for our application this is quite simple
to optimise. The performance measurements for the MPICH implementation
of MPI[8] indicate that it is considerably more efficient to pass a small number
of large messages rather than many smaller ones. For example, on the systems
that were used for the performance study8, sending a 200 byte message took
approximately 1650µs, while sending a 400 byte message took approximately
1750µs, clearly better than the cost of two 200 byte messages.

This means that when transmitting information on migrated or shared
boids between machines, it is preferable to pack all the information for a
point to point transfer into a single buffer and send it as one message, as
this will give a considerable speed gain over sending a single message for
each such boid. Therefore, every node maintains an ingoing and an outgoing
communication buffer for every other node, and during every frame of the
simulation, when it is determined that a boid need be sent to a remote node
the pertinent information (position,velocity) of the boid is packed into the
appropriate buffer, to be sent during the synchronisation phase.

3.7.2 Point-to-point communication

This synchronisation phase (migration and sharing) requires every machine
to send to every other machine a (possibly empty)9 buffer. Collective commu-
nication operations would be cumbersome here, since machine A may want
to send different data to machine B than it does to machine C, and the data
is stored in separate buffers.

Clearly in this situation the total amount of message passing will be pro-
portional to the square of the number of machines in the cluster. Ideally,
if at all times during this phase, every machine were sending or receiving a
message, then the total number of message passing steps required would be

8Two Sun SPARCStations connected by Ethernet, a situation comparable to ours
9Buffers must be sent even when empty, since communication is performed synchronously and otherwise

the remote machine would stall on a blocking receive

29

7

6

5

4

0

3

2

1

Figure 3.5: Machines of a cluster with their MPI IDs, viewed in a circular arrangement.

linear in the number of machines. A simple algorithm was devised to achieve
this, the central concept is that of distance of message passing. To picture
this, consider n machines M0 . . .Mn−1 arranged consecutively according to
their MPI ranks in a circle. The distance between machines Ma and Ma+1 is
1, the distance between machines Ma and Ma+2 is 2 etc. Note that Mn−1 is
considered adjacent to M0.

FOR all machines DO

1. rank ← the rank of this machine

2. size ← the total number of machines

3. distance ← 1

4. maxDistance ← size ÷2

5. WHILE distance ≤ maxDistance DO

6. nextNeighbour ← (rank + distance) % size

7. previousNeighbour ← (rank - distance + size) % size

8. IF (rank % (distance ×2)) < distance THEN

30

9. Send/Receive data with nextNeighbour

10. IF nextNeighbour 6= previousNeighbour THEN

11. Send/Receive data with previousNeighbour

12. ENDIF

13. ELSE

14. Send/Receive data with previousNeighbour

15. IF nextNeighbour 6= previousNeighbour THEN

16. Send/Receive data with nextNeighbour

17. ENDIF

18. ENDIF

19. distance ← distance + 1

20. ENDWHILE

END

The essence of this process is that all nodes at a distance of 1 from one
another exchange data, followed by those at distance 2 etc. until all nodes
have had a chance to exchange data. The data transfers are implemented
with the MPI Sendrecv operation, and are synchronous, therefore we ensure
that the order in which nodes communicate with their neighbours is defined
using an alternating pattern, the period of which grows with the distance of
the transfers.

3.8 Time complexity

Before any performance evaluation is carried out, it is useful to estimate
the time complexity of this algorithm when compared to the O(n2) serial
solution. The basic step of computing boid positions is still O(n2), however
this will involve now only the smaller number boids in each region, plus a
small number of shared boids from neighbouring regions. If the total number
of boids is n, and there are r regions then the time for this computation will

31

Distance = 2

0

7

6

5

0

1

2

3

4

5

6

7 Distance = 23

7

6

5

4

3

2

1

0

Distance = 1

4

2

1

0

1

2

3

4

5

6

7
Distance = 1

Figure 3.6: 2 distance steps in the point-to-point communication process. The topmost
diagrams show the two stages for nodes at a distance 1 apart, the lower diagrams show the
sequence for nodes at distance 2.

32

be O((nr)2). The time to update the bounding region information is O(r) and
the time to compute the interactions of boids with other regions is O(n log r).
Since the number of regions, r, is proportional to the number of machines
(m), the total complexity is O((nm)2 +m+ n logm).

This is not a realistic performance measure, since it ignores the costs of
message passing. In section 6 we present performance measurements and an
an evaluation of the performance of the parallel solution.

3.9 Simplification and Approximation

If instead of sharing information on individual boids between adjacent re-
gions, we distribute only the averages of the properties of those boids in each
region amongst machines, then we can obtain a considerable reduction in
communication and computational costs. Much of this information is shared
already to perform dynamic domain decomposition.

