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Abstract

This work takes the paradigm of projecting
annotations within labelled data into unla-
belled data, via a mapping, and applies it
to Semantic Role Labelling. The projec-
tions are amongst dependency trees and the
mappings are the Tai-mappings that under-
lie the well known tree edit-distance algo-
rithm. The system was evaluated in seven
different languages. A number of variants
are explored relating to the amount of in-
formation attended to in aligning nodes,
whether the scoring is distance-based or
similarity-based , and the relative ease with
which nodes can be ignored. We find that
all of these have statistically significant im-
pacts on the outcomes, mostly in language -
independent ways, but sometimes language
dependently.

1 Introduction

There are a number of pattern recognition scenar-
ios that have the characteristics that one has some
kind of structuredtest data (sequence, tree, graph,
grid) within which some annotation is missing,
and one wants to infer the missing annotation by
exploiting fully annotated training data. A possi-
ble approach is to seek to definealignmentsbe-
tween training and test cases, and to use these to
projectannotation from the training to test cases.
This has been successfully used in computational
biology, for example, to project annotation via se-
quence alignments (Marchler-Bauer et al., 2002)
and graph alignments (Kolar et al., 2008). Se-
mantic Role Labeling (SRL) can be seen as a fur-
ther instance of this pattern recognition scenario

and we will describe in this paper an SRL sys-
tem which works by projecting annotations over
an alignment. This paper extends results reported
by Franco-Penya (2010). In the remainder of this
section we give a brief overview of SRL. Sec-
tion 2 then describes our system, followed in sec-
tions 3 and 4 by discussion of its evaluation.

For a number of languages, to an existing syn-
tactic treebank, a layer ofsemantic roleinforma-
tion has been added: the evolution of the Penn
Treebank into PropBank is an example (Palmer et
al., 2005). Role-label inventories and annotation
principles vary widely, but our system has been
applied to data annotated along the same lines as
exemplified by PropBank. The example below il-
lustrates a PropBank role-labelling.1

[Revenue]A1 edged [up]A5 [3.4 %]A2 [to $904
million]A4 [from $874 million]A3 [in last year’s
third quarter]TMP

A lexical item (such asedge), is given a
frameset of enumerated core argument roles (A0
. . . A5). In the example, A3 is the start point of the
movement, and a minimal PropBank commitment
is that A3 and the other enumerated role identi-
fiers are used consistently across different tokens
of edge. Across different lexical items, commit-
ments concerning continuity in the use of the enu-
merated arguments are harder to state – see the
conclusions in section 5. There are also named
roles (such as TMP above), whose use across dif-
ferent items is intended to be consistent.

1To save space, this shows simply a labelling of sub-
sequences, omitting syntactic information. Figure 2 shows
annotation added to a syntactic structure.
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Arising from the CoNLL-2009 SRL evalua-
tion shared task (Hajič et al., 2009), for seven
languages (Catalan, Chinese, Czech, English,
German, Japanese,Spanish), there is data con-
sisting of a role-annoation layer added to syntac-
tic information. The syntactic information is ex-
pressed as dependency trees. In some cases this is
derived from a primary constituent-structure rep-
resentation (eg. English), and in other cases it is
the ’native’ representation (eg. Czech). For each
language, tree nodes have four kinds of syntac-
tic information: FORM: a word form; LEMMA :
lemma of the word form;POS: part-of-speech tag
(tag sets are language specific);DEPREL: the de-
pendency relation to its head word (the relation-
sets are language specific). Additionally in each
tree,T , a number of nodes are identified as pred-
icate nodes. Each predicate nodepT , is linked
to a set of argument nodes,args(pT ). For each
aTi ∈ args(pT ), the link(pT , aTi ) is labelled with
a role. The role-labeling follows the PropBank
approach.

2 An Alignment-based SRL system

Sub-tree extraction A preliminary to the role-
labelling process itself is to extract a sub-tree that
is relevant to a given predicate and its arguments.
Wherep is a particular predicate node of a tree
T , let sub tree(T , p) stand for the relevant sub-
tree ofT . There is considerable latitude in how
to define this, and we define it in a simple way,
via the least upper bound,lub, of p andargs(p):
sub tree(T , p) includes all nodes on paths down
from lub to p andargs(p). This is the same sub-
tree notion as used by Moschitti et al. (2008). Fig-
ure 1 illustrates. Henceforth all trees will be as-
sumed to have been extracted in this way.

