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Abstract: Both 'distance’ and ’similarity’ measures have been pregofor the comparison of sequences and for the
comparison of trees, based on scoring mappings, and the @apeerns the equivalence or otherwise of these.
These measures are usually parameterised by an atomicadset defining label-dependent values for swaps,
deletions and insertions. We look at the question of whethaéerings induced by a 'distance’ measure, with
some cost-table, can be dualized by a 'similarity’ measwithy some other cost-table, and vice-versa. Three
kinds of orderings are considered: alignment-orderingssfixed sourceS and targefl, neighbour-orderings,
where for a fixedS, varying candidate neighbouf are ranked, and pair-orderings, where for varyfhg
and varyingTj, the pairings(S,T;) are ranked. We show that (1) alignment-orderings by distaran be
dualized by similarity, and vice-versa; (2) neigbour-ondg and pair-ordering by distance can be dualized by
similarity; (3) neighbour-ordering and pair-ordering bsngarity can sometimesot be dualized by distance.
A consequence of this is that there are categorisation ag@rchical clustering outcomes which can be
achieved via similarity but not via distance

1 TREE DISTANCE AND the problem score and distance are equivalent.
SIMILARITY (Herrbach et al., 2006)

which are not uncommon in the literature (Alves

. . . et al., 2002; Kondrak, 2003; Bose and van der Aalst,
In many pattern-recognition scenarios the data eltherzoog)’ it would be easy to gain the impression that

takes the fom? of, or can be encoded as, sequences 0§imilarity and distance (on sequences and trees) are
trees. Accordingly, there has been much work on the gy pightforwardly interchangeable notions. In sec-

definition, implementation and deployment of mea- o, 1 1 several distinct kinds of equivalence are de-
sures for the comparison of sequences and for thefined. Sections 2, 3.1 and 3.2 then show that while

comparison of trees. _ _ _ some kinds of equivalence hold, others do not.

These measures are sometimes described as 'dis- 1, begin we need to clarify what we will mean
tances’ and sometimes as 'similarities’. We are con- p, gistance’ and 'similarity’ on sequences and trees.
cerned in what follows in first distinguishing between gecayse sequences can be encoded as vertical trees it
these, and then with the question whether orderings g fices to give definitions for trees. Tai first proposed
induced by a 'distance’ measure can be dualized by 5 tree-distance measure (Tai, 1979). WheendT
a ’S|m|[ar|ty’ measure, and vice-versa. To SOMe €X- are ordered, labelled treesTai mappinga : S T is
tent this can be seen as applying the same kind of 5 yarjal, 1-to-1function from the nodes dinto the

analysis to sequence and tree comparison measurefgges off, which respectteft-to-right orderandan-
as has been applied to set and vector comparison mea

. Cestry. For the purpose of assigning a score to such
sures (Batag_el! and Bren, 1995; Omhover et al., 2005; 5 mapping it is convenient to identify three sets:
Lesot and Rifqi, 2010).

From statements such as the following M the(i,]) € a: the 'matches’ and 'swaps’
D theieSs.t.VjeT,(i,j) € a: the 'deletions’
To compare RNA structures, we need a score I thej e Ts.t.Vie S (i,j) € a: the insertions’
system, or alternatively a distance, which ’
measures the similarity (or the difference) be- Iso if (i,j) and (', ") are in the mapping then (T1)
HA

i
tween the structures. These two versions of left(i,i’) iff left(j,j’) and (T2)and(i,i’) iff and(j, j’).



ThusM justis the mapping, as a set of node pairs, and 2007) and so we omit further details of the definition
D and I just the remaining nodes &andT which via edit-scripts.
are not 'touched’ by the mapping. Lét)Y give the While the correctness of the Tai 'distance’ al-
label of a node and l&E? be a ’'cost’ table, indexed  gorithm (Zhang and Shasha, 1989) — ie. that it
by {A\} UZ, whereX is the alphabet of labels, which truly finds theminimalvalue ofA(a : S— T) given
assigns 'costs’ toW, D and I according t8: cost-tableC2~ does not require the cost-tab®®
o . . to satisfy any particular properties, some settings of
for (i,j) €M cost !sCi(!z,JV) C2 clearly make little sense. The combination of
for 1€ D cost !SCA(' ’?‘) deletion/insertion cost-entries which anegative—
forj eI costisC2(A, JY) C2(x,A) < 0,C2(A,y) < 0—with swap/match cost en-
Wherea : S— T is any mapping fronsto T, define tries which arenot negativegives the counter-intuitive
A(a:S—T) by effect that a supertree &is 'closer’ —in the sense of
having a lower\ score — taSthanSitself*. This is a