To use this approximation, every boid is influenced by those in its own
region, and by the approximate representation of other nearby regions. The
effect of the averages of other regions is scaled appropriately to reflect the
number of boids in each region, to closely model the net effect of all boids
in those regions. To increase the accuracy of this method we can subdivide
regions further than the minimum amount given by the number of machines
in the cluster. As shown in section 3.5, it is possible to produce a tree and
distribution for any number of machines such that every machine manages
1 or 2 leaf node regions. Since any region can be divided into two children,
the regions belonging to any machine can be subdivided into any power of 2
number of subregions.

There are some similarities between this approach and the Barnes-Hut
algorithm mentioned earlier, specifically the use of a simplified representation
for the particles in distant regions. The Barnes-Hut method, however, uses
a monopole acceptance criteria to determine whether the approximation is
satisfactory for a particular region, and if it is not, expands the region and
examines its subregions, or individual particles. The monopole acceptance
criteria compares the ratio of the dimensions of the region to the distance of
the particle from the centre of mass of the region.

This approach is unsuitable for our situation since expanding a remote

33

region and examining the particles inside would require a request-response
message passing transaction, and the response would typically be quite large,
so the efficiency of the solution would be poor.10

10The Barnes-Hut method is effective on large multiprocessor systems, for example an nCUBE

34

Chapter 4

Physically Based Systems in Parallel

As an alternative to behavioural systems, we present here a discussion of
particle systems based solely on physical laws. These particles do not interact
except when they come into very close proximity of one another, where they
may combine to produce particles of a different kind.[19] This means that
the motion of a particle is unaffected by those around it, but that these
neighbouring particles can potentially react with it, annihilating the original
particles and producing particles of a different type.

To describe such a system we use the concept of several separate particle
sources within a common particle system. Within each particle source, the
particles share common appearance and behaviour, which is also subject to
random variation. A set of rules is provided to the system, which govern
which particle sources may interact, and what the result will be.

4.1 Stochastic Modelling of Interactions

A naive implementation of the arrangement just described would suffer from
the same O(n2) performance problem as the behavioural systems, however
our aim is to avoid this if possible. A possible alternative to doing distance
calculations between every pair of particles is to model interactions stochasti-
cally — rather than considering interactions between individual particles, to
operate on probabilities. Thus if there are A particles of type α and B parti-
cles of type β, and they can combine in a 1:1 ratio to produce particles of type
γ, then assuming they are all within a region of space such that they may all
interact, the expected number of particles of γ produced can be determined
based on the probability of the above combination event occurring.

35

Figure 4.1: Two types of particles sorted into regular sized static buckets

4.2 Bucket-Sorted Regions

The advantage of this approach is that it once again allows us to subdi-
vide space to reduce the scale of the problem. Here we will take a different
approach to spatial subdivision, and divide space regularly into equal size
buckets. Each bucket keeps track of the number of particles of every type
that it contains in the current state of the system, and uses this information
to derive the expected values for the next state.

Each particle in the system maintains a record of its current bucket, and
when its position changes it moves into a new bucket, the relevant particle
counts for these buckets must be modified to reflect the change, and similarly
for the birth and death of particles. This is more efficient than recalculating
the numbers of particles in each bucket at the end of every frame. After a
new state is computed for the system, particles will be created or destroyed
probabilistically. If, for example in bucket b there are currently 10 particles
of type α and none of type β, and the next state counts dictate there should
be 5 α particles and 5 β particles, the system will create 5 new β particles
at random positions within the bucket, and will then randomly destroy α

particles with probability 0.5.1

1Note that the probabilistic nature of this operation means that the actual number of α particles which
die may not be 5 every time, but on average the expected number will be destroyed

36

1,1

1,0

1,0

0,1

2,0

1,0

0,1

1,0

0,2 1,1

1,1 0,1

1,33,0

0,1 1,0

0,10,0 0,0 0,0

0,0

0,00,0

0,0

0,1

Figure 4.2: The particle counts of the buckets in figure 4.1, given as ordered pairs A,B where
A = Hollow Particles and B = Filled Particles

4.2.1 Performance Tradeoff

The running time of this algorithm is strongly determined by the number of
buckets in the system. If there are 128 buckets in every dimension, then there
will be 1283 = 2097152 in total, and the time complexity is proportional to
this figure. If this exceeds the total number of particles, the speed gain from
modelling the system this way will be very poor. The other extreme, a small
number of buckets, will be very efficient but the visual result will be highly
unconvincing. Therefore there is a tradeoff between speed and the visual
result, and the bucket count can be adjusted to attain a desired framerate.

4.3 Describing Interactions

We use a simple method to describe the particle sources and possible inter-
actions within a system. Each source is given a name, and a type which will
be taken from an (expandable) set of different sorts of particle behaviour and
appearance. The rules used to describe interactions are restricted to being
ternary; two particle sources interact to produce a third, in a defined ratio.
An example of such a rule is 1[green] + 1[red] = 2[blue], the meaning is
obvious — one particle from the source named green interacts with one from
the source named red to produce 2 particles of the blue source. Complex
behaviour within a system can be obtained by specifying multiple such rules.

