
Trainable Tree Distance and an application to Question Categorisation

Trainable Tree Distance and an application to Question
Categorisation

Martin Emms

September 3, 2010

QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
HUM What is the name of the managing director of Apricot Computer ?

(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

(PP (IN of)(NP (NNP Apricot)(NNP Computer)))))))(. ?))

ENTY What does the Peugeot company manufacture ?
(SBARQ (WHNP (WP What))(SQ (VBZ does)(NP (DT the)(NNP Peugeot)(NN company))(VP (VB manufacture)))(. ?))

DESC What did John Hinckley do to impress Jodie Foster ?
(SBARQ (WHNP (WP What))(SQ (VBD did)(NP (NNP John)(NNP Hinckley))(VP (VB do)

(S (VP (TO to)(VP (VB impress)(NP (NNP Jodie)(NNP Foster)))))))(. ?))

NUM When was London ’s Docklands Light Railway constructed ?
(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

ABBR What is the acronym for the rating system for air conditioner efficiency ?
(SBARQ (WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN acronym))(PP (IN for)(NP (NP (DT the)(NN rating)

(NN system))(PP (IN for)(NP (NN air)(NN conditioner)(NN efficiency)))))))(. ?))

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

options to get a representation f̂ of f
{

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

options to get a representation f̂ of f
{

design by hand

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

options to get a representation f̂ of f
{

design by hand
data-driven way, using kNN

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

options to get a representation f̂ of f
{

design by hand
data-driven way, using kNN

f̂ (S) = VOTE({categories of k nearest neighbours of S })

k nearest neighbours for
some structure S

choose category of
the neighbours

Data-driven Syntax ⇒ Semantics

◮ The QuestionBank data ENTY NUM LOCHUM 2755
is

a finite sample of an infinite target function f : Syn 7→ Sem function.

options to get a representation f̂ of f
{

design by hand
data-driven way, using kNN

f̂ (S) = VOTE({categories of k nearest neighbours of S })

k nearest neighbours for
some structure S

choose category of
the neighbours

◮ So how to compare trees

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

given cost table C:

λ a b c
λ • 1 •

a 1 0 • 1
b • • 0 •
c • • • •

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

given cost table C:

λ a b c
λ • 1 •

a 1 0 • 1
b • • 0 •
c • • • •

total cost of σ is sum on non-zero
costs

C[λ][a] + C[a][λ] + C[a][c]
= 3
this is also a least cost mapping for
this table

Stochastic version of Tree Distance

◮ A Tai-mapping can also be serialised in a sequence of edit operations,
called an edit-script:

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

Stochastic version of Tree Distance

◮ A Tai-mapping can also be serialised in a sequence of edit operations,
called an edit-script:

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

◮ assuming a prob distribution p on edit-script components
e ∈ (Σ ∪ {λ})× (Σ ∪ {λ}), can define an overall edit-script probability as

P(e1 . . . en) = p(e1)× . . .× p(en)

Stochastic version of Tree Distance

◮ A Tai-mapping can also be serialised in a sequence of edit operations,
called an edit-script:

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

◮ assuming a prob distribution p on edit-script components
e ∈ (Σ ∪ {λ})× (Σ ∪ {λ}), can define an overall edit-script probability as

P(e1 . . . en) = p(e1)× . . .× p(en)

◮ leading to

Definition

(All-paths and Viterbi stochastic Tai distance)
∆A(S,T) is the sum of the probabilities of all edit-scripts which represent a
Tai-mapping from S to T ;
∆V (S, T) is the probability of the most probable edit-script

Cost adaptation

Cost adaptation

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� �

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

Cost adaptation

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� �

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

◮ in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).

Cost adaptation

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� �

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

◮ in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).

◮ IDEA: use Expectation-Maximisation techniques to adapt edit-probs
from a corpus of same-category nearest neighbours (cf. HMMs) .

adaptation
EM

of costs

nearest

same−category

neighbours

Brute force All-paths EM (infeasible)

Brute force All-paths EM (infeasible)

◮ in principle treat each training pair (S,T) of same-category neighbours
as standing for all the edit-scripts σ : S 7→ T

Brute force All-paths EM (infeasible)

◮ in principle treat each training pair (S,T) of same-category neighbours
as standing for all the edit-scripts σ : S 7→ T

◮ derived weighted counts for each edit operation op from all edit-scipts

Brute force All-paths EM (infeasible)

◮ in principle treat each training pair (S,T) of same-category neighbours
as standing for all the edit-scripts σ : S 7→ T

◮ derived weighted counts for each edit operation op from all edit-scipts

a

a b

b b

a

c

b

b

b

aa

σi)P(∆A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

nS,T (op) =
∑

σ:S 7→T

[
P(σ)

∆A(S,T)
×#(op ∈ σ)]

Brute force All-paths EM (infeasible)

◮ in principle treat each training pair (S,T) of same-category neighbours
as standing for all the edit-scripts σ : S 7→ T

◮ derived weighted counts for each edit operation op from all edit-scipts

a

a b

b b

a

c

b

b

b

aa

σi)P(∆A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

nS,T (op) =
∑

σ:S 7→T

[
P(σ)

∆A(S,T)
×#(op ∈ σ)]

◮ infeasible

Viterbi approximation EMV (feasible)

◮ approximate this by computing counts from only the best-path V .

a

a b

b b

a

c

b

b

b

aa

σi)P(∆A =Σ V)P(

i(a,.)

b
b

b
a

aa

a b

b b

a
V

∆V = = occ. of (a,.)

on best−path V

n(S,T)(op) =
∆V (S,T)

∆A(S,T)
×#(op ∈ V)

Viterbi approximation EMV (feasible)

◮ approximate this by computing counts from only the best-path V .

a

a b

b b

a

c

b

b

b

aa

σi)P(∆A =Σ V)P(

i(a,.)

b
b

b
a

aa

a b

b b

a
V

∆V = = occ. of (a,.)

on best−path V

n(S,T)(op) =
∆V (S,T)

∆A(S,T)
×#(op ∈ V)

◮ a dominant best-path has more to say than a weak best-path

Categorisation Results on QuestionBank

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Categorisation Results on QuestionBank

◮ standard unit-costs
▽, max. 67.7%

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Categorisation Results on QuestionBank

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Categorisation Results on QuestionBank

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Categorisation Results on QuestionBank

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

◮ Smoothing: learned costs are smoothed by interpolation with a prior
Cu(d) making diag = d× non-diag:
2−Cλ[x][y] = λ(2−C[x][y]) + (1 − λ)(2−Cu(d)[x][y])

Categorisation Results on QuestionBank

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values
%

 a
cc

ur
ac

y
1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

◮ Smoothing: learned costs are smoothed by interpolation with a prior
Cu(d) making diag = d× non-diag:
2−Cλ[x][y] = λ(2−C[x][y]) + (1 − λ)(2−Cu(d)[x][y])

◮ Zeroing the diagonal: a final steps zeros the diagonal – a move
standardly made in related work on adpative string distance