Definition 1 (distance’ scoring of an alignment) rationale for the following non-negativity assumption

A0:S—T)=
(Z CA(iy,)jy) + Z CA(IY,\) + Z CA(A, jY) Vx,y € Z(CA(x,y) > 0,CA(x,A) > 0,C*(A,y) > 0()1)
(i,))em i€D G . . . .
which is a pretty universal assumption, and from
From this costing of alignments, a 'distance’ score on which it follows thatA(S, T) > 0, giving a minimum
tree pairs is defined by minimization: consistency with the every day notion of 'distance’. In

Definition 2 (distance’ scoring of a tree pairjThe what follows we will confine attention to 'distanca’
e s
Tree- or Tai-distanca(S, T) between two trees S and  0@sed on a table™ which satisfies at least (1).

5 al : A . .
T is theminimumvalue ofA(a : S+ T) over possible ‘When the cost-tabl€®(x,y) is constrained more
Tai-mappings from S to T, relative to a chosen cost st.rlctly than thls to s_at_lsfy all the conditions of a
table @. distance-metricthen it is well known thatA(S T)

) ) ) o o will also be a distance-metric. Whether such further
There is anillustration of the definitions in Figure 1 regtriction is desirable is moot: in so-called stochas-

tic variants (Ristad and Yianilos, 1998; Bernard et al.,

A e WithACA(Xv)\) = %A(NX) = 2008; Emms, 2010), in which the entries@} are
T, LCXxx=0Cxy) =1 interpreted as negated logs of probabilities, these ad-
A TR P Horx#y, the alignment has  gitional distance-metric assumptions are not fulfilled.
arb. bbb scoreA(a) = 3 and thisis  |n this article we shall only assume the cost-table
oo minimal for the given € satisfies the non-negativity requiremnt of (1).
Figure 1: An illustration of tree distance. Turning now to ’similarity’, rather than approach

) the problem of comparison bminimizingaccumu-
A(S,T) can be computed by the algorithm of (Zhang |ated costs assigned to an alignment, a widely fol-

and Shasha, 1989). Sequences can be encoded as Veyeq alternative, especially for sequence compari-
tical trees, and on this domain of trees the tree dis- gon nhas been tmaximizea score assigned to an

tance coincides with a well known comparison mea- alignment, with swaps/matches rewarded, and dele-
sure on sequences, the (alphabet-weighted) string editj;ns/insertions punished.
distance (Wagner and Fischer, 1974; Gusfield, 1997). | ot c© pe a ‘similarity’ table, again indexed by

We have formulated the _definitiérin terms of A} UZ, wheres is the alphabet of labels, and where
costs applied to mappings which respect tree-orderingy . s, T is any mapping fronSto T, and then let
properties. In contrast to this declarative perspective, g(q : S+ T) be defined by

there is procedural definition via the notion ofexdit-
script of atomic operations transformirfgito T in a
succession of stages. For both sequences and trees O(a:S—T) =

the mapping-based and script-based notions coincide Z Co(iY,j¥) — Z CO(iY,\) — Z CO, jY)
(Wagner and Fischer, 1974; Tai, 1979; Kuboyama, i j)jea i€D je1

Definition 3 ('similarity’ scoring of an alignment)

NI . . From this costing of alignments, a 'similarity’ score
2Note in this general setting even a pairing of two nodes 9 g y

with identical labels can in principal make a non-zero cost on tree pairs is defined by maximisation:
contribution Definition 4 ('similarity’ scoring of a tree pair) The

3The literature contains quite a number of inequivalent Tree- or Tai-similarity®(S T) between two trees S
notins, all referred to as 'tree distance’; in this articlef® -
nition 2 will be understood to define the term. 4or a subtree



and T is themaximumvalue of@(a : S— T) over 1.1 Order-equivalence Notions between

possible Tai-mappings from S to T, relative to a cho- Tai Distance and Similarity
sen cost table €

Applied to the same example as shown in Fig- Given a 'distanceA scoring of alignments, it can be
ure 1, withC®(x,A) = C®(\,x) = 0, C®(x,x) =2,  setto work to induce orderings of at least three differ-
C2(x,y) = 0 forx #y, the shown alignment has score ent kinds entities
O(a) = 9, which is maximal for the give@®.

