Trainable Tree Distance and an application to Question Categorisation

Trainable Tree Distance and an application to Question Categorisation

Martin Emms

September 3, 2010

QuestionBank

2755 syntactically analysed and semantically categorised questions

HUM ENTY NUM LOC -----> 2755

Cat	Example
HUM	What is the name of the managing director of Apricot Computer?
	(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))
	(PP (IN of)(NP (NNP Apricot)(NNP Computer))))))). ?))
ENTY	What does the Peugeot company manufacture ?
DESC	(SBARQ (WHNP (WP What))(SQ (VBZ does)(NP (DT the)(NNP Peugeot)(NN company))(VP (VB manufacture)))(. ?)) What did John Hinckley do to impress Jodie Foster ?
	(SBARQ (WHNP (WP What))(SQ (VBD did)(NP (NNP John)(NNP Hinckley))(VP (VB do)
	(S (VP (TO to)(VP (VB impress)(NP (NNP Jodie)(NNP Foster)))))))(.?))
NUM	When was London 's Docklands Light Railway constructed ?
	(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS 's))(NNPS Docklands)
	(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))
LOC	What country is the biggest producer of tungsten?
	(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))
	(PP (IN of)(NP (NN tungsten)))))(. ?))
ABBR	What is the acronym for the rating system for air conditioner efficiency ?
	(SBARQ (WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN acronym))(PP (IN for)(NP (NP (DT the)(NN rating)

(NN system))(PP (IN for)(NP (NN air)(NN conditioner)(NN efficiency))))))(. ?))

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

options to get a representation \hat{f} of f

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

options to get a representation \hat{f} of f design by hand

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

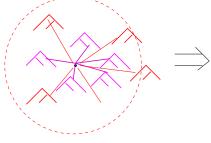
options to get a representation \hat{f} of $f \begin{cases} \text{design by hand} \\ \text{data-driven way, using kNN} \end{cases}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

options to get a representation \hat{f} of $f \begin{cases} \text{design by hand} \\ \text{data-driven way, using kNN} \end{cases}$

 $\hat{f}(S) = VOTE(\{categories of k \text{ nearest neighbours } of S \})$



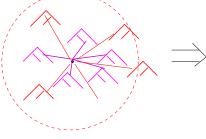
< □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □ := ...

k nearest neighbours for some structure S

► The QuestionBank data \land HUM \land ENTY \land NUM \land LOC \land 2755 is a finite sample of an infinite target function $f : Syn \mapsto Sem$ function.

options to get a representation \hat{f} of $f \begin{cases} \text{design by hand} \\ \text{data-driven way, using kNN} \end{cases}$

 $\hat{f}(S) = VOTE(\{categories of k \text{ nearest neighbours } of S \})$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □ := ...

k nearest neighbours for some structure S

So how to compare trees

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

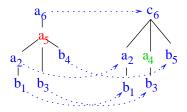
Definition

(Tree- or Tai-distance) between ${\cal S}$ and ${\cal T}$ is the cost of the least-costly Tai mapping from ${\cal S}$ to ${\cal T}$

イロト イロト イヨト イヨト

3

example Tai mapping σ :



a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

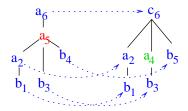
Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

example Tai mapping σ :

Cost of a mapping given by cost of

イロト イロト イヨト イヨト

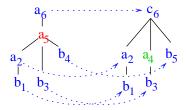


a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$

example Tai mapping σ :



Cost of a mapping given by cost of

<ロト (四) (正) (正)

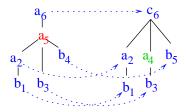
deletions eg. a5 has no image

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$

example Tai mapping σ :



Cost of a mapping given by cost of

deletions eg. a₅ has no image

insertions eg. a₄ has no source

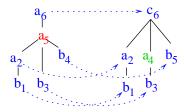
<ロト (四) (正) (正)

a partial mapping $\sigma: S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

example Tai mapping σ :



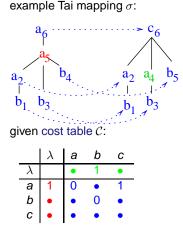
Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

<ロト (四) (正) (正)