37

4.3.1 Dealing with Non-Determinism

Non determinism could arise in this system if two rules affecting the same
particle sources are both applicable to the state of a bucket at some timestep.
To make this clearer, imagine three particle sources, A, B and C, and two
interaction rules, 1[A] + 1[B] = 1[D] and 1[A] + 1[C] = 1[E]. Any
particle of type A could potentially react with one of type B or type C, so
it is unclear what proportion of particles should participate in each reaction.

To address this issue, the approach of using Linear Programming[5] was ex-
amined, but quickly discounted, for the reason that an integer solution would
be required, and the calculation of such a solution using Integer Program-
ming is computationally expensive, and would detract from the effectiveness
of this method of computing particle interactions.2

We use a simple approach to divide particle counts among different inter-
action rules, which will be seen to be advantageous when a parallel solution
is considered. When updating then next state of a particular bucket, the set
of rules which could possibly be applied (based on the presence of particles)
is computed, and particle counts are divided evenly among those rules which
affect them and can be applied at this timestep.

4.4 Implementation in Parallel

In the previous consideration of a parallel solution to a behavioural system, it
was decided to divide the domain of the system among the various machines.
Here we will use a different approach, and will divide the particle sources
and rules among the machines, and give each machine a representation of
the entire domain in terms of the particle counts in the buckets. The aim
of this is to minimise the amount of message passing by exchanging only the
summary information on total particle counts, and not the exact positions of
the particles themselves. Every machine will then manage a set of particle
sources and any rules which can create one of these sources. Since these
rules may require information on particle sources on remote machines, this
information will need to be exchanged between machines.

2Additionally, whilst the constraints in this system are simple to derive, it is not obvious which quantities
should be minimised.

38

4.4.1 Synchronisation

A summary of the steps involved on each timestep of the system follows:

Synchronise Particle Counts Machines exchange information on particle
counts per bucket

Update Bucket States Every machine applies the rules it manages to ev-
ery bucket to compute the next state for the system

Remove Dead Particles Particles are destroyed probabilistically

Generate New Particles New particles are generated stochastically

Update Particle States The state of every particle source (postions and
motion of particles) is updated by the machine managing it

4.5 Issue — Volume of Message Passing

In a similar way to the computation time for the system state, the volume of
message passing in this system will increase rapidly with the number of buck-
ets in every dimension, and with the number of types of particle sources being
synchronised, for this reason they should be minimised as far as possible.

4.5.1 Optimising Distribution of Particle Sources

The number of particle sources whose counts are being exchanged among
machines will have a large impact on communication time. If there are 4096
buckets, then each additional particle source will increase the number of data
items to be transmitted by 4096.

It is not necessary that the particle counts for all sources be distributed,
since some sources may not interact with any outside of their local machine,
and it is conceivable that there may even be no such sources, making message
passing unnecessary. This allows us to limit the number of sources which are
“shared” and obtain more efficient communication.

Unfortunately, obtaining a distribution of particle sources and rules among
the machines in a cluster that both gives a good load balance and minimises
communication is not straightforward. This problem has many solutions if
there are more than a trivial number of particle sources and machines, and

39

finding the optimum distribution might at worst require a search over the
entire solution set.

For the purposes of this project, an algorithm was devised that chooses this
distribution in a deterministic way, in polynomial time, although it may not
produce an optimal solution. To begin with, a dependency tree is constructed,
which describes the interactions between particle sources in terms of their
dependencies on one another. If a rule 1[A] + 1[B] = 1[C] exists, then C is
dependent on A and B, which may be themselves dependent on other sources,
leading to a unconnected directed graph structure of all dependencies. We
impose the further constraint that each node must have out-degree ≤ 2 (i.e.
each source may have only 2 direct dependencies), and that the graph be
acyclic. If a system is required that would produce a graph violating one of
these constraints, the graph can be made conformant by duplication of one
or more particle sources to break the cycle or divide the number of direct
dependencies of a particular node among two or more sources with identical
behaviour.

The algorithm to divide this tree among the machines works by attempting
to isolate subgraphs which have few dependencies on nodes in the rest of the
graph, and assigning such a subgraph to a single machine. Load balancing
is achieved by limiting the size of these subgraphs to ensure that all nodes
get an approximately equal number of particle sources.3 Each node in the
tree contains a record of its total number of dependencies (nodes it depends
on), and outside dependants (nodes which depend on it which are currently
not allocated to the machine in question). The algorithm to allocate to a
machine a subgraph of a particular size proceeds as follows:

1. Choose from the tree an unallocated node with the largest number of
dependencies, and allocate it to the machine

2. Recursively decrease the number of outside dependent nodes count for
all children of this node (since it is now allocated to this machine)

3. Add any unallocated immediate children of this node to a set of descen-
dants for the root of this subgraph

4. If the descendant set is empty or the size of the subgraph equals the one
specified, go to step 7

3This assumes that management of all particle sources involves the same computational cost

40

� �
� �
� �
� �

� � �
� � �

� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
	 	
	 	

B

C

F G

D

E

A

H I J

Figure 4.3: A dependency tree for 10 particle sources, divided in an optimal fashion between
two machines; arrows show dependencies and the dotted arrow shows dependencies that will
require passing of information between machines.