O(S,T) can be computed via a simple modifica- el : .
tion of the algorithm of (Zhang and Shasha, 1989). rsa”k the possiblalignmentsa - Si— T by A(a -

. . X . L —T)
Again on the domain of vertical trees this coincides
with a well known approach to sequence comparison, Neighbour ordering Given fixedS, and varying can-
the (alphabet-weighted) string similarity (Smith and didate neighbours;, rank theneighbours il by
Waterman, 1981; Gusfield, 1997). A(STi) —typically used in k-NN classification.

As with A, while the correctness of the algorithm  pajr ordering Given varyingS, and varyingj, rank
for © is not dependent on any assumptions about the pairings (S, Tj) by A(S,T;) — typically used
the cost-tableC®, some settings o€® make little in hierarchical clustering.
sense. Given the formulation in (3), whishbtracts . L , , .
the contribution from deletions and insertions, a set- Similarly a 'similarity’ © scoring of alignments in-
ting where deletion/insertion cost entries are negative Uces orderings of the above kinds of entities. Com-
— CO(x,A) < 0, CO(A,x) < 0 — gives the counter- Parng these orderings motivates the following defini-
intuitive effect that a supertree &would be more 10N
'similar’ — in the sense of highe® score — taSthan Definition 5 (A-,N- and P-dual) When the alignment
Sitself. This gives a rationale for the nearly univer- orderings induced by a choice of°*(lised in accor-
sal assumption of non-negative deletion/insertions en-dance with (1)) and by a choice®(used in accor-
tries inC®: dance with (3)) are theeverseof each other, we will
say that @ is a A-dual of C*. Similarly we will say
we have arN-dual when neighbour ordering is re-
versed, and &-dual where pair-ordering is reversed.

Alignment ordering Given fixed S, and fixed T,

WX,y € Z(CO(x,A) >0,C°(\,y) >0)  (2)

In what follows we will confine attention always For example, the following are A-duals in this
to 'similarity’ © based on a tabl€® satisfying (25. sense (proven in section 2):
For theC®-entries which are not deletions or inser- Example 1
tions, it is quite common in biological sequence com- CA(xA) =1 CO(x,\) =0

. " ) : (
parison to have bo_th positive and negative entries. In Awith! CB(xx)=0 Owith{ CO(xx)=2
contrast to the notion of a distance-metric, the notion CAixy) = 1 COlxy) = 1
of a set of axioms for a similarit® is less well es- Y= Y=
tablished. (Chen et al., 2009) have recently made aExample 2

proposal concerning this (see section 5). _ CA(x,A) =05 _ Co(x,A)=0
To reiterate, for the purposes of this discussion a Awith¢ CA(x,x) =0 @withq CO(x,x) =1
tree 'distance’ measure will imply a cost-takl®, sat- CA(x,y) =0.5 Co(xy) =05

isfying (1), used in accordance to definitions 1and 2 A natural question that presents itself then is
to score alignments and tree pairs. A tree 'similarity’ \yhether foreverychoice ofC2, there is a choice @°

measure measure will imply a cost-tal®, satisfy-  which is a A-dual, N-dual or P-dual, and vice-versa.
ing (2), used in accordance to definitions 3 and 4 to pjgre precisely there are the following

score alignments and tree pairs. This is sufficient to
distinguish the 'distance’ approach from the 'similar-
ity’ approach in an intuitive way without commiting  A-duality { (:i) (
to any further axioms. ) vCAICO( CB andC® are N-duals
i) VC®3CA(CA andC® are N-duals
(
(

Order-relating Conjectures
i) VCAICO(CA andC® are A-dualy
) VC®3CA(CA andC® are A-dualy

mmition 3 formulates © with dele- N—duallty{

[
tion/insertion contributions subtracted, as is often done { i) VCA3CO(CA andC® are P-duals

(Smith and Waterman, 1981; Stojmirovic and Yu, 2009), P-duality { .. OaA; A o
an alternative formulation has these treated additively ii) VC=3CH(C" andC™ are P-duals
(Gusfield, 1997). With the additive formulation, the )

same consideration suggests making deletion/insertions ~ Arguably these notions go to the heart of the

non-positive question whether there is really anything that can

(
(
(
(
(



be accomplished using an alignment 'distance’ score, Whether defining € from C*by (i), or C* from C°by
which cannot by accomplised via an alignment 'sim- (i), it is straightforward to show

ilarity’ score, and vice-versa. For example, if it

turns out that all these order conjectures hold, then A0) +0(a) = 8/2 x (2|M| + |D| + 1)

any alignment outcome, any categorisation outcome

via k-NN and any hierarchical clustering outcome, Butthen (3) follows since

achieved by a particular distance can be replicated by

a similarity, and vice-versa, making the choice merely M|+ [D[+[1]= 3 (D+ H (1)
a matter of personal taste. On the other hand, if these ses teT
duality conjectures do not hold, then there is substan- U

tive difference, with the outcomes achievable by dis- Theorem 2. A-duality (i) and (ii) hold
tances and S|m|Iar|t|e§ pemg d|st|nc_t. Proof of Theorem 2