Figure 1: Sub-tree extraction:a1, a2 = args(p), u =
lub(a1, a2, p).

Alignment and Projection Let analignmentof
treesS andT be a1-to-1, partial mappingα :

S 7→ T , from the nodes ofS into the nodes ofT .
If S is role-labelled, such an alignment projects a
role for test tree argumentaTi if it is aligned to
a training tree argument,aSj , and the predicate
nodespS and pT are aligned: the role ofaSj is
projected toaTi . Such a role-projecting tree will
be termed ’usable forT ’. Fig. 2 shows an exam-
ple alignment between subtrees, with the aligned
sub-trees shown in the context of the treesS and
T from which they come. Argument nodesT4,
T6 andT7 would receive projected labelsA1, A2,
andA3 from S7, S12 andS13. The first two are
correct, whilstT7’s annotation should be A4.
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Figure 2: An example alignment.

Algorithm outline Let [∆]idi be an equivalence
class, contains all training samples at distancedi
to T . The training set can be thought of as a
sequence of equivalence classes[∆]1d1 , [∆]2d2 , . . .,
for increasing distance.2 The algorithm works
with a PANEL of nearest neighbours, which is
always a prefix of this sequence of equivalence
classes. WhereT is defined by predicatep and
argumentsa1 . . . an, the algorithm to predict a la-
bel for eachai is

1. make sorting of training trees and setPANEL

of nearest neighbours to be first equivalence
class[∆]1d1

2. (i) make a set of predictions from theusable
members ofPANEL (ii) if there is a most fre-

2Or alternatively a sequence of similarity equivalence
classes, at decreasing similarities toT .
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quent prediction, return it(iii) if there is a
tie, or no usable members, add next equiv-
alence class toPANEL if possible and go to
(i), else return ’unclassified’

Tai mappings In this work, alignments are re-
stricted to be so-calledTai mappings (Tai, 1979):
amongst all possible 1-to-1, partial mappings
from S into T , α : S 7→ T , these are mappings
which respectleft-to-right order and ancestry.3

Then to select apreferredalignment, a score is as-
signed to it. The definitions relevant to this which
are given below follow closely those of Emms and
Franco-Penya (2012).

Because a mappingα is partial onS and into
T , there is a setD ⊆ S (’deletions’), of those
i ∈ S which are not mappedto anything and a
setI ⊆ T (’insertions’), of thosej ∈ T which
are not mappedfrom anything, and the alignment
scorings make reference to the setsα, D andI.

We consider both a ’distance’ scoring,∆(α :
S 7→ T ), whoseminimumvalue is used to select
the alignment, and a ’similarity’ scoringΘ(α :
S 7→ T ), whosemaximumvalue is used. The
’distance’ scoring,∆(α : S 7→ T ), is given by

∑

(i,j)∈α

C∆(iγ , jγ)+
∑

i∈D

C∆(iγ , λ)+
∑

j∈I

C∆(λ, jγ)

Here (.)γ gives the label of a node, and a func-
tion C∆ is used to give label-dependent costs to
the members ofα, D andI. This is the major
parameter of the distance scoring and the vari-
ous setting for it which were considered are de-
tailed below; at a general level, to accord mini-
mally with intuition, it should always be the case
that C∆(x, y) ≥ 0, andC∆(x, y) ≥ C∆(x, x)
for non-identicalx andy. A ’similarity’ scoring,
Θ(α : S 7→ T ), is given by

∑

(i,j)∈α

CΘ(iγ , jγ)−
∑

i∈D

CΘ(iγ , λ)−
∑

j∈I

CΘ(λ, jγ)

where CΘ is a function defining costs for the
members ofα, D and I. To accord minimally

3More precisely, whereanc(x, y) and left(x, y) de-
note the ’ancestor of’ and ’to the left of’ relations,
∀(i, j) ∈ α,∀(i′, j′) ∈ α, the mapping must satisfy (i)
left(i, i′) iff left(j, j′) and (ii)anc(i, i′) iff anc(j, j′)

with intuition, CΘ(x, y) ≤ CΘ(x, x). Ad-
ditionally, in this work, we also assume that
CΘ(x, λ) = CΘ(λ, x) = 0.