5. Choose from the descendant set an unallocated node with the least num-
ber of dependent nodes and allocate it to the machine

6. Go to step 2

7. If the size of the subgraph is not yet large enough go to step 1, otherwise
the algorithm terminates

41

� �� �
� �� �

� �� �
� �� �� �� �

� �� �� �� �
� �� � � � �� � �

	 		 	

B

C

F G

D

E

A

H I J

� � � �� � � � � � � �

� � � �

� �
� �� �� �

� �� �� �� �

� �
� �� �� �

� �� �� �� �

� � �
� � �� � �� � �

� � �� � �� � �� � �

Figure 4.4: A non-optimal division of the tree in figure 4.3. Note that it only differs in
the assignment of two particle sources, but there are now 4 dependencies that will need
synchronisation between machines.

42

Chapter 5

Distributed Rendering

Here we present a concise overview of distributed rendering techniques, with
particular reference to how they are implemented in Chromium.

5.1 Conceptual Overview

A description of the arrangement of a distributed rendering cluster was given
in section 1, which consisted of application nodes submitting rendering com-
mands to server nodes which perform the rendering work. In a situation with
multiple server nodes, a mechanism for distributing the rendering workload
over the servers is required. Because the rendering servers use commercial
graphics hardware, it is not possible to modify the graphics pipeline, there-
fore any steps to achieve parallelism must occur before or after the standard
pipeline.[11] Methods which divide primitives before they enter the graphics
pipeline are known as sort-first methods, while those which combine multiple
scenes at the end of the pipeline are called sort-last methods.

5.2 Overview of Tilesort

Tilesort is a sort-first distributed rendering approach, where every server
manages a rectangular portion of the viewport, rendering any primitives or
parts thereof which project to this section of the screen. As applications sub-
mit primitives to the servers, the projected bounding boxes of these primitives
are used to determine which tile they will occupy, and accordingly, to which
rendering server they must be sent. This process is largely transparent to the
application, being managed by SPUs on the application node.

43

Image

Application

System OpenGL Library

Graphics Hardware

Figure 5.1: Standard Serial Rendering Process

The Chromium Tilesort SPU acts as a sort-first renderer by managing
tile layouts, and performing the bounding box checks to determine to which
tile primitives will project. These primitives are then sent to the servers as
with the Pack SPU. The Render SPU on the server nodes also has knowl-
edge of which tile it manages, which it uses to perform clipping and other
transformations on the primitives it receives.

In a rendering configuration with multiple monitors, or multiple projectors
(e.g. a CAVE), tilesort is a natural approach to distributing the rendering
workload.

5.3 Overview of Z-Compositing

In order to perform sort-last rendering, the images produced by a number of
renderers must be combined to create a composited image. Z-Compositing
performs this operation using the Z-Buffer, which is an array containing depth
information for every pixel in the viewport.1 When multiple images are com-
posited, the Z-Buffer information is used to select the pixel to appear in a
location to be the one closest to the viewer.

To create a sort-last rendering configuration in Chromium, every render
server contains the Readback SPU. This SPU renders the primitives it re-

1Alternatively, Alpha channel (translucency) values may be used to composite images

44

System OpenGL Library

Chromium Server

Render SPU

Graphics Hardware

Tiled Images

Chromium Application Stub

Application

Tilesort SPU

System OpenGL Library

Chromium Server

Render SPU

Graphics Hardware

Chromium Application Stub

Application

Tilesort SPU

Figure 5.2: Sort-First (Tilesort) Rendering Process

45

ceives, and then passes colour and depth buffer information to the next SPU
in the chain, which for a typical sort-last situation will be the pack SPU, to
send the image to another render server, using the Render SPU to composite
the images it receives.

5.4 Comparison

These approaches to distributed rendering differ considerably in terms of their
performance and their suitability for different classes of rendering tasks. A
major strength of Tilesort is that it can be used in almost any situation,
including those with only a single application. Z-Compositing requires mul-
tiple input images, which suggests that there must be several application
nodes running in parallel and submitting rendering commands to multiple
rendering servers. Essentially, the process of dividing the viewport into
tiles, and distributing primitives accordingly provides parallelism, while Z-
Compositing depends on the application distributing the rendering work over
several servers.

Z-Compositing does however allow the output of two different applications
to be combined into a single output image, which may be more efficient than
sorting the output of both into tiles for rendering. The relative performance of
these techniques will be dependent on a variety of factors, mostly dependent
on the nature of the application. If the majority of primitives rendered occupy
several tiles, then time will be wasted on bounding box checks for primitives
which will be submitted to most or all servers anyway. This will also result
in a large communication overhead. The available hardware also needs to
be taken into consideration, as it was discovered that in a situation with no
hardware support for Z-Compositing (such as ours), the process of combining
images in a sort-last setup is quite costly, and tilesort performs considerably
better.