For a number of similarity and distance measures A-duality (): define © according to (i) in
based on sets and vectors, notions analogous to N emma 1. Given the constant summation property of

dual and P-dual have been considered (Batagelj and(3) ; :
) ) L , the ordering on alignments lly must be the re-
Bren, 1995; Omhover et al., 2005; Lesot and Rifqi, verse of the ordering bg.

2010)_, motlv_ated similarly by the_ question whether A-duality (ii): similarly define @ according to (ii)
anything which can be accomplished with one or in Lemma 1 ]
other such measure can be replicated by another such

measure. It is for example shown there that a particu- Example 1 revisited The (® of Example 1 can be
lar Dice measure will rank retrieval results inevitably seen as derived from theé®@vith & = 2. Table below
the same as a particular Jaccard measure. In the casehows outcomes for other choiceof

of alignment-based measures on sequences and trees, Ct C®°(B=2) CP®B=1) CP°(©B=0)
as far as we are aware, these notions seem not havex,A) 1 0 0.5 1
been systematically considered and the following sec-(x,x) 0 2 1 0
tions endeavour to fill that gap. xy) 1 1 0 -1

As a corollary one can obtain the following con-
cerning how one similarity table can be 'shifted’ to an

2 ALIGNMENT-DUALITY equivalent one, and similarly for distance tables.

) ) o Corollary 3 (‘shifting’). for any C°1, an alignment
The following lemma will be useful for considering equivalent &, can be derived by the conversion (a)

the A-duality conjectures above: below, and for any €1, an alignment equivalent?3
Lemma 1. For any G, and some choic& such that can be derived by the conversion (b)
0 < /2 < min(CA(-,A),CA(A,-)) let C° be defined CO,(x,A) =CP1(X,A) —K/2
according to (i) below. For any €, and choiced such (@< CO%(Ay) =C®1(Ay)—k/2
that0 < & > maxC®(-,-)) let C* be defined according CO,(x,y) =CP1(X,y) +K
to (i) below. CAZ(X \) = CAl(X A)+K/2
CO(x,\) = CA(x,\) — 8/2 AC iy vy (AL (%
(i) C@E)\,yg = CAE)\,yg —6?2 ) { gazgi’y;:gAl(j;(y) tK/2
CO(xy) =5 CA(xY) 2=
CB(x,\) =CO(x,\) +5/2 Proof of Coro_llorgry 3 (a)is the qomposition of (ii),
(i) { CBA\y)=CO(,y)+5/2 for ;omeBl, with (|)_,_for s_ome52, givingk = 6_2_— 01.
CA(x,y) = 5—CO(x.y) (b) is the composition (i), for som®, with (ii), for
somedy, givingk = & — &; O

then in either case, forany: S— T

Example 1 revisited againThe three A-dualizing

A0) +0(a) =8/2 x (25(1) + Z(l)) (3) similarities C?(8 = 2), C®(8 = 1) and C°(5 = 0) de-
sE te rived from the unit-cost distance table using varying

d in the (i) conversion of Lemma 1 can be seen as re-
Proof of Lemma 1 If defining C® from Cby (i), by lated to each other by the (a) 'shifting’ conversion of
the choice o we have the non-negativity ofCx, \) Lemma 3, witlkk = —1 each time.
and C°(\,y). If defining G from C®by (ii), by the
choice ofd, we have the non-negativity of all entries The property of alignment dualizability between dis-
in C2. tance and similarity (and vice-versa) expressed above



in Lemma 1 and Theorem 2 was essentially first

Theorem 5. P-duality (ii) does not hold, that is, there

proven for the case of sequence comparison by (Smithare C° such that there is no®€such that © and C*
and Waterman, 1981). On the basis of this perhaps itare P-duals.

is tempting to consider the case closed and treat 'dis-

tance’ and 'similarity’ as interchangeable. However,
as noted in Section 1.1, there is more than one kind
of ordering that one might wish to be sure of repli-
cating in switching between distance and similarity,
with N-duality coming to the fore in the context of
k-NN classification, and P-duality coming to the fore
in the context of hierarchical clustering. Section 3.1
considers the N-duality (i) and P-duality (i) order con-
jectures, and Section 3.2 considers the N-duality (ii)
and P-duality (ii) conjectures.