Besides ranking alternative alignments be-
tween fixedS andT , the minimum distance align-
ment score defines a ’distance’,∆(S, T ), for the
pair (S, T ), and maximum similarity alignment
scores define a ’similarity’,Θ(S, T ), and these are
used to rank alternative neighbours for a tree to
be labelled. The algorithm to calculate∆(S, T )
andΘ(S, T ) follows very closely that of Zhang
and Shasha (1989): although originally proposed
in the context of ’distance’ and minimisation, it is
straightforwardly adaptable to the context of ’sim-
ilarity’ and maximisation.

Cost settings On this data-set the label is in
general a 4-tuple(p, d, l, f) of part-of-speech,
dependency-relation, lemma, and word form.
Four settings for the swap costs,C∆(x, y),
are considered: B(’binary’), T(’ternary’),
H(’hamming’) and FT(’frame ternary’), based on
the matches/mis-matches on these features. For
any given featurea, let aδ represent match/mis-
match ona, with 1 for mis-match and 0 for
match. The different swap settings are then
defined as below

C∆(x, y) values
B pδ × dδ 0, 1
T 1

2 [p
δ + dδ] 0, 12 , 1

H 1
4 [p

δ + dδ + lδ + f δ] 0, 14 ,
1
2 ,

3
4 , 1

FT 1
2 [p

δ + dδ] + frδ 0, 12 , 1,
3
2 , 2

For FT, fr refers to a synthesised attribute: for
predicate nodes,fr is the frame identifier, and
otherwisefr = . The effect is thatfrδ = 1
if one node is a predicate and the other is not, or
if both are predicates but from different frames.
Besides these swap settings, the deletion cost
C∆(x, λ) = C∆(λ, x) was varied between1
and0.5. From each swap settingC∆(x, y), two
’similarity’ settings were derived byCΘ(x, y) =
δ − C∆(x, y), for δ = 1 or 2.

Some aspects of these choices are based on re-
sults concerning distance and similarity which we
previously established (Emms and Franco-Penya,
2012), where we showed that the conversion

CΘ(x, y) = 2κ− C∆(x, y)
CΘ(x, λ) = C∆(x, λ) − κ

CΘ(λ, y) = C∆(λ, y)− κ
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convertsC∆ to CΘ such that the same ordering
is induced over the alternative alignments for any
given pair(S, T ). Call such settingsA-duals. For
a given choice from B/T/H/FT, the four above-
mentioned settings forC∆ andCΘ thus stand in
the following A-duality relationships:

distance A-dual similarity
(a)C∆(x, λ) = 1 (c)CΘ(x, y) = 2− C∆(x, y)
(b)C∆(x, λ) = 0.5 (d)CΘ(x, y) = 1− C∆(x, y)

For such dual settings, the labelling potential of
a given training sample is necessarilyidentical
under the two settings. However, this A-duality
property is distinct, potentially, fromN-duality,
which is the property that the two settings in-
duce the same ranking of candidate neighbours
{S1 . . . SN} to a givenT . Because the role-
labelling system is driven both by neighbour and
alignment ordering, it is an empirical question
whether or not A-dual settings will deliver the
same outcomes.

We will refer to settings (a) and (b) as
’dist(del=1)’ and ’dist(del=0.5)’, and settings (c)
and (d) as ’sim(2-swap)’ and ’sim(1-swap)’.

3 Experiment Procedure

The seven languages of the CoNLL-2009 SRL
task were used (Hajič et al., 2009), with the same
division into training sets and evaluation sets.

Due to our computational limitations the En-
glish training data set was limited to the first
20,000 sentences and the Czech training data set
was limited to the first 10,000 sentences.

A simple labeling accuracy score is reported.
When a two-way contrast is considered, the sig-
nificance of a difference in outcomes under the
two settings was determined by the McNemar
test (McNemar, 1947), at levels of significance
p < 0.05 and p < 0.001, as do Fürstenau and
Lapata (2011) in their role-labelling work.

4 Results

4.1 Contrasting Swap Settings

Figure 3 shows a graph with the accuracy for the
seven languages on the evaluation data set, using
the dist(del=1) setting.4 The languages are sorted
by the accuracy of the H setting. The baseline

4The full table of values, including the 3 out-of-domain
cases, appears as the first column in Table 4.

Figure 3: Accuracy of Tree edit distance across the
seven languages.

