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Semantic Neologism

semantic neologism: when an old word acquires a new usage/meaning
example bricked

old sense: a construction process involving bricks, as in (from 2001)

...In 1611 she was bricked into one of the rooms ...

recent sense: render a piece of equipment, often a phone, entirely unresponsive,
as in (from 2011)

I've tried to flash a custom ROM and now | think I've bricked my
phone
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some kind of movement vs. traversal of www by a web-crawler
high-pitched bird noise vs. post to Twitter web-site

!Executed May 2013.
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crawled some kind of movement vs. traversal of www by a web-crawler
tweet high-pitched bird noise vs. post to Twitter web-site

can make problems for SMT when its training data pre-dates the neologism's
emergence

some translations into German via Google Translate®:

English German (via Google Translate)
he is a regular tweeter er ist ein regelmaessiger Hochtoener
he has bricked my phone | er hat mein Handy zugemauert

!Executed May 2013.
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Motivation

Other examples

crawled some kind of movement vs. traversal of www by a web-crawler
tweet high-pitched bird noise vs. post to Twitter web-site

can make problems for SMT when its training data pre-dates the neologism's
emergence

some translations into German via Google Translate®:

English German (via Google Translate)
he is a regular tweeter er ist ein regelmaessiger Hochtoener
he has bricked my phone | er hat mein Handy zugemauert

The question is:

Can semantic neologisms be detected from untagged text?

!Executed May 2013.
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words to left and right of a target
i-th word in W

year of occurrence

sense of target occurrence of targets
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Representation and Notation

To talk about an occurrence of an ambiguous word will use:

W:  words to left and right of a target
W;:  i-th word in W

Y: year of occurrence

S: sense of target occurrence of targets

Eg. samples of bricked:

2001: ...In 1611 she was bricked into one of the rooms ...
2011: ['ve tried to flash a custom ROM and now I think I've bricked my phone

become instances:

Y = 2001,

S W = (L, In, 1611, she, was, into, one, of , the, rooms)
Y =2011, S

1
2, W = (and, now, I, think, I’ve, my, phone, R, R, R)
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Time dependent Sense Model

Without loss of generality, using the chain rule, we have

p(Y, S, W) = p(Y) x p(5]Y) x p(W|S, Y)
vary with the year

The p(S|Y) term directly expresses the idea that the prevalence of a sense can
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Time dependent Sense Model

Without loss of generality, using the chain rule, we have

p(Y, S, W) = p(¥) x p(S|¥) x p(W[S, )
The p(S|Y) term directly expresses the idea that the prevalence of a sense can
vary with the year

If we now assume that p(W|S, Y) = p(W|S) ie. W is conditionally
independent of Y given S we get first line below

Definition (Dynamic Sense Model)

p(Y,S,W) = p(Y) x p(S[Y) x p(W|S) (1)
= )
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Time dependent Sense Model

Without loss of generality, using the chain rule, we have

p(Y, 5, W) = p(Y) x p(S]Y) x p(W[S, Y)
The p(S|Y) term directly expresses the idea that the prevalence of a sense can
vary with the year

If we now assume that p(W|S, Y) = p(W|S) ie. W is conditionally
independent of Y given S we get first line below

Definition (Dynamic Sense Model)

p(Y,S, W)

p(Y) x p(S[Y) x p(W|$) (1)
p(Y) x p(S|Y) x HP(Wi|5) )

Second line above by treating W as 'bag of words’



Dynamic EM in Neologism Evolution
L Models

Static Model

Outline

Models

Static Model

DA



T
Dynamic EM in Neologism Evolution
L Models
L Static Model

If we further assume that p(S|Y) = p(S) we get:
Definition (Static Sense Model)

p(Y, S, W) = p(Y) x p(S) x p(W[$)



Dynamic EM in Neologism Evolution
L~ EM Estimation

EM training

Let 0 be all parameters: p(Y), p(S|Y), p(W|S).
Data has no sense annotation.
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EM training

Let 0 be all parameters: p(Y), p(S|Y), p(W|S).
estimates

Data has no sense annotation. So use EM to make converging sequence of
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0, goes to 0,11 by an E-step, followed by a M step
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EM training

Let 0 be all parameters: p(Y), p(S|Y), p(W|S).

Data has no sense annotation. So use EM to make converging sequence of
estimates

00_>~~~_>9n_>9n+1 —>...—>0ﬁna[
0, goes to 0,11 by an E-step, followed by a M step

(E) generate a virtual corpus of disambiguated instances by
treating each training instance (Y¢,W¢) as standing for all
possible completions with a sense, (Y?,S, W), weighting each
by its conditional probability P(S|Y,W?;8,), under current
probabilities 6,
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EM Estimation

EM training

Let 0 be all parameters: p(Y), p(S]Y), p(W|S).

Data has no sense annotation. So use EM to make converging sequence of
estimates

90—)...—>9n—>9n+1 —)...—)9,(,',13/
0, goes to 0,41 by an E-step, followed by a M step

(E) generate a virtual corpus of disambiguated instances by
treating each training instance (Y¢,W¢) as standing for all
possible completions with a sense, (Y?,5,W?), weighting each
by its conditional probability P(S|Y,W?;8,), under current
probabilities 0,

(M) apply maximum likelihood estimation to the virtual corpus to
derive new estimates 0,1 1.
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EM update equations

For each data item d, let 7§ (s) be the conditional S-prob under

0, ie.
¥6,(s) == P(S =s|Y =y, W = w’;0,)

can prove the E-M cycle leads to update formulae:
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EM update equations

For each data item d, let 'ygn(s) be the conditional S-prob under 0, ie
74,(s) == P(S = s|Y =y, W = w;6,)

can prove the E-M cycle leads to update formulae:

P(S=5s|Y =y;0h1) =

So4(if YI =y then 7§ (s) else 0)

> o4(if Y4 =y then 1 else 0)
oy 2a(78,(s) x freq(w € W)
P(w|S = s;0h11) = >, (18 (5) x Tength(W9)
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Experiments

Data and Settings

> to get time-specfic samples used the Google facility to specify a time
period for searched documents
eg. search: “bricked” 1/1/2000 — 31/12/2000

> saved 100 per year
» used window 5 words to the left of the target, and 5 words to the right

> per-sense word probs initialised to overall corpus probs 4+ some noise

7 11 2

» sense distribs initialised 55, 55, 55
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EM converging to solution for 'crawled’
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EM converging to solution for 'crawled’

e £ H E red among top-20:
site : 8.64154
Google : 8.24918
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EM converging to solution for 'crawled’
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EM converging to solution for 'bricked’
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EM converging to solution for 'bricked’
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EM converging to solution for 'bricked’
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Experiments

Results

Comparing to labelled target

the algorithm learns from data with no sense data. For 'bricked’ we
hand-labelled to give a target to compare to.

» The inferred sense distrib resembles the empirical target:

Sense Prop

T T T T
Year

» |f the EM-trained models are used to label the data, then
dynamic model accuracy: 82.4%.
static model accuracy: 76.1%
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Conclusions and Further Directions

» some evidence that can spot a semantic neologism
further data

\4

v

more elaborate models: prior on year-to-year change

» comparison to LDA and dynamic topic models

DA
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