3 NEIGHBOUR AND PAIR
ORDERING

3.1 Distance to Similarity

Having seen that A-duals can always be created in
both directions, attention shifts to N-duals and P-
duals.

The case of usin® = 0 in the (i) conversion of
Lemma 1 fromC? to C® gives non-positive values
for all non-deletion, non-insertion entries@?, and
is an especially trivial case of dualizing a distance set-
ting C2, with the effect thaD(S,T) = —1x A(ST).
Because of this, this distance-to-similarity conversion
not only makes A-duals, but also N-duals and P-duals.

Theorem 4. N-duality (i) and P-duality(i) hold

Proof of Theorem 4 By choosingd = 0 in the
() conversion of Lemma 1 from%Cto C°, we
have®©(S,T) = —1xA(ST), and henc®(S;, T1) <
@(Sz,Tz) & A(S_]_,Tl) > A(Sz,Tz) O

This distance-to-similarity by negation is well
known. On the other hand, concerning similarity-to-
distance, in the (i) conversion of Lemma 1 fr@f to
C2, you can only choos&é= 0 if all C®(x,y) < 0, and
clearly there are many natural settingsG$t where
that is not true.

3.2 Similarity to Distance

The remaining order-equivalence conjectures of sec-

tion 1.1 areN-duality(ii) and P-duality(ii), concern-
ing the similarity-to-distance direction. Of the re-
maining conjecture$?-duality(ii) is stronger tharN-
duality(ii). We can fairly easily showP-duality(ii)
does not hold

Proof of Theorem 5

Itis clearly possible for € to be such that there is
no maximum value fd®(S, T). For example for table
below:

C@
(a,a) 1
(a,A) 1

its clear we have®(a,a) = 1, ©(aa,aa) = 2 and in
general®@(a",a") = n. Let C° be any table defin-
ing a similarity with no maximum. On the other
hand, for each € there will be minimum value of
A(S,T). Suppose some”ds a P-dual to @. For
any n let[®], (resp. [A]n) be the set of pairs with
similarity (resp. distance) n. If €is a P-dual to
CO, there is some bijection between the set of simi-
larity classes{[®]s} and the set of distances classes
of {[Al¢}. Some similarity clasf]s, of © must cor-
respond to the minimum distance claggq,. Let
[O]s, be a higher© class than[®]s,. It must corre-
spond to som@ class|[A]q, distinct from[A]g,, and
since [A]q, is the distance-minimum, this must be a
higher distance class. Then 6%, To) € [Al4,, and
(S1,Th) € [A]g, you haveA(S, To) < A(St, Tr), but
also0(S, To) < O(Sy,T1). So the supposed duafC
does not reverse the pair-ordering ofC O

Of the order-relating conjectures of section 1.1 the
only remaining one ifN-duality(ii) — that is the ques-
tion whether every neighbour-ordering via so@@
can be replicated by a neighbour ordering via some
C2. We can show that there are neighbour-orderings
by a Tai-similarity which cannot be dualized by any
Tai-distance whose deletion and insertion costs are
symmetric.

Theorem 6. There is @ such that there is no®©with
C2(x,\) = C2(A,x) such that @ and C* are N-duals

Proof of Theorem 6

Let S= aa, and the set of neighbours ba, aaa}.
LetC®(a,a) =x>0,and P(a,A) =C®P(\,a) =y >
0.

For (aa,aaa), the alignments with 2,1, and 0 a-
matches haves scoréx—y, x— 3y and—5y, respec-
tively, so the alignments maximisi@gare those with
two a-matches, an®(aa,aaa) = 2x—vy.

For (aa a), the alignments with 1 and 0 a-matches
have scores xy and —3y, respectively, so the
alignments maximising@® have one a-match, and
O(ag,a) =x—Vy.



Consider what is required for th®-decreasing
neigbour ordering to befaaa a,

©O(aa,aaa) > O(aa,a)
& xX—y>X-—-Yy
& x>0

So there is a0©-decreasing neighbour-ordering
[aaa al.

Let C*(a,a) = X, and C*(a,\) = CA(\,a) =Y. Note
this assumes symmetric insertion and deletion costs.

For (aa,aaa), the alignments with 2,1, and 0 a-
matches haves score2{ +Y, X + 3y and5y, re-
spectively. We distinguish two casesyj < X' and
(i) 2y’ > .