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$



Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

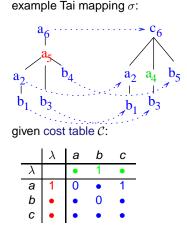
イロト イロト イヨト イヨト

æ

a partial mapping $\sigma: S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T



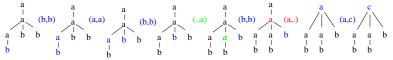
Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

total cost of $\boldsymbol{\sigma}$ is sum on non-zero costs

 $C[\lambda][a] + C[a][\lambda] + C[a][c]$ = 3this is also a least cost mapping forthis table

Stochastic version of Tree Distance

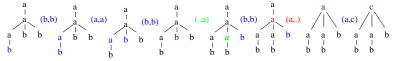
A Tai-mapping can also be serialised in a sequence of edit operations, called an edit-script:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stochastic version of Tree Distance

A Tai-mapping can also be serialised in a sequence of edit operations, called an edit-script:



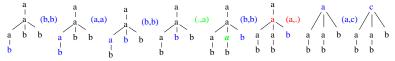
assuming a prob distribution *p* on edit-script components
 e ∈ (Σ ∪ {λ}) × (Σ ∪ {λ}), can define an overall edit-script probability as

 $P(e_1 \ldots e_n) = p(e_1) \times \ldots \times p(e_n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stochastic version of Tree Distance

A Tai-mapping can also be serialised in a sequence of edit operations, called an edit-script:



assuming a prob distribution *p* on edit-script components
 e ∈ (Σ ∪ {λ}) × (Σ ∪ {λ}), can define an overall edit-script probability as

$$P(e_1 \ldots e_n) = p(e_1) \times \ldots \times p(e_n)$$

leading to

Definition

(All-paths and Viterbi stochastic Tai distance)

 $\Delta^{A}(S, T)$ is the sum of the probabilities of all edit-scripts which represent a *Tai*-mapping from S to T;

 $\Delta^{V}(S, T)$ is the probability of the most probable edit-script

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

► change cost table ⇒ change nearest neighbours ⇒ change categorisation:

► change cost table ⇒ change nearest neighbours ⇒ change categorisation:

in scripts between between same-category neighbours should have distinctive probs eg. . P(who/when) << P(state/country).</p>

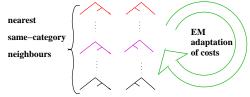
<ロト (四) (正) (正)

æ

► change cost table ⇒ change nearest neighbours ⇒ change categorisation:

- in scripts between between same-category neighbours should have distinctive probs eg. . P(who/when) << P(state/country).</p>
- IDEA: use Expectation-Maximisation techniques to adapt edit-probs from a corpus of same-category nearest neighbours (cf. HMMs).

イロト イヨト イヨト イヨト



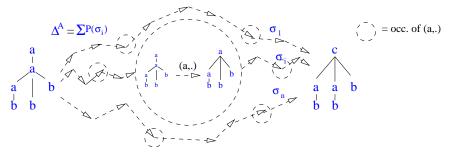
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ in principle treat each training pair (*S*, *T*) of same-category neighbours as standing for **all** the edit-scripts $\sigma : S \mapsto T$

- ▶ in principle treat each training pair (*S*, *T*) of same-category neighbours as standing for **all** the edit-scripts $\sigma : S \mapsto T$
- derived weighted counts for each edit operation op from all edit-scipts

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

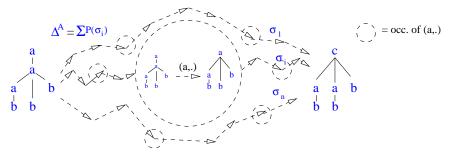
- ▶ in principle treat each training pair (S, T) of same-category neighbours as standing for **all** the edit-scripts $\sigma : S \mapsto T$
- derived weighted counts for each edit operation op from all edit-scipts



$$n_{\mathcal{S},\mathcal{T}}(op) = \sum_{\sigma: \mathcal{S} \mapsto \mathcal{T}} \left[\frac{\mathcal{P}(\sigma)}{\Delta^{\mathcal{A}}(\mathcal{S},\mathcal{T})} \times \#(op \in \sigma) \right]$$