(first bar) corresponds to the accuracy that would
be attained by always choosing the label that is
most frequent for that language.

Looking first at the H setting, the performance
across the languages ranges from73%(Czech) to
84%(Chinese), which in all cases substantially
out-performs the majority-class base line (which
is in the range20(Spanish)–40%(German)). The
other cost-settings also clearly out-perform this
base line. It also seems that the variation in ac-
curacies across the languages is not relatable to
the variation in this majority-class base line.

The performance under the B and T settings is
perhaps surprising, when one recalls that these
two settings pay no attention at all to lexical
differences between nodes, and refer only to
the dependency relations and the part of speech.
Nonetheless, even in this setting of tolerance to
node exchange, it seems that in concert with
the structure-respecting requirements of Tai map-
pings, surprisingly high accuracies can be ob-
tained.

Chinese has the highest overall accuracy, with
even the very simplest settings reaching rela-
tively high accuracy. It is interesting to note that
amongst the highest performing other systems
which have used the same data, performance on
the Chinese data-set has tended to bebelow that
of other languages, with Che et al. (2009) and Dai
et al. (2009) reporting over 81 F1 in all languages
except Chinese where the F1 reported was 76.38
and 76.23. It suggests that tree distance and la-
belling by alignment methods may be especially
suitable for the Chinese data set.

Japanese reports the worst results, especially
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for the B/T/FT settings. This is probably due
to the fact that, on inspection, the Japanese data
gives 96.1% of syntactic dependencies the same
dependency relation, practically canceling the
contribution of theDEPREL feature.

The outcomes for the Spanish and Catalan data
sets are very similar to each other. This is not
unexpected as for the most part one is a translation
of the other and they were annotated in the same
way with the same set of labels.

Table 1 summarises the outcomes of pair-wise
comparisons of the swap settings. Under ’1st>

2nd’, !l,*m,** n appears if there werel data-sets
on which the 1st setting out-performed the 2nd
setting, form of these the outcomes were signif-
icantly different (p = 0.05), and forn of these
the difference holds at a stricter significance level
(p = 0.001).

Settings 1st> 2nd 2nd> 1st avge 2nd-1st

to
ta

l

B-T !4, *2, **1 !6, *3, **3 0.341%
B-FT !0, *0, **0 !10, *10, **10 7.45%
B-H !0, *0, **0 !10, *10, **9 7.779%
T-FT !0, *0, **0 !10, *10, **10 7.109%
T-H !0, *0, **0 !10, *9, **9 7.438%

FT-H !7, *6, **4 !3, *3, **3 0.329%

Table 1: Comparing swap-settings, for dist(del=1), on
the 7 evaluation data-sets, and 3 out-of-domain data-
sets.

The T and B settings turn out to give rather sim-
ilar outcomes. Table 1 shows that T’s margin over
B averages out to 0.341%. There are 3 strictly
significant cases where T out-performs B, and 1
cases in the other direction.

In its turn the H setting always out-performs
the T setting, 9 times out of 10 at the strictest
significance level, with the average margin be-
ing 7.438%. Thus penalising lexical difference
seems always to improve performance, and nearly
always substantially, though for the Chinese and
out-of-domain English data sets, the margin for H
over T falls to less than 1%.

The outcomes with FT are more language de-
pendent. FT out-performs H more often (7!,6*)
than H out-performs FT (3!,3*) and English is the
one data-set on which the two are not significantly
different. Japanese shows the highest margin in
favour of H (11.5%) whilst German shows the
highest margin in favour of FT (5.2%). The poor

relative performance of FT for Japanese is again
probably a function of the uninformative nature
of its dependency annotation.

For all languages FT out-performs T, at the
strictest significance level, with the margin aver-
aging out to 7.1%. For German the margin is es-
pecially large at 17.8%.

4.2 Contrasting Representations

Table 2 compares the results obtained with trees
to results obtained with alinearisedversion, us-
ing just a node sequence corresponding to the se-
quences of words that spans the predicate and ar-
gument nodes. Encoding these as linear trees, the
tree-matching in this case reduces to the standard
Levenshtein matching.

Settings Tree> Lev. Lev> Tree avge Lev-Tree
B *8, **6 *0, **0 -2.83%
T *10, **10 *0, **0 -4.574%
FT *10, **10 *0, **0 -7.758%
H *10, **10 *0, **0 -8.113%

Table 2: Comparing Tree and Levenshtein outcomes.