For case (i), X= 2y +¢, for some no-zere > 0,
and the 2,1,and 0 a-matches scores becéye- 2¢,
5y +¢ and 5y, respectively, so taking the minimum,
A(aa,aaa) = 5y.

For case (i), y=X'/2+k, for some< > 0, and the
2,1,and 0 a-matches scores becdri& + K, 2.5X +
3k and 2.5’ + 5k, respectively, and 2-match case is
amongst the minimal cases,A(raa aa) = 2.5x +K.

For (aa,a), the alignments with 1 and 0 a-matches
haves scores,’x-y and 3y respectively. We again
distinguish between cases 2 < x and (ii) 2y’ > X.

For case (i), the 1 and 0 a-matches scores become
3y +¢ and 3y respectively, so taking the minimum,
A(aa,a) = 3y.

For case (ii), the 1 and 0 a-match scores become
1.5¥ +k and1.5x + 3k respectively, and the 1-match
case is amongst the minimal cases, S§@a,a) =
1.5X +K.

Summarising thé possibilities

A(aa,aaa) A(aaa)
(h2y <x by 3y
(iN2y >x 25X +k 15X +k

So in neither case (i) nor case (ii) is it possible to
achieve aA-ascending neighbour orderinraa al,
which was the®-descending neighbour ordering
which was achieved with the assumed C O

Remark If we drop the requirement that the N-
dualizingC? haveC®(x,\) = C2(A,x), then the ar-
gument does not go through. Th@-descending
neighbour orderinglaaaa] can be replicated by
a A-ascending neighbour ordering witdf(a,A) >
C2(N,a). For most applications of alignment-based
'distances’, such an asymmetric setting of deletion
and insertion costs would be considered unnatural.

4 EMPIRICAL INVESTIGATION

(Lesot and Rifgi, 2010) consider distance and sim-
ilarity measures often used in information retrieval.
These are defined over finite vectors, whose features
are either binary or real-valued. They basically con-
sider the neighbour orderings produced by different
measures. Besides demonstrating absolute equiva-
lence between some measures, between other mea-
sures they empirically determirguivalence degreges
between 0 and 1, based on the Kendall-tau statistic
for comparing orderings (Kendall, 1945). While their
work concerned comparison measures on vectors, it
is a natural to consider an analogous empirical quan-
tified comparison of distance and similarity orderings
on trees and sequences. Some preliminary findings of
such a study are given below.

The (i) conversion of Lemma 1 converts distance
settings to A-dual similarity settings and one thing to
consider is the degree to which the derived similari-
ties are also N-duals of the distance. Table 1 gives
some distance and similarity settings: the first column
gives the unit-cost settings fdr and the columns to
the right give different similarity settingg® deriv-
able by the (i) conversion of Lemma 1 &ss varied
through various values.

Table 1: Unit-cost distance setting and several A-dual-simi
larity settings.

dualC® for varyingd
cAl215 1 05 02 01 O
A |1 | 00250507509 0951
xx) |0 |215 1 05 02 01 0
xy) |1 |105 0 -05-08-09 -1

An experiment was done to quantify how close the
similarities defined by the varying®tables come to
being N-duals for the distance. Using a set of 1334
tree$, repeatedly a treBwas chosen, and neighbour
files NA(S) andNg(S) were computed, wittNa (S)
the ordering of the remaining trees by ascendig
andNg(S) the ordering by descendir@ Np (S) and
No(S) were then compared by thendall-taumea-
suret (see the Appendix for the definition). For each
0 the average of this comparison between the dis-
tance and similarity neighbour files is shown in Fig-
ure 2.

The bottom-left corner, fod = 0 is the special
case of Lemma 1 which amounts to the well-known
trivial distance-to-similarity conversion@(ST) =
—1x A(S,T), noted in section 3.1. In this case the
distance and similarity neighbour files are identical.

6see the Appendix for further details of this data set
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Figure 2: Average Kendall-tau comparison on neighbours Figure 3: Average Kendall-tau comparison on neighbours
using distance and derived similarities. Distance setting using a similarity and derived distances. Similarity s®fti
is first column of Table 1. Similarity settings are further is first column of Table 2. Distance settings are further

columns of Table 1 defined by varyidg columns of Table 2 defined by varyidy

As the graph clearly shows, &sncreases, the neigh- Theorem 5 concerned the non-replicability by dis-
bour files exhibit progressively greater difference in tance of pair-orderings by similarity. To illustrate
ordering, until a® = 2 thet score is 073, which cor- this, consider a set of strings®, a* a*,a?,al}. A ta-

responds to a tendency more towards order reversable of pair-wise similarities of these was made with

than to replication. This experiment shows that al- C®(a,a) = 1,C®(a,A) = 1, and used to generate a

though each of these similarity settings is an A-dual single-link clustering, shown as the the uppermost
of the simple distance setting, they are not at all equiv- dendrogram in Figure 4.