Since particle systems (typically) consist of a large number of very simple
primitives, Tilesort is effective, since most can quickly be assigned a particular
tile, and there are few primitives occupying multiple tiles, minimising the
clipping required. In section 6 we present a performance evaluation of particle
systems under various rendering configurations.

46

Pack SPU

Image

Render SPU

Graphics Hardware

System OpenGL Library

Chromium Server

Chromium Application Stub

Graphics Hardware

Chromium Server

System OpenGL Library

Pack SPU

Chromium Application Stub

Application

Readback SPU

Application

Pack SPU

Readback SPU

Graphics Hardware

Chromium Server

System OpenGL Library

Pack SPU

Figure 5.3: Sort-Last (Z-Compositing) rendering process

47

5.5 Dynamic Balancing of Tilesort

The efficiency of tilesort depends on the even distribution of graphics primi-
tives between tiles. If this distribution is highly uneven, then the speed of the
system will be limited by the tile with the most work and the cost of deter-
mining to which tile to send every primitive will make a tilesorted renderer
perform poorly.

The distribution of the graphics workload between render servers is gov-
erned therefore by the screen-space projection of objects in the scene which
may be difficult to predict and may change over time. To tackle this issue,
Chromium allows the run-time reconfiguration of the tilesort SPU based on
commands from and application, and provides feedback to the application
regarding the load distribution.

A simple load balancing situation involves only 2 servers, each with one
tile. An application requests information on the load balance, and this is
provided in the form of the numbers of vertices submitted for rendering to
each server. The application can examine this and resize tiles accordingly.

There is a computational cost associated with this dynamic rebalance, so
it is preferable to perform it as seldom as possible. In situations where the
scene is relatively stable, it may suffice to perform load balance for the first
few frames, and then stop updating tile sizes once a stable situation has been
reached. In the opposite case, where the scene moves often and randomly (e.g.
an interactive simulation) it may not be effective to attempt this load balance,
since it would need to be performed relatively often (otherwise scene changes
could negate the benefits of applying it) and this would give a noticeable
performance penalty.

Furthermore, Chromium can use a special optimised bucketing algorithm
when the tiles are all the same size, so a static even arrangement may give
the best results in certain cases. If the the cluster is being used to drive a
CAVE or tiled display wall it may not be possible to alter the tile sizes so a
form of regular grid arrangement will give optimal performance.

48

Chapter 6

Evaluation

6.1 Boids Performance Measurement

Figure 6.1 shows the performance of a system of boids executed on one, two
or three machines in a cluster.1 The cost to produce a frame in the one
machine case can be seen to increase exponentially with the number of boids,
illustrating the O(n2) nature of the basic algorithm. By contrast the graphs
for two and three machines show the performance gain that a combination of
domain subdivision, approximation and parallelisation produce, and in fact
give a curve that is approximately linear for the range of values tested. The
true time complexity is in fact O((nm)2 +m+n logm) as given in section 3.9,
so the linear appearance of the curve is due to the relatively small values of
n and m. These performance measurements indicate however, that the costs
incurred by message passing do not degrade the efficiency of the algorithm.
Moreover, a visual examination of the status monitor for the Ethernet hub
connecting the machines showed that the utilization of the transport medium
rarely exceeded 20% during the computation, so further expansion of the
cluster could be explored.

The performance of the two and three machine arrangements is very sim-
ilar, this is a consequence of the relatively small numbers of boids present.
The third machine presents additional processing power that is not really be-
ing utilized and is being counteracted by the additional communication costs
of having more machines in an Ethernet cluster (collisions etc.). If the num-
ber of boids were increased further it is likely that a speed gain from using

1Note that every machine acts as both an application and a server, so essentially in the three machine
setup for example, there are three application processes and three server processes, but only three processors

49

25 50 75 100

1 Application, 1 Server

2 Applications, 2 Servers

3 Applications, 3 Servers

number of boids

ms per frame

400

300

200

100

225200175150125

Figure 6.1: The performance of the boids implementation on various cluster sizes

50

more machines would be observed. The reason that this was not done is that
225 boids is a number approaching the limits of what the (non-accelerated)
hardware can reasonably take. Using a greater number would make the pro-
cess distictly graphics limited, and this would dominate all other factors is
performance measurements. Therefore further analysis of this method would
be desirable on larger clusters with more powerful graphics processing. The
amount of inter-machine communication is quite small, and not greatly af-
fected by the number of boids present, so the algorithm is expected to scale
quite well to larger clusters of 8-16 nodes and to much larger flock sizes.