As is evident, for all languages and all swap-
settings, the alignment on the linear representa-
tion gives substantially poorer results than the
alignment on the trees. For T/FT/H in each single
experiment the tree version produce better score
than the linear version, and in B it was never de-
tected a statistical advantage of the linear version
over the tree version. This indicates that the Tai-
mapping constraints on the tree-representation
definitely leverage information that is beneficial
to this labeling task.
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Figure 4: Tree vs Levenshtein distance (T & H ).
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Setting max(dist) max(sim) difference

C
hi

ne
se B ** 82.82% 83.46%! 0.6459%

T = 83.98%! 83.86% -0.1155%
FT * 85.88%! 85.53% -0.3464%
H ** 85.06% 85.88%! 0.8227%

G
er

m
an B * 67.41%! 65.74% -1.676%

T * 68.25%! 65.74% -2.514%
FT ** 87.71%! 85.01% -2.7%
H = 81.38%! 80.82% -0.5587%

o-
G

er
m

an B * 69.51%! 67.59% -1.926%
T * 69.1%! 67.09% -2.01%
FT * 75.46%! 73.03% -2.429%
H = 72.7% 73.53%! 0.8375%

E
ng

lis
h B ** 69.34% 70.21%! 0.8674%

T = 70.79%! 70.48% -0.3092%
FT = 78.75%! 78.49% -0.2619%
H * 78.72% 79.43%! 0.7171%

o-
E

ng
lis

h B = 63.08% 63.67%! 0.5944%
T = 66.26%! 65.14% -1.119%
FT = 69.83%! 69.51% -0.3147%
H = 66.68% 67.52%! 0.8392%

C
at

al
an

B ** 65.7%! 64.11% -1.587%
T ** 65.7%! 63.88% -1.818%

FT ** 79.35%! 77.75% -1.596%
H = 75.8%! 75.58% -0.2217%

S
pa

ni
sh B ** 65.5%! 64.23% -1.268%

T ** 65.7%! 63.98% -1.717%
FT ** 77.25%! 76.2% -1.049%
H = 75.16% 75.64%! 0.4736%

C
ze

ch

B = 66.28%! 66.21% -0.07138%
T ** 66.69%! 66% -0.6935%
FT * 70.05%! 69.53% -0.5226%
H ** 74.05% 74.77%! 0.7138%

o-
C

ze
ch B * 64.42% 64.92%! 0.497%

T = 65.08%! 64.73% -0.3529%
FT ** 69.24%! 68.17% -1.066%
H * 72.56% 73.36%! 0.7995%

Ja
pa

ne
se B = 57.93%! 57.31% -0.6207%

T ** 57.97%! 55.86% -2.106%
FT ** 61.52%! 58.94% -2.577%
H ** 75.34%! 71.32% -4.025%

to
ta

l

B *4, **2 *3, **2 -0.4545%
T *6, **4 *0, **0 -1.276%
FT *8, **5 *0, **0 -1.286%
H *1, **1 *4, **2 0.03983%
all *19, **12 *7 ,**4 -0.7441%

Table 3: max(dist) vs max(sim): max(dist) is best
of dist(del=1) and dist(del=0.5), max(sim) is best of
sim(swap=2) and sim(swap=1).

4.3 Contrasting Distance and Similarity

Table 3 compares the best results of distance and
similarity. In the case of distance, the best value
is between dist(del=1) and dist(del=0.5), and in
the case of similarity, the best value is between
sim(2-swap) and sim(1-swap). Figure 5 plots the
this contrast for the T and FT swap settings.

For the T overall the tree distance performs bet-
ter than tree similarity. For T, this occurs 4 times
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Figure 5: Distance outcomes compared to Similarity
outcomes (T and FT).

at the strictest significance level, 6 times at the
less strict level, there is no language where simi-
larity outperforms distance, and the average mar-
gin is 1.28%. For B, this trend is less clear, with
just 2 cases where distance out-performed simi-
larity at the strictest significance level. The mar-
gins are small and average out at 0.45% in favour
of the distance setting.

For FT, this occurs 5 times at the strictest sig-
nificance level, 8 times at the less strict level,
there is no language where similarity outper-
forms distance, and the average margin is 1.29%.
German, Catalan, Spanish and Japanese show
the largest margin, whilst Chinese, English and
Czech the smallest.

