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Syntactic structures are placed into semantic categories via distances to k nearest neighbours in a pre-categorised set. Variants of tree-distance are used, in particular a stochastic variant. A Viterbi
Expectation Maximisation algorithm is proposed via which the parameters of the stochastic model are learned. We show that a 67.7% base-line using standard unit-costs can be improved to 72.5% by cost
adaptation.

Tree distance
Standard Edit Distance

a Tai-mapping σ between trees S and T is a partial 1-to-1 mapping which

(T1) preserves left-to-right order (T2) preserves ancestry

Where γ(n) is the label of node n, and Σ is all labels, a summed cost can be assigned to a mapping,
assuming a cost-table C size |Σ + 1| × |Σ + 1|:

Deletions : n ∈ S,¬∃n′ ∈ T , 〈n, n′〉 ∈ σ Cost = C[x][λ] where x = γ(n)
Insertions : n′ ∈ T ,¬∃n ∈ S, 〈n, n′〉 ∈ σ Cost = C[λ][y] where y = γ(n′)

Swaps/Matches : n ∈ S, n′ ∈ T , 〈n, n′〉 ∈ σ Cost = C[x][y] where x = γ(n), y = γ(n′)

Definition 0.1 (Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:
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example cost table:

λ a b c

λ • 1 •

a 1 0 • 1

b • • 0 •

c • • • •

cost of σ

C[b][b] 0
C[a][a] 0
C[b][b] 0
C[λ][a] 1
C[b][b] 0
C[a][λ] 1
C[a][c] 1
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total = 3

this is also a least cost
mapping for this table

Stochastic Edit Distance

A Tai-mapping can also be serialised in a sequence of edit operations, called an edit-script:
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A probability distribution p on edit-script components e ∈ (Σ ∪ {λ}) × (Σ ∪ {λ}) can be assumed,
and an overall edit-script probability defined as

P (e1 . . . en) = p(e1)×. . .×p(en) (equiv. log(P (e1 . . . en)) = log(p(e1))+. . .+log(p(en)))

leading to the notions:

Definition 0.2 (All-paths and Viterbi stochastic Tai distance) ∆A(S, T ) is the sum of the proba-
bilities of all edit-scripts which represent a Tai-mapping from S to T ; ∆V (S, T ) is the probability
of the most probable edit-script

Algorithms to calculate ∆V (S, T ) and ∆A(S, T ) can be based on the following decomposition

=Gx

x x

x )λ(

x λ( )

( )

For ∆A, GA is sum
For ∆V , GV is min

Classification via Tree distance
A syntactic structure T can be given a semantic category via its distances to k nearest neighbours in
a pre-categorised example set:

knn class(ES,∆, k;T) {
let D = SORT ({(S,∆(S, T )) | S ∈ ES }

P = top(k, D)
V = weighting( P)

return category with highest vote in V
}

ES is the example set
The weighting converts the panel of distance-
rated items to weighted votes for their cate-
gories.
vote(C, d) = (dmax − d)/(dmax − dmin)

, or 1 if dmax = dmin,
where dmax and dmin are maximum and mini-
mum distances in the panel.

Different settings for the cost table will give different nearest neighbours and thereby categorisation
outcomes, leading to the question of cost-adaptation:
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neighbourhood with
another cost table

infer infer

neighbourhood with
one cost table

Data for experiments

QuestionBank (QB) is a hand-corrected syntactic corpus of questions [3]. A substantical subset of
QB comes from a corpus of semantically categorised, syntactically unannotated questions (the CCG
corpus from the University of Illinois 2001). From these we created a corpus of 2755 semantically
categorised, syntactically analysed questions

Cat Perc Example
HUM 23.5% What is the name of the managing director of Apricot Computer ?
ENTY 22.5% What does the Peugeot company manufacture ?
DESC 19.4% What did John Hinckley do to impress Jodie Foster ?
NUM 16.7% When was London ’s Docklands Light Railway constructed ?
LOC 16.5% What country is the biggest producer of tungsten ?
ABBR 1.4% What is the acronym for the rating system for air conditioner efficiency ?