6.2 Interacting Systems Performance Measurement

The performance of an interacting set of particle sources is given in figure
6.2, tested for one and two machine configurations. It is clear that the one
machine case outperforms that with two, and this is due to the problem being
extremely graphics limited. The graphics hardware becomes overloaded long
before the computation time would become significant. A problem with 3000
particles without hardware acceleration places very large demands on the
software rendering drivers and hence the CPU, however the computational
cost to manage such a system is neglibible, since there are no per-particle
interactions being performed. The parellel case has worse performance be-
cause the overheads of synchonisation are being imposed without giving any
real performance gain, as the number of particles is so small. This area needs
further work, again with superior graphics hardware to evalute whether the
parallel situation is effective in practise.

We can see however that the graph is nearly linear, a consequence of the
fact that the O(n2) nature of the problem has been eliminated, and the bucket
sorting approach should be effective on serial graphics systems also.

6.3 Future Work — SCI Shared Memory Systems

The Scalable Coherent Interface (SCI) Standard[10] is a high-performance
interconnect technology for compute clusters, and the potential for its use in a
rendering cluster was examined as part of this project. SCI provides hardware
shared memory across a cluster and manages issues such as error detection

51

3 4 5 6 7

1600

1400

1200

1000

800

600

400

200

1 2 8

System Complexity (x 1850 particles)

ms per frame

2 Applications, 2 Servers

1 Application, 1 Server

Figure 6.2: The performance of the implementation of stochastically modelled interacting
systems

52

at the hardware level. For an overview of communication on an SCI cluster,
refer to Appendix B. The SCI hardware discussed here is manufactured by
Dolphin Interconnect Solutions Inc.2

6.3.1 SCI APIs and Abstractions

Several levels of driver support allow programmers to interact with SCI hard-
ware in a manner appropriate to the needs of their application. The lowest
level is the Interconnect Resource Manager (IRM), which provides basic ac-
cess to SCI hardware functionality, including remote memory access, inter-
rupts and Direct Memory Access (DMA) transfers. The Software Infrastruc-
ture for SCI (SISCI) API[18] provides higher level access to SCI functionality,
including access to remote memory segments, DMA queues etc. through SCI
resource descriptors which act as software handles to hardware functional-
ity. The Shared Memory Interface (SMI) library[20], and the MP-MPICH
library[21] provide further abstractions to the SCI interconnect. MP-MPICH
is an implementation of the MPI standard, and SMI is a shared memory
library with a similar interface. Both are designed to allow developers to
design parallel applications using SCI without worrying about the details of
SCI hardware. MP-MPICH operates as a wrapper to SMI.

6.3.2 Implementing the Chromium Networking Model on SCI

Chromium contains an abstract networking model which has currently been
implemented on several types of hardware, including TCP/IP over Ethernet
and GM Myrinet[14]. The networking abstraction requires that a network
implementation provide basic common functionality, including:

• An initialisation routine

• A routine to create a connection

• A send routine

• A receive routine

This could be implemented using an MPI library, in our case MP-MPICH, as
it provides all the necessary functionality for the send and receive semantics

2http://www.dolphinics.com/

53

Kernel Level

User Level

SCI Hardware

IRM

SISCI

SMI

MP−MPICH

A
p
p

licatio
n

s

Figure 6.3: Different levels of SCI drivers and APIs

54

required by Chromium. The issues of initialisation and creating connections
would need to be considered carefully, as MPI does not contain the concept of
a connection as such, and requires special initialisation involving knowledge
of the total number of nodes in the system.

Chromium requires that communication with the mothership occurs over
TCP/IP, regardless of the network protocol used between application and
server nodes. This would allow nodes using MPI to query the mothership
regarding the rendering configuration (using TCP/IP) before initialising the
MPI library. A “connection” under MPI will simply dispatch messages to
the appropriate node, there is no need for any handshaking.

This does present a difficulty since the target of a connection is given as a
URL, but in order to use MPI an MPI node ID is required as the destination
of any message. This is complicated by the fact that MPI node IDs are
assigned at initialisation, and may not be known in advance. This could
possibly be solved by having all nodes exchange information regarding their
URL and their MPI node ID in a collective communication operation as part
of the initialisation process. This information could be cached on each node,
and referred to whenever the node ID corresponding to a URL is required.

6.3.3 Distributed Textures

Chromium contains a Distributed Texture SPU, which allows textures to be
placed as files on server nodes, so that they may be accessed locally. This
avoids the cost of passing large texture data files across a cluster. The fast
hardware supported shared memory provided by SCI could provide an alter-
native means of distributing textures.

Placing textures in shared memory segments available to both application
and client nodes would support distribution of textures without the need
to explicitly place them on servers. Typically texture data is placed in the
local video memory of an accelerator card for fast access during rendering,
however it remains in system memory also. This is because the amount of
video memory is limited and textures must be swapped in and out as they are
needed. AGP technology[4] greatly increases the bandwidth between graphics
hardware and the CPU or main system memory, by providing a direct channel
between the graphics card and the system bus. This allows textures to be
read directly from main memory, with performance similar to if they were

55

stored locally on the video card, and the Graphics Address Remapping Table
(GART) part of the AGP chipset fuctions as a virtual memory management
unit for the video hardware, making the complete set of textures in local
video memory and system memory appear as a single contiguous block, and
allowing portions of textures to be paged into local video memory using DMA
as they are requested.