A D >
 A D >
 A

- ▶ in principle treat each training pair (S, T) of same-category neighbours as standing for **all** the edit-scripts $\sigma : S \mapsto T$
- derived weighted counts for each edit operation op from all edit-scipts

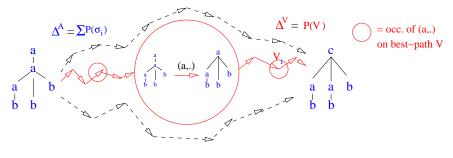


$$n_{\mathcal{S},\mathcal{T}}(op) = \sum_{\sigma: \mathcal{S} \mapsto \mathcal{T}} [rac{\mathcal{P}(\sigma)}{\Delta^{\mathcal{A}}(\mathcal{S},\mathcal{T})} imes \#(op \in \sigma)]$$

infeasible

Viterbi approximation EM^V (feasible)

• approximate this by computing counts from only the **best-path** \mathcal{V} .

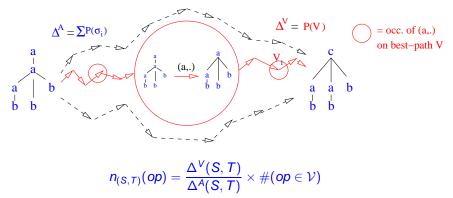


 $n_{(S,T)}(op) = rac{\Delta^V(S,T)}{\Delta^A(S,T)} imes \#(op \in \mathcal{V})$

<ロト <回ト < 臣ト < 臣ト

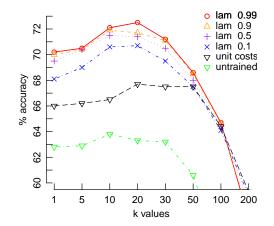
Viterbi approximation EM^V (feasible)

- approximate this by computing counts from only the **best-path** \mathcal{V} .

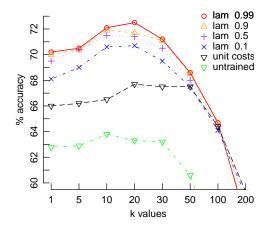


<ロト <回ト < 臣ト < 臣ト

a dominant best-path has more to say than a weak best-path

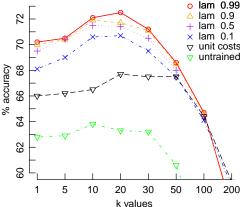


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

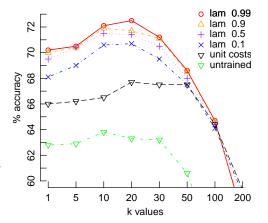
- standard unit-costs **▽**, max. 67.7%
- initial stochastic costs worse than unit costs



▲□▶ ▲圖▶ ▲厘▶

- best EM^V-adapted costs
 o, max. 72.5%
 about 5% better than unit-costs

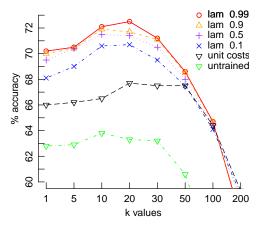
(▽, max. 67.7%)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- best EM^V-adapted costs

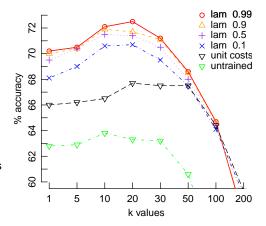
 max. 72.5%
 about 5% better than unit-costs
 (▽, max. 67.7%)



<ロト <四ト < 国ト < 国ト

Smoothing: learned costs are smoothed by interpolation with a prior C_u(d) making diag = d× non-diag: 2^{-C_λ[x][y]} = λ(2^{-C[x][y]}) + (1 − λ)(2^{-C_u(d)[x][y]})

- best EM^V-adapted costs
 o, max. 72.5%
 about 5% better than unit-costs
 (∇, max. 67.7%)



- Smoothing: learned costs are smoothed by interpolation with a prior $C_u(d)$ making diag = $d \times$ non-diag: $2^{-C_\lambda[x][y]} = \lambda(2^{-C[x][y]}) + (1 - \lambda)(2^{-C_u(d)[x][y]})$
- Zeroing the diagonal: a final steps zeros the diagonal a move standardly made in related work on adpative string distance