Experiments were done on 9:1 splits of this data

Cost Adaptation via Expectation Maximisation
in scripts between same-category neighbours, in-
tuitively edit-operations should not have uni-
form probability eg. P (who/when) <<
P (state/country). We propose to use a corpus
of same-category nearest neighbours to adapt costs
using an Expectation-Maximisation algorithm.

adaptation
EM

of costs

nearest

same−category

neighbours

An exponentially expensive algorithm EMA
bf would treat each training pair (S, T ) of same-category

neighbours as standing for all the edit-scriptsA : S 7→ T , weighting each by its conditional probability,
and thereby deriving weighted counts for each op (see left below). A Viterbi variant, EMV , approx-
imates this by computing counts from only the best-path V (see right below) . Feasibly implementing
EMA

bf is an unsolved problem. [2] contains an incorrect proposal.

Brute force All-paths EMA
bf (infeasible)
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Viterbi approximation EMV (feasible)
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∆V (S, T )
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×#(op ∈ V)

Costs are initialised to Cu(d) where diagonal entries are d times more probable than non-diagonal
and costs C derived by EMV may be smoothed by interpolation with the original Cu(d) according to

2−Cλ[x][y] = λ(2−C[x][y]) + (1− λ)(2−Cu(d)[x][y])

Experiments
Experiment One

• unsmoothed EMV -adapted costs (△,max.
53.2%) worse than initial, stochastic costs (◦,
max. 63.8%). Testing on the training set
though gives 95% accuracy: ⇒ EMV made the
best-scripts connecting the training pairs too
probable, over-fitting the cost table.

• smoothing the adapted costs (+,max. 64.8%) im-
proves over initial costs (◦) but is still below unit
costs (▽).
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Despite poor categorisation performace, some of the adapted costs seem intuitive. Here is a sample
from top 1% of adapted swap costs, which are plausibly discounted relative to others:

8.50 ? . 9.51 NNS NN 9.78 a the 11.03 was is 12.31 The the 13.60 can do 13.83 many much 13.92 city state

Experiment Two

• cost 0 means prob 1 ⇒ a strictly stochastically
valid cost table cannot have a zero cost diag-
onal; perhaps this impedes good categorisation:
note the stochastic initialisation Cu(3) (▽, max.
63.8%) is below unit-costs (▽, max. 67.7%). We
consider outcomes with final step zero-
ing the diagonal – this move is also standardly
made in cost-adaptation for string distance used
in duplicate detection [1].

• now with smoothing at varius levels of interpola-
tion (λ ∈ {0.99, 0.9, 0.5, 0.1}) and with the diag-
onal zeroed, the EMV -adapted costs clearly out-
perform the unit-costs case (▽).

• the best result being 72.5% (k = 20, λ = 0.99),
as compared to 67.5% for unit-costs (k = 20)
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plots to the left show an ex-
ample of misleading neighbours
’migrating’ out of the neigh-
bourhood, for an item initially
miscategorised as HUM ⋄ un-
der unit costs, then correctly
categorised as ENTY △ under
adapted costs, due in part to
learning P (What/what) >>
P (Who/what)

Comparison and Conclusions
A cost-adapation procedure for ∆V (S, T ) has been shown to improve the kNN classification perfor-
mance from 67.7% to 72.5% with adapted costs. If the SST (S, T ) tree-kernel ’similarity’ is used
instead of ∆V (S, T ) in k-NN, a lower accuracy results: 64% − 69.4%. It remains to compare more
closely the SST (S, T ) and ∆V (S, T ) neighbourhoods. However deploying SST (S, T ) as a kernel in
one-vs-one SVM classification higher accuracies are attainable: 81.3%.

Issues for future work: larger data set, automatically parsed; integration with other lexicon or corpus-
based similarity measures; application to other tasks: Question Answering, Entailment Recognition
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