For the H setting, overall the margin between
distance and similarity is small, 0.04%. Similarity
out-performs distance 2 times at the strictest sig-
nificance level and 4 times at the less strict level.
Japanese is unusual, being the only case where the
comparison is statistically significantly in favour
of distance, by a margin of 4.03%.

Recall from section 2 that the distance and sim-
ilarity settings can be paired off as alignment-
duals, namely ’dist(del=1)’ with ’sim(2-swap)’
and ’dist(del=0.5)’ with ’sim(1-swap)’. For such
dual settings the labelling potential of a given
training sample is necessarilyidenticalunder the
two settings. We noted that this does not theo-
retically guarantee identical system outcomes: A-
duality does not imply N-duality, that is identi-
cal neighbour-ordering. The experiments actu-
ally show that it is indeed not the case for these
data-sets that the A-dual settings are also N-dual
settings. Space precludes giving details of this,
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but it is implied by Table 3 and Fig. 5: for ac-
curaciesa1 anda2 attained by the distance alter-
natives, if N-duality held, the dual similarity set-
tings would also attain accuraciesa1 anda2, and
we would observe no differences between maxi-
mum distance outcomes and maximum similarity
outcomes.

4.4 Contrasting two Distance settings

Cost setting del=1 del=.5 difference

C
hi

ne
se B ** 82.14% 82.82%! 0.6748%

T ** 83% 83.98%! 0.9743%
FT ** 84.78% 85.88%! 1.093%
H ** 83.93% 85.06%! 1.129%

G
er

m
an B * 67.41%! 65.83% -1.583%

T = 68.25%! 67.41% -0.838%
FT * 86.03% 87.71%! 1.676%
H = 80.82% 81.38%! 0.5587%

o-
G

er
m

an B * 69.51%! 67.76% -1.759%
T = 69.1%! 68.84% -0.2513%
FT = 74.62% 75.46%! 0.8375%
H = 72.53% 72.7%! 0.1675%

E
ng

lis
h B = 69.34%! 69.18% -0.1675%

T ** 70.12% 70.79%! 0.6656%
FT ** 77.98% 78.75%! 0.7687%
H ** 77.57% 78.72%! 1.147%

o-
E

ng
lis

h B = 63.08%! 63.01% -0.06993%
T = 65.77% 66.26%! 0.4895%
FT * 69.83%! 68.39% -1.434%
H * 66.68%! 64.9% -1.783%

C
at

al
an

B ** 65.12% 65.7%! 0.5764%
T * 65.23% 65.7%! 0.47%

FT ** 76.77% 79.35%! 2.572%
H ** 74.76% 75.8%! 1.038%

S
pa

ni
sh B ** 64.97% 65.5%! 0.5243%

T ** 64.89% 65.7%! 0.8118%
FT ** 75.04% 77.25%! 2.216%
H ** 73.95% 75.16%! 1.209%

C
ze

ch

B ** 66.28%! 65.47% -0.8158%
T ** 65.84% 66.69%! 0.8464%
FT = 69.99% 70.05%! 0.06119%
H ** 73.28% 74.05%! 0.7699%

o-
C

ze
ch B ** 64.42%! 63.21% -1.21%

T = 64.73% 65.08%! 0.3457%
FT ** 69.24%! 68.19% -1.044%
H = 72.56%! 72.23% -0.3313%

Ja
pa

ne
se B = 57.93%! 57.4% -0.5266%

T * 56.69% 57.97%! 1.279%
FT * 60.43% 61.52%! 1.091%
H ** 71.92% 75.34%! 3.423%

to
ta

l

B *4, **2 *3, **3 -0.4356%
T *0, **0 *6, **4 0.4793%
FT *2, **1 *6, **4 0.7837%
H *1, **0 *6, **6 0.7327%

Table 4: Tree distance with del=1 vs del=0.5.

Table 4 contrasts the two tree-distance set-
tings5, one where the deletion cost is 1 and an-

5The higher of the two values is used in table 3 for

other where the deletion cost is 0.5.
The main observation is that there is a tendency

for the del=0.5 setting to out-perform del=1. The
differences are small, usually less than one per
cent. Figure 6 plots the outcomes for T and FT,
and Figure 7 shows H outcomes.