The overall effect of this is similar to a multilevel cache, and extends nat-
urally to allow the textures which appear to be in main memory to be stored
in remote SCI memory segments. Caching of regularly accessed textures in
local memory will greatly improve performance and will be especially effec-
tive since textures tend to be static i.e. don’t change often during rendering.
Portions of textures will be accessed gradually as they are needed, avoiding
the need to copy the entire texture as a single chunk, and many servers may
never need to refer to certain textures, saving the time which would otherwise
be wasted in copying these to the server. If textures are stored as mip-maps
(multiple levels of detail for different distances) then distant objects will only
need the lowest level of detail, and only a small portion of the texture data
will be accessed. As the objects come closer, the other levels of detail will be
transferred as needed.

To implement this would require slight modifications to Chromium to
allow server nodes to connect to the SCI memory segments containing tex-
ture data, and handle mapping these into local address space. If caching
were implemented, then this would need to be implemented in software also.
Chromium already provides OpenGL extensions to allow access to specific
functionality, so this method would be preferable for adding an interface to
distributed shared texture capability.

6.4 Summary

To conclude, the potential to enhace the scope and performance of particle
systems through distributed rendering and computation has been examined.
Even with a small cluster it is possible to obtain a noticeable speed gain, and
although approximations to the computations were used to increase efficiency,
the visual appearance of the simulation is not significantly disturbed.

Scalable Rendering is likely to become considerably more important in

56

� � � � �� � � � �

�
�
�
�
�
�

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

SCI B−Link

Chipset

Memory

PCI Bus

S
C

I In
terco

n
n
ect

Main Memory

Controller

Memory

SCI PSB SCI LC

PCI Bus

Bridge

AGP

Card

Graphics

Video

CPU L2 Cache

F
ro

n
tsid

e (S
y

stem
) B

u
s

Bus

Backside

� � � � �� � � � �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

� � �� � � � � �� � �

� � �

�
�
�
�
�
�
�
�
�
�

� � �� � �

�
�
�
�
�
�
�

Figure 6.4: Overview of PCI bus, AGP port and SCI hardware

57

areas such as Virtual Reality, and its widespread accesibility to anyone with
multiple machines and an Ethernet network will give it a major advantage.
Particle Systems are generally only a part of an immersive rendering environ-
ment, which will typically also involve polygonal scenery. Rendering static
polygonal environments is quite simple to distribute, and a major challenge
instead is responding to user interaction. Future versions of Chromium will
contain a distributed event handing model for such eventualities. Very high
performance rendering will soon be available relatively cheaply to individ-
uals for the first time, opening the way for many interesting new areas in
Computer Graphics.

58

Bibliography

[1] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force Calculation Al-
gorithm. Nature, 324:446–449, 1986.

[2] Guy Blelloch and Girija Narlikar. A practical comparison of n-body
algorithms. In Parallel Algorithms, Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1997.

[3] Jörg M. Colberg and Thomas J. MacFarland. Simulating the universe.
In Forschung und wissenschaftliches Rechnen. 1998.

[4] Intel Corporation. Agp v3.0 interface specification. 2002.

[5] George B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1963.

[6] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Com-
puting Works. Morgan Kaufmann, 1994.

[7] Ananth Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel
formulations of the Barnes–Hut method for n-body simulations. Parallel
Computing, 24(5–6):797–822, 1998.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, September 1996.

[9] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division,
Argonne National Laboratory, 1996. ANL-96/6.

[10] Hermann Hellwagner and Alexander Reinefeld, editors. SCI: Scalable
Coherent Interface, Architecture and Software for High-Performance

59

Compute Clusters, volume 1734 of Lecture Notes in Computer Science.
Springer, 1999.

[11] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew
Everett, and Pat Hanrahan. Wiregl: a scalable graphics system for clus-
ters. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 129–140. ACM Press, 2001.

[12] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern,
Peter D. Kirchner, and James T. Klosowski. Chromium: a stream-
processing framework for interactive rendering on clusters. In Proceed-
ings of the 29th annual conference on Computer graphics and interactive
techniques, pages 693–702. ACM Press, 2002.

[13] Helmut Lorek and Matthew White. Parallel bird flocking simulation. In
Parallel Processing for Graphics and Scientific Visualization, 1993.

[14] Myricom. GM: A message-passing system for Myrinet networks, 2002.

[15] William T. Reeves. Particle systems — a technique for modeling a class
of fuzzy objects. ACM Transactions on Graphics (TOG), 2(2):91–108,
1983.

[16] Craig W. Reynolds. Flocks, herds and schools: A distributed behav-
ioral model. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 25–34. ACM Press, 1987.

[17] Horst D. Simon. Partitioning of unstructured problems for parallel pro-
cessing. Computing Systems in Engineering, 2:135–148, 1991.

[18] Dolphin Interconnect Solutions. SISCI API User Guide, 2001.