alent to each other as far as neighbour ordering is con-

cerned. sim swap:1 del:1 single

The (ii) conversion of Lemma 1 converts similar- | '
ity settings to A-dual distance settings. Table 2 gives . =
a similarity setting and then several distance settings ﬁ o
derivable by the (ii) conversion dsis varied through @
various value$ 0 =
Table 2: A similarity setting and several A-dual distance dist swap:0 del:1 single
settings.

i5

s Q o

i1

dualC? for varyingd
C°[115 2 25 335 4 dist swap:1 del:1 single
05|21 12515 1.75 2 2.25 2. |

(A)

(x,x) | 1 005 1 15 225 3 ! |

(xy) | O 115 2 25 335 4 by ’—"—_l_‘
@

N —

OT
i5 o

Figure 4: Similarity and distance clusterings. The ins¢éanc
labelsi5. . .i1 represesent®. .. al.

Figure 3 plots the averagecomparison between
the similarity and distance neighbour files &ds var-
ied to give different distances. Again this experiment
shows that although each of the distance settingsisan single-link clustering based on distance repli-
A-dual of the similarity setting, they are not equiva- cates this similarity clustering. The middle den-
lent to each other as far as neighbour ordering is CoN-gogram in Figure 4 is the result wit6?(a,a)
cerned.

0,C%(a,A) = 1, with all five shown on the same level

"The nodes in these experiments have multi-part labels. bgcauseﬁ(am,am*l) — 1L The lowest denAdOQram n
Whilst the first experiment treated these simply as identi- Figure 4 shows a result W'mA(a’ a)=1CHaA) =
cal or not, for this second experiment, the base-line simila 1+ 1"€ Same structure was found holdiZR(a, a) =
ity node label are compared v@P(x,y) = 1— hamx,y), 1, and allowing the deletion/insertion cost to vary be-
ham(x,y) is the standard hamming distance. The table thus tween 05 and 55 (which are> C*(a, a)) and between
shows the extreme values©®(x,y) andC2(x, y) 0.4 and 01 (which are< C%(a, a))



5 DISCUSSION AND excluded ifA(S, T;) — A(T1, T2) exceeds the thresh-

COMPARISONS od. o |
Most biological sequence comparison is done with
similarity not distance and the concern of (Spiro and
Macura, 2004) is to find a corresponding means of ac-
celerating similarity range queries. In terms of the no-
tations used here, they essentially propose the follow-

¢ any hierarchical clustering outcome achieved via ing conversion from similarity to distance cost-table

A can be replicated vi®, butnotvice-versa
plicate _ Vx,y € Z (CR(x,y) = CO(x,X) +C2(y,y) — 2C°(x,y))
e any categorisation outcome using nearest- yxcs (CA(x,\) =C®(x,A))
neighbours achieved via can be replicated via yyecs (CA(\,x) =CO(A,X))
©, butnotvice-versa

In view of the outcomes noted in sections 2, 3.1 and
3.2 concerning the various ordering conjectures we
can say that

and they prove that, under some conditions imposed
onC®, the corresponding will satisfy all the condi-
tions of a distance-metric, in particular satisfying the

changeable. _ __triangle-inequality. and that the relation betwe@n
As far as we are aware this aspect of the choice 5,4 is then

between a similarity-based versus a distance-based
mparison m re on n rtr has n
ggenp?msgd bef%?:l_J e on sequences or trees has not AX.Y) = B(X,X) + O(Y.Y) - 20(X.Y) (5)
There are a number of papers Concerning con- Substitution of (5) into the tl’iangle-inequality and
version from a similarity-based sequence compari- SOme re-arrangement gives tt@{T,S) is bounded
son measure to a distance-based comparison meadboveby ©(STy) + O(Tz, Tz) — ©(Ty, T2), giving a
sure, and particularly one satisfying distance-metric means for rapid exclusion of, from a similarity
axioms (Spiro and Macura, 2004; Stojmirovic and Yu, neigbhourhood. . _
2009). An aim of these papers is to find techniques for ~ Beside the fact that equation (5) relati®gandA
accelerating so-called range similarity queries, which holds only under particular assumptions concerning
are requests to find all neighbours within a similar- C®, more importantly the obtained relationship in (5)
ity thresholdN<g(S) = {T : ©(S,T) > 6}. To discuss IS not sought in the context of deriving a P-dual or

these papers it will be as well to note the distance- N-dual distancel from a given similarity®, and in
metric axioms fact (5) does not do this. Thus while Spiro et al do

provide a conversion from a similarity to a distance, it
addresses concerns somewhat orthogonal to those of
this paper.