For B, 3 times del=0.5 was strictly statistically
better than del=1, but the converse was also the
case 2 times, with margin averaging out at 0.44%
in favour of del=1. For T, del=0.5 often out-
performed del=1, and significantly so (*6,**4),
whilst del=1 never significantly out-performed
del=0.5. Averaged over all the data-sets, there is
a small margin for del=0.5: 0.48%.

For FT, again del=0.5 often out-performed
del=1, and significantly so (*6,**4), with the mar-
gins being a little larger than the case for T. For
two of the out-of-domain data-sets (o-Cz and o-
En), the relationship reverses, with del=1 statisti-
cally significantly out-performing the del=0.5 set-
ting. Averaging there is a margin in favour of
del=0.5 of 0.78%, with largest margin shown by
Spanish (2.21%) and Catalan (2.57%). See Fig-
ure 6.

For H, the effect of switching from del=0.5 to
del=1 follows a very similar pattern to that found
for FT and where del=0.5 exceeds del=1, the ef-
fect is a little more pronounced than it was for
FT, with 6 cases strictly statistically significant.
Again for o-Cz, the relationship is reversed, and
for the other two out-of-domain data-sets either
del=1 is significantly better or statistically indis-
tinguishable. Averaged across all the data-sets the
margin is 0.73% in favour of del=0.5 for H.

Concerning the out-of-domain data-sets, one
could speculate that the reason why the del=0.5
setting does not improve over the del=1 setting is
that this makes swaps relatively more costly, and
that the out-of-domain data-sets require a greater
tolerance to swaps.

5 Conclusions and future work

In an approach to projecting annotations over Tai-
mappings, we have explored the effects of varia-
tions of possible parameters. We have considered
a number of settings concerning the costing of
swaps, referring to greater and lesser amounts of

max(dist).
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Figure 6: Comparing dist(del=1)to dist(del=0.5) (T
and FT).
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Figure 7: Comparing dist(del=1)to dist(del=0.5) (H).

the available information. With the H setting, us-
ing syntactic and lexical information, the perfor-
mance across the languages ranges from74% to
85%, and the performance under the B and T set-
tings, which attend to no lexical information was
also substantial. The linearised representation
was shown to be clearly out-performed by the tree
representation. Distance- and similarity-based
alignment scoring were shown to give different
outcomes, with distance overall out-performing
similarity on the B, T and FT settings, but with
this no longer the case for the H setting.

There were also some language-specific find-
ings, amongst them that Japanese results with
B/T/FT settings were noticeably poor, almost cer-
tainly due to that data-set’s lack of variation in de-
pendency labels, and that whilst mostly lowering
the cost of deletion improved performance, this
was not the case for the out-of-domain data-sets.

The non-negligible performance under the B
and T settings, which attend to no lexical infor-
mation is perhaps worth further scrutiny. If across

different lexical items, PropBank aimed for no
continuity of use of enumerated core arguments,
intuition would suggest that in these B and T set-
tings, performance should be very low. Concern-
ing the A0 and A1 roles, PropBank commits to
some consistency concerning possession of proto-
typically agent and patient properties, and for
other enumerated roles, to consistency within cer-
tain verb groups. One direction for future re-
search would be to investigate what aspects of
performance are due to consistent use across lex-
ical items, by automatically introducing inconsis-
tency by permutations amongst the identifiers for
a particular item.

There has been little comparable work using
an alignment approach to SRL an exception be-
ing Fürstenau and Lapata (2011), though there are
significant differences: they work with FrameNet
(Fillmore et al., 2004), and use an alignment not
constrained by ancestry or linear order. Also,
rather than taking each unlabelled item,T , in
turn, and using its nearest labelled neighbours,
{S1, . . . , Sn}, their aim is to take each labelled
exemplar,S, from a framelexicon, in turn, and
use it to project annotation to its nearest neigh-
bours{T1, . . . Tn} in an unlabelled corpus. For
all of these reasons, we cannot at the moment
make any meaningful quantitative comparisons
with their work. Nonetheless, it seems reason-
able to expect the contrasts we have described
concerning cost settings and distance versus simi-
larity to apply to the kind of data-set expansion
scenario they discuss and investigating whether
this is so is a potential avenue for further research.
Conversely it would be interesting to see how our
findings are effected if we were to replace our no-
tion of alignments which must be Tai mappings,
with the notion of alignment from their work.
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