[19] Justin McCune (Cornell University). Interdependent particle systems.
1995.

[20] Joachim Worringen and Marcus Dormanns. SMI - Shared Memory Inter-
face: User & Reference Manual. Lehrstuhl für Betriebssysteme RWTH
Aachen, 2000.

[21] Joachim Worringen and Karsten Scholtyssik. MP-MPICH User Manual
& Technical Notes. Lehrstuhl für Betriebssysteme RWTH Aachen.

60

Appendix A — UML Diagrams

Distributed Behavioural System

61

Distributed Interdependent Physically Based System

62

Appendix B — SCI Transactions

The basic layout of an SCI cluster is a ring, or an n-dimensional torus. Nodes
in a ring layout are connected to two neighbouring nodes, whilst those in a
torus may be part of two or three rings depending on the dimensionality.

Communication occurs on an SCI network in the form of addressed pack-
ets. Every node in the cluster is assigned a node ID, which uniquely identifies
it, and can be used to determine how to route packets. Every SCI transac-
tion involves four packet transmissions: Request, Request-echo, Response,
Response-echo. To initialise a transaction, node A sends a Request packet to
node B. When the packet arrives at node B, this node immediately sends a
Request-echo to node A. When the response is ready on node B, it is sent to
node A, which acknowledges receipt of this with a Response-echo to node B.
This form of handshake is used to guarantee reliable communication.

Upon receiving a packet, a node determines whether it is the destination,
or whether to route it onward to another node, in which case it is placed in a
bypass buffer, which has a higher priority for transmission than packets sent
from this node.

The provision of shared memory by SCI means that nodes in a cluster can
map segments of memory on remote nodes into their local memory space.
A brief overview of the steps required to create, and connect to a shared
memory segment is presented here.

1. The server node (the node exporting the segment) first allocates a por-
tion of memory to be a shared segment

2. The server then maps this segment into the SCI address space

3. The segment is made available to remote nodes for connection

4. The client node (the node connecting to the segment) connects to the
remote segment using a segment identifier

63

5. The client node maps the segment from SCI address space into its local
addressable space

6. At this point the client node may access the segment as if the memory
segment were local

64

List of Figures

1.1 Basic Chromium Cluster . 7

3.1 2D View of Binary Space Partition 20
3.2 Local Root Nodes in Distributed Behavioural System 22
3.3 Unstable Distribution of Boids after Region Subdivision 25
3.4 Migration of Boids . 25
3.5 Machines in a cluster viewed as a circle 30
3.6 Point-to-Point Communication among nodes in a cluster . . . 32

4.1 Bucket Sorted Particles . 36
4.2 Bucket Particle Counts . 37
4.3 Optimal Dependency Tree Division 41
4.4 Non-Optimal Dependency Tree Division 42

5.1 Serial Rendering Process . 44
5.2 Sort-First Rendering Process 45
5.3 Sort-Last Rendering Process 47

6.1 Performance of Boids implementation 50
6.2 Performance of Interacting Particle Systems 52
6.3 SCI Drivers . 54
6.4 SCI and AGP Bus Interfaces 57

65

Index

n-Body Problem, 14

AGP, 54
Algorithmic Complexity, 14, 22, 30

Barnes-Hut Method, 18, 32
Monopole Approximation, 18, 32

Binary Space Partition, 18
Binary Tree, 18
Boids, 16

Migration, 25
Bucket Sort, 35

CAVES, 4, 43
Chromium, 4, 11

Application Node, 4, 10
Mothership, 4
Networking Model, 52
Server Node, 4, 10
SPU, 4, 42, 54
Tilesort, 42
Z-Compositing, 43

Clusters, 14
Compute Limited, 10
Compute Parallelism, 10

Dependency Tree, 39
Display Limited, 10
Distributed Rendering, 42

Sort-First, 42
Sort-Last, 42

Distributed Textures, 54

GART, 55
Graphics Limited, 10
Graphics Parallelism, 10

Interactive Rendering, 8, 12
Interface Limited, 10

Linear Programming, 37
Local Root Node, 20

MPI, 12, 52
MPICH, 12, 28

Myrinet, 52

Octree, 18
OpenGL, 11, 12, 55

Parallel Computation, 10
Load Balance, 20
Load Balancing, 14, 25, 38, 47
Loosely Coupled, 14, 18
Tightly Coupled, 14

Particle Systems, 7, 10
Behavioural Models, 8
Bird Impulses, 16
Domain Subdivision, 15
Emergent Properties, 13
Flock, 8
Flock Impulses, 8
Interacting, 8, 11, 34
Mathematics, 13

Point-to-point Communication, 28

66

Recursive Coordinate Bisection, 22

SCI, 50, 60
IRM, 52
MP-MPICH, 52
Shared Memory Segments, 54, 60
SISCI, 52
SMI, 52

Split Plane, 22
Supercomputers, 14
Synchronisation, 11, 14, 20, 26, 38

Tiled Displays, 4, 10

67