(Stojmirovic and Yu, 2009) is a paper with similar
concerns to (Spiro and Macura, 2004). In terms of
the notations used here, they propose the following
conversion from similarity to distance cost-table:

and in this sense 'similarity’ and 'distance’ compar-
ison measures on sequences and treesatrater-

Definition 6 (distance metric) A binary relationA is
a distance-metric if it satisfies
D1A(ST)=A(T,9)
D2A(ST)>0
D3.A(SV) <A(ST)+A(T,V)
D4.A(ST)=0iffS=T
It is a pseudo-metrigf D4. is dropped. It is a

guasi-metrigf D1. is droppped Wyes  (CRY) =CO(xx) —COxy))

For a distance-metric on sequences there is a way vxe s (CB(x,A) = C®(x,x) +C°(x,\))
to use the triangle-inequality to accelerate solution of Vyes (CA(A,x) =CO(A,X))
adistancerange queryN<(S) = {T : A(ST) < 8}.
SupposeS is a query, andl; is a training-set point
known to be far fron5, and that another training-set
pointT, is known to be close t®;. Intuitively Sis also
going to be far fronil,. More specifically, ifA is a
distance-metric, an instance of the triangle-inequality A(ST_) =06(S9 *_O(S’-D _ (6?
will be: Though not a distance-metric — it i@gsymmetric

— it does satisfy the triangle-inequaliy(X,Z) <
A(X,Y) + A(Y,Z), and substituting (6) into the

AST) <A, T2) +A(T2,9) ) triangle-inquality and re-arranging again gives an up-
via which A(T2,S) is bounded below bW (S T1) — per bound which might be used to accelerate a simi-
A(T1,T2). So if Ty has already been excluded from a larity range query®(ST2) < ©(S,T1) + O(T2, To) —
distance neigbhourhood; can be also immediately ©O(T,,T1).

and prove, under some assumptions concer@ifig
that the then derived 'distance’ iscuasi-metricand
that the relationship betweénand® is then:
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APPENDIX this data.
Proof of alignment sum property from Lemma 1 Further A-dualizing conversions
In the proof of Lemma 1 it was claimed with ) ]
C? andC® related according to the (i) or (i) con- Concerning A-duals, there are besides the conver-
versions that for any alignment, A(a) + ©(a) = sions given in Lemma 1, others which also generate
/2 (2|M|+|D| +|1|). Thisis proven as follows. ~ A-duals.
If defining C® from C2by (i), for ©(a) we have: Lemma 7. For any G, for any k, let @ be defined
according to (iii) below.
S [B-CAGL D] — 3 [CRI,A) —3/2] CO(x,A\) = kCA(x,\)
(i.f)en & (i) < CP(\,y) =kCP(A,y)
~2leni-e2) CO(x,y) = (1 - K)(CA(xA) + CE(Ay)) ~ Co(x,y)
_ 6(\M\+‘—?+‘—é|) Then foranya : S— T
- CR D] = Y [N = Y [CPMN, )] A(a)+0(a) = (1-k CB(s A CA(At
6@”2&% 2 2, (@)+6(a) = (1=K)x (3 (CHsN) + 3 (C2A1)
= S @MI+[D]+]1])-4a) Lemma 8. For any C°, for any k, let @ be defined
according to (iv) below.
If defining C® from C®by (ii), for A(a) we have CR(x,A) = CO(x,\) + kC®(x,X)
o o (V) § C2Ay) =CO(\.y) +kCo(yy)
> [B=CE DI+ S €PN +8/2 C2(x,y) = k(C®(x,x) +C°(y,y)) —CO(x,y)
(i.jjem 2 A Thenforanya : S—T,
+ > [C°(A ) +8/2)
jer O ©
A(a)+06(a) =kx (3 (CZ(s9) + ) (CO(L,1)))
= 6(\M\+‘—?+‘—£|) Sgs tg‘
- Y [CO DI+ Y [COG.M]+ Y [CA, ))] The proofs of these follow a similar pattern to that of
(i.))enm €D Jel Lemma 1 and are omitted. In a similar fashion both

2(2|M\ +|D|+1]) - O(a) these conversions will give A-